
SOLVING STOCHASTIC PROGRAMMING PROBLEMS

WITH RISK MEASURES BY PROGRESSIVE HEDGING

R. Tyrrell Rockafellar1

Abstract

The progressive hedging algorithm for stochastic programming problems in single or multiple
stages is a decomposition method which, in each iteration, solves a separate subproblem with
modified costs for each scenario. The decomposition exploits the separability of objective functions
formulated in terms of expected costs, but nowadays expected costs are not the only objectives of
interest. Minimization of risk measures for cost, such as conditional value-at-risk, can be important
as well, but their lack of separability presents a hurdle. Here it is shown how the progressive hedging
algorithm can nonetheless be applied to solve many such problems through the introduction of
additional variables which, like the given decision variables, get updated through aggregation of
the independent computations for the various scenarios.

Keywords: stochastic programming progressive hedging algorithm, problem decompo-
sition, risk measures, conditional value-at-risk.

Version of June 26, 2017

1University of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195-4350;
E-mail: rtr@uw.edu, URL: www.math.washington.edu/∼rtr/mypage.html

This reseach was sponsored by DARPA EQUiPS grant SNL 014150709

1

1 Introduction

In the early days of stochastic programming one of the challenges was how to address the common
practice of running multistage scenarios and solving for each of them an optimization problem with
perfect hindsight. There was no clear idea of how to combine the results from such separate problems to
obtain a decision policy that could properly hedge against the underlying uncertainty. The progressive
hedging algorithm of Rockafellar and Wets [4] (1991) was developed to fill that gap, in the presence
of convexity. It revolved around a problem formulation in which recourse decisions could respond
to successive inputs of information in time and the expected value of an associated cost expression
was to be minimized. Users could still use the tools they had for solving scenario problems with
perfect hindsight, but the costs in those problems were modified in two ways: an additional cost term
incorporating an estimated “price of information” and a proximal term aimed at discouraging the next
policy proposal from straying too far from the previous one. The results for the separate scenarios
were then aggregated by a projection mapping utilizing conditional expectations. This has been a
helpful tool in many practical situations; see for instance Watson and Woodruff [5].

Since the introduction of the progressive hedging algorithm the applications of stochastic program-
ming have expanded to include situations where not just a expected cost is minimized as a risk-neutral
objective, but instead some risk-averse assessment of cost. Especially of interest in this respect have
been the CVaR risk measures (conditional value-at-risk) in the works of Rockafellar and Uryasev [1, 2].
However, such risk measures appear incompatible with the progressive hedging algorithm because they
lack the scenario-wise separability of an expected value on which that scheme relies.

Here we demonstrate in Section 3 that the progressive hedging algorithm can be applied despite that
seeming obstacle through a restatement which makes use of a formula in [1, 2]. The extra parameter in
that formula becomes an additional first-stage variable that, in the course of the iterations, has different
values for the different scenarios, and yet through aggregation ultimately converges to the single value
that is needed and corresponds to the associated level of VaR (value-at-risk) of the objective. In
Section 5 we go on from that basic CVaR case to show that the same ideas lead to extensions to a
much larger class of risk measures, including for instance, in approximation, all spectral risk measures.

2 Progressive hedging background

In the circumstances we are targeting, with N ≥ 1 decision stages k, the choice of a vector xk ∈ IRnk is
followed by the revelation of an information element ξk in some set Ξk, which could be the observation
of a vector random variable or something else. It is assumed for simplicity that there are only finitely
many scenarios ξ = (ξ1, . . . , ξN) generated in this way, each having a probability p(ξ) > 0 that is
independent of any decisions taken. The finite subset of Ξ1 × · · · × ΞN consisting of these is denoted
by Ξ. (Alternatively this structure could be articulated equivalently in terms of a “scenario tree.”)

In reacting to information provided by a scenario ξ = (ξ1, . . . , ξN), the decision xk(ξ) at stage k
must be nonanticipative:

xk(ξ) depends only on (ξ1, . . . , ξk−1), not on (ξk, . . . , ξN). (2.1)

In denoting by x(·) a function that assigns to each ξ ∈ Ξ a vector

x(ξ) = (x1(ξ), x2(ξ), . . . , xN (ξ)) ∈ IRn1 × IRn2 × · · · × IRnN = IRn (2.2)

as a “decision policy” in general, the special pattern associated with x(·) being nonanticipative is thus
that it can be expressed by

x(ξ) = (x1, x2(ξ1), x3(ξ1, ξ2), . . . , xN (ξ1, . . . , ξN−1)). (2.3)

2

Additional constraints on decisions are imposed by requiring

x(ξ) ∈ C(ξ) ⊂ IRn for every ξ ∈ Ξ, (2.4)

where C(ξ) is a nonempty closed set which we take to be convex. Of course C(ξ) might be described
by a system of constraints which furthermore could reflect a stage-by-stage structure, but we don’t
have to get into that degree of detail in what follows.

An alternating sequence of decisions and observations x1, ξ1, x2, ξ2, . . . , xN , ξN results in a cost,
which we denote by f(x, ξ) and assume here to be finite and convex with respect to x = (x1, . . . , xN) ∈
IRn for each ξ = (ξ1, . . . , ξN) ∈ Ξ. There could be additive structure to this cost over the stages, but
again that needn’t be our concern. Our focus is on the fact that each choice of x(·) yields

f(x(·), ·) : ξ → f(x(ξ), ξ), a function from Ξ, as a probability space, to IR, (2.5)

which we can regard as a random variable. Classically the expected value of this random variable,

E[f(x(·), ·)] = Eξ[f(x(ξ), ξ)] =
∑

ξ∈Ξ
p(ξ)f(x(ξ), ξ), (2.6)

is adopted as the cost objective c(x(·)) to be minimized with respect to the choice of x(·), subject to
x(·) being nonanticipative and satisfying the constraints (2.4). That is the framework of stochastic
programming for which the progressive hedging algorithm was developed in [4] and the subject of our
review of that method in this section.

The nonanticipative mappings x(·), having the pattern (2.3), form a linear space which we de-
note by N . This space has been adequate so far, but the progressive hedging algorithm relies on
reformulating the stochastic programming problem in a larger space than N . That strategy enables
nonanticipativity to be articulated as a linear constraint to which a Lagrange multiplier can be at-
tached. The multiplier not only has a crucial role in the algorithm; it also furnishes “shadow prices”
for information about future observations.

The larger space, which we denote by L, consists of all mappings x(·) : Ξ→ IRn that assign to each
scenario ξ a response x(ξ) as in (2.2), regardless of nonanticipativity. It has N as its nonanticipative
subspace. We furnish L with the expectational inner product

〈x(·), w(·)〉 = Eξ
[∑N

k=1
xk(ξ)·wk(ξ)

]
=

∑
ξ∈Ξ

p(ξ)
∑N

k=1
xk(ξ)·wk(ξ) for x(·) ∈ L, w(·) ∈ L, (2.7)

where xk(ξ)·wk(ξ) is the usual inner product in IRnk , so as to make it into a Hilbert space with norm

||x(·)|| =
√
〈x(ξ), x(ξ)〉 =

√
Eξ[||x(ξ)||2] (2.8)

The orthogonal projection PN from L onto N with respect to this norm is characterized by a condi-
tional expectation formula,

x(·) = PN [x̂(·)] ⇐⇒ xk(ξ) = Eξ|ξ1,...,ξk−1
x̂k(ξ) ∀k. (2.9)

This is easy to execute and will have a key role. Also important in this picture is the subspace of L
that is the orthogonal complement of N under the inner product (2.7), namely

M = N⊥ = {w(·) ∈ L | 〈x(·), w(·)〉 = 0, ∀x(·) ∈ N}. (2.10)

It too has a direct description in terms of conditional expectations:

w(·) ∈M ⇐⇒ Eξ|ξ1,...,ξk−1
wk(ξ) = 0, ∀k, (2.11)

3

and of course N =M⊥ as well. The projection mapping onto M is PM = I − PN , so that

x(·) ∈ N ⇐⇒ PM[x(·)] = 0 ⇐⇒ x(·)− PN [x(·)] = 0. (2.12)

The stochastic programming problem under consideration can be identified in the enlarged setting
with the minimization of the expectational objective (2.6), as a convex function on all of L, sub-
ject to the linear constraint (2.12), characterizing the nonanticipativity subspace N , and the convex
constraints in (2.4), which describe a nonempty closed convex subset C of L:

C = {x(·) ∈ L |x(ξ) ∈ C(ξ), ∀ξ}. (2.13)

The corresponding Lagrangian function has the form

L(x(·), w(·)) = E[f(x(·), ·)] + 〈w(·), PM[x(·)]〉, (2.14)

where the term 〈w(·), PM[x(·)]〉 = 〈x(·), PM[w(·)]〉 depends only on the projection of w(·) in M and
thus can be simplified to 〈x(·), w(·)〉 without loss of generality by supposing w(·) ∈M. This explains
the sense in which w(·) can be interpreted as a vector of “shadow prices” for nonanticipativity. It
also indicates that we should be looking not only for a solution x∗(·) to the minimization problem but
also at the same time for an element w∗(·) ∈ M that furnishes along with x∗(·) a saddle point of the
Lagrangian in (2.14):

x∗(·) ∈ argmin
x(·)∈C

L(x(·), w∗(·)), w∗(·) ∈ argmax
w(·)∈M

L(x∗(·), w(·)). (2.15)

Progressive Hedging Algorithm 1 (risk-neutral case). Iterations ν = 1, 2, . . . with a parameter
r > 0 proceed as follows from current elements xν(·) ∈ N and wν(·) ∈M.

(a) Get x̂ν(·) ∈ L by solving for each scenario ξ ∈ Ξ a strongly convex programming problem in
the variable x(ξ) ∈ IRn that has a unique solution x(ξ) = x̂ν(ξ):

x̂ν(ξ) = argmin
x(ξ)∈C(ξ)

{
f(x(ξ), ξ) + wν(ξ)·x(ξ) +

r

2
||x(ξ)− xν(ξ)||2

}
. (2.16)

(b) Update to iteration ν + 1 by taking

xν+1(·) = PN [x̂ν(·)], wν+1(·) = wν(·) + rPM[x̂ν(·)] = wν(·) + r[x̂ν(·)− xν+1(·)]. (2.17)

The projection in (2.17) is easy to execute because it just amounts to taking xν+1
k (ξ) equal to the

conditional expectation of x̂νk(ξ) given ξ1, . . . , ξk−1.

Convergence Theorem 1 (risk-neutral case [4]). Under the assumption that the stochastic pro-
gramming problem has a solution, the sequence of pairs (xν(·), wν(·)) generated by the progressive
hedging algorithm above from any starting pair is sure to converge to one such solution x∗(·) and an
associated w∗(·) furnishing a saddle point as in (2.15). In this convergence the distance expression

||xν(·)− x∗(·)||2 +
1

r2
||wν(·)− w∗(·)||2 (2.18)

will form a decreasing sequence.

A prime virtue of the progressive hedging algorithm is that it solves scenario subproblems in
parallel. This kind of decomposition stems from the fact that in each iteration the expression being
minimized subject only to having x(ξ) ∈ C(ξ) for all ξ to obtain x̂ν(·) is the expectation∑

ξ∈Ξ
p(ξ)

[
f(x(ξ), ξ) + wν(ξ)·x(ξ) +

1

2
||x(ξ)− xν(ξ)||2

]
, (2.19)

4

which breaks down into a separate minimization for each scenario ξ with respect x(ξ) ∈ C(ξ). That
could give the impression that other formulations of stochastic programming in which the objective
term lacks such separability might not be suitable for progressive hedging, but we’ll show there are
ways around that.

3 Extension of progressive hedging to CVaR objectives

The classical objective for minimization in stochastic programming is formed by taking the expected
value of the random variable f(x(·), ·) in (2.5), but this is only one of many possibilities. Much more
broadly one can consider a cost objective of the form

c(x(·)) = R(f(x(·), ·)) for some “risk measure” R. (3.1)

The theory of risk measures, as articulated for scalar-valued random variables with a “cost orientation,”
is broad and highly developed. It is laid out broadly, for instance, in Rockafellar-Uryasev [3]. This
section focuses on CVaR risk measures R, but the ideas that are developed enable the extension of
the progressive hedging to be carried out for a far larger class of risk-averse objectives, as will be
explained in Section 5.

In terms of the cumulative distribution function FX of a random variable X, a popular approach
to the risk R(X) in X is to look at the so-called value-at-risk at a level α ∈ (0, 1),

VaRα(X) = min{ z |FX(z) ≥ α}. (3.2)

This has the attractive property that

VaRα(X) ≤ a ⇐⇒ prob{X ≤ a} ≥ α. (3.3)

In taking R = VaRα in (3.1), the objective in the stochastic programming problem would be to choose
x(·) so as to achieve the lowest level a such that the probability of the cost coming out higher than
a would be less than 1 − α. This could make sense as a safeguard against cost overruns. However,
value-at-risk has a huge mathematical drawback. An objective function based on it will generally
(aside from special circumstances) lack convexity and even suffer from discontinuities, in particular in
handling random variables with finitely many outcomes.

An alternative to value-at-risk is conditional value-at-risk, which again depends on a choice of
α ∈ (0, 1) and is described by

CVaRα(X) = [expectation of X in its α-tail]. (3.4)

The “tail” in question is the interval [VaRα(X),∞) as long as no atom in the distribution of X
(corresponding to a jump in FX) resides at the point z = VaRα(X), but otherwise involves “splitting
that atom” in a precise manner explained in [2]. Alternatively, regardless of the presence of atoms,
the formula holds that

CVaRα(X) =
1

1− α

∫ 1

α
VaRβ(X)dβ. (3.5)

The rule analogous to (3.3) for conditional value-at-risk is that

CVaRα(X) ≤ a ⇐⇒ X is ≤ a on average in its α-tail. (3.6)

This is a stronger prescription than (3.3), which merely limits violations of X ≤ a to the “worst
(1 − α)% of outcomes” of X. In (3.6), even among those outcomes, the desired upper bound must

5

hold as an expectation. TakingR = CVaRα in (3.1) would mean adopting this more cautious approach
to cost overruns.

The powerful advantage of CVaRα(X) over VaRα(X) as a measure of the risk in X is that it does
possess continuity and even convexity. In (3.1) with R = CVaRα, we get c(x(·)) as a convex function
of x(·) ∈ L (under our assumption that f(·, ξ) is a convex function on IRn for each ξ ∈ Ξ). This
convexity is crucial to any hope of using Lagrange multipliers w(·) coming from M in a scheme of
decomposition with respect to nonanticipativity. In replacing E[f(x(·), ·)] by CVaRα(f(·), ·) in our
stochastic programming problem and trying directly to apply the progressive hedging algorithm we
find though that the separable expression in (2.19) to be minimized to determine x̂ν(·) is replaced by

CVaRα(f(x(ξ), ξ)) +
∑

ξ∈Ξ
p(ξ)

[
wν(ξ)·x(ξ) +

r

2
||x(ξ)− xν(ξ)||2

]
. (3.7)

This expression lacks separability and doesn’t lead to a break down into a separate problem with
respect to x(ξ) ∈ C(ξ) for each ξ.

Fortunately there is another characterization of conditional value-at-risk, originating in [1, 2],
which can lead us past this obstacle. It yields CVaRα(X) and VaRα(X) at the same time:

CVaRα(X) = miny∈IR
{
y + 1

1−αE[max{0, X − y}]
}
,

VaRα(X) = argminy∈IR

{
y + 1

1−αE[max{0, X − y}]
}

“essentially,”
(3.8)

where the caveat in the second line refers to an adjustment that has to be made in the situation in
(3.2) where there is more than one z satisfying FX(z) = α. Those values of z then form a closed
interval having VaRα(X) as its left endpoint, and the “argmin” is that entire interval.

In drawing on (3.8) we can rewrite the problem with respect to (3.7) for determining x̂ν(·) as the
problem

minimize with respect to y ∈ IR and x(ξ) ∈ C(ξ) for all ξ the expression:∑
ξ∈Ξ p(ξ)

[
y + 1

1−α max{0, f(x(ξ), ξ)− y}+ wν(ξ)·x(ξ) + r
2 ||x(ξ)− xν(ξ)||2

] . (3.9)

But although this looks “more separable,” trouble remains over the requirement of having the same y
for every scenario ξ.

Our strategy to get over this difficulty is to interpret y as an additional first-stage decision variable
which must end up as a constant due to nonanticipativity. The initial component x1(ξ) of x(ξ) is
replaced then by a pair (y(ξ), x1(ξ)) with the spaces L and N enlarged accordingly to spaces L and
N , where L = L0 × L for

L0 = { y(·) : Ξ→ IR}

and N = IR ×N . Likewise the multiplier space M gets enlarged to M through replacing the initial
component w1(ξ) of w(ξ) by a pair (u(ξ), w1(ξ)) ∈ L = L0×L having not only Eξ[w1(ξ)] = 0 but also
Eξ[u(ξ)] = 0. The convex sets C(ξ) turn into the convex sets C(ξ) = IR × C(ξ) in accommodating
the augmented vectors x(ξ) = (y(ξ), x1(ξ), x2(ξ), . . . , . . . , xN (ξ)). The convex cost functions f(x, ξ) =
f(x1, . . . , xN , ξ) on IRn × Ξ are replaced by the convex functions

fα(y, x1, . . . , xN , ξ) = y +
1

1− α
max{0, f(x1, . . . , xN , ξ)− y} (3.10)

We are back then in the earlier pattern of stochastic programming in which the objective is an expec-
tation, namely Eξ[fα(y(ξ), x1(ξ), . . . , xN (ξ), ξ)]. This is to be minimized over the nonanticipativity
subspace N subject to the extended vectors x(ξ) belonging to the sets C(ξ).

6

The progressive hedging algorithm can be applied straightforwardly in this framework. The re-
sulting procedure can then be recast in terms of the variables y and u(ξ) along with the original x(ξ)
and w(ξ). In place of the Lagrangian in (2.14) we have

L(y(·), x(·), u(·), w(·)) = Eξ[fα(y(ξ), x(ξ), ξ) + u(ξ)y(ξ) + w(ξ)·x(ξ)] (3.11)

and are aiming at a solution pair (y∗, x∗(·)) with associated multiplier pair (u∗(·), w∗(·)) characterized
by the saddle point condition

(y∗, x∗(·)) ∈ argmin
y(·)∈L0, x(·)∈C

L(y(·), x(·), u∗(·), w∗(·)),

(u∗(·), w∗(·)) ∈ argmax
u(·)∈L0, E[u(·)]=0

w(·)∈M

L(y∗, x∗(·), u(·), w(·)). (3.12)

This comes out as follows.

Progressive Hedging Algorithm 2 (risk-averse case for CVaRα). Iterations ν = 1, 2, . . . with a
parameter value r > 0 proceed as follows from current elements xν(·) ∈ N , wν(·) ∈ M, yν ∈ IR, and
uν(·) : Ξ→ IR with Eξ[u(ξ)] = 0.

(a) Get x̂ν(·) ∈ L and ŷν(·) : Ξ → IR by solving for each scenario ξ ∈ Ξ a strongly con-
vex programming problem in the variables x(ξ) ∈ IRn and y(ξ) ∈ IR that has a unique solution
(y(ξ), x(ξ)) = (ŷν(ξ), x̂ν(ξ)):

(ŷν(ξ), x̂ν(ξ)) = argmin
y(ξ)∈IR, x(ξ)∈C(ξ)

{
y(ξ) + 1

1−α max{0, f(x(ξ), ξ)− y(ξ)}

+uν(ξ)y(ξ) + r
2 |y(ξ)− yν |2 + wν(ξ)·x(ξ) + r

2 ||x(ξ)− xν(ξ)||2
}
.

(3.13)

(b) Update to iteration ν + 1 by taking

xν+1(·) = PN [x̂ν(·)], wν+1(·) = wν(·) + r[x̂ν(·)− xν+1(·)],
yν+1 = Eξ[ŷ

ν(ξ)], uν+1(·) = uν(·) + r[ŷν(·)− yν+1].
(3.14)

Convergence Theorem 2 (risk-averse case for CVaRα). Under the assumption that the stochastic
programming problem posed with R = CVaRα in (3.1) has a solution, the sequence of elements
(yν , xν(·), uν(·), wν(·)) generated by the progressive hedging algorithm above from any starting element
is sure to converge to one such solution x∗(·) paired with a parameter value y∗ and an associated pair
(u∗(·), w∗(·)) furnishing a saddle point as in (3.12). In this convergence the distance expression

||xν(·)− x∗(·)||2 + ||y(·)− y∗||2 +
1

r2
||uν(·)− u∗(·)||2 +

1

r2
||wν(·)− w∗(·)||2 (3.15)

will form a decreasing sequence.

Proof. This follows from the classical convergence theorem stated in Section 2 for the risk-neutral
case by virtue of the above reformulation of the risk-averse minimization problem into a risk-neutral
minimization problem. That is where the real contribution and innovation lies.

Note that the value y∗ produced in this computation will belong to the argmin in the formula (3.8)
for the case of the random variable X = f(x(·), ·). Thus, unless that argmin is a nontrivial interval,
it will equal VaRα(f(x∗(·), ·)).

7

4 Specialization to single-stage stochastic programming

Inspection of the single-stage case, where N = 1, may help to fix the ideas and open them to simple
comparison. In that case the classical problem is to

minimize Eξ[f(x, ξ)] over x ∈ ∩ξC(ξ), (4.1)

with the previous x = (x1, x2, . . . , xN) reduced just to x = x1 and meeting the nonanticipativity
requirement by being a constant independent of ξ. Now each C(ξ) is a nonempty closed convex subset
of IRn = IRn1 . The progressive hedging algorithm relaxes the constancy of x by passing to functions
x(·) ∈ L controlled by a multiplier element w(·) ∈ L having Eξ[w(ξ)] = 0.

Progressive Hedging Algorithm 1′ (single-stage risk-neutral case). Iterations ν = 1, 2, . . . with a
parameter r > 0 proceed as follows from current elements xν ∈ IRn and wν(·) having Eξ[w

ν(ξ)] = 0.
(a) Get x̂ν(·) ∈ L by solving for each scenario ξ ∈ Ξ a strongly convex programming problem in

the variable x(ξ) ∈ IRn that has a unique solution x(ξ) = x̂ν(ξ)):

x̂ν(ξ) = argmin
x(ξ)∈C(ξ)

{
f(x(ξ), ξ) + wν(ξ)·x(ξ) +

r

2
||x(ξ)− xν ||2

}
. (4.2)

(b) Update to iteration ν + 1 by taking

xν+1 = Eξ[x̂
ν(ξ)], wν+1(ξ) = wν(ξ) + r[x̂ν(ξ)− xν+1]. (4.3)

The accomplishment of Section 3 was to extend this procedure from the risk-neutral objective
(4.1) to stochastic programming problems objectives in terms of conditional value-at-risk. In the
single-stage case the altered problem is

minimize CVaRα(f(x, ·)) over x ∈ ∩ξC(ξ), (4.4)

where

CVaRα(f(x, ·)) = min
y∈IR

{
y +

1

1− α
Eξ[max{0, f(x, ξ)− y}]

}
. (4.5)

The extended algorithm for this involves not only functions x(·) but also y(·), along with multiplier
elements w(·) and u(·) having expectation equal to 0.

Progressive Hedging Algorithm 2′ (single-stage risk-averse case for CVaRα). Iterations ν =
1, 2, . . . with a parameter value r > 0 proceed as follows from current elements xν ∈ IRn, yν ∈ IR, and
functions wν(·) and uν(·) having Eξ[w(ξ)] = 0 and Eξ[u(ξ)] = 0.

(a) Get x̂ν(·) and ŷν(·) by solving for each scenario ξ ∈ Ξ a strongly convex programming problem
in the variables x(ξ) ∈ IRn and y(ξ) ∈ IR that has a unique solution (y(ξ), x(ξ)) = (ŷν(ξ), x̂ν(ξ)):

(ŷν(ξ), x̂ν(ξ)) = argmin
y(ξ)∈IR, x(ξ)∈C(ξ)

{
y(ξ) + 1

1−α max{0, f(x(ξ), ξ)− y(ξ)}

+uν(ξ)y(ξ) + r
2 |y(ξ)− yν |2 + wν(ξ)·x(ξ) + r

2 ||x(ξ)− xν(ξ)||2
}
.

(4.6)

(b) Update to iteration ν + 1 by taking

xν+1 = Eξ[x̂
ν(ξ)], wν+1(ξ) = wν(ξ) + r[x̂ν(ξ)− xν+1],

yν+1 = Eξ[ŷ
ν(ξ)], uν+1(ξ) = uν(ξ) + r[ŷν(ξ)− yν+1].

(4.7)

8

The “max” term in (4.6) creates nonsmoothness, at least on the surface, but can be handled by
familiar tricks such as introducing an “epigraphical” decision variable. It’s worth seeing how this
plays out, because the effect in our setting of stochastic programming is to replace the single-stage
problem by a two-stage problem. The second-stage epigraphical variable will be noted by a(ξ). The
idea behind it is that, in the expression on the right side of (4.5), one has

max{0, f(x, ξ)− y} ≤ a(ξ) ⇐⇒ a(ξ) ≥ 0 and f(x, ξ)− y − a(ξ) ≤ 0. (4.8)

The risk-averse stochastic programming problem (4.4) can be identified then with

minimize y +
1

1− α
Eξ[a(ξ)] subject to x ∈ ∩ξC(ξ) and a(ξ) ≥ 0, (4.9)

where the constraints can be expressed as (y, x, a(ξ)) ∈ C̃(ξ) for an obvious choice of C̃(ξ). The
algorithm above can be recast in this framework then as well, and the objective in each iteration will
be linear.

5 Extension of progressive hedging to other risk-averse objectives

Only the case in (3.1) of R = CVaRα was worked out in Section 3, but a large class of other risk
measures can be handled similarly. The key is the existence of an “expectational” representation of R
along the lines of the CVaR minimization formula in (3.8) or more elaborate formulas involving more
than one auxiliary variable. This is a topic explained in [3] in terms of the concept of an associated
measure of regret V such that

R(X) = min
y∈IR

{
y + V(X − y)

}
. (5.1)

For the purposes at hand the measure of regret in this formula should be of expectational type,

V(X) = E[v(X)] for a function v : (−∞,∞)→ (−∞,∞], (5.2)

where, under the axioms in [3], v is closed convex and nondecreasing with v(0) = 0 but v(x) > x for
x 6= 0. The case of R(X) = CVaRα(X) for α ∈ (0, 1) fits this with

v(x) =
1

1− α
max{x, 0}. (5.3)

The extension of progress hedging to a risk measure R belonging to this larger family is completely
straightforward: it is just a matter of replacing the special v(x) in (5.3) by a more general v(x). Thus,
for instance, the term 1

1−α max{0, f(x(ξ), ξ)− y(ξ)} in the iteration step (3.13) of the algorithm gets
generalized to v(f(x(ξ), ξ)− y(ξ)).

But the extensions don’t have to stop with the simple case of (5.1)–(5.2). They can be promulgated
further to mixed measures of risk of the form

R(X) = λ1R1(X) + · · ·+ λmRm(X) with λk > 0, λ1 + · · ·+ λm = 1, (5.4)

where each Rk is of the type just discussed,

Rk(X) = min
yk∈IR

{
yk + E[vk(X − yk)]

}
. (5.5)

9

In this wider picture we have

R(X) = min
y1,...,ym

E[h(X, y1, . . . , ym)] for h(x, y1, . . . , ym) =
∑m

k=1
λk[yk + vk(x− yk)], (5.6)

so again the objective can be reconsituted as an expectation but now with auxiliary variables yk
instead of just one y. These can be incorporated into the progressive hedging algorithm as additional
decision variables yk(ξ).

A notable example of such mixing is the class of mixed CVaR measures of risk,

R(X) = λ1CVaRα1(X) + · · ·+ λmCVaRαm(X) with λk > 0, λ1 + · · ·+ λm = 1. (5.7)

This is important because every so-called spectral measure of risk can be approximated arbitrarily
closely by such a mixture, cf. [3].

Another prospect for extension of progressive hedging is objectives articulated with risk measures
invoked not just for the final cost but nested in stages. However, this is a subject too big and
demanding to get into here.

References

[1] Rockafellar, R. T., and Uryasev, S., “Optimization of conditional value-at-risk,” Journal
of Risk 2 (2000), 21–43.

[2] Rockafellar, R. T., and Uryasev, S., “Conditional value-at-risk for general loss distribu-
tions,” Journal of Banking and Finance 26 (2002), 1443–1471.

[3] Rockafellar, R. T., and Uryasev, S., “The fundamental risk quadrangle in risk manage-
ment, optimization and statistical esimation,” Surveys in Operations Research and Management
Science 18 (2013), 33–53.

[4] Rockafellar, R. T., and Wets, R. J-B, “Scenarios and policy aggregation in optimization
under uncertainty.” Mathematics of Operations Research 16 (1991), 119–147.

[5] Watson, J.-P., and Woodruff, D.L., “Progressive hedging innovations for a class of stochas-
tic mixed-integer resource allocation problems,” Computational Management Science 8 (2010),
355–370.

10

