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CONVEXITY AND RELIABILITY IN ENGINEERING

OPTIMIZATION

R. TYRRELL ROCKAFELLAR

Abstract. An important idea in engineering is “probability of failure,”
which can be modeled as the probability that a particular random variable
will exceed zero. Problem formulations in optimal engineering design

often entail placing an upper bound on that probabilitity, or minimizing
it subject to constraints involving other random variables that likewise
depend on the design parameters. However, probability of failure can
behave poorly in that context and even discontinuously.

A better alternative, now under development as a product of the con-
vex analysis of random variables, is “buffered probability of failure.” It
is more conservative, has nicer properties, and is easier to compute and
work with in optimization. Moreover it is attractive in concept because

it takes into account not just a probability threshold but also the ex-
pected value of a random variable in the tail of its distribution beyond
the threshold.

1. Introduction

Optimization is all about making decisions that are “best” from some per-
spective, within the limitations of resources. However, this can be a compli-
cated matter in situations where the consequences of a decision will only play
out in an uncertain future. That is where reliability of consequences must enter
when setting up an optimization model.

Important examples in engineering are seen in the design of structures such
as buildings, bridges, tunnels, reservoirs, vehical frames, ship hulls, airplane
wings, offshore platforms, and so forth. Any design involves the specification
of the values of many decision variables associated, for instance, with lengths,
widths, thicknesses, and proportions of different materials. These affect the
strength and durability of the structure, in particular, but how much strength
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and durability might really be needed? That question is essential to controlling
costs, but it isn’t easily answered. The stresses and impacts that a stucture
might face in its lifespan are not known with certainty in advance.

A common approach in these circumstances is to base decisions on statistics
of the past. A bridge can be designed to withstand a 100-year-flood, which
is to say, the scale of flooding that seems to come every 100 years or so. A
tower can be designed to withstand an earthquake of force 7 on the Richter
scale, and geologists may be able to say how likely such an earthquake is in
the next 50 years. Such prescriptions place constraints on the “probability of
failure” of the structure, as will soon be explained. Alternatively, one might
think of minimizing such probability subject to constraints on other aspects of
the design like cost and performance.

Whether treating probability of failure as a constraint or as an objective
in optimization, the critical thing to keep in mind is its dependence on the
decision variables. Unfortunately, that dependence can be troublesome and
lead to instability of results. Furthermore the concept itself has be criticized
as taking only an abrupt threshold into account. There is no attention paid
to the scale of cost or damage when “failure” occurs. This has led to the
development of other ways of looking at reliability which can help to counteract
such shortcomings.

The purpose of this article is to give an overview of these developments
and the way they illustrate the role that convex analysis can have in serious
problems of practical significance.

To get closer to the issues mathematically, we can think of the optimization
framework as centered on the choice of “design variables” x1, . . . , xn. The
aspect of the design x = (x1, . . . , xn) that must be controlled for purposes of
reliability is expressed by a function

(1.1) c(x, v) = c(x1, . . . , xn, v1, . . . , vd)

involving additional “data variables” v1. . . . , vd which are not subject to choice
and yet may be uncertain in their values, for instance by involving observa-
tions in the future which can only be made after the design has been finalized.
Perhaps c(x, v) calibrates a sort of hazard or a degree of damage beyond some
acceptable level. Anyway we can imagine it has been set up so that
(1.2)
c(x, v) ≤ 0 is deemed to be acceptable, but c(x, v) > 0 signals “failure.”

The uncertainty in v = (v1, . . . , vd) can be modeled stochastically by saying
that we really have a vector-valued random variable V = (V1, . . . , Vd). Then
c(x, V ) is an x-dependent scalar-valued random variable with its probability
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distribution induced by that of V . The usual focus for reliability, in line with
(1.2), would be on the magnitude of

(1.3) probability of failure for x = prob
{
c(x, V ) > 0

}
.

In optimization one might to keep this below some specified upper bound or
to choose x to minimize it subject to a collection of design constraints.

For an optimization model to be effective computationally and produce re-
sults that can be trusted, the functions selected for objective and constraints
need to have sensible properties such as differentiability, or at least continuity.
Convexity, too, can be extremely helpful when available. Can the probability
in (1.3) be expected to enjoy such properties as a function of x? Unfortu-
nately, there is little assurance of that, for intrinsic reasons explained in the
next section.

Anyway, the probability distribution of the random variable c(x, V ) induced
by that of V can in general only be “shaped” to some degree by the choice of
x. That influence may be inadequate for countering, as much as desired, the
dangers coming from the uncertainty of V . This underscores the importance
of working with a failure concept that captures reliability in a robust manner.
That ought to include taking into account the scale of c(x, V ) outcomes in the
failure zone. After all, in setting up c(x, v) to have 0 as the critical value in (1.2)
there may not be a really unmovable criterion. Optimization should be able to
respond to more than just the probability of a violation but also whether the
violations are likely to be just modest in size or potentially catastrophic.

That is a major motivation for the “buffered” probability concept that will
be described below, which offers a remedy with many advantages. It first
appeared in [3] as an outgrowth of an approach to risk in random variables that
was developed in [6] and [7] through the replacement of quantiles of random
variables by “superquantiles.”

2. Failure addressed through quantiles and superquantiles

Insight into the potential difficulties in the behavior of the failure probabil-
ity in (1.3) as a function of x can be gained through a look at this kind of
probability as associated with a general (scalar) random variable X. with the
goal of later specializing to X = c(x, V ).

Definition 2.1 (probability of failure of a random variable). For a random
variable X, the probability of failure (with respect to 0 being the threshold for
failure) is

(2.1) pf (X) = prob
{
X > 0

}
.
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Consider in connection with this the cumulative distribution function of X,
which is the function FX from (−∞,∞) to [0, 1] given by

(2.2) FX(q) = prob
{
X ≤ q

}
.

It nondecreasing and has limit 0 as q goes down to −∞ and limit 1 as q goes
up to ∞. Obviously in (2.1) we have

(2.3) pf (X) = 1− FX(0).

Shifts in pf (X) relative to shifts in X can thus be understood by looking at
how FX(0) might change with X. As an elementary test, we can look at
shifting X to X − a, which changes FX(0) to FX−a(0) = FX(a). Already here,
trouble emerges. The trouble comes from the fact that FX is, in general only
continuous from the right and can have jumps where the limit from the left
is less than the limit from the right. Such a jump occurs for FX at 0 exactly
when there is a so-called probability atom in the distribution of X at 0, i.e.,
when prob

{
X = 0

}
> 0. The associated discontinuity in FX at 0 signals a

discontinuity in (2.3) in shifting from X to X − a.
Of course, the probability distibutions encountered in applications often have

an associated probability density function ρ so that

(2.4) FX(q) =

∫ q

−∞
ρ(r)dr,

in which case FX is not only continuous everywhere but also differentiable
everywhere. But at the opposite extreme it is often necessary to consider ran-
dom variables X that are only known through a finite number of observations,
whether historical or generated empirically through sampling. One or more of
the components Vk of the data random vector V = (V1, . . . , Vd) might be of
that type, or even be a 0-1 variable associated with a discrete event. Such dis-
creteness would be passed on to X = c(x, V ) in the form of probability atoms.
Continuity, not to speak also of differentiability, with respect to x could then
fall apart.

For working with probability of failure in a context of optimization, the
message from these observations is that the assumptions needed for the justifi-
cation of many solution algorithms may not be met. Moreover, if calculations
are somehow carried out, the results might not be trustworthy. Tiny changes
in decision variables, perhaps just due to “noise” in the numerics, could cause
abrupt changes in the objective or constraint functions, thereby making solu-
tions be unstable.

The complications we have been describing can also be examined from a
different perspective through the connection between probability constraints
and the quantiles of random variables.
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Definition 2.2 (quantiles of a random variable). For a random variable X
and a probability level p ∈ (0, 1), the pth-quantile of X is

(2.5) qp(X) = lowest q such that FX(q) ≥ p.

If FX is a continuous and always increasing on (−∞,∞), its inverse F−1
X

exists and is well defined, in which case qp(X) = F−1
X (p). However, FX might

not always be increasing and instead be constant on some intervals, so that for
a particular p there would an interval of values of q with FX(q) = p. Because
FX is continuous from the right, such an interval would at least always have a
lowest q. On the other hand, there could be a discontinuity in FX at q such
that FX(r) ≥ p for r > q but FX(r) < p for r < q. Then qp(X) = q in (2.5).

These observations relate to our investigation of “failure” through the con-
sequence of (2.5) that

(2.6) pf (X) ≤ 1− p ⇐⇒ qp(X) ≤ 0,

Troubles in the behaviour of pf (X) can be thus be seen equally well as troubles
in the behavior of the quantile qp(X) with respect to shifts in X or p.

A way of getting around this difficulty is to replace quantiles qp(X) by
“superquantiles” q̄p(X) that have superior properties derived through convex
analysis. In the literature of finance, the quantile qp(x) is called the value-at-
risk VaRp(X), so the alternative, as developed for that subject in [6] and [7],
was first therefore called, in parallel, the conditional value-at-risk and denoted
by CVaRp(X). Later, as it became apparent that the idea could be useful
not just in finance but also in many branches of engineering, the application-
indenpendent term “superquantile” with notation q̄p(X) was offered in [3] as
more convenient perhaps in that wider context, and that is also where the
definition of “buffered” probability of failure was first published.

The superquantile concept requires extracting from the distribution of X its
upper p-tail distribution for any p ∈ (0, 1). The goal behind that is to make
sense of “worst-case portions” of the distribution of X, such as “the worst
(1 − p)100% of outcomes of X” (e.g. the worst 10% when p = 0.9). If FX

lacks discontinuities, that is easy. The upper p-tail distribution is simply the
conditional probability distribution for X subject to X ≥ qp(x), inasmuch as
the interval [qp(X),∞) then has probability 1−p exactly. However, if there is a
probability atom for X at qp(X), the interval [qp(X),∞) may have probability
more than 1− p while the interval (qp(X),∞) has probability less than 1− p.
Some adjustment is needed in that situation to capture with probability 1− p
the worst outcomes of X having such likelihood. In essence, the adjustment
is to “split the atom” to make the altered probability of the tail come out as
1− p, as pointed out in [7]. Technically this can be carried out as follows.
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Definition 2.3 (tail distributions). The upper p-tail distribution of a random
variable X at a probability level p ∈ (0, 1) is the probability distribution on
[qk(X),∞) for which the cumulative distribution function, derived from that
of X, is

(2.7) F p
X(q) =

{ 1
1−p [Fx(q)− p] for q ≥ qp(X),

0 for q < qp(X).

In the absence of a probability atom, this reverts to the conditional proba-
bility distribution with respect to X being in [qp(X),∞). as indicated.

Definition 2.4 (superquantiles of a random variable). For a random variable
X and a probability level p ∈ (0, 1), the pth-superquantile is

(2.8) q̄p(X) = average value in the upper p-tail distribution,

or in other words, in figurative language, “the average outcome of X in the
worst (1 − p)% of instances.” In the absence of a probability atom at the
quantile qp(X), this is the conditional expectation of X with respect to having
X ≥ qp(X).1

This definition of the superquantile q̄p(X) may seem fraught with more
to worry about the definition of the quantile, which it moreover depends on.
Luckily, though, a sort of miracle formula comes to the rescue in this situation,2

as will be explained later.
With superquantiles in hand, we can proceed to define buffered probability

of failure. A relation with quantiles that will play into it hinges on the “essential
supremum” of a random variable X, namely

(2.9) supX = lowest q ∈ (−∞,∞] such that X ≤ q almost surely,

which may be ∞. From the definitions of qp(X) and q̄p(X) it is clear that
qp(X) ≤ q̄p(X) always, and that q̄p(X) is continuous and nonincreasing with
respect to p with

(2.10) q̄p(X) → supX as p → 1, but q̄p(X) → EX as p → 0.

In further detail, one has

(2.11) q̄p(X) ≥ EX and qp(X) < q̄p(X) < supX

as long as 0 < p < 1− prob
{
X = supX

}
,

1From this point on, we restrict attention to random variables X having E|X| < ∞, so

as to be able to work securely with expected values.
2The splitting of the probability atom q̄p(X) in the general case was proposed in [7].

Keeping instead, in all cases, to the conditional expectation of X that X ≥ qp(X), produces
what is called by some in finance the tail-VaR of X at level p. It does not lead to the highly

supportive properties of superquantiles.
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moreover with q̄p(X) increasing (strictly) with respect to p in that domain.
This covers all of p ∈ (0, 1) unless prob

{
X = supX

}
> 0, i.e., supX is finite

and there is a probability atom for X at that value, but in the exceptional case,
however, (2.11) has to be complemented by

(2.12) qp(X) = q̄p(X) = supX for p ≥ 1− prob
{
X = supX

}
.

However, our main interest lies in the fact that, for any q in (EX, supX) there
is a unique p such that q̄p(X) = q. That follows from the noted continuity and
strict montonicity of the superquantile on the indicated domain.

Definition 2.5 (buffered probability of failure). For a random variable X, the
buffered probability of failure (with respect to 0 being the threshold for failure)
is
(2.13)

p̄f (X) =

{
the unique 1− p such that q̄p(X) = 0, as long as EX ≤ 0 < supX,
0 if supX ≤ 0, but 1 if EX > 0.

Thus, p̄f (X) gives, in the main case, the probability 1− p at which the worst
(1−p)% of outcomes ofX average out to 0 in the sense of the p-tail distribution.

In comparing buffered probability of failure with ordinary probability of
falure, we therefore have

(2.14) p̄f (X) ≥ pf (X) always.

along with the characterization in parallel to (2.6) that

(2.15) p̄f (X) ≤ 1− p ⇐⇒ q̄p(X) ≤ 0.

In engineering applications as described in Section 1, the usual focus for
reliability is on the probability of failure associated with a design x as in (1.3),
which in the notation now available can be expressed as the function

(2.16) φ(x) = pf (c(x, V )).

The alternative offered by the newer developments is to focus instead on the
buffered probability of failure associated with x as given by

(2.17) φ̄(x) = p̄f (c(x, V )).

What would be the potential benefits of passing to this alternative in formulat-
ing objectives or constraints in a problem of optimization? One benefit, already
suggested for motivation, is that the buffered version is able to bring into con-
sideration the magnitude of the failures c(x, V ) > 0 that could occur. In this
respect it is more cautious and provides better safeguards in a design. Anyway,
upper bounds on the buffered probability of failure automatically induce upper
bounds on the ordinary probability of failure through (2.14).
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Another benefit, with major impact, is that buffered probability of failure
is vastly easier to work with in optimization because of various properties it
enjoys by way of convex analysis. That leads to superior behavior of φ̄(x) in
(2.17) as opposed to φ(x) in (2.16) and is the subject of the next section.

3. Advantageous properties derived through convex analysis

Buffered probability of failure gains its power through the advantages that
superquantiles q̄p(X) have over quantiles qp(X). A central ingredient is a sur-
prising minimization formula for computing q̄p(X) which at the same time
yields the corresponding qp(X).

In order to present the formula compactly, we need to look more closely first
at quantiles. In parallel to qp(X) being defined to be the lowest q such that
FX(q) ≥ p, we now also need for

(3.1) q+

p (X) = highest q such that FX(q) ≤ p

for p ∈ (0, 1). It is easy to see that q+
p (X) = qp(X) except in the case of there

being more than one q for which FX(q) = p. Then the set of all such q is the
closed, bounded interval [qp(X), q̄+

p (X)].
The following result was obtained in [6] for random variables with continuous

distributions and extended in [7] to general distributions.3

Theorem 3.1 (minimization formula for superquantiles). For a random vari-
able X and any probability level p ∈ (0, 1), one has

(3.2) min
−∞<C<∞

{
C +

1

1− p
E[max{0, X − C}]

}
= q̄p(X).

The minimum is indeed attained, and in fact

(3.3) argmin
−∞<C<∞

{
C +

1

1− p
E[max{0, X − C}]

}
= [qp(X), q+

p (X)],

with this minimizing set reducing to just qp(X) unless FX(q) = p for more than
one q.

The obvious significance of these expressions is that superquantiles can be
calculated without any need to deal with conditional probability distributions,
and without having to forgo knowing the corresponding quantiles. There is no
need, in computational practice, to cope with the “split atom” in the definition
of the upper p-tail distribution for X.

3Here E denotes expectation, and we persist in restricting attention to random variables

X such that E|X| is finite.
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Another strong feature is that the expression in C and X that is minimized
is convex as a function of (C,X). This leads to the next statement, where part
(a) comes from [6] and [7] and part (b) is then evident from (2.15).

Theorem 3.2 (convexity consequences).

(a) q̄(X) is convex with respect to X:

(3.4) q̄p((1− τ)X0 + τX1) ≤ (1− τ)q̄p(X0) + τ q̄p(X1) for τ ∈ (0, 1).

(b) p̄f (X) is quasi-convex with respect to X;

(3.5) p̄f ((1−τ)X0+τX1) ≤ 1−p for τ ∈ (0, 1) when p̄f (X0), p̄f (X1) ≤ 1−p.

Theorem 3.2 provides a stark contrast with the case of qp(X) and pf (X), for
which such properties are far out of sight. Some properties do hold in common,
for instance positive homogeneity

(3.6) qp(λX) = λqp(X) and q̄p(λX) = λq̄p(X) for λ ≥ 0,

and monotonicity with respect to the ordering X0 ≤ X1 for random variables
(meaning that the random variable X0 −X1 is ≤ 0 almost surely),

(3.7) qp(X0) ≤ qp(X1) and q̄p(X0) ≤ q̄p(X1) when X0 ≤ X1.

For superquantiles, these properties say that q̄p(X) is “coherent” as a measure
of risk in the sense of introduced in finance in [1].

Additional insights into the usefulness of superquantiles can be gleaned from
[8]. An explanation of how the formula in Theorem 3.1 was originally deduced
through consideration of conjugate functions in convex analysis is available in
[4]

For applications to engineering design in the mode of Section 1, the combi-
nation of (3.7) with (3.4) yields the valuable fact, brought out in [7], that

(3.8) c(x, v) convex in x =⇒ q̄p(c(x, V )) convex in x.

Also in [7] is a prescription for how to employ this in a dramatic simplifica-
tion of objectives and constraints when superquantiles are adopted in place of
quantiles.

A result analogous to (3.8) holds for buffered probability of failure as well,
namely

(3.9) c(x, v) convex in x =⇒ p̄f (c(x, V )) quasi-convex in x.

This is one of the significant ways that the function φ̄(x) in (2.17) is preferable
to the function φ(x) in (2.16) in an optimization framework.

More about risk-averse approaches to engineering design can be found in
[5]. For some of the latest advances on buffered probability of failure and its
generalization to “buffered probability of exceedance,” see [2].
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