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Abstract Variational inequality modeling, analysis and computations are important
for many applications, but much of the subject has been developed in a deterministic
setting with no uncertainty in a problem’s data. In recent years research has proceeded
on a track to incorporate stochasticity in one way or another. However, the main focus
has been on rather limited ideas of what a stochastic variational inequality might
be. Because variational inequalities are especially tuned to capturing conditions for
optimality and equilibrium, stochastic variational inequalities ought to provide such
service for problems of optimization and equilibrium in a stochastic setting. Therefore
they ought to be able to deal with multistage decision processes involving actions that
respond to increasing levels of information. Critical for that, as discovered in stochastic
programming, is introducing nonanticipativity as an explicit constraint on responses
along with an associated “multiplier” element which captures the “price of informa-
tion” and provides a means of decomposition as a tool in algorithmic developments.
That idea is extended here to a framework which supports multistage optimization and
equilibrium models while also clarifying the single-stage picture.
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1 Introduction

Solving a “variational inequality” is a problem that originated in an infinite-
dimensional setting with partial differential operators subjected to one-sided con-
straints inside domains or on their boundaries. Independently the same concept, viewed
as solving a “generalized equation,” arose in the finite-dimensional context of optimal-
ity conditions in nonlinear programming. Special versions called “complementarity
problems” gained attention even earlier on those lines. See e.g. [5,8,17].

The theory has since undergone enormous development from every angle, but
largely in deterministic mode. More recently there have been efforts to extend it to
models where random variables enter into the data. A challenge is to understand then
what a “stochastic variatonal inequality” might properly be in general. Efforts so far
have mainly been directed at formulations proposed in a rather limited setting. Our
purpose here is to address the subject more broadly and develop a formulation that
can cover vastly more territory. Roughly speaking, previous approaches have their
motivations in special kinds of “single-stage” modeling in optimization and equilib-
rium, at best, whereas our appoach will also encompass “multistage” models that
allow for response to increasing levels of information. Without such elaboration the
dynamics that are essential to stochastic decision processes, whether by one agent or
a multiplicity in a gamelike setting, can’t be captured.

Response to information is like a “policy” in dynamic programming and thus
inevitably involves a search for the right functions of some kind. A basic issue is
how that may conveniently be modeled. The tried-and-true technology in advanced
stochastics is that of a probability space supplied with various “information fields”
with respect to which a response function can be constrained to be “measurable.”
Here we follow an easier pattern by tying information to finitely many scenarios
which progressively diverge from each other. That lets us avoid the complications of
infinite-dimensional function spaces so as to present the modeling ideas and examples
without getting into distracting technicalities.1

The feature that distinguishes and drives our approach, even for single-stage
modeling, is the treatment of nonanticipativity of response. Nonanticipativity is the
requirement that decisions can’t be based on information not yet known, and it is
inescapable in determining “policies” that are actually implementable. Our treatment,
in a pattern that goes back to the foundations of stochastic programming, cf. [22,23],
formulates nonanticipativity explicitly as a constraint on response functions which
can be dualized by “multipliers.” Such nonanticipativity multipliers, which enable

1 Of course a full probability setting is important to have available in the long run, but we plan to deal with
that in a follow-up article.
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decomposition into a separate problem for each scenario, have been understood in
stochastic programming as furnishing the shadow price of information. They were the
basis there of one of the most effective solution methods, the “progressive hedging
algorithm” of [24]. They might well be useful also in solving stochastic variational
inequality problems, but we don’t get into that here.

The rest of this introduction is devoted to the current state of affairs in research
on stochastic variational inequalities, which requires first recalling key concepts and
examples in a nonstochastic setting. The examples help to demonstrate the breadth of
variational inequality applications that needs to be encompassed when stochasticity is
incorporated.

Our different approach to single-stage stochastic variational inequalities, in contrast
to the approaches up to now, is laid out in Sect. 2. Themultistage extension of it follows
in Sect. 3. Section 4 offers examples of applications involving expectation functions
and constraints. Potential applications even to nonconvex constraints are indicated in
Sect. 5.

Background in nonstochastic variational inequalities Most simply, in a standard
deterministic framework in Rn to start with, a variational inequality condition, or
generalized equation is a relation of the form

− F(x) ∈ NC (x) (1.1)

in which F is a continuous single-valued mapping from Rn to Rn and NC (x) is the
normal cone to a nonempty closed convex set C ⊂ Rn at the point x ∈ C , defined by

v ∈ NC (x) ⇐⇒ x ∈ C and 〈v, x ′ − x〉 ≤ 0 for all x ′ ∈ C. (1.2)

The problem associated with the variational inequality (1.1) is to find an x that satisfies
it. Here 〈·, ·〉 denotes usual inner product inRn for now, but it will be important later to
understand that some other expression obeying the axioms of an inner product could
serve just as well, since this comes up in adaptations to stochastic structure. Passing
to a different inner product changes the normal cone and thus the meaning of the
variational inequality.

By putting −F(x) in place of v in (1.2), one arrives at the system of inequalities
behind the “variational inequality” name for (1.1). On the other hand, by taking C =
Rn one gets the reduction of (1.1) to the vector equation F(x) = 0 which underlies
the name “generalized equation.” The case of a complementarity problem corresponds
to C being the nonnegative orthant Rn

+. Rich applications set up as complementarity
problems can be seen in [10], but variational inequalities provide more flexibility and
easier connection with a variety of modular structures which can be assembled to
cover a given application.2 Although they can often be reduced to complementarity

2 Generalizations beyond (1.1) are available. The set-valued normal cone mapping NC is the subdiffer-
ential mapping ∂δC associated with the indicator δC , which is a closed proper convex function. A natural
step therefore is to replace NC in (1.1) by the subdifferential mapping ∂ f for any closed proper convex
function f on Rn (which goes back to the earliest days of the subject) or perhaps any set-valued map-
ping T that, like such ∂ f , ismaximalmonotone. It is possible also to take F to be set-valued, built out of other
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and solved that way in principle, there is a huge literature for solving variational
inequality problems directly, for instance by minimizing some residual or working
with an equivalent nonsmooth equation.

Other instances of (1.1) relate to optimization models and deserve a brief review
because they help with motivation. The elementary optimization case concerns the
first-order necessary condition for minimizing a continuously differentiable function
f (x) over C (cf. [25, 6.12]), namely:

− ∇ f (x) ∈ NC (x). (1.3)

This fits (1.1) with F being the gradient mapping ∇ f . Of course C might be specified
by a constraint system like

C = {
x ∈ X

∣
∣G(x) ∈ K

}
with G(x) = (g1(x), . . . , gm(x)) (1.4)

for a closed convex set X ⊂ Rn , a closed convex cone K ⊂ Rm , and continuously
differentiable functions gi . Formulas of variational analysis can take over then to
provide details about NC (x). Under a constraint qualification, having v ∈ NC (x) for
C as in (1.4) corresponds to having

v =
m∑

i=1

yi∇ yi gi (x) + u for some u ∈ NX (x) and some

y = (y1, . . . , ym) ∈ Y with G(x) ∈ NY (y), where Y = K ∗. (1.5)

(Here K ∗ denotes the polar of K . See [25, 6.14, 6.15] for detailed development of
Lagrange multipliers in this mode.) In terms of the Lagrangian function

L(x, y) = f (x) +
m∑

i=1

yi gi (x) (1.6)

the combination of (1.3) and (1.4) takes the appealing form

− ∇x L(x, y) ∈ NX (x), ∇y L(x, y) ∈ NY (y), (1.7)

which nicely covers the Karush–Kuhn–Tucker conditions of nonlinear programming
in particular.3 The double condition (1.7) can be written equivalently as

− H(z) ∈ NZ (z) for z=(x, y), Z = X × Y, H(z)=(∇x L(x, z), −∇y L(y, z))

(1.8)

Footnote 2 continued
subdifferential mappings, say. Despite the genuine interest in such generalizations and their eventual impor-
tance in applications, the fundamental version in (1.1) will be our touchstone here.
3 Such a variational inequality representation of the KKT conditions was the “generalized equation” which
inspired Robinson in his pioneering work [17]. In [7] the term “generalized equation” is applied also to the
case of (1.1) in which NC is replaced by a more general set-valued mapping.
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and thus it actually comprises a single variational inequality. We will speak of (1.7) as
a Lagrangian variational inequality— even when L has a different form than (1.6) (as
long as L is continuously differentiable).4 This example also signals something that
might be overlooked at first but needs to be kept in mind: the solution to a variation
inequality problem might well involve not just “decision elements” (in the language
we fall back on for convenience) but also “multipliers” tied to constraints.

Another source of interest in variational inequalities is their capability of repre-
senting “equilibrium.” Already in (1.7) with general L we have an expression of
equilibrium for a two-person zero-sum game in which one player wishes to minimize
L(x, y) with respect to x ∈ X while the other player wishes to maximize L(x, y)
with respect to y ∈ Y . Equilibrium of Nash type in a game with players i = 1, . . . ,m
can similarly be represented. Suppose player i wishes choose xi ∈ Ci so as to min-
imize fi (xi , x−i ), where (in the standard notation of game theory) x−i stands for
the choices of the other players. Suppose Ci is a closed convex set in Rni and fi is
continuously differentiable. Then the first-order optimality condition for player i is
−∇xi fi (xi , x−1) ∈ NCi (xi ), and an equilibrium x = (x1, . . . , xm) among the players
is expressed by

−F(x) ∈ NC (x) for C = C1 × · · · × Cm and

F(x) = (∇x1 f1(x1, x−1), . . . ,∇xm f1(xm, x−m)). (1.9)

This is the elementary equilibrium case of a variational inequality.5 Other versions of
equilibrium can likewise be set up as instances of (1.1). For example, this has been
carried out in [14] for a classical economic model of equilibrium in prices, supply and
demand.

A solution x to (1.1) is sure to exist, in particular, when C is bounded. The set of
all solutions, if any, is always closed, and in the monotone case of (1.1), where F is
monotone relative to C , meaning that

〈F(x ′) − F(x), x ′ − x〉 ≥ 0 for all x, x ′ ∈ C, (1.10)

it must also be convex. Under strict monotonicity, which requires the inequality in
(1.10) to be strict unless x = x ′, there can be at most one solution. For this and more
see [7, Theorems 2A.1 and 2F.1].

Monotone variational inequalities relate closely to convex optimization and its
methodology as illustrated by (1.3) when f (x) is convex with respect to x ∈ C and by
(1.6) when L(y, z) is convex in y ∈ Y for each z ∈ Z , but concave in z ∈ Z for each
y ∈ Y . For monotone variational inequalities, other criteria than the boundedness of
C are available for the existence of solutions (see [25, Chapter 12]), and the library of

4 For other L it can characterize first-order optimality in an amazingly large class of problems which can
even be “nonsmooth”; see [20], [25, 11.46–11.47].
5 The equilibrium in (1.9) is a true Nash equilibrium when fi (xi , x−i ) is convex in xi , so that first-order
optimality in its local sense coincides with global optimality. However, equilibrium is an apt term even
without the convexity, since it’s hardly reasonable to burden agents with mastering global minimization in
a context where the actions of competitors render perceptions local at best anyway.
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algorithms for solving the problem is much richer. A solution strategy that doesn’t rely
onmonotonicity is expressing (1.1) as the nonsmooth equation PC (x−F(x))−x = 0,
where PC is the projection onto C , and applying an algorithm in that context. Another
approach is in [6], which introduces Newton-like iterations in terms of subproblems
that are “linearized” variational inequalities. Additional background in that area can
be found in the book [7].

As in the examples above, the rules obeyed by normal cones to convex sets are
valuable in putting variational inequalities together. Besides the “multiplier rule” (1.5)
for the constraint system (1.4) there is the product rule that

NC1×···×Cm
(x1, . . . , xm) = NC1

(x1) × · · · × NCm
(xm) (1.11)

which directly entered game model (1.9) and, before that, the identification of the
Lagrangian variational inequality (1.7) with (1.8). Another rule utilized in reaching
(1.7) was that

for a closed convex cone K and its polar K ∗ : y ∈ NK (u) ⇐⇒ u ∈ NK ∗(y).

(1.12)

Still another rule, concerning a intersection of closed convex sets C1 and C2, hasn’t
yet been needed but will be important later:

NC1∩C2
(x) ⊃ NC1

(x) + NC2
(x) = {

v1 + v2
∣
∣ v1 ∈ NC1

(x), v2 ∈ NC2
(x)

}
,

and equality holds if the sets Ci are polyhedral or have riC1 ∩ riC2 �= ∅,

(1.13)

where ri marks the relative interior of a convex set. A reference for this is [18, Corol-
lary 23.8.1].

Uncertainty and how to think about it Extensions to allow for stochasticity in the
formulation of a variational inequality can be portrayed as involving dependence on
elements ξ of a probability space �. In this paper we focus on � being a finite set
of “scenarios” ξ , each having a nonzero probability p(ξ) as assigned by a function p
with

∑
ξ∈� p(ξ) = 1. Either F or C , or both, can then taken to be scenario-dependent

as F(x, ξ) and C(ξ), but what exactly should be made of that in problem formulation
in light of examples such as above?

A central question is whether ξ is supposed to be known before, or only after, x is
finalized. If before, we are faced with a collection of individual variational inequality
conditions, one for each ξ , and can consider ξ -dependent solutions x(ξ) to them:

− F(x(ξ), ξ) ∈ NC(ξ)(x(ξ)) for all ξ ∈ �. (1.14)

We are engaged then with a response function

x(·) : ξ �→ x(ξ) with ξ ∈ �, x(ξ) ∈ Rn, (1.15)
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that acts on the information provided by knowing ξ . Such a function may be useful in
a larger picture, but (1.14) is not what people have in mind as a possible formulation
of a (single) “stochastic variational inequality.” For that, the focus is on the opposite
situation, where an x has to be fixed in advance of knowing ξ but still should cope to
some degree with the uncertainty in F(x, ξ) and C(ξ).

That situation is easier to think about when we just have a fixed set C instead of
C(ξ) and all the uncertainty is in F(x, ξ). It is tempting then to take the expected value
(EV) approach and, following [11–13,26,27] and others, study the condition

− F(x) ∈ NC (x) for F(x) = Eξ [F(x, ξ)]. (1.16)

as a “stochastic variational inequality” which specializes (1.1) to expectational struc-
ture. Motivation for (1.16) comes in particular from the fact that

F(x) = ∇ ḡ(x) when F(x, ξ) = ∇x g(x, ξ) and ḡ(x) = Eξ [g(x, ξ)], (1.17)

in which case (1.16) corresponds to first-order optimality in minimizing ḡ over C .
An alternative which has received widespread attention in allowing for uncertain

C(ξ) and not relying on expectations, is looking for an x such that

− F(x, ξ) ∈ NC(ξ)(x) for all ξ ∈ �, (1.18)

which entails x ∈ ⋂
ξ∈� C(ξ). This is the starting point for the expected residual

minimization (ERM) approach followed in [1–4,9,15,16,28,29]. That line of research,
however, has to face the fact that the existence of a solution x is highly unlikely—which
suggests looking instead for an “approximate solution” in some sense. The reason why
an x satisfying (1.18) is hardly imaginable can be seen from the examples of variational
inequalities reviewed above. In the elementary optimization case with F(x, ξ) =
∇x g(x, ξ), one is demanding in (1.18) that x satisfy the first-order optimality condition
for minimization of g(·, ξ) over C(ξ) simultaneously for every ξ . Ordinarily, no one
looks for an x that solves two different optimization problems at the same time, much
less one that solves all problems in a possibly large collection indexed by ξ ∈ �. In
the Lagrangian case of a variational inequality, one would be asking for not just the
optimal solution x but also the associated Lagrange multiplier vector y in the problem
to be the same for all ξ .

In reacting to that by settling for an x that only “approximately” solves all the indi-
vidual variational inequalities in (1.18) simultaneously (one for each ξ ), researchers
have turned to minimizing the expectation of some “residual” quantity as a random
variable with respect to ξ , hence the ERM name. A natural justification would be that
there is a single underlying nonstochastic variational inequality with “noisy data.”6

6 An analogy with overdetermined systems of linear equations can be considered, where a single solution x
ought to exist but the equations disagree slightly because ofmeasurement errors in the eoefficients, rendering
their simultaneous solution impossible. One might think similarly of collection of linear programming
problems, say, which are identical except for “coefficient noise” and look for an approximate common
solution.
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But it doesn’t seemquite right to refer to solving (1.18) as a solving a (single) stochastic
variational inequality.

Unaddressed by the EV and ERM approaches is the prospect of a stochastic vari-
ational inequality being a model that covers optimization and equilibrium problems
in situations where decisions have to interact dynamically with the availability of
information. The information may be tied to scenarios based on the realizations of
some random variables, and when more is known those realizations, opportunities for
recourse decisions might need to be provided, perhaps in a number of stages.

2 Single-stage modeling with nonanticipativity constraints

There is a way around the impass over uncertain C(ξ) which can also open the door
later to more complex dynamics than just fixing one x before observing one ξ . It
had a prominent role in the theory of stochastic programming (cf. [22,23]) and in
particular in the development of one of the main solution methods in that subject, the
“progressive hedging algorithm” in [24].

Nonanticipativity of response The key idea, even if at first it seems only to bring
unnecessary hardship, is to think of the “solution” to be targeted not as a vector x but
as a response function x(·) : ξ → x(ξ), and then to constrain that function to always
give the same response, i.e., to be a constant function, thus furnishing a single element
x of Rn in the end after all. This condition on x(·), saying that foreknowledge of ξ

can’t be a basis for response, is nonanticipativity. The advantage gained by such a
constraint formulation is that a “multiplier” can be attached, which can be a powerful
tool in both modeling and computation.

In order to explain that better, we have to pass from Rn to a space of functions,
namely

Ln = Ln(�, p) = the collection of all functions x(·) : � → Rn, (2.1)

but this is not as bothersome as might be imagined. Since there are only finitely
scenarios ξ ∈ �, each with a probability p(ξ) > 0, those elements could be indexed
from 1 to s, say, and the responses x(ξ) ∈ Rn could thereby be lined up into a
“supervector” in (Rn)s . No doubt this would be the best tactic when it comes to
numerical work, but not necessarily for a theory that promotes insights and structural
understanding.

Anyway, although Ln is effectively identified with (Rn)s by the “supervector”
tactic, a distinction in the inner product comes up. We don’t want to operate in Ln

with the inner product that would transfer from (Rn)s through that identification, but
rather with the expectational inner product

〈v(·), x(·)〉 = Eξ [〈v(ξ), x(ξ)〉] =
∑

ξ∈�

p(ξ)〈v(ξ), x(ξ)〉 (2.2)

with associated norm ||x(·)|| = (Eξ [〈x(·), x(·)〉])1/2; here 〈x(ξ), w(ξ)〉 is the usual
inner product between two vectors in Rn .
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Proceeding in that framework with our ingredients F(x, ξ) and C(ξ), we introduce
the nonempty closed convex subset set C of Ln defined by

C = {
x(·) ∈ Ln

∣
∣ x(ξ) ∈ C(ξ) for all ξ ∈ �

}
(2.3)

and the linear subspace N of Ln defined by

N = {
x(·) ∈ Ln

∣
∣ x(ξ) is the same for all ξ ∈ �

}
. (2.4)

This is the nonanticipativity subspace; the nonanticipativity constraint can be
expressed by x(·) ∈ N .

Wherewewere previously thinking about a vector x belonging to the intersection of
all the sets C(ξ) as in (1.18), we are now thinking about a function x(·) in C∩N . That
amounts to the same thing from one angle, but it provides a really different platform
for a variational inequality, one which is better able to draw on historical advances in
stochastic optimization.

To formulate a variational inequality in Ln with respect to the nonempty closed
convex set C ∩ N in parallel mode to (1.1), we also need a continuous mapping
F : Ln → Ln . We get it from the vectors F(x, ξ) by7

F(x(·)), for x(·) ∈ Ln, is the function in Ln that takes ξ ∈ � to F(x(ξ), ξ) ∈ Rn .

(2.5)

The continuous dependence of F(x, ξ) on x ∈ Rn makes themappingF be continuous
from Ln to Ln .

Definition 2.1 (SVI basic form, single-stage) With respect to F(x, ξ) and C(ξ), the
condition

− F(x(·)) ∈ NC∩N (x(·)), (2.6)

is the associated single-stage stochastic variational inequality in basic form.
Clearly (2.6), entailing x(·) ∈ C ∩ N , fits the definition of a variational inequality

as originally presented except for being articulated in Ln instead of Rn . Its precise
meaning depends on the normal cones to the convex set C ∩ N in Ln , which can
be calculated by rules of convex analysis. The important thing is that such analysis,
taken up next, leads to an alternative expression of (2.6) which incorporates multiplier
elements.

Dualization The nonanticipativity constraint x(·) ∈ N can be dualized in a way
that invokes the elements w(·) of another linear subspace of Ln , defined by

M = {
w(·) ∈ Ln

∣
∣ E[w(·)] = 0

}
. (2.7)

7 Note that, in this kind of notation,F(x(·))(ξ) could be used for F(x(ξ), ξ), butF(x(ξ)) wouldn’t make
any sense, since F acts on elements of Ln , not on vectors in Rn .
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It’s easy to verify that M is the orthogonal complement of N with respect to the
expectational inner product (2.2):

w(·) ∈ M ⇐⇒ Eξ 〈x(ξ), w(ξ)〉 = 0 for all x(·) ∈ N ,

x(·) ∈ N ⇐⇒ Eξ 〈x(ξ), w(ξ)〉 = 0 for all w(·) ∈ M. (2.8)

The functions w(·) in M enter as nonanticipativity multipliers in the following con-
dition, which will partner closely with our “basic” variation inequality (2.6).

Definition 2.2 (SVI extensive form, single-stage) With respect to F(x, ξ) and C(ξ),
the condition

x(·) ∈ N and there exists w(·) ∈ M such that

−F(x(ξ), ξ) − w(ξ) ∈ NC(ξ)(x(ξ)) for all ξ ∈ �. (2.9)

is the associated single-stage stochastic variational inequality in extensive form.

Although the condition in this definition might not seem to warrant being called
a (single) variational inequality, the designation is justified because of the following
theorem, which says that (2.9) is essentially just another way of expressing (2.6).

Theorem 2.3 (basic-extensive equivalence, single-stage). If x(·) solves (2.9), then
x(·) solves (2.6). Conversely, if x(·) solves (2.6), then x(·) is sure also to solve (2.9) if

there exists some x̂(·) ∈ N such that x̂(ξ) ∈ riC(ξ) for all ξ ∈ �. (2.10)

This constraint qualification is unnecessary if the sets C(ξ) are all polyhedral.

Proof We are dealing in (2.6) with normals to the intersection of two closed convex
sets, C andN , and can apply the calculus rule in (1.13) to get a handle on NC∩N (x(·)).
By this rule,

NC∩N (x(·)) ⊃ NC(x(·)) + NN (x(·)) = {
v(·) + w(·) ∣

∣ v(·) ∈ NC(x(·)),
w(·) ∈ NN (x(·)) }

always, (2.11)

and under further conditions this inclusion becomes an equation. For x(·) ∈ C in (2.3),
the elements of NC(x(·)) are by definition the functions v(·) ∈ Ln such that

0 ≥ 〈v(·), x(·)〉 =
∑

ξ∈�

p(ξ)〈v(ξ), x ′(ξ) − x(ξ)〉 for all ξ ∈ � and x ′(·) ∈ C.

(2.12)

Because p(ξ) > 0, this is equivalent to having, for each ξ ,

0 ≥ 〈v(ξ), x ′(ξ) − x(ξ)〉 for all x ′(ξ) ∈ C(ξ),
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or in other words, v(ξ) ∈ NC(ξ)(x(ξ)). Thus,

NC(x(·)) = {
v(·) ∈ Ln

∣
∣ v(ξ) ∈ NC(ξ)(x(ξ)) for all ξ ∈ �

}
. (2.13)

To determine the elements w(·) of NN (x(·)), the definition of the normal cone can
be applied as in (2.12) with w(·) and N in place of v(·) and C, but because N is a
subspace, any x ′(·) ∈ N also has −x ′(·) ∈ N . The inequality turns then into the
requirement that 0 = 〈w(·), y(·)〉 for all y(·) ∈ N (inasmuch as having x ′(·) range
over all of N is the same as having y(·) = x ′(·) − x(·) range over all of N ). Thus,
the elements of NN (x(·)) are the elements of Ln that are orthogonal to N , which by
(2.8) are the elements of M:

NN (x(·)) = M for any x(·) ∈ N . (2.14)

From (2.13) and (2.14) and the definition (2.5) of F(x(·)), we see that

−F(x(·)) ∈ NC(x(·)) + NN (x(·)) ⇐⇒
there exists w(·) ∈ M such that −F(x(ξ), ξ)−w(ξ)∈NC(ξ)(x(ξ)) for all ξ ∈�.

(2.15)

According to (2.11), this always implies (2.6), so the claim that any solution x(·) to
(2.9) is a solution to (2.6) is verified.

The claim in the opposite direction rests on the inclusion in (2.11) being an equation,
which through application of (1.13) holds if ri C ∩ riN �= ∅, but this condition is
unnecessary when the convexity is polyhedral. We have

riN = N and ri C = {
x(·) ∣

∣ x(ξ) ∈ riC(ξ) for all ξ ∈ �
}
, (2.16)

the first becauseN is a subspace of Ln (subspaces are by definition their own relative
interiors) and the second because C is essentially the product of the sets C(ξ) with
respect to the identification of Ln with the product of copies of Rn , one for each ξ ;
cf. [18, page 49]. This product description makes clear also that C is polyhedral if
and only if every C(ξ) is polyhedral. Of course N , as a subspace, is polyhedral in
particular. The criterion for having the inclusion in (2.11) hold as an equation comes
down that way to the conditions given in the theorem, and the proof is complete. ��

Stochastic decomposition Because having x(·) ∈ N refers to the existence of an
x ∈ Rn such that x(ξ) ≡ x , one might think that such a simplification ought to have
been incorporated in the statement of (2.9), making the problem come out as

find x ∈ Rn and w(·) ∈ M such that − F(x, ξ) − w(ξ) ∈ NC(ξ)(x) for all ξ ∈ �.

(2.17)

That, however, would obscure the decomposition that the last part of (2.9) reveals, as
explained next.
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Consider a situation in which an w(·) ∈ M is at hand and we want to see whether
an x(·) ∈ N can be associated with it in order to have a solution to (2.9). This can be
tackled by solving, for each scenario ξ , the variational inequality subproblem in Rn

for C(ξ) and the function F(·, ξ) to get x(ξ) and then checking whether x(·) ∈ N ,
i.e., whether the scenario solutions all turn out to be the same (or in the presence of
nonuniqueness can be selected to be the same). If we somehow had the right w(·) to
start with, and the subproblem had a unique solution for one of the scenarios ξ , that
x(ξ) would have to give the constant value desired for x(·)!

More realistically one can envision computational schemes in which tentative
nonanticipativity multipliers w(·) are tried out and adjusted while the corresponding
response functions x(·) get closer to being constant functions. That is the mechanism
of the progressive hedging algorithm in multistage stochastic programming [24]. Such
schemes will not be explored here, because of an already overloaded agenda. Never-
theless, the efforts we put into problem formulation in this paper are definitely aimed
also at laying a foundation for possible numerical developments.

Relation to the ERMandEVapproachesThrough (2.9), as a restatement of (2.6), the
connection between stochastic variational inequalites as proposed here and the prob-
lems studied in the ERM and EV approaches becomes much clearer. Obviously (2.9),
in its simplified expression (2.17), differs from the ERM problem in (1.18) through
the presence of the vectors w(ξ). Those vectors, in modifying the functions F(·, ξ)

make a huge difference. Although there is little hope that an x solving (1.18) even
exists, aside from rare circumstances, the existence of x(ξ) ≡ x solving (2.6)/(2.9) is
readily ensured.8 This indicates that (2.10) might be seen as the “fix” needed to bring
viability to (1.18) by ensuring the existence of an exact solution.

At the same time, however, the EV problem in (1.16) emerges via (2.9) as the
problem to which our basic stochastic variational inequality in (2.6) reduces when
C(ξ) ≡ C . The elementary rule clarifying that is the following:9

for a convex cone K and a function z(·) ∈ Ln, one has E[z(ξ)] ∈ K

⇐⇒ ∃ w(·) with E[w(ξ)] = 0 such that z(ξ) − w(ξ) ∈ K for all ξ.

(2.18)

Applying this to K = NC (x) and z(ξ) = −F(x, ξ) turns (2.9) into (1.16).
It’s worth noting that the condition (1.14) which we associated with the case of

ξ being known before a decision has to be made, while seemingly a collection of
separate variational inequalities indexed by ξ , can also be viewed through (2.13) as a
single variational inequality in Ln :

− F(x(·)) ∈ NC(x(·)) (2.19)

8 An immediate criterion, as indicated in the background discussion, is the boundedness of C, which
corresponds to the boundedness of the sets C(ξ). Later, in the multistage development, broader criteria will
be presented.
9 Get the second condition from the first by taking w(ξ) = z(ξ) − E[z(ξ)]; get the first from the second
by taking expectations.
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The collection of conditions for each ξ in (2.9) corresponds likewise to −F(x(·)) −
w(·) ∈ NC(x(·)), and indeed this is how it was derived in the proof of Theorem 2.3.
This affords another way of looking at the SVI in extensive form as translating the
SVI in basic form into a mode where, by modifying the given F(·) : Ln → Ln by
adding w(·) to it, the constraint of “deciding” before “observing” is relaxed to allow
“decision” to follow “observation.”

The need for more than single-stage models Although (2.6) furnishes the basic
form that a stochastic variational inequality should have, in our opinion, with respect
to uncertain F(x, ξ) and C(ξ), it only covers the case of a single x having to be
fixed before the realization of a single scenario ξ . Our goal in this paper lies beyond
just this. We want to encompass situations where “decisions” in time can alternate
with “observations” in time in a multistage process. For that purpose nonanticipativity
constraints on response functions are ever more essential.

Two-stage stochastic optimization can serve as to preview the issues behind the
approach we will undertake in Sect. 3. Suppose we have a pattern in which an initial
decision x1 ∈ Rn1 must be taken before ξ is known, but afterward a recourse decision
x2(ξ) ∈ Rn2 can be taken which is able to respond to the information in ξ . There are
many variants of this, but in keeping to the bare essentials let us suppose that there
is a convex set C(ξ) in Rn1 × Rn2 to which (x1, x2(ξ)) must belong (how it might
be specified need not enter for the moment), and we are concerned with minimizing
the expected value of a cost expression g(x1, x2(ξ), ξ). What would correspond to
first-order optimality?

We are dealing here with a mixed case of nonanticipativity: the second decision
can depend on ξ but the first one can’t. In line with the developments explained above,
a good way to approach this is to pose it in terms of function pairs (x1(·), x2(·))
in Ln1+n2 = Ln1 × Ln2 , a set C in that space and a nonanticipativity subspace N
which restricts the response of x1(·)without restricting that of x2(·). The optimization
problem then is to minimize a function over C ∩ N in Ln1 × Ln2 , namely

G(x1(·), x2(·)) = Eξ [g(x1(ξ), x2(ξ), ξ)]. (2.20)

The gradient of G can be calculated as the function ∇G : Ln1 × Ln2 → Ln1 × Ln2
given by

∇G(x1(·), x2(·))= the function in Ln1×Ln2 that takes ξ to∇x1,x2g(x1(ξ), x2(ξ), ξ)

(2.21)

(details will be presented later more generally). First-order optimality is characterized
then by

− ∇G(x1(·), x2(·)) ∈ NC∩N (x1(·), x2(·)), (2.22)

which is another “stochastic variational inequality in basic form” with F = ∇G, but
no longer single-stage. Even when C(ξ) doesn’t really depend on ξ , the variational
inequality (2.22) can’t be reduced to an EV form, but insights can come anyway from
computing the normal cones to the new C ∩ N .
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There is now a different spaceM of nonanticipativity multipliers, consisting of the
function pairs (w1(ξ), w2(ξ)) ∈ Ln1 × Ln2 such that E[w1(ξ)] = 0 but w2(ξ) ≡ 0.
The stochastic variational inequality in extensive form associated with the one in basic
form in (2.22) comes out then as the condition that

x1(ξ) ≡ x1 for some x1 such that (x1, x2(ξ)) ∈ C(ξ) for all ξ ∈ �,

and there exists somew1(·) ∈ Ln1 having E[w1(ξ)] = 0 such that

−∇x1,x2g(x1(ξ), x2(ξ), ξ) − (w1(ξ), 0) ∈ NC(ξ)(x) for all ξ ∈ �. (2.23)

This illustrates that the special models researchers have been occupied with in
a single-stage setting don’t offer an adequate springboard for formulating stochas-
tic variational inequalities in the realm of multistage stochastic optimization and
equilibrium.10 It furthermore offers hints of how nonanticipativity multipliers can
be interpreted. In (2.23), w1(ξ) appears as a “shadow price for information” because
it allows the constraint on x1(·) being constant to be relaxed as if the future ξ could
already be known.

3 Multistage modeling with nonanticipativity constraints

We proceed now from single-stage stochastic variational inequalities as in (2.6) and
(2.9), as prototypes, to the formulation of general multistage versions in which “deci-
sions” can respond to increasing availability of information. We adopt an N -stage
pattern

x1, ξ1, x2, ξ2, . . . , xN , ξN where xk ∈ Rnk , ξk ∈ �k, (3.1)

in which xk is the decision to be taken at the kth stage and ξk stands for the information
revealed after that decision, but before the next.11 The previous x and ξ are replaced
by

x = (x1, . . . , xN ) ∈ Rn1 × · · · × RnN = Rn for n = n1 + · · · + nN ,

ξ = (ξ1, . . . , ξN ) ∈ �1 × · · · × �N , so that � is a subset of �1 × · · · × �N . (3.2)

The exact nature of the sets �k doesn’t matter (they could consist of vectors in some
Rνk , for instance, or be boolean); all that concerns us is that � is a finite set furnished
with probabilities p(ξ) that are positive and add to 1.12

10 In a two-stage precedent of sorts for going beyond a pure single-stage model is present in in [3], where
the “approximate” x in the ERM approach is treated as a first-stage decision compared to a ξ -dependent
hindsight solution. This can still be viewed as an error minimization model rather than solving an actual
variational inequality.
11 Herewe terminatewith an observation, but we could instead terminatewith a decision as in the two-stage
preview. That alternative will be taken up later.
12 This way of treating information serves us here as the being the simplest for purpose at hand. It fits as
a special case of a more sophisticated treatment of finitely many scenarios that was laid out in [24]. This
information structure could also be rendered in the form of a “scenario tree” with transition probabilities.
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A crucial aspect of the sequencing in (3.1) is that the choice of xk for k > 1 will be
allowed to be influenced by the observations made before it but not by the observations
made after it. This is themultistage version of nonanticipativity. A straightforwardway
of handling it is through response rules that express xk as a function of (ξ1, . . . , ξk−1)

only:

x(ξ) = (x1, x2(ξ1), x3(ξ1, ξ2), . . . .xN (ξ1, ξ2, . . . , ξN−1)), (3.3)

A better way though, as in Sect. 2, will be to articulate it as a constraint imposed within
the spaceLn of general functions x(·) : ξ �→ (x1(ξ), x2(ξ), . . . , xN (ξ)) by restricting
them to

N = {
x(·) = (x1(·), . . . , xN (·)) ∣

∣ xk(ξ) does not depend on ξk, . . . , ξN
}
. (3.4)

This is thenonanticipativity subspace for our extended pattern of information. It hence-
forth replaces the single-stageN in Sect. 2. Corresponding nonantipativity multipliers
will again come from a subspace M of Ln , but defined now by

M = {
w(·)=(w1(·), . . . , wN (·)) ∣

∣ Eξk ,...,ξN [wk(ξ1, . . . , ξk−1, ξk, . . . , ξN )]=0
}
,

(3.5)

where the expectation is the conditional expectation knowing the initial components
ξ1, . . . , ξk−1 of ξ = (ξ1, . . . , ξk−1, ξk, . . . , ξN ). Oncemore there is underlying orthog-
onality with respect to the expectational inner product (2.2), which now expands to

〈x(·), w(·)〉 =
∑

ξ∈�

p(ξ)

N∑

k=1

〈xk(ξ), wk(ξ)〉. (3.6)

An elementary calculation using (3.6) confirms that

M = {
w(·) ∈ Ln

∣
∣ 〈x(·), w(·)〉 = 0 for all x(·) ∈ N }

,

N = {
x(·) ∈ Ln

∣
∣ 〈x(·), w(·)〉 = 0 for all w(·) ∈ M }

, (3.7)

as in the single-stage setting in (2.8). It follows from this mutual orthogonality rela-
tionship that

w(·) ∈ NN (x(·)) ⇐⇒ x(·) ∈ NM(w(·)) ⇐⇒ x(·) ∈ N and w(·) ∈ M. (3.8)

Variational inequality formulation and decompositionAlongwith nonanticipativity
we constrain responses by scenario-dependent conditions x(ξ) ∈ C(ξ) for nonempty
closed convex sets C(ξ) which now lie in the “product version” of Rn in (3.2) but
need not themselves be products of sets in the component spaces Rnk . We refer to
these restrictions as basic stochastic constraints, making room that way for eventual
consideration of other “more advanced” stochastic constraints, perhaps involving risks
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or expectations and not necessarily imposed scenario by scenario. In terms of the
nonempty closed convex subset of Ln defined by

C = {
x(·) ∈ Ln

∣
∣ x(ξ) ∈ C(ξ) for all ξ ∈ �

}
, (3.9)

the basic constraints can be written as x(·) ∈ C.
The continuousmappingF fromLn toLn that will enter the variational inequalities

we are headed toward comes as before from the vectors F(x, ξ) ∈ Rn . Now have the
additional structure that

F(x, ξ) = (F1(x, ξ), . . . , FN (x, ξ)) with Fk(x, ξ) ∈ Rnk ,

where each Fk(x, ξ) is continuous in x ∈ Rn , so that F assigns to x(·) the function

F(x(·)) : ξ �→ F(ξ, x(ξ)) = (F1(x(ξ), ξ), . . . , FN (x(ξ), ξ)). (3.10)

Definition 3.1 (SVI basic and extensive forms, multistage) With respect to F(x, ξ)

and C(ξ), the condition

− F(x(·)) ∈ NC∩N (x(·)), (3.11)

is the associated multistage stochastic variational inequality in basic form, whereas
the condition

x(·) ∈ N and there exists w(·) ∈ M such that

−F(x(ξ), ξ) − w(ξ) ∈ NC(ξ)(x(ξ)) for all ξ ∈ �. (3.12)

is the associated multistage stochastic variational inequality in extensive form.

With this double SVI formulation we get a result identical to that of Theorem 2.3 in
the single-stage case except that a multistage information pattern of nonanticipativity
is now covered.

Theorem 3.2 (basic-extensive equivalence,multistage). If x(·) solves (3.12), then x(·)
solves (3.11). Conversely, if x(·) solves (3.11), then x(·) is sure also to solve (3.12) if

there exists some x̂(·) ∈ N such that x̂(ξ) ∈ riC(ξ) for all ξ ∈ �. (3.13)

This constraint qualification is superfluous if the sets C(ξ) are all polyhedral.

Proof The argument is identical to that of Theorem 2.3, with the only difference being
the replacement of the earlierN andM by the current ones in (3.4) and (3.5), related
by (3.7) and (3.8). ��

The prime motivation for the extensive form is the stochastic decomposition it
provides and the potential for utilizing that in computational methodology. The dis-
cussion of this matter in Sect. 2 for the single-stage case carries over fully and need
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not be repeated in the present notation, but more can be added about the ways that the
problem in extensive form can be interpreted.

Theorem 3.3 (primal-dual articulation of the extensive form). Themultistage stochas-
tic variational inequality (3.12), as a condition in Ln on x(·) with auxiliary element
w(·), is equivalent to a primal-dual variational inequality in Ln × Ln on the pair
(x(·), w(·)), namely

−�(x(·), w(·)) ∈ NC×M(x(·), w(·)) for �(x(·), w(·))=(F(x(·)) + w(·),−x(·)).
(3.14)

Proof This is an easy consequence of the usual rules for computing normal cones. The
conditions −F(x(ξ), ξ) − w(ξ) ∈ NC(ξ)(x(ξ)) can be consolidated through (2.13)
as −F(x(·)) − w(·) ∈ NC(x(·)), while the conditions x(·) ∈ N and w(·) ∈ M can
be written on the basis of (3.8) as x(·) ∈ NM(w(·)). On the other hand, by (1.11) as
translated to the current setting, the product of NC(x(·)) and NM(w(·)) is the normal
cone to C × M at (x(·), w(·)). ��

Specialization to simple basic constraints Still more can be said about the extensive
form in the case of what we will call simple basic constraints, namely where C(ξ) is
a product of closed convex sets in the spaces Rnk in the pattern

C(ξ) = D1 × D2(ξ1) × D3(ξ1, ξ2) × · · · × DN (ξ1, ξ2, . . . , ξN−1), (3.15)

because then

x(·) ∈ C ∩ N ⇐⇒ x(ξ) has form (3.3) with

x1 ∈ D1, x2(ξ1) ∈ D2(ξ1), . . . . . . , xN (ξ1, . . . , ξN−1) ∈ DN (ξ1, . . . , ξN−1).

(3.16)

Theorem 3.4 (expectational case of the extensive form). For simple basic con-
straints, the multistage stochastic variational inequality (3.12) in extensive form can
be expressed in terms of x(·) alone as the condition that

x(·) has form (3.5), and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Eξ1,ξ2,...,ξN
[ F1(x(ξ), ξ)] ∈ ND1

(x1),
−Eξ2,...,ξN

[ F2(x(ξ), ξ)] ∈ ND2(ξ1)
(x2(ξ1)),

...

−EξN
[FN (x(ξ), ξ)]∈NDN (ξ1,...,ξN−1)

(xN (ξ1, . . . , ξN−1)).

(3.17)

Proof Utilizing the reduction in (3.16), this iteratively applies the expectation rule in
(2.18) ��.

In the single-stage version, which we get from Theorem 3.4 by setting N = 1, this
result reduces to the earlier one about the EV approach, namely that for constantC the
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extensive form reduces to−Eξ F(x, ξ) ∈ NC (x). However, for N > 1 the reduction is
not as elementary and requires conditional expectations at different levels as in (3.17).

Adapting to models with terminal response It is possible and in many situations
desirable to allow in (3.1) for a terminal decision xN+1 ∈ RnN+1 which is able to
respond to the final information input from ξN . From a mathematical standpoint, of
course, this can equally well be regarded as already implicit in the model above as the
case in which ξN is “trivialized,” but that amounts to truncating the scenarios ξ and
causes trouble with the meaning of x(ξ) and w(ξ). It is helpful instead, for examples
considered later in this paper, to have explicit notation for this N + 1 extension, in
which bothC(ξ) and F(x, ξ)would acquire an N +1 component. Since the point is to
allow xN+1(ξ) to depend on all of ξ = (ξ1, . . . , ξN ), the corresponding augmentation
of N and M in (3.4) and (3.5) takes the form

N + = {
x+(·) = (x1(·), . . . , xN (·), xN+1(·))

∣
∣ (x1(·), . . . , xN (·)) ∈ N , xN+1(·) ∈ LnN+1

}
,

M+ = {
w+(·) = (w1(·), . . . , wN (·), wN+1(·))

∣
∣ (w1(·), . . . , wN (·) ∈ M, wN+1(ξ) ≡ 0

}
.

(3.18)

Then in the “simple” case of (3.15), for instance, the new N +1 condition would have
no expectation but just ask that −FN+1(x+(ξ), ξ) ∈ NDN+1(ξ)(xN+1(ξ)) for all ξ .

The case of this with N = 1, in the pattern of x1, ξ , x2(ξ) (response after a
single observation, with no more information still to come) as previewed at the end
of Sect. 2, deserves closer attention because of its prevalence in two-stage stochastic
programming and potential game-like extensions at this level. There, having

x(·) = (x1(·), x2(·)) ∈ N + ⇐⇒ x1(·) ≡ const ∈ Rn1, x2(·) ∈ Ln2 ,

w(·) = (w1(·), w2(·)) ∈ M+ ⇐⇒ w1(·) ∈ Ln1 , Eξ [w1(ξ)] = 0, w2(ξ) ≡ 0,

(3.19)

the stochastic variational inequality in extensive form amounts to

−(F1(x1, x2(ξ), ξ), F2(x1, x2(ξ), ξ)) + (w1(ξ), 0) ∈ NC(ξ)(x1, x2(ξ))

with Eξ [w1(ξ)] = 0. (3.20)

When C(ξ) = D1 × D2(ξ) this reduces to

− Eξ [ F1(x1, x2(ξ), ξ) ] ∈ ND1
(x1), −F2(x1, x2(ξ), ξ)) ∈ ND2(ξ)(x2(ξ)) for all ξ.

(3.21)

Stochastic variational inequalities beyond basic and extensive A stochastic varia-
tional inequality that draws on nonanticipativity should ultimately be a condition of
the form

− F(x(·)) ∈ NK∩N (x(·)) for some convex set K ⊂ C, (3.22)

either directly or as elaborated in its expression, say, by Lagrange multiplier elements.
The role of the basic form and its partner in extensive form is to provide a stripped-
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down target to which such more general forms of stochastic variational inequalities
may be reduced, e.g., for purposes of computing solutions. Examples withK specified
by additional expectation constraints will be discussed below.

Another feature that could of course be relaxed, without stopping (3.18) from being
called a stochastic variational inequality, is the special form of F(x(·)) as comprised
of separate elements F(x(ξ), ξ) for each ξ .

Monotonicity and the existence of solutions The concept of monotonicity of a map-
ping F from Rn to Rn , defined in (1.10) relative to C , extends to mappings F from
Ln to Ln relative to C as the requirement that

〈F(x ′(·)) − F(x(·)), x ′(·) − x(·)〉 ≥ 0 for all x(·), x ′(·) ∈ C (3.23)

in terms of the expectational inner product (3.6). Strict monotonicity requires strict
inequality when x ′(·) �= x(·).
Theorem 3.5 (monotonicity of stochastic variational inequalities). The mapping F :
Ln → Ln in (3.10) is monotone relative to C when the mapping F(·, ξ) : Rn → Rn

is monotone relative to C(ξ) for every ξ ∈ �, and likewise for strict monotonicity.
Under monotonicity the set of solutions to the stochastic variational inequality (3.11)
in basic form, if any, is convex. Under strict monotonicity, if a solution exists at all, it
must be unique.

Under monotonicity of F the mapping � in the primal-dual variational inequality
(3.14) ismonotone aswell, implying that the set of solution pairs (x(·), w(·)) is convex.
Proof This just applies to ourLn setting awell known fact about solutions tomonotone
variational inequalities in general; cf. [25, 12.48]. ��

Themonotonicity inTheorem3.5 is important because of its potential consequences
for solution methodology, but ascertaining its availability in specific applications is
separate challenge, of course. Monotonicity has consequences for existence as well
as uniqueness. In the following, we indicate the recession cone of a convex set by
superscript ∞.

Theorem 3.6 (existence of solutions to stochastic variational inequalities). The set
of solutions to the multistage stochastic variational inequality (3.11) in basic form is
always closed. It is sure to be bounded and nonempty if C ∩N �= ∅ and the sets C(ξ)

are bounded, or even if they are not all bounded as long as

� nonzero y(·) ∈ N such that y(ξ) ∈ C(ξ)∞ (recession cone) for all ξ ∈ �.

(3.24)

WhenF is monotone as in Theorem 3.5, a criterion beyond such boundedness is avail-
able with respect to any x̂(·) satisfying the conditions in the constraint qualification
(3.13), namely

if 〈F(x(·), x(·) − x̂(·)〉 ≥ 0 for all x(·) ∈ C ∩ N with ||x(·) − x̂(·)|| > ρ,

then there must exist a solution x(·) such that ||x(·) − x̂(·)|| ≤ ρ. (3.25)
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Proof As pointed out in the introduction, a variational inequality has at least one
solution when the underlying convex set is bounded. For the SVI in basic form, that
underlying set is C∩N . A closed convex set is bounded if and only if its recession cone
consists only of the zero vector [18, Theorem 8.4]. The recession cone of C ∩N in Ln

is the intersection of the recession cones of C and N , with the recession cone of the
subspaceN beingN itself [18, Corollary 8.3.3]. Thus, its elements are the functions
y(·) ∈ N such that y(·) ∈ C∞, and the latter comes down to having y(ξ) ∈ C(ξ)∞ for
all ξ . The boundedness of C ∩ N , when nonempty, is equivalent therefore to (3.19).

The extra criterion for the monotone case comes from applying [25, Theo-
rem 12.51(a)] to the mapping

T : y(·) �→ F(x̂(·) + y(·)) + NC∩N (x̂(·) + y(·)),

which is “maximal monotone” when F is monotone [25, 12.48]. According to that
result, a sufficient condition for the existence of y(·)with 0 ∈ T (y(·)) and ||y(·)|| ≤ ρ

(which corresponds to a solution x(·) with ||x(·) − x̂(·)|| ≤ ρ) is having

〈v(·), y(·)〉≥0 whenever v(·)−F(x̂(·)+y(·)) ∈ NC∩N (x̂(·)+y(·)) with ||y(·)||>ρ.

However, because the conditions on x̂(·) in (3.13) make x̂(·) belong to ri (C ∩ N )

(as explained in the proof of Theorem 3.2), the elements of NC∩N (x̂(·) + y(·)) are
orthogonal to y(·), so that 〈v(·), y(·)〉 reduces to 〈F(x̂(·) + y(·)), y(·)〉. The criterion
thereby translates to having the latter inner product be ≥ 0 when x̂(·) + y(·) ∈ C ∩N
with ||y(·)|| > ρ. Replacing y(·) by x(·) − x̂(·) we arrive then at the condition in
(3.25). ��

In invoking (3.13), the criterion (3.25) under monotonicity also guarantees, through
Theorem 3.2, the solvability of the corresponding multistage stochastic variational
inequality in extensive form.

Lagrangian elaboration of basic constraints We next look at what can be gained
when the sets C(ξ) are specified by a system of function constraints. Specifically, we
suppose that the sets C(ξ) are specified by

x ∈ C(ξ) ⇐⇒ x ∈ B(ξ) and fi (x, ξ)

{≤ 0 for i = 1, . . . , r,
= 0 for i = r + 1, . . . ,m,

(3.26)

where B(ξ) is a nonempty closed convex set, and fi (x, ξ) is differentiable and convex
in x for i = 1, . . . , r , but affine in x for i = r + 1, . . . ,m. Then, in particular, C(ξ)

is a closed convex set.
Our aim is to obtain, and apply, a formula for the normal cones to the basic constraint

set C ⊂ Ln in terms of Lagrange multipliers for the conditions in (3.26). With ξ and
x fixed for the moment, those multipliers should form a vector

y = (y1, . . . , ym) ∈ Y = [0,∞)r × (−∞,∞)m−r (3.27)
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which, in coordination with x in (3.26), satisfies

yi

{≥ 0 for i ≤ r having fi (x, ξ) = 0,
= 0 for i ≤ r having fi (x, ξ) < 0,

or equivalently together with (3.26):

f (x, ξ) ∈ NY (y) for f (x, ξ) = ( f1(x, ξ), . . . , fm(x, ξ)). (3.28)

Theorem 3.7 (multiplier representation of basic constraints). With respect to the con-
straint system (3.26) as given, the normal cone NC(x(·)) ⊂ Ln at an x(·) ∈ C contains
all v(·) having, in the notation above, the representation

∃ y(·) ∈ Lm, z(·) ∈ Ln, such that
⎧
⎪⎨

⎪⎩

v(ξ) =
m∑

i=1

yi (ξ)∇x fi (x(ξ), ξ) + z(ξ) with

f (x(ξ), ξ) ∈ NY (y(ξ)), z(ξ) ∈ NB(ξ)(x(ξ))

(3.29)

(in utilizing the fact that NY (y(ξ)) �= ∅ entails y(ξ) ∈ Y ). This furnishes a complete
description of NC(x(·)) under the constraint qualification that

∃ x̂(·) such that, for all ξ ∈ �, x̂(ξ) ∈ ri B(ξ) and fi (x̂(ξ), ξ)

{
< 0 for i ≤ r,
= 0 for i > r.

(3.30)

Proof In viewof the breakdown in (2.13), determining the elements of NC(x(·)) comes
down to determining the elements of NC(ξ)(x(ξ)) inRn for individual ξ . The Lagrange
multiplier representation in (3.29) for elements v(ξ) of NC(ξ)(x(ξ)) derives from well
known rules for the calculus of normal cones to convex sets inRn , for instance in [18,
Section 23]; in that context constraint qualifications can rely on relative interiors of
convex sets as in (3.30). ��

Stochastic variational inequalities of Lagrangian basic formWhen the representa-
tion (3.29) for NC(x(·)) is substituted into the condition in the stochastic variational
inequality (3.12) in extensive form, the resulting relation, involving y(·) ∈ Lm and
z(·) ∈ Ln , is

−F(x(ξ), ξ) + w(ξ) =
m∑

i=1

yi (ξ)∇x fi (x(ξ), ξ) + z(ξ)

with f (x(ξ), ξ) ∈ NY (y(ξ)), z(ξ) ∈ NB(ξ)(x(ξ)). (3.31)

We can thereby pass from (3.12) to a condition jointly on x(·) and y(·) instead of
just x(·), which we call the associated stochastic variational inequality in Lagrangian
basic form:
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x(·) ∈ N , y(·) ∈ Lm, and ∃w(·) ∈ M such that

−
(

F(x(ξ), ξ) +
s∑

i=1

yi (ξ)∇x fi (x(ξ), ξ),

− f (x(ξ), ξ)

)

+ (w(ξ), 0) ∈ NB(ξ)×Y (x(ξ), y(ξ)). (3.32)

The really interesting thing about this representation is that (3.32) actually con-
stitues a stochastic variational inequality in extensive form for x+(·) = (x(·), y(·)),
with y(·) interpreted as a final response xN+1(ξ) after the observation of ξN . This
follows the pattern for terminal response explained above with N + and M+ as in
(3.18). In terms of

D+ = {
x+(·) = (x(·), y(·)) ∣

∣ x+(ξ) ∈ B+(ξ)
}
with B+(ξ) = B(ξ) × Y,

F+(x+(ξ), ξ) =
(

F(x(ξ), ξ) +
s∑

i=1

yi (ξ)∇x fi (x(ξ), ξ),− f (x(ξ), ξ)

)

, (3.33)

we can express (3.32) as

x+(·) ∈ N + and ∃ w(·)+ ∈ M+ such that − F+(x+(ξ), ξ) + w+(ξ) ∈ B+(ξ).

(3.34)

This is clearly again a stochastic variational inequality in extensive form for which
the corresponding stochastic variational inequality in basic form is

− F+(x+(·)) ∈ NB+∩N+(x+(·)). (3.35)

That provides confirmation of our underlying idea that the basic and extensive forms
can serve as models to which more complicated stochastic variational inequalities can
be reduced.

4 Some examples utilizing expectation functions and constraints

As explained in our introduction, stochastic variational inequalities ought to be broad
enough in concept to assist in characterizing solutions to problems of stochastic opti-
mization or equilibrium, even when initial decisions can be followed by recourse
decisions in later stages. We’ll illustrate here how our formulation achieves that cov-
erage in a fundamental setting.

The examples to be presented will involve smooth expectation functions G : Ln →
R, by which we mean expressions of the type

G(x(·)) = Eξ [ g(x(ξ), ξ) ] =
∑

ξ∈�

p(ξ)g(x(ξ), ξ) for g : Rn × � → R (4.1)
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under the assumption that g(x, ξ) is continuously differentiable in x for each ξ . That
assumption makes G be continuously differentiable on Ln , but it’s worth looking at
that in detail because of the special setting with an expectational inner product. From
(4.1) it’s clear that

lim
ε→0+

G(x(·) + εu(·)) − G(x(·))
ε

= Eξ 〈∇x g(x(ξ), ξ), u(ξ)〉.

In other words G has directional derivatives

dG(x(·); u(·)) = 〈∇G(x(·)), u(·)〉 (4.2)

in terms of the gradient mapping ∇G : Ln → Ln which takes x(·) to the function

∇G(x(·)) : ξ → ∇x g(x(ξ), ξ). (4.3)

The assumed continuity of ∇x g(·, ξ) : Rn → Rn for each ξ ensures the continuity
of ∇G as a mapping from Ln to Ln and confirms that we can rightly say that G is
continuously differentiable with ∇G(x(·)) as its gradient at x(·).

Optimality in minimizing an expectation in multistage optimization The elementary
“optimization case” that was helpful in Sect. 1 asmotivation for single-stage stochastic
variational inequalities can now be expanded to a multistage setting and supplied with
technical details.

For this we consider a smooth expectation function as above and for optimization
turn to the problem

minimize G(x(·)) = Eξ [ g(x(ξ), ξ) ] over all x(·) ∈ C ∩ N ⊂ Ln (4.4)

with C and N as in Sect. 3. Multistage stochastic programming is covered by this,
even without convexity in the objective; the linear programming subcase corresponds
to the sets C(ξ) being polyhedral.

Variational inequalities can capture conditions for optimality, and that is our target
here for (4.4). From the differentiability that has been confirmed for G, along with
the convexity of C ∩ N , we see that, if a local minimum in problem (4.4) occurs at
x(·) ∈ C ∩ N , then 〈∇G(x(·)), x ′(·) − x(·))〉 ≤ 0 for all x ′(·) ∈ C ∩ N . Thus

local min at x(·) �⇒ − ∇G(x(·)) ∈ NC∩N (x(·)), (4.5)

which is the stochastic variational inequality in basic form in (3.11) for F(x(·)) =
∇G(x(·)), corresponding to F(x, ξ) = ∇x g(x, ξ).

This necessary condition becomes a sufficient condition for global optimality when
G is convex, and then one has amonotone stochastic variational inequality. Under strict
convexity a solution, if any, would have to be unique.
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The corresponding stochastic variational inequality in extensive form requires that

x(·) ∈ N and there exists w(·) ∈ M such that

−∇x g(x(ξ), ξ) − w(ξ) ∈ NC(ξ)(x(ξ)) for all ξ ∈ �, (4.6)

where the condition for each scenario ξ means that x(ξ) satisfies the first-order opti-
mality condition for minimizing g(·, ξ) + 〈·, w(ξ)〉 over C(ξ). The linear term with
w(ξ) adds extra costs to the given costs so as to achieve stochastic decomposition
by relaxing nonanticipativity and passing to a deterministic minimization problem for
each ξ . To drive that point home, in the case of strict convexity of the functions g(·, ξ)

there could be only one x(ξ) giving the minimum of g(·, ξ) + 〈·, w(ξ)〉 over C(ξ).
By determining it for each scenario ξ from knowledge of the right w(·), one would
necessarily obtain a function x(·) ∈ N ; in other words, nonanticipativity would be
achieved automatically. It is for this reason that w(·) is said to provide shadow prices
for future information.

To make use of (4.6) in solving (4.4) it isn’t necessary, however, to determine the
right w(·) in one miraculous step. With convexity in the objective, but not necessar-
ily strict convexity, the decomposition in (4.6) can be achieved iteratively using the
Progressive Hedging Algorithm in [24].

Basic constraint structure as in (3.26) would of course allow the condition in exten-
sive form in (4.6) to be augmented to a stochastic variational inequality in Lagrangian
form in the manner explained at the end of Sect. 3.

Equilibrium ina correspondingmultistage gamemodelAgamelike extensionof this
optimization example can be built around agents j = 1, . . . , J who select strategies
x j (·) ∈ C j ∩ N j with C j coming from sets C j (ξ) in the manner of (3.9). (The
dimensions could be different for different agents, and this is why we are writingN j :
a different Ln j space may be involved.)

Agent j is concerned with minimizing with respect to the choice of x j (·) an expec-
tation function

G j (x1(·), . . . , x J (·)) = Eξ [ g j (x1(ξ), . . . , x J (ξ), ξ) ]. (4.7)

The complication is that this “cost” to agent j depends also on the strategies chosen by
the other players. On the other hand, through the structure of stages of uncertainty and
the availability of recourse decisions as information develops, the agents can interact
repeatedly over time through their choices of

x j (ξ) = (x j
1 , x j

2 (ξ1), x
j
3 (ξ1, ξ2), . . . .x

j
N (ξ1, ξ2, . . . , ξN−1)). (4.8)

As understood from the preceding optimization, the first-order optimality condition
for agent j is

−F j (x1(·), . . . , x J (·)) ∈ NC j∩N j (x j (·)) for the mapping

F j (x1(·), . . . , x J (·)) : ξ �→ ∇x j g j (x1(ξ), . . . , x J (ξ), ξ). (4.9)
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The situation in which all these conditions in (4.9) are satisfied simultaneously consti-
tutes a kind of equilibrium reflecting “stationarity” in the perceptions of the agents. It
is a true Nash equilibrium if the functionals G j in (4.7) are convex, which corresponds
to each g j (x1, . . . , x J , ξ) being convex with respect to x j .

Themost important fact here for our purposes of illustration is that the simultaneous
satisfaction of the conditions in (4.9) can be unified into a single stochastic variational
inequality in basic form:

−(F1(x1(·), . . . , x J (·)), . . . ,F J (x1(·), . . . , x J (·))) ∈ NĈ∩N̂ (x1(·), . . . , x J (·))
where Ĉ = C1 × · · · × C J and N̂ = N 1 × · · · × N J . (4.10)

The associated stochastic variational inequality in extensive form achieves decompo-
sition into a separate problem for each scenario ξ by appealing to nonanticipativity
multipliers

w(·) = (w1(·), . . . , w J (·) in M̂ = M1 × · · · × MJ . (4.11)

As in the single-agent optimization case, these multipliers provide shadow prices
of information tailored to the individual agents, which allow nonanticipativity to be
relaxed. For each ξ , then, one has amultistage gameproblemof deterministic character.

Having g j be convex in its j th component would not be enough, in general, to
make the variational inequality (4.10) be monotone, however. Monotonicity appears
to be elusive in such an equilibrium setting, but future investigations may bring more
understanding to this issue.

Incorporation of expectation constraints An example of a stochastic variational
inequality of the more general form in (3.22), with the basic constraint set C replaced
by a smaller set K, comes from adding constraints of the type

Gi (x(·)) = Eξ [ gi (x(ξ), ξ) ]
{≤ 0 for i = 1, . . . , r,

= 0 for i = r + 1, . . . ,m.
(4.12)

where each Gi is a smooth expectation functions as above. In working with such
expectation constraints we will be able to exploit the fact that Gi is differentiable with
gradients as in (4.2)–(4.3):

∇Gi (x(·)) ∈ Ln for ∇Gi (x(·)) : ξ �→ ∇x gi (x(ξ), ξ). (4.13)

For the present purpose we also assume that gi (x, ξ) is convex on x for i = 1, . . . , r
but affine in x for i = r + 1, . . . ,m, so that Gi is convex for i = 1, . . . , r but affine
for i = r + 1, . . . ,m. This is needed to guarantee that the set

K = {
x(·) ∈ C ∣

∣ (4.12) holds
}

(4.14)
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is not just closed in Ln (through the continuity of each Gi ) but also convex, as is
appropriate for the condition

− F(x(·)) ∈ NK∩N (x(·)) (4.15)

to legitimately be a stochastic variational inequalty with expectation constraints.
We can then try to understand how the normal cones NK(x(·)) and NK∩N (x(·))

relate to the previous normal cones NC(x(·)) and NC∩N (x(·)). We’ll be interested in
Lagrange multiplier vectors

y = (y1, . . . , ym) ∈ Y = [0,∞)r × (−∞,∞)m−r , (4.16)

which, in coordination with x(·) and (4.12), should satisfy

yi

{≥ 0 for i ≤ r having Gi (x(·)) = 0,
= 0 for i ≤ r having Gi (x(·)) < 0,

or equivalently when combined with (4.12):

Ḡ(x(·)) ∈ NY (y) with Ḡ(x(·)) = (G1(x(·)), . . . ,G(x(·))), i.e.,

Ḡ(x(·)) = Eξ [ḡ(x(ξ), ξ)] for ḡ(x, ξ) = (g1(x, ξ), . . . , gm(x, ξ)). (4.17)

Theorem 4.1 (multiplier representation for expectation constraints). ForK in (4.14),
the normal cone NK∩N (x(·)) at an x(·) ∈ K ∩ N contains all v(·) having, in the
notation above, the representation

∃ y ∈ Rm, z(·) ∈ Ln, such that

⎧
⎪⎨

⎪⎩

v(·) =
m∑

i=1

yi∇Gi (x(·)) + z(·) with
Ḡ(x(·)) ∈ NY (y), z(·) ∈ NC∩N (x(·))

(4.18)

(in utilizing the fact that NY (y) �= ∅ implies y ∈ Y ). This furnishes a complete
description of NK∩N (x(·)) under the constraint qualification that

∃ x̂(·) ∈ C ∩ N such that x(ξ) ∈ riC(ξ) and Gi (x(·))
{

< 0 for i = 1, . . . , r,
= 0 for i = r + 1, . . . ,m.

(4.19)

Moreover the same results hold with K ∩ N and C ∩ N replaced everywhere by just
K and C.

Proof Standard rules of convex analysis, e.g. [18, 23.8], support the assertions made
about Lagrange multipliers. This takes into account that N is a subspace, so that
having x̂(·) ∈ N along with x(ξ) ∈ riC(ξ). which corresponds to x(·) ∈ ri C, implies
x(·) ∈ ri (C ∩ N ). ��
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Stochastic variational inequalities of Lagrangian expectation form Again, as with
the Lagrangian representation for basic constraints, we are able to pass to a wider
expression of these conditions as a single variational inequality in the Lagrange mul-
tipliers and the other variables jointly. This emerges from consolidating the condition
on the right of (4.18) to

v(·) −
m∑

i=1

yi∇Gi (x(·)) ∈ NC∩N (x(·)) with Ḡ(x(·)) ∈ NY (y), (4.20)

having G as in (4.17), and going on to rewrite the variational inequality −F(x(·)) ∈
NC∩N (x(·)) in (3.11) as a condition jointly on y ∈ Rm and x(·) ∈ Ln :

−
(

−Ḡ(x(·)),F(x(·)) +
m∑

i=1

yi∇Gi (x(·))
)

∈ NY×C∩N (y, x(·)). (4.21)

Although this is truly a variational inequality in (y, x(·)), it isn’t one of basic form
in our terminology. Likewise, the corresponding stochastic variational inequality in
(3.12), similarly rewritten as

x(·) ∈ N and there exist w(·) ∈ M and y ∈ Rm such that

−
(

−Ḡ(x(·)),F(x(·)) +
m∑

i=1

yi∇Gi (x(·))
)

+ (0, w(·)) ∈ NY×C(y, x(·))

(4.22)

is not exactly one of extensive form. That doesn’t stop us from referring to both of
them as stochastic variational inequalities in Lagrangian expectation form, but much
more can be said in this direction.

Reduction to extensive form with augmented nonanticipativity For one thing, we
can interpret y as a “decision component” fixed in advance of observing ξ1, . . . , ξN .
That way, it can be adjoined to the first-stage component of x(·) as a function y(·)
constrained to be constant. In notation for that, we can think of augmenting x(ξ) to

x̃(ξ) ∈ Rm × Rn with x̃1(ξ) = (y(ξ), x1(ξ)) but x̃k(ξ) = xk(ξ) for k = 2, . . . , N ,

and in parallel augmenting N to

Ñ = {
x̃(·) = (y(·), x(·)) ∣

∣ y(·) ≡ const, x(·) ∈ N }
.

Then (4.21) comes out as the following variational inequality in x̃(·):

−F0(x̃(·)) ∈ N
(Y×C)∩Ñ (x̃(·)) for F0(x̃(·))

=
(

−Ḡ(x(·)),F(x(·)) +
m∑

i=1

yi (·)∇Gi (x(·))
)

. (4.23)
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This is closer to being a stochastic variational inequality of basic type, but it still
misses the mark because F0(x̃(·) doesn’t fit our prescription of being a function ξ →
F0(x̃(ξ), ξ), due to the nature of the vector Ḡ(x(·)) in (4.16).

We can do better however with the corresponding interpretation of (4.22). For
that we have to recognize the necessity of an additional multiplier element u(·) with
Eξ [u(ξ)] = 0 to take care of the constancy constraint on y(·). Introducing

C̃(ξ) = Y × C(ξ), yielding C̃ = {
(y(·), x(·)) = x̃(·) ∈ Ln

∣
∣ x̃(ξ) ∈ C̃(ξ)

}
,

(4.24)

we can express the variational inequality in (4.22) equivalently as

x(·) ∈ N and there exist w(·) ∈ M, y ∈ Rm, u(·) with Eξ [u(ξ)] = 0, such that

−
(

−Ḡ(x(ξ)ξ)),F(x(ξ)) +
m∑

i=1

yi (ξ)∇Gi (x(ξ))

)

+ (u(ξ), w(ξ)) ∈ NC̃(ξ)
(y(ξ), x(ξ)), ∀ξ (4.25)

Why an equivalence? For G(x(·)) = Eξ [g(x(ξ), ξ)] we are invoking yet again the
rule that

Eξ [ḡ(x(ξ), ξ)] ∈ NY (y) ⇐⇒ ∃ u(·), Eξ [u(ξ)] = 0,

with ḡ(x(ξ), ξ) + u(ξ) ∈ NY (y(ξ)), ∀ξ.

Taking this further, we can augment w(·) ∈ M to

w̃(ξ) ∈ Rm × Rn with w̃1(ξ) = (u(ξ), w1(ξ)) but w̃k(ξ) = xk(ξ) for k = 2, . . . , N ,

and introduce

M̃ = {
w̃(·) = (u(·), w(·)) ∣

∣ Eξ [u(ξ)] = 0, w(·) ∈ M }

along with

F̃(x̃, ξ) =
(

−ḡ(x, ξ)), F(x, ξ) +
m∑

i=1

yi∇x gi (x, ξ))

)

. (4.26)

With this in hand we can express the variational inequality in (4.25) as

x̃(·) ∈ Ñ and ∃ w̃(·) ∈ M̃ such that − F̃(x̃(ξ), ξ)) + w̃(ξ) ∈ NC̃1(ξ)
(x̃(ξ)), ∀ξ.

(4.27)

We have then reached a genuine stochastic variational inequality of extensive type,
demonstrating once more that such a model can serve as a target for the reduction of
more complicated variational inequalities.
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Risk instead of expectation This section has focused on objectives and constraints
involving expectations, but expection could also be replaced by risk expressions like
CVaR in utilizing the theory in [21]. This topic, needing more space for development
than is available here, will be taken up separately later.

5 Potential applications to models with nonconvex constraints

The stochastic variational inequalities of Lagrangian form in Sects. 3 and 4 emerged
frommultiplier rules invoked for convex constraint systems of basic type or expectation
type. However, multiplier rules utilizing other constraint qualifications for nonconvex
constraint systems the same kinds of variational inequalities can be reached, This
offers more fertile ground for our subject than might have been recognized so far.

A prominent example in the original history of variational inequalities is their capa-
bility of representing first-order optimality conditions even in optimization without
constraint convexity. The Karush–Kuhn–Tucker conditions in nonlinear programming
were expressed in that manner by Robinson [17] for the sake of studying how the
solutions to a problem may depend on the data in the problem—a program that has
continued to this day with ever-wider reach, cf. [7]. That avenue of research could
well be followed also for stochastic models of optimization or equilibrium, even with
nonconvexity.

The main idea is that many applications could lead to a condition of the same
appearance but with C orK nonconvex and normal cones being defined in the broader
sense of variational analysis instead of just convex analysis, as for instance in [25].
Such a stochastic condition with C or K nonconvex couldn’t properly be called a
variational inequality, but still, multiplier rules might be invoked to reduce it to much
in the same way as above to a true variational inquality.
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