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MEASURES OF RESIDUAL RISK WITH CONNECTIONS TO
REGRESSION, RISK TRACKING, SURROGATE MODELS, AND
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Abstract. Measures of residual risk are developed as an extension of measures of risk. They
view a random variable of interest in concert with an auxiliary random vector that helps to man-
age, predict, and mitigate the risk in the original variable. Residual risk can be exemplified as a
quantification of the improved situation faced by a hedging investor compared to that of a single-
asset investor, but the notion reaches further, with deep connections emerging with forecasting and
generalized regression. We establish the fundamental properties in this framework and show that
measures of residual risk along with generalized regression can play central roles in the development
of risk-tuned approximations of random variables, in tracking of statistics, and in estimation of the
risk of conditional random variables. The paper ends with dual expressions for measures of residual
risk which lead to further insights and a new class of distributionally robust optimization models.
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1. Introduction. Quantification of the “risk” associated with possible outcomes
of a stochastic phenomenon, as described by a random variable, is central to much of
operations research, economics, reliability engineering, and related areas. Measures
of risk are important tools in this process that not only quantify risk but also facili-
tate subsequent optimization of the parameters on which risk might depend; see, for
example, the recent reviews [13, 25, 23]. In this paper, we extend the concept of risk
measures to situations where the random variable of interest is viewed in concert with
a related random vector that helps to manage, predict, and mitigate the risk in the
original variable. A strategy of hedging in financial engineering, where the effect of
potential losses from an investment is reduced by taking positions in correlated instru-
ments, is a basic example that motivates our definition of measures of residual risk.
However, measures of residual risk extend much beyond hedging and, in fact, lead to
new measures of risk as well as deep-rooted connections with regression, risk-averse
forecasting, and a multitude of applications.

For a random variable Y of primary interest and a related random vector X =
(X1,Xs,...,X,), we examine the situation where the goal is to find a regression
function f such that Y is well approximated by f(X). Presumably X is somehow
more accessible than Y, making f(X) an attractive surrogate for Y. An example of
such surrogate estimation arises in “factor models” in financial investment applications
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(see, for example, [6, 12]), where Y is the loss associated with a particular position and
X is a vector describing a small number of macroeconomic “factors” such as interest
rates, inflation level, and GDP growth. In forecasting, f(X) might be the (random)
forecast of the phenomenon described by Y, with its expectation E[f(X)] being an
associated point prediction. In “uncertainty quantification” (see, for example, [14, 7]),
one considers the output, described by a random variable Y, of a system subject
to random input X whose distribution might be assumed to be known. Then, a
regression function f leads to an accessible surrogate estimate f(X) of the unknown
system output Y.

In surrogate estimation, traditionally, the focus has been on least-squares regres-
sion and its quantification of the difference between Y and f(X) in terms of mean
squared error (MSE). In a risk-averse context where high realizations of Y are unde-
sirable beyond any compensation by occasional low realizations, the symmetric view
of errors inherent in MSE might be inappropriate, and the consideration of general-
ized, risk-averse regression becomes paramount. A fundamental goal would then be,
for a given measure of risk R, to construct a regression function f such that

R(Y) <R(f(X))+ possibly an error term.

Initial work in this direction includes [26], which establishes such conservative sur-
rogate estimates through generalized regression. We obtain the same result under
weaker assumptions, develop means to assess the goodness-of-fit in generalized regres-
sion, examine the stability of regression functions, and make fundamental connections
between such regression, surrogate estimation, and measures of residual risk.

Generalized regression also plays a central role in situations where the random
vector X, at least eventually, comes under the control of a decision maker, and the
primary interest is then in the conditional random variable Y given X = x, which we
denote by Y,. For example, the goal might be to track a given statistic of Y, as it
varies with z, or to minimize R(Y) by choice of x, under a given measure of risk R.
The former situation is a theme of regression analysis, but we here go beyond expecta-
tions and quantiles, a traditional focus, and consider general classes of statistics. The
latter situation is the standard setting of risk-averse stochastic programming; see, for
example, [13, 25]. Due to incomplete distributional information about Y, for every z
as well as the computational cost of evaluating R(Y,) for numerous z, for example,
within an optimization algorithm, it might be beneficial in this situation to develop
a regression function f such that

for = in a subset of interest, R(Y,) ~ f(z).

Such a regression function provides an inexpensive substitute for R(Y,),z € R™,
within optimization models. We refer to this situation as risk tracking, which in
general cannot be carried out with precision; see [24] for a discussion in the context of
superquantile risk measures (also called conditional value-at-risk (CVaR)). Therefore,
we look at conservative risk tracking, where f provides an (approximate) upper bound
on R(Yy),z € R™

In the particular case of superquantile/CVaR risk measures, kernel-based esti-
mators for the conditional probability density functions, integration, and inversion
lead to estimates of conditional superquantiles [29, 4, 11]. Likewise, weighted-sums-
of-conditional quantiles also give estimators of conditional superquantiles [20, 5, 15].
More generally, there is an extensive literature on estimating conditional distribution
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functions using nonparametric kernel estimators (see, for example, [9]) and transfor-
mation models (see, for example, [10]). Of course, with an estimate of a conditional
distribution function, it is typically straightforward to estimate a statistic of Y,, and/or
R(Y:) as parameterized by « for any law-invariant risk measure. However, it is gener-
ally difficult to obtain quality estimates of such conditional distribution functions, and
so here we focus on obtaining (conservative) estimates of statistics and risk directly.

It is well known through convex duality that many measures of risk quantify
the risk in a random variable Y to be the worst-case expected value of Y over a
risk envelope, often representing a set of alternative probability distributions; see,
for example, [25] for a summary of results. We develop parallel, dual expressions for
measures of residual risk and show that knowledge about a related random vector X
leads to a residual risk envelope that is typically smaller than the original risk envelope.
In fact, X gives rise to a new class of distributionally robust and computationally
tractable optimization models that is placed between an expectation-minimization
model and a distributionally robust model generated by a risk measure. The new
models are closely allied with moment-matching of the related random vector X.
Dual expressions of measures of residual risk through residual risk envelopes provide
the key tool in this construction.

The contributions of the paper therefore lie in the introduction of measures of
residual risk, the analysis of generalized regression, the discovery of the connections
between residual risk and regression, and the application of these concepts in risk-
tuned surrogate models, statistic and risk tracking, and distributionally robust opti-
mization. In the process, we also improve and simplify prior results on the connections
between risk measures and other quantifiers.

The paper continues in section 2 with a review of basic concepts, definitions of
measures of risk and related quantifiers, and a theorem about connections among such
quantifiers under relaxed assumptions. Section 3 defines measures of residual risk, an-
alyzes their properties, and makes connections with generalized regression. Sections 4
and 5 examine surrogate estimation and tracking, respectively. Section 6 discusses du-
ality and distributionally robust formulations of optimization problems. An appendix
supplements the paper with examples of risk measures and other quantifiers.

2. Preliminaries and risk quadrangle connections. This section establishes
terminology and provides connections among measures of risk and related quantities.
We follow the risk quadrangle framework described in [25] but relax requirements in
definitions and thereby extend the reach of that framework. We consider random vari-
ables defined on a probability space (2, F,P) and restrict our attention to the subset
L2 :={Y : Q — R|Y measurable, E[Y?] < 0o} of random variables with finite second
moments. Although much of the discussion holds under weaker assumptions, among
other issues we avoid technical complications related to paired topological spaces in
duality statements under this restriction; see [28] for treatment of risk measures on
more general spaces. We equip £2 with the standard norm || - ||2, and convergence
of random variables in £? will be in terms of the corresponding (strong) topology
if not specified otherwise. We adopt a perspective concerned about high values of
random variables, which is natural in the case of “losses” and “costs.” A trivial sign
change adjusts the framework to cases where low values, instead of high values, are
undesirable.

We examine functionals F : £2 — (—o0, 00, with measures of risk being specific
instances. As we see below, several other functionals also play key roles. The following
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properties of such functionals arise in various combinations:*

Constancy equivalence: F(Y) = ¢o for constant random variables Y = ¢y € R.

Convexity: F(A-7)Y +7Y) <1 -7)FY)+7FY’') for all Y, Y’
and 7 € (0,1).

Closedness: {Yer£?| F(Y) <y} is closed for all ¢ € R.

Averseness: FY)>FE [ Y] for nonconstant Y.

Positive homogeniety: — F(AY) = AF(Y) and for every A > 0 and Y.

Monotonicity: FY)<FY') when Y <Y'.

Subadditivity: FY4+Y)<FY)+FY') forall VY.

Finiteness: F(Y) < oo for all Y.

We note that convexity along with positive homogeneity is equivalent to subadditivity
along with positive homogeneity. Closedness is also called lower semicontinuity.

Through conjugate duality (see [21] for a more general treatment), every closed
convex functional F : L2 — (—o0, 0], F # o0, is expressed by

(1) FY)= sup {E[QY]—]—'*(Q)} for Y € £2,
Qedom F*

where F* : £? — (—00, 00| is the conjugate to JF, also a closed convex functional not
identical to oo, given by

(2) F@=_sw {BQYVI-F¥)} forQecr?
Y edom F

and dom F is the effective domain of F, i.e., dom F := {Y € £? | F(Y) < o<}, and
likewise for dom F*. Both dom F and dom F* are necessarily nonempty and convex.
The following facts about such functionals are used in the paper. F is positively
homogeneous if and only if 7*(Q) = 0 for @ € dom F*. F is monotonic if and only if
Q > 0 for Q € dom F*. The elements of the subdifferential dF(Y) C £2 for Y € £?
are those @ satisfying the subgradient inequality

FYNY>FY)+EQY' -Y) forall Y € L%

Moreover, 0F(Y) = argmaxg { E[QY] — F*(Q)}, and this set is nonempty and weakly
compact for all? Y € int(dom F).

We next turn our attention to specific functionals, referred to as measures of risk,
regret, error, and deviation, that are tied together in quadrangles of risk with connec-
tions to risk optimization and statistical estimation; see Figure 1 and the subsequent
development.

A measure of risk is a functional R that assigns to a random variable Y € £? a
value R(Y') in (—o0, 0] as a quantification of its risk. We give examples of measures
of risk as well as other “measures” throughout the paper and in the appendix.

R is regularif it satisfies constancy equivalence, convexity, closedness,
and averseness.

IExtended real-valued calculus is handled in the usual manner: 0-occ = 0 and 0 - (—oc0) = 0;
a-00 = oo and a - (—o0) = —oo for a > 0; co + 00 = 00 + (—o0) = (—00) + 00 = oo and
—00 + (—00) = —oo0.

2We denote the (strong) topological interior of U C £2 by int U.
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risk R <— D deviation
optimization s It estimation
regret V <— & error

Fic. 1. The fundamental risk quadrangle.

We observe that for a regular risk measure, R(Y + cg) = R(Y) + ¢o for any Y € £?
and ¢y € R; see, for example, [25]. Regular measures of risk are related to, but
distinct from, coherent measures of risk [1] and convex risk functions [28]; see [25] for
a discussion.

The effective domain Q := {Q € £2 | R*(Q) < oo} of the conjugate

R* to a regular measure of risk R is called a risk envelope.
Consequently, maximization in (1) takes place over the risk envelope when F is a
regular measure of risk R. Moreover,

a Q € Q that attains the supremum for Y € L2 ie., R(Y) =

ElQY] — R*(Q), is called a risk identifier at Y for R, with all such

Q forming the set OR(Y).
The nonemptiness of such subdifferentials ensures that there exists a risk identifier
for all Y € int(dom F).

Closely connected to risk is the notion of regret, which in many ways is more
fundamental. A measure of regret is a functional V that assigns to a random variable
Y € £? avalue V(Y) in (—oo, 0o that quantifies the current displeasure with the mix
of possible (future) outcomes for Y.

V is regular if it satisfies convexity and closedness as well as the following property:
V(0) =0, but V(Y) > E[Y] when Y £ 0.

Regularity is here defined more broadly than in [25], where an additional condition
is required. If Y is a financial loss, then V(Y) can be interpreted as the monetary
compensation demanded for assuming responsibility for covering the loss Y. We note
that V(Y") can be viewed simply as a reorientation of classical “utility” toward losses.
Moreover, one can construct a regular measure of regret V from a normalized concave
utility function v : R — R, with u(0) = 0 and u(y) < y when y # 0, by setting
V(Y)=—FE[u(-Y)].

In regression, “error” plays the central role. A measure of erroris a functional £
that assigns to a random variable Y € £? a value £(Y) in [0, 00] that quantifies its
nonzeroness.

€ is regular if it satisfies convexity and closedness as well as the following property:
£(0) =0, but £(Y) >0 when Y # 0.

Again, we define regularity more broadly than in [25].3
An extension of the notion of standard deviation also emerges. A measure of
deviation is a functional D that assigns to a random variable Y € £? a value D(Y) in

3The extra conditions on the behavior of certain limits have turned out to be superfluous for the
results in [25].
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[0, 00] that quantifies its nonconstancy.

D is regular if it satisfies convexity and closedness as well as the following property:
D(Y) =0 for constant random variables Y = ¢y € R, but D(Y') > 0

for nonconstant Y € £2.

Error minimization is the focus of regression. In the case of an error measure &,
the statistic

(3) SY):= argreilgnﬁ(Y —¢p)

is the quantity obtained through such minimization. It is the set of scalars, in many
cases a singleton, that best approximate Y in the sense of error measure £. We
refer the reader to the appendix for examples of measures of risk, regret, error, and
deviation and corresponding statistics.

Before giving connections among the various measures and statistics, we establish
the following technical result. The proof is a specialization of the argument in the
proof of Lemma 3.3 provided below and is therefore omitted.

LEMMA 2.1. For a regular measure of error & and a sequence {c§}o>, of scalars,
the following holds: If YV € L? and b” € R converge to Y € L? and b € R, respectively,
and EYY — ¢f) <V for all v, then {c§}52, is bounded, and any accumulation point
co satisfies E(Y —cg) < b.

Connections among regular measures and statistics are given by the following
results, which extend the Quadrangle Theorem in [25] to the broader class of regu-
lar measures defined here and also include additional characterizations of deviation
measures and statistics.

THEOREM 2.2 (risk quadrangle connections). Regular measures of risk, regret,
deviation, and error are related as follows:

(i) The relations

(4) R(Y)=D(Y)+E[Y] and DY)=R(Y)- E[Y]

give a one-to-one correspondence between regular measures or risk R and reqular
measures of deviation D. Here, R is positively homogeneous if and only if D
is positively homogeneous. Moreover, R is monotonic if and only if D(Y) <
supY — E[Y] for all Y € L?.

(ii) The relations

(5) V(Y)=EY)+ EY] and EY)=V(Y)— E[Y]

give a one-to-one correspondence between reqular measures of regret V and reg-
ular measures of error £. Here, V is positively homogeneous if and only if € is
positively homogeneous. Moreover, V is monotonic if and only if E(Y') < |E[Y]]
for allY <0.

(iii) For any regular measure of regret V, a regular measure of risk is obtained by

(6) R(Y) = min {co V(Y - co)}.

co€eR

If V is positively homogeneous, then R is positively homogeneous. If V is mono-
tonic, then R is monotonic.
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(iv) For any regular measure of error £, a regular measure of deviation is obtained
by

(7) DY) = min (Y - co).

If € is positively homogeneous, then D is positively homogeneous. If £ satisfies
EY) < |E[Y]| for all Y < 0, then D satisfies D(Y) < supY — E[Y] for all
Y € L2 Moreover, D(Y +co) = D(Y) for any Y € L? and ¢ € R.

(v) For corresponding V and € according to (ii) and Y € L2, the statistic

(8) S(Y) =argmin (Y — ¢p) = argmin {co +V(Y — co)}.

coeR coeR

It is a nonempty closed bounded interval as long as V(Y — ¢p), or equivalently
E(Y — ), is finite for some ¢g € R. Moreover, S(Y + ¢p) = S(Y) + {co} for
any Y € L? and ¢y € R, and S(0) = {0}.

Proof. Part (i) is a direct consequence of the regularity of R and D, which are
unchanged from the Quadrangle Theorem in [25].

Part (ii) is also a direct consequence of the regularity of V and &, and the broad-
ening, compared to [25], of the class of regular measures does not require modified
arguments.

The claims in part (iii) about positive homogeneity and monotonicity follow easily
and by the same arguments as those leading to the same conclusions in [25]. However,
the claims that the infimum in (6) is attained and indeed produces a regular measure
of risk require a new argument. Since

co+ V(Y —co) =EY —co) + E[Y]

by part (ii), it suffices to consider minimization of £(Y — ¢p). First, suppose that
inf,, E(Y — ¢p) < 00. Then, there exist {cf}52; and {"}52, such that £¥ — 0 and

EY —¢p) < infRS(Y —¢p)+e¥ forall v
(S
Applying Lemma 2.1 with Y” =Y, b” = inf, er E(Y —cp)+€¥, and b = inf  cr E(Y —
¢p), we obtain that {c§}°2 ; is bounded, that there exist a scalar ¢fj and a subsequence
{ck}ven, with cf —N ¢}, and that

Y — ) < inf E(Y — ¢p).
&( CO)—CIO%RS( co)

Consequently, c¢j € argmin, (Y — cg). Second, if inf., E(Y — ¢p) = oo, then R =
argmin, £(Y — cp). Thus, the infimum in (6) is attained in both cases. Next, we
consider closedness. Suppose that Y — Y, cf € argmin, £(Y" — ¢p), and E(Y" —
cg) <beRforallv. Hence, R(Y")-E[Y"] = E(YV—c}) < bfor all v. An application
of Lemma 2.1 implies that there exist a scalar ¢f and a subsequence {c§},enr, with
ey =N cf, and E(Y — ¢f) < b. Consequently, R(Y) — E[Y] = min,, E(Y — ¢p) <
E(Y — ¢f) < b, which establishes the closedness of R(-) — E[]. The expectation
functional is finite and continuous on £2, so the closedness of R is also established.
Since constancy equivalence, convexity, and averseness follow trivially, R is regular.
Part (iv) follows from parts (i)—(iii), with the exception of the last claim, which
is a consequence of the fact that R(Y +co) = R(Y) + ¢¢ for regular measures of risk.



1186 R. TYRRELL ROCKAFELLAR AND JOHANNES O. ROYSET

In part (v), the alternative expression for S(Y') follows by part (ii). The closed-
ness and convexity of S(Y') are obvious from the closedness and convexity of £. Its
nonemptiness is a consequence of the proof of part (ii). An application of Lemma 2.1,
with YV =Y, 0" =b=D(Y), and ¢f € S(Y), establishes the boundedness of S. The
calculus rules for S follow trivially from the definition of the statistic. d

Regular measures of risk, regret, error, and deviation as well as statistics related
according to Theorem 2.2 are said to be in correspondence. In contexts where Y is
a monetary loss, the scalar ¢y in (6) can be interpreted as the investment today in a
risk-free asset that minimizes the displeasure associated with taking responsibility of
a future loss Y. Even in the absence of a risk-free investment opportunity, ¢o could
represent a certain future expenditure that allows one to offset the loss Y. In other
contexts where one aims to forecast a realization of Y, ¢g € S(Y') can be viewed as
a point forecast of that realization and (6) as a tradeoff between making a low point
forecast and the displeasure derived from making an “incorrect” forecast. We provide
further interpretations in the next section as we extend the notion of risk measure.

3. Residual measures of risk. A measure of risk applies to a single random
variable. However, in many contexts the scope needs to be widened by also look-
ing at other related random variables that hopefully might provide insight, improve
prediction, and reduce “risk.”

In this section, we introduce a measure of residual risk that extends a measure of
risk to a context involving not only a random variable Y, still of primary interest, but
also a related random vector X = (X1,...,X,,) € L2 := L2 x - -+ x L2. The definition
is motivated by tradeoffs experienced by forecasters and investors, but, as we shall see,
connections with regression, surrogate models, and distributional robustness are also
profound. We start with the definition and motivations and proceed to fundamental
properties and connections with generalized regression.

3.1. Definition and motivation. As an extension of the tradeoff formula (6)
for a measure of risk, we adopt the following definition of a measure of residual risk.

DEFINITION 3.1 (measures of residual risk). For given X € L2 and regular
measure of regret V, we define the associated measure of residual risk (in the context
of affine approzimating functions) to be the functional R(-|X) : L2 — [—00, 00] given
by

9  R(Y|X):=inf {E[f(X)] FVY - f(X)) ‘ f affine } forY e £2.

The quantity R(Y'|X) is the residual risk of Y with respect to X that comes from V.
We observe that since £2 is a linear space, Y — f(X) € £? when f is affine.
Consequently, R(:|X) is well defined. Two examples motivate the definition.
Ezample 1 (prediction). Consider a situation where we would like predict the
peak electricity demand in a region for tomorrow. Today this quantity is unknown,
and we can think of it as a random variable Y. To help us make the prediction,
temperature, dew point, and cloud cover forecast for tomorrow are available, possibly
for different hours of the day. Suppose that the forecast gives the joint probability
distribution for these quantities viewed as a random vector X and that our (random)
predication of tomorrow’s electricity demand is of the form f(X), with f an affine
function. Our point forecast is E[f(X)]. The point forecast will be used to support
decisions about power generation, where higher peak demand causes additional costs
and challenges, and we therefore prefer to select f such that E[f(X)] is as low as
possible. Of course, we need to balance this with the need to avoid underpredicting



MEASURES OF RESIDUAL RISK 1187

the demand. Suppose that a regular measure of regret V quantifies our displeasure
with under- and overprediction. Specifically, V(Y — f(X)) is the regret associated
with f. For example, if V = E[max{-,0}|/(1 — «), a € (0,1), then we are indifferent
to overpredictions and feel increasing displeasure from successively larger underpre-
dictions. A possible approach to constructing f would be to use historical data about
peak demand, temperature, dew point, and cloud cover to find an affine function f
such that both E[f(X)] and V(Y — f(X)) are low when (X,Y") is assumed to follow
the empirical distribution given by the data. This bi-objective optimization prob-
lem is solved in (9) through scalarization with equal weights between the objectives.
(Other weights simply indicate another choice of V.) The resulting optimal value is
the residual risk of Y with respect to X and consists of the point forecast plus a
“premium” quantifying our displeasure with an “incorrect” forecast. In contrast, if
f is restricted to the constant functions, then (9) reduces to (6) and no information
about X is included. Specifically, historical data about peak demand is used to find
a constant ¢y that minimizes (6), i.e., makes both the point forecast ¢o and the regret
V(Y — ¢o) low. The optimal value is the risk of Y, which again consists of a point
forecast plus a premium quantifying our displeasure with “getting it wrong.” A high
value of risk or residual risk therefore implies that we are faced with an unpleasant
situation where the forecast for the peak demand as well as our regret about the
forecast are relatively high. The contributions from each term are easily determined
in the process of solving (6) and (9). The restriction to constant functions f clearly
shows that

R(Y|X) < R(Y).

Consequently, the situation can only improve as one brings in information about
temperature, dew point, and cloud cover and computes the forecast f(X) instead of
¢p. Typically, the point forecast E[f(X)] will be lower than ¢y, and the associate
regret V(Y — f(X)) will be lower than V(Y — ¢p); at least the sum of point forecast
and regret will not worsen when additional information is brought in. A quantification
of the improvement is the difference between risk and residual risk. Of course, there
is nothing special about electricity demand, and many other situations can be viewed
similarly.

It is possible to consider alternatives to the expectation-based “point-forecast”
E[f(X)], but a discussion of that subject carries us beyond the scope of the present
paper. In the following, we write affine functions on R™ in the form ¢¢ + (c,-) for
¢o € R and ¢ € R™, where the inner product (-,-) : R" x R® — R. Consequently,
for X € £2, f(X) = co + (¢, X) is therefore a pointwise equality between random
variables; i.e., ¢co+ (¢, X) is a random variable, say, Z given by Z(w) = ¢y + (¢, X (w)),
w € €. An interpretation of residual risk arises also in a financial context.

Ezample 2 (hedging investor). Consider a loss Y, given in present money, that
an individual faces at a future point in time. If the individual is passive, i.e., does
not consider investment options that might potentially offset a loss, she might simply
assess this loss according to its regret V(Y), where V is a regular measure of regret
that quantifies the investor’s displeasure with the mix of possible losses. In view of the
earlier comment about connections between regret and utility, this quantification is
therefore quite standard and is often used when comparing various alternative losses
and gains. If the individual is more active and invests ¢y € R in a risk-free asset now,
then the future regret, as perceived now, is reduced from V(Y') to V(Y —¢g) as ¢ will
be available at the future point in time to offset the loss Y. Although, the upfront cost
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co also needs to be considered, and the goal becomes to select the risk-free investment
¢o such that ¢ + V(Y — ¢g) is minimized. According to (6), the resulting value is the
corresponding risk R(Y'), and every ¢y € S(Y), the corresponding statistic, furnishes
the amount to be invested in the risk-free asset. To further mitigate the loss, the
individual might consider purchasing c; shares in a stock ¢ with random value X;, in
present terms, at the future point in time. The price of each share is p; = E[X;].
Let i = 1,2,...,n, ¢ = (¢1,.--,¢n), 0 = (P1,---,Pn), and X = (X3,...,X,,). Then,
since Y — [co + (¢, X)] is the future hedged loss in present terms, the future regret, as
perceived now, is reduced from V(Y') to V(Y — [co + (¢, X)]). Although, the upfront
cost ¢o+ (¢, p) also needs to be considered, and the goal becomes to select the risk-free
investment ¢y and the risky investments ¢ € R" that

minimize {co + (c,p) + V(Y — [co + {c, X}])},
which, according to (6), is equivalent to selecting the risky investments ¢ € R™ that
minimize {(c,p} +R(Y — (¢, X})}

The optimal values of these problems are the residual risk R(Y'|X). The possibly
nonoptimal choices of setting ¢y = 0 and/or ¢ = 0 correspond to forfeiting moderation
of the future loss through risk-free and/or risky investments and give the values R(Y")
and V(Y). Consequently,

R(Y|X) < R(Y) < V(Y).

The differences between these quantities reflect the degree of benefit an investor de-
rives by departing from the passive strategy of ¢p = 0 and ¢ = 0 to various degrees.
Of course, the ability to reduce risk by taking positions in the stocks is determined by
the dependence between Y and X. In a decision making situation, when comparing
two candidate random variables Y and Y”, an individual’s preference of one over the
other heavily depends on whether the comparison is carried out at the level of regret,
ie, V(Y) versus V(Y’), as in the case of traditional expected utility theory, at the
level of risk, i.e., R(Y) versus R(Y’), as in the case of much of modern risk anal-
ysis in finance, or at the level of residual risk R(Y|X) versus R(Y'|X). The latter
perspective might provide a more comprehensive picture of the “risk” faced by the
decision maker as it accounts for the opportunities that might exist to offset losses.
The focus on residual risk in decision making is related to the extensive literature on
real options (see, for example, [8] and references therein), where losses and gains are
also viewed in concert with other decisions.

3.2. Basic properties. We continue in this subsection by examining the prop-
erties of measures of residual risk. We often require the nondegeneracy of the auxiliary
random vector X, which is defined as follows.

DEFINITION 3.2 (nondegeneracy). We will say that an n-dimensional random
vector X = (X1, Xs,...,X,) € L,ZZ is nondegenerate if

(¢, X)) is a constant = ¢ =0 € R".

We note that nondegeneracy is equivalent to linear independence of 1, X1, Xo, ..., X,
as elements of £2. For X € £2, we also define the subspace

V(X):={YeL?|Y=co+(c,X),co € R,c € R"}.
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Before giving the main properties, we establish the following technical result,
which covers and extends Lemma 2.1.

LEMMA 3.3. For a regular measure of error & and a sequence {(cf,c”)}>2 , with
cg € R and ¢ € R" for all v, the following holds.

If YV € L%, XV € L2, and b¥ € R converge to Y € L%, X € L2, and b € R,
respectively, X is nondegenerate, and E(YV — [cf + (¢”, XV)]) < b for all v, then
{(ch, ")}y is bounded, and any accumulation point (co,c) satisfies E(Y — [co +
(e, X)]) <b.

Proof. For the sake of a contradiction suppose that {(cf,c”)}52, is not bounded.
Then, there exists a subsequence {(c§, ¢”)},en such that ||(cf, )] > 1 for all v € NV,
Ik, )| =N oo, and (4, )/ (4, )| =V (ao,a) # 0, with ap € R and a € R™.
Let Y = 1/||(¢f, ¢”)]|- Since & is convex and £(0) = 0, we have that

EAY)<AE(Y) forY e £?and A€ [0,1].
Consequently, for v € N,
N > ANE(YY — [ch + (¢, XM)]) > EAYY — [N+ (W, XV)]) > 0.

Since AV =N 0, AVb” =N 0and WYY — [N e+ (N e?, X)) =N —[ag+(a, X)]. These
facts together with the closedness of € imply that £(—[ao + (a, X)]) = 0 and therefore
also that ag 4+ (a, X) = 0. Since X is nondegenerate, this implies that « = 0. Then,
however, ag = 0, and (ag,a) = 0, which is a contradiction. Thus, {(cf, ")}, is
bounded. The inequality E(Y — [co + (¢, X)]) < b follows directly from the closedness
of £. O

Fundamental properties of measures of residual risk are given next.

THEOREM 3.4 (residual-risk properties). For given X € L2 and regular measures
of regret V, risk R, deviation D, and error £ in correspondence, the following facts
about the associated measure of residual risk R(-|X) hold:

(i) R(Y|X) satisfies the alternative formulae
R(Y|X) = inf {<c, E[X]) +R(Y — (e, X>)}
=E[Y]+ Cigrgn DY — (¢, X))
= E[Y] + coeﬁl}feRnE(Y [co + (¢, X)]).
(i) E[Y] <RY|X)<RY) V() for allY € L2
iii) R(:|X) is convex and satisfies the constant equivalence property.
iv) If V is positively homogeneous, then R(-|X) is positively homogeneous. If V is
monotonic, then R(:|X) is monotonic.
(v) If X is a constant random vector, then R(Y|X) = R(Y).
(vi) If X is nondegenerate, then R(-|X) is closed, and the infimum in its definition
as well as in the alternative formulae in (i) is attained.
(vii) R(Y|X) = E[Y] if Y € Y(X), whereas R(Y|X) > E[Y] if Y ¢ Y(X) and X is
nondegenerate.

Proof. Part (i) is a direct consequence of the relationships between corresponding
measures given in Theorem 2.2. The first inequality in part (ii) is a consequence of
the fact that V > E[] on £2. The second inequality follows by selecting the possibly
nonoptimal solution ¢ = 0 in the first alternative formula and the third inequality by
selecting ¢g = 0 and ¢ = 0 in the definition

R(YIX) = inf  {eo+ (e BIX]) + V(Y = [eo + e, X)]) }.

coER,ceR™
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Part (v) is obtained from the first alternative formula in part (i) and the fact that
R(Y +k)=R(Y)+k for any k € R.

For part (iii), convexity follows since the function (cp,¢,Y) — ¢o + (¢, E[X]) +
V(Y — [co + (¢, X)]) is convex on R x R™ x £?; see, for example, [21, Theorem 1].
Constant equivalence is a consequence of part (ii) and the fact that ¢g = E[Y] <
R(Y|X) <R(Y) =c¢o when Y = ¢p.

Part (iv) follows trivially from the definitions of positive homogeneity and mono-
tonicity, and part (v) is likewise straightforwardly obtained.

Next we address part (vi). First, we consider the minimization of £(Y — [¢o 4+
(e, X)]). Suppose that inf., . E(Y —[co+(c, X)]) < co. Then, there exist {(cf, )},
with ¢f € R and ¢ € R", as well as {”}22; such that ¢¥ — 0 and

v=1

EY —[cg+ (", X)) < inf EY —[eo+ (¢, X)])+&” forall v
coER,ceR™
Applying Lemma 3.3 with Y =Y, X¥ = X, b¥ = inf,, . E(Y —[co+ (¢, X)]) +£”, and
b=inf., .EY — [co + (¢, X)]), we obtain that {(cf,c”)}52, is bounded, that there
exist ¢ € R, ¢* € R", and a subsequence {(c}, ")} enr, with (cf,c¢”) =N (¢, c*),
and that
EY —[ef+ (", X)) < coeﬁl%r}feRn EY —[co + (¢, X)]).

Consequently, (cj,c*) € argmin, . E(Y —[co+(c, X)]). If inf,, . E(Y —[co+ (¢, X)]) =
00, then R"*! = argmin,, . E(Y — [co + (¢, X)]). Thus, the error minimization in part
(i) is attained when X is nondegenerate. In view of (5), the infimum in the definition of
residual risk is also attained. A nearly identical argument shows that the infima in the
alternative formulae in (i) are also attained. Second, we consider closedness. Suppose
that Y =Y, (cf,¢”) € argmin, .E(YY — [co + (¢, X)]), and E(YY — [cf + (¢, X)]) <
b € R for all v. Hence, R(Y”|X) — E[Y"] =&Y — [cf + (¢, X)]) < b for all v. An
application of Lemma 3.3 implies that there exist ¢ € R, ¢* € R", and a subsequence
{(c4, ") Yvenr, with (¢, ¢”) =N (¢, ¢*), and E(Y — [cf + (¢*, X)]) < b. Consequently,
R(Y|X)— E[Y] = ming, .Y — [co + (¢, X)]) < EY — [¢f + (¢*, X)]) < b, which
establishes the closedness of R(-|X) — E[-]. The expectation functional is finite and
continuous on £?, so the closedness of R(:|X) is also established.

Finally, we consider part (vii). Suppose that Y € Y(X). Then, there exist ¢y € R
and ¢ € R" such that Y = éy + (¢, X). In view of parts (i) and (ii)

E[Y]| S R(YIX) = inf {(e, BIX]) + R(Y — (. X))

< (& EX]) +R(Y = (6, X))

= (¢, B[X]) + R(é)
which establishes the first claim. Suppose that Y ¢ Y(X). Then, Y — (¢, X) # ¢ for
any ¢o € R and ¢ € R™. Consequently, Y — (¢, X) is not a constant for any ¢ € R",

which by the averseness of R implies that R(Y — (¢, X)) > E[Y — (¢, X)]. If X is
nondegenerate, then by part (vi) there exists ¢ € R™ such that

R(Y|X) = inf {<c, E[X]) + R(Y — (e, X>)}

= EX])+R(Y — (¢, X))
> (¢, B[X]) + E[Y — (¢, X)] = E[Y],
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which completes the proof. d
We see from Theorem 3.4(i) that a measure of residual risk decomposes into an
“irreducible” value E[Y] and a quantification of “nonzeroness” by an error measure of
the difference between Y and an affine model in terms of X that is reduced as much
as possible by choosing cg, ¢ optimally.
A fundamental consequence of Theorem 3.4 is that for a nondegenerate X,
a measure of residual risk is also a closed, convex, and constancy
equivalent measure of risk.
The constructed risk measure is positively homogeneous if the underlying risk measure
is positively homogeneous. Monotonicity is likewise inherited. When X is nondegen-
erate, it is also averse outside Y(X).
Further insight is revealed by the following trivial but informative example.
Ezample 3 (normal random variables). Suppose that X and Y are normal random
variables with mean values pux and py, respectively, and standard deviations ox > 0
and oy, respectively. We here temporarily let X be scalar valued. Let p € [—1,1]
be the correlation coefficient between X and Y, and Gy (a) be the a-quantile of
Y. We recall that for o € [0,1) the superquantile/CVaR risk measure R(Y) =
f; Gy (8)dB/(1 — «); see the appendix. For this risk measure, it is straightforward to
show that the residual risk of Y with respect to X takes the simple form

-1
R(YIX) = iy + oy /T— 20— )

where ¢ and ® are the probability density and cumulative distribution functions
of a standard normal random variable, respectively. The value of ¢ that attains the
minimum in item (i) of Theorem 3.4 is poy /ox. We note that for p = 1 the residual
risk is reduced to its minimum possible level of py. The other extreme is attained for
p =0, when R(Y|X) = R(Y). In view of the previously discussed hedging investor,
we note that for perfectly correlated investment possibilities, “risk” can be eliminated.
The sign of the correlation coefficient is immaterial as both short and long positions
are allowed. In the case of independent assets, no hedging possibility exists and the
investor faces the inherent risk in Y.

We next examine the case when Y is statistically independent of X in the general
case. We start with terminology.

DEFINITION 3.5 (representation of risk identifiers). A risk identifier Q¥ at Y €
L2 for a regular measure of risk will be called representable if there exists a Borel-
measurable function hy : R — R, possibly depending on 'Y, such that

QY (W) =hy(Y(w)) for ae weQ.

For first-order and second-order superquantile/CVaR risk measures there exist
representable risk identifiers for all Y € £2; see the appendix.

PROPOSITION 3.6. Suppose that Z,Y € L? are statistically independent. If QY
is a representable risk identifier at Y for a regular measure of risk, then QY and Z
are statistically independent.

Proof. Since QY is a representable risk identifier, there exists an hy : R — R,
Borel-measurable, such that for almost every w € Q, hy (Y (w)) = Q¥ (w). For Borel
sets C, D C R,

PlweQ|QY(w)€C Z(w)eD}=P{we Q| hy(Y(w)) € C,Z(w) € D}
=P{we Q| Y(w) € hy'(0), Z(w) € D}
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=P{weQ|Y(w) € h (O)P{lwe Q| Z(w) € D}
=P{lweQ|QY(w) € CIP{we Q| Z(w) € D},

where the third equality follows from the fact that hy'(C) is a Borel set and Z and
Y are independent. Consequently, Q¥ and Z are independent. a

THEOREM 3.7 (measures of residual risk under independence). Suppose that
Y € £? and X € L2 are statistically independent, R is a reqular measure of risk with
a representable risk identifier at Y, and Y € int(domR). Then,

R(Y|X) =R(Y).

Proof. By Theorem 3.4, R(Y|X) = inf.cgrn ¢(c), where we define ¢(c) = (¢, E[X])+
R(Y — (¢, X)). Hence, it suffices to show that ¢ = 0 is an optimal solution of this
problem. The assumption that Y € int(dom R) ensures that 9R(Y") is nonempty and
that the subdifferential formula (see, for example, [21, Theorem 19])

dple) = { BIX] - EIQX] | Q € 9R(Y — (. X))

holds. Consequently, by convexity of ¢, ¢ = 0 minimizes ¢ if and only if 0 € 9p(0).
Since there exists a risk identifier ) € OR(Y") that is independent of X by Proposition
3.6, the conclusion follows by the fact that F[Q] = 1 for every Q € Q and E[QX] =
F[Q|E[X] = E[X] for such an independent Q. 0

3.3. Residual statistics and regression. In the same manner as a statistic
S(Y) furnishes optimal solutions in the tradeoff formulae (6) and (7), the extended
notion of residual statistic furnishes optimal solutions in (9).

DEFINITION 3.8 (residual statistic). For given X € L2 and a reqular measure of
regret V, we define an associated residual statistic to be the subset of Rt given by

S°(Y|X):= argmin {co + (¢, E[X]) + VY — [co + <c,X>])} forY € L2
coER,ceR™

If, in addition, R is a corresponding measure of risk, then an associated partial resid-

ual statistic is the subset of R™ given by

SYX):= argmin{(c,E[X]> +R(Y — (c,X))} forY € L%
ceR™
The motivation for the terminology “partial residual statistic” becomes apparent
from the following properties.
THEOREM 3.9 (residual statistic properties). Suppose that X € L2 and V, R,
E, and D are corresponding regular measures of regret, risk, error, and deviation,
respectively, with statistic S. Then, the residual statistic S°(-|X) and partial residual
statistic risk S(-|X) satisfy the following for Y € L2:
(i) S°(Y|X) and S(Y|X) are closed and convez, and, if X is nondegenerate, then
they are also nonempty.
(i) S°(Y|X) and S(Y|X) are compact when R(Y |X) < 0o and X is nondegenerate.
(iii) If ¢ € S(Y|X), then (co,c) € S°(Y|X) for co € S(Y — (¢, X)), whereas if
(co,c) € SU(Y|X), then co € S(Y — (¢, X)) and c € S(Y|X).
(iv) The following alternative formulae hold:

SY(Y|X) = argmin (Y — [co + (¢, X)]) and S(Y|X) = argmin D(Y — (¢, X)).
coER,ceR™ ceR”
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Proof. For part (i), closedness and convexity are consequences of the fact that both
sets are optimal solution sets of the minimization of closed and convex functions. The
nonemptiness follows from Theorem 3.4(vi). For part (ii), suppose that the sequence
{(ck, ")}, satisfies (cf, c”) € S°(Y|X) for all v. Then, an application of Lemma 3.3,
withY” =Y, XV =X, b =b =inf,, . E(Y —[co+ (¢, X)]), implies that {(cf,”)}72,
is bounded and S°(Y|X) is therefore compact. A nearly identical argument leads to
the compactness of S(Y'|X). Part (iii) follows trivially. Part (iv) is a consequence of
Theorem 3.4(i). O

Generalized linear regression constructs a model ¢y + (¢, X) of Y by solving the
regression problem

006%1710%]1@" EY — [eo + (¢, X))

with respect to the regression coefficients ¢y and c¢. The choice of error measure
E = | - ||2 recovers the classical least-squares regression technique, but numerous
other choices exist. See, for example, [26, 25, 24], the appendix, and the subsequent
development. It is clear from Theorem 3.9(iii) that the regression coefficients can be
obtained alternatively by first computing a “slope” ¢ € S(Y'|X) and then setting the
intercept ¢g € S(Y — (¢, X)), with potential computational advantages. Moreover,
Theorem 3.9 shows that points furnishing the minimum value in the definition of
residual risk under regret measure V coincide with the regression coeflicients obtained
in the regression problem using the corresponding error measure & =V — E[-]. Further
connections between residual risk and regression are highlighted in the next example.

Ezample 4 (entropic risk). In expected utility theory, the utility U(W) = E[1 —
exp(—W)] of “gain” W is a well-known form, which, in our setting, focusing on losses
instead of gains, translates into the regret V(Y) = Elexp(Y) — 1] of “loss” Y = —W.
The measure of regret V is regular and generates the corresponding measure of risk
R(Y) = log E[exp Y] and measure of error £(Y') = Elexp(Y)—Y —1] by an application
of Theorem 2.2. In this case, the corresponding statistic S coincides with R, which
implies that for (¢o,¢) € S°(Y|X), we have

R(Y|X) = (¢, E[X]) + R(Y — (¢, X)) and ¢y € S(Y — (¢, X)) = {R(Y — (¢, X)) }.
Hence,
R(Y|X) = ¢ + (¢, E[X])

and the residual risk of Y coincides with the value of the regression function o+ (¢, -) at
E[X] when that function is obtained by minimizing the corresponding error measure
E(Y)=ElexpY)-Y —1].

The residual risk is directly tied to the “fit” in the regression as developed next.
In least-squares regression, the coefficient of determination for the model ¢g + {c, ) is
given by

E[(Y = [co + {c, X)])?]

. fisleo) =1y Ry

and provides a means for assessing the goodness-of-fit. Although the coefficient cannot
be relied on exclusively, it provides an indication of the goodness-of-fit that is easily
extended to the context of generalized regression using the insight of risk quadrangles.
From Example 1’ in [25], we know that the numerator in (10) is the MSE measure
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applied to Y — [¢o + (¢, X)] and the denominator is the “classical” deviation measure
D(Y) = E[(Y — E[Y])?]. Moreover, the minimization of that MSE of Y — [¢o +
(¢, X)] results in the least-squares regression coeflicients. According to [25], these
error and deviation measures are parts of a risk quadrangle and yield the expectation
as its statistic. The appendix provides further details for the essentially equivalent
case involving square-roots of the above quantities. These observations motivate the
following definition of a generalized coefficient of determination for regression with
error measure & (see [24, 17] for the cases of quantile and superquantile regression).

DEFINITION 3.10 (generalized coefficients of determination). For a regular mea-
sure of error and corresponding measure of deviation, the generalized coefficient of
determination is given by*

EY —[co+ (¢, X))
D(Y)

Rz(co,c) =1- forco R, ce R,

and the fitted coefficient of determination is given by

52 inCOQ ,c€ ng(Y_ [C +<07X>])
(11) R =1 - =S '

As in the classical case, higher values of R? are better, at least in some sense.
Indeed, a regression problem aims to minimize the error of Y — [¢o + (¢, X)] by wisely
selecting the regression coefficients (cg,c) and thereby also maximizes R?. The error
is normalized with the overall “nonconstancy” in Y as measured by its deviation
measure to more easily allow for comparison of coefficients of determination across
data sets.

PROPOSITION 3.11 (properties of generalized coefficients of determination). The
generalized and fitted coefficients of determination satisfy

R*(co, c) <R’<1 for co € R and ¢ € R™; and R?2 > 0.

Proof. The upper bound follows directly from the nonnegativity of error and
deviation measures. Due to the minimization in the fitted coefficient of determination,
R*(co,c¢) < R% The lower bound is a consequence of the fact that

inf &Y — X)) < inf E(Y — =D(Y
et (Y —leo+ (e, X)) < Jnf, (Y —co) =D(Y),
which completes the proof. a
The connection with residual risk is given next.
THEOREM 3.12 (residual risk in terms of coeflicient of determination). The
measure of residual risk associated with reqular measures of error £ and deviation D
satisfies

R(Y|X) = E[Y]+ D(Y)(1 - R?),

where R? is the associated fitted coefficient of determination given by (11).
Proof. Direct application of (11) and Theorem 3.4(i) yield the conclusion. O
We recall from Theorem 2.2(i) that R(Y) = E[Y] + D(Y'). Theorem 3.12 shows
that the residual risk is less than that quantity by an amount related to the goodness-
of-fit of the regression curve obtained by minimizing the corresponding error measure.

4Here, co/oco and 0/0 are interpreted as 1.
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4. Surrogate estimation. As alluded to in section 1, applications might de-
mand an approximation of a random variable Y in terms of a better known random
vector X. Restricting our attention to affine functions f(X) = ¢y + (¢, X) of X, the
goal becomes how to best select ¢y € R and ¢ € R™ such that ¢o+ (¢, X) is a reasonable
surrogate estimate of Y. Of course, this task is closely related to the regression prob-
lem of the previous section. Here, we focus on the ability of surrogate estimates to
generate approximations of risk. In this section, we develop “best” risk-tuned surro-
gate estimates and show how they are intimately connected with measures of residual
risk. We also discuss surrogate estimation in the context of incomplete information,
often the setting of primary interest in practice.

4.1. Risk tuning. Suppose that R is a regular measure of risk and Y € £? is a
random variable to be approximated. Then, for a random vector X € £2 and ¢ € R”,

R(Y) = R(E[Y]+ (e, X = BX]) + Y — E[Y] - (¢, X - B[X]))

<R (5 (BIY]+ (e, X ~ BIX))))
1

+(1—)\)R(1_)\

(Y = BY] (e, X - E[X])))
for all A\ € (0,1) because convexity holds. Consequently, an upper bound on the
one-sided difference between risk R(Y") and the risk of the (scaled) surrogate estimate
co + (¢, X), with ¢y = E[Y — (¢, X)], is given by

R(Y) — AR(%(CO +{c, X>)) < (e, BIX]) + (1 — /\)R(%(Y - <C,X>)) — E[Y].
The upper bounding right-hand side is nonnegative because R(Z) > E[Z] for any
Z € L% and is minimized by selecting ¢ € S(Y/(1 — \)|X/(1 — ))). (We recall that
S(Y|X) is nonempty by Theorem 3.9 when X is nondegenerate.) The minimum value
is the (scaled) residual risk (1 —A)R(Y/(1—X)|X/(1—X)) minus E[Y]. Again, in view
of Theorem 3.9, such c is achieved by carrying out generalized regression, minimizing
the corresponding measure of error. This insight proves the next result, which, in
part, is also implicit in [26] where no connection with residual risk is revealed and
positively homogeneity is assumed.

THEOREM 4.1 (surrogate estimation). For a given X € L2, suppose that R is a
regular measure of risk, and R(-|X) and S(-|X) are the associated measure of residual
risk and partial residual statistic, respectively. For any A € (0,1), let Y\ =Y /(1 — \)
and X\ = X/(1 —\). Then, the surrogate estimate ¢y + (¢, X) of Y given by

ceSYa|Xy) and ¢ =FE]Y — (¢, X)]
satisfies
(12) R(Y) — AR(% (@0 + (5, X>)) < (1 - NRMX)) — E[Y].
The surrogate estimate o + (¢, X), with & = (1 — A/R(Yx — (¢, X»)), satisfies
R(Y) < AR(%(EO - (E,X})).

Proof. The first result follows by the arguments prior to the theorem. The second
result is a consequence of moving the right-hand side term of (12) to the left-hand
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side and incorporating that term into the constant ¢;, which is permitted because
RY +k)=R(Y)+kforY € £L? and k € R. O
The positive homogeneity of R allows us to simplify the above statements.
COROLLARY 4.2. For a given X € L2, suppose that R is a positively homogeneous
regular measure of risk, and R(-|X) and S(-|X) are the associated measure of residual
risk and partial residual statistic, respectively. Then, the surrogate estimate ¢o+ (¢, X)
of Y given by

ceSYI|X) and ¢ =E[Y - (¢, X)]
satisfies
R(Y)—R(e + (6, X)) < R(Y|X) - E[Y].
The surrogate estimate ¢y + (¢, X), with ¢o = R(Y — (¢, X)), satisfies
R(Y) < R(@ — (2. X).

Ezample 5 (risk-tuned Gaussian approximation). Theorem 4.1 supports the con-
struction of risk-tuned Gaussian approximations of a random variable Y, which can be
achieved by considering a Gaussian random vector X. Observations of (Y, X) could
be the basis for generalized regression with a measure of error corresponding to R,
which then would establish ¢ and subsequently ¢y. Then, ¢, + (¢, X) is a risk-tuned
Gaussian approximation of Y. If R is positively homogeneous, then R (¢, + (¢, X))
is an approximate upper bound on R(Y'), with the imprecision following from the
passing to an empirical measure generated by the observations of (Y, X). We next
discuss such approximations in further detail.

4.2. Approximate random variables. Surrogate estimation and generalized
regression are often carried out in the context of incomplete (distributional) informa-
tion about the underlying random variables. A justification for utilizing approximate
random variables is provided by the next two results. The first result establishes
consistency in generalized regression, and the second proves that surrogate estimates
using approximate random variables remain conservative in the limit as the approx-
imation vanishes. We refer the reader to [30] for consistency of sample-average ap-
proximations in risk minimization problems.

THEOREM 4.3 (consistency of residual statistic and regression). Suppose that V
is a finite reqular measure of regret and that YV € L2 XV = (XV,...,XY) € L2,
v=20,1,2,..., satisfy

YV =YY and XY — X?  for alli, as v — oco.
If S°(-|X") are the associated residual statistics, then®

limsup S°(YV|X")  S*(Y°|XY).

vV— 00

Proof. Let ¢p € R and ¢ € R™. Since V is finite, closed, and convex, it is
continuous. Moreover, E[X"] — E[X"]. For v = 0,1,2,..., let ¢* : R"™" — R be
defined by

¢ (co, ¢) = co + (e, E[X"]) + V(Y'Y —[co + (¢, XV)]).

5Recall that for a sequence of sets {A”}52 ,, the outer limit limsup, A" is the collection of all
points that are limits of subsequences of points selected from {AY}>2 ;.
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Then, as v — o0, ©”(co,c) — ¢%(co,c). Thus, the finite and convex functions ¢”
converge pointwise on R"*! to ¢°, and therefore they also epiconverge to the same
limit by [27, Theorem 7.17]. The conclusion is then a consequence of [27, Theorem
7.31]. d

The theorem establishes that solutions of approximate generalized regression
problems are indeed approximations of solutions of the actual regression problem. We
observe that if (Y, X¥) converges in distribution to (Y, X©) as well as E[(Y")?] —
E[(Y?)?] and E[(X})?] — E[(X?)?] for all i, then the £2-convergence assumption of
the theorem holds.

Approximations in surrogate estimation are addressed next.

THEOREM 4.4 (surrogate estimation under approximations). Suppose that R is
a regular measure of risk and R(-|X) and S(-|X), X € L2, are the associated measure
of residual risk and partial residual statistic. Let YV € L2, XV = (XV,..., XY) € L2,
v=20,1,2,..., satisfy

YV =YY and XY — X?  for alli, as v — oco.

Moreover, suppose that the functional (Y, X) — R(Y|X) is continuous at (Y°, X?),
R is continuous at 0, and X° is nondegenerate. Then, the surrogate estimates ¢ +
(e, X%, v=1,2,..., of YY" given by

¢ e S(YYIXX)  and &G = (1= NR(YY - (¢, XX)),

with A € (0,1), Yy =Y"/(1 = X), and X¥ = XV/(1 = \), satisfy

s 1 =2 v
R(Y?) < 152{216”/\73(5(% + (e ,X0>))
for all p € (0,1).

Proof. Since

G+ (e, X)) =& + (@, X%) + (¢, X" = X7),
convexity of R and Theorem 4.1, applied for every v, imply that
1,
(13) R(YY) < )\R(X(ES + (é”,X”)))

1 _ 1
< AR (— (& + (&, X° 1— AR ——m—
Next, we establish the boundedness of {¢”}52,. An application of Lemma 3.3, with
(ch,e”) € S°%(Y¥|X"), the associated residual statistic, b = R(Y"|X") — E[Y"],
and b = R(YY|X?) — E[Y"] so that £(Y” — [cf + (¢¥, X")]) = R(YV|X") — E[Y"]
and b¥ — b, implies the boundedness of {(cf,c”)}>2; and therefore also of {¢"}22 ;.

v=1
The boundedness of {¢”}22, and the fact that X! — X? for i = 1,...,n result in
(e", X" — X% — 0. Since R is continuous at 0, we have that R({¢", X" — X)) —
R(0) = 0, and due to closedness, liminf, R(Y”) > R(Y?). The conclusion therefore
follows by taking limits on both sides of (13). O
Again, the positively homogeneous case results in simplified expressions.
COROLLARY 4.5. If the assumptions of Theorem 4.4 hold and the surrogate

estimates ¢4 + (¢, X%), v =1,2,..., of Y° are given by

@, X" - X0>).

& eSYY|XY) and =R - (e, X)),
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then
0 P s =4 =2 0
R(Y?) < hyn_l}})réfR(co + (¢, X9)).

Theorem 4.4 supports surrogate estimation in the following context. Historical
data, viewed as observations of an unknown random variable Y? and a random vector
X9, can be utilized in generalized regression using an error measure corresponding to a
risk measure of interest. This yields the “slope” ¢” and an “intercept” ¢ subsequently
computed as specified in Theorem 4.4. Suppose then that the random vector X
becomes available, due to, for example, additional information arriving. This is the
typical case in factor models in finance where Y is a stock’s random return and X°
might be macroeconomic factors such as interest rates and GDP growth. Forecasts
of such factors are then used for X°. Alternatively, X" might have been available
from the beginning, which is the case when it is an input vector to a discrete-event
simulation selected by the analyst. Regardless of the circumstances, the surrogate
estimate ¢4 + (¢”, X°) then provides an approximation of Y° that is “tuned” to the
risk measure of interest. If the initial data is large, then, in view of Theorem 4.4, we
expect the risk of the surrogate estimate to be an approximate upper bound on the
risk of YU.

A situation for which the mapping (Y, X) — R(Y|X) is continuous, as required
by Theorem 4.4, is stated next.

PROPOSITION 4.6. The functional (Y, X) — R(Y|X) on L2, given in terms of
a regular measure of risk R, is

(i) conver,
(ii) closed at points (Y, X) where X is nondegenerate, and
(iii) continuous if R is finite.

Proof. Part (i) follows by an argument similar to that leading to the convexity of
R(-|X) for fixed X; see Theorem 3.4. For part (ii), we consider Y¥ — Y, X" — X,
(cg,c”) € argmin, . E(YY — [co + (¢, X¥)]), which is nonempty due to Theorem 3.4
under the nondegenerate assumption on X, and E(Y” — [¢f + (¢, X")]) < b € R
for all v. Hence, R(Y"|X") — E[Y"] = EY” — [cf + (¢", X")]) < b for all v. An
application of Lemma 3.3 implies that there exist ¢ € R, ¢* € R", and a subsequence
{(c4, ") Yvenr, with (¢f,¢”) =N (¢, ¢*), and E(Y — [cf + (¢*, X)]) < b. Consequently,
R(Y|X) — E[Y] = ming, E(Y — [co + (¢, X)]) < EY — [¢f + (¢*, X)]) < b, which
establishes the closedness of R(:|-) — E[-] at points (Y, X') with X nondegenerate. The
expectation functional is finite and continuous on £2, and so the closedness of R(+|) is
also established at such points. In part (iii) we first consider for ¢ € R™ the functional

(Y, X) = (Y, X) = <C,E[X]> +R(Y — <ch>)a

which is convex and closed on £2 41 by the regularity of R. Since R is finite, ¢, is
also finite and therefore continuous. Thus, ¢, is bounded above on a neighborhood of
any point in £2, ;. Since R(:|) < ¢¢(-,-) for all ¢ € R, R(:]-) is also bounded above
on a neighborhood of any point in £2_ ;. In view of [21, Theorem 8], the convexity
and finiteness of R(-|) together with this boundedness property imply that R(-|-) is
continuous. O

5. Tracking of conditional values. Applications often direct the interest not
only to a random variable Y, but also to random variables representing values of Y’
given certain realizations of a related random vector X. In particular, this is the
case when the random vector X is, at least eventually, under the control of a decision
maker.
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We consider the situation where for g : R x R™ — R and random vectors X € £2
and V € £2, the random variable Y € £? is of the form

Y =g(X,V),
where the equality holds almost surely.® Then, the parameterized random variables
Y, =gz, V), zeR"

represent “conditional” values of Y. The goal might be to track a specific statistic
of Y, as x varies or to select x € R" such that Y, is in some sense minimized or
adequately low, for example, as quantified by the risk of Y,. If the distribution of Y,
is unknown and costly to approximate, especially in view of the set of values of = that
needs to be considered, it might be desirable to develop an approximation

co+ (c,z) = R(Y;), = eR"

We refer to such approximations of the risk of conditional random variables as risk
tracking.

As indicated in section 1, the area of statistical regression indeed examines models
of conditional random variables, but typically at the level of expectations, such as
in classical least-squares regression, and quantiles. We here consider more general
statistics, make connections with measures of risk, and examine risk tracking. We
start with tracking of statistics.

5.1. Statistic tracking. We say that a regression function ¢o + {(c, -}, computed
by minimizing a regular measure of error, i.e., (co,c) € SY(Y|X), tracks the corre-
sponding statistic if

co+ (c,z) € S(Y,) for x € R™

Of course, this is what we have learned to expect in linear least-squares regression
where the measure of error is &€ = || - |2 and the statistic is the expectation and in
this case surely a singleton. In view of the Regression Theorem in [25], this can also
be counted on in situations with error measures of the “expectation type.” How-
ever, tracking might fail if the conditional statistic is not captured by the family of
regression functions under consideration and even other times, too, as shown in [24].

The next result deals with a standard model in regression analysis, under which
statistic tracking is achieved for regular error measures.

THEOREM 5.1 (statistic tracking in regression). For given ¢ € R, ¢* € R”,
suppose that

Y(w)=cj+ (", X(w)) +e(w) forallwe Q,

with € € L2 independent of X; € L2, i = 1,...,n. Moreover, let £ be a regular
measure of error and R, S, and S(-|X) be the corresponding risk measure, statistic,

and partial residual statistic, respectively. If R has a representable risk identifier at €
and ¢ € int(dom R), then ¢* € S(Y|X) and

éo+ (c",x) € S(Yy) forallx € R™ and ¢y € S(Y — (¢*, X)).

60f course, conditions on g are needed to ensure that the random variable is in £2.
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Proof. Let ¢ : R™ — [0,00] be defined by ¢(c) = D({c, X) + ¢) for ¢ € R™.
In view of [21, Theorem 19] and the fact that D(Z) = R(Z) — E[Z], we obtain the
subdifferential formula

dp(c) = {BIQ - 1)X] | Q € 9R((c, X) +2)}.

Since there exists a @ € JR(e) that is independent of X by Proposition 3.6 and
E[Q] =1 for every @Q € Q, we have that 0 € ¢(0) and ¢ = 0 minimizes ¢. Moreover,
¢ = ¢* minimizes D((¢* — ¢, X) + ¢) and also D(Y — (¢, X)). Thus, ¢* € S(Y|X) by
Theorem 3.9. Finally,

Co e S(Y —(c", X)) =S(e +¢3) =S(e) + {c5}-
Since
S(Y,) =8(c§ + (", x) + ) = {cf + (", z)} + S(e),

the conclusion follows. O
Ezample 6 (risk tracking of superquantile/CVaR). Superquantile regression [24]
involves minimizing the regular measure of error

1
T 1l-a

EY) / max{0, Gy (8)}d5 — E[Y]

for a € [0, 1), where Gy (B) is the S-superquantile of Y, i.e., the CVaR of Y at level
B. The statistic corresponding to this measure of error is a superquantile/CVaR; see
[23, 24] and the appendix. (We note that the risk measure corresponding to this
error measure is the second-order superquantile risk measure, which is finite and also
has a representable risk identifier; see the appendix.) Consequently, Theorem 5.1

establishes that under the assumption about Y, there exists (cp,c) € SY(Y|X), the
associated residual statistic of £, such that

co + {c,r) = Gy, (a) = superquantile-risk/CVaR of Y,  for z € R™.

In summary, risk tracking of superquantile-risk/CVaR is achieved by carrying out
superquantile regression; see [5] for an alternative approach to tracking CVaR.

5.2. Risk tracking. In the previous subsection we established conditions under
which generalized regression using a specific measure of error tracks the corresponding
statistic. Even though one can make connections between statistics and measures of
risk, as indicated in the preceding example, a direct approach to risk tracking is also
beneficial. We next develop such an approach that relies on fewer assumptions about
the form of Y as a function of X. The relaxed conditions require us to limit the study
to conservative risk tracking.

The goal is to select = such that R(Y,) is minimized or sufficiently small for a
given choice of risk measure R. This is the common setting of risk-averse stochastic
programming. Here, in contrast to the previous sections, there is no probability
distribution associated with “z.” Still, when g is costly to evaluate, it might be
desirable to develop an approximation of R(Y;), z € R", through regression based
on observations {z7,37}%_;, where 27 € R” and 3/ = g(a/,v7), with v/ being a
realization of V, j = 1,...,v. One cannot expect that a regression function ¢g + {c, -)
obtained from these observations using an error measure corresponding to a specific
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risk measure generally tracks R(Y:), € R", even if sampling errors are ignored. In
fact, one can only hope to track the statistic as laid out in the previous subsection.
The next result, however, shows that one can achieve conservative risk tracking under
general assumptions.

THEOREM 5.2 (conservative risk tracking). Suppose that X € L2,V € L2, and
g:R" x R™ — R satisfy g(X,V) € L2, g(z,V) € L? for all z € R™, and there exists
an L:R™ — R, with L(V) € L2, such that

lg(x,v) — g(a’,v)] < L()|jz —2'|| for all z,z" € R™ and v € R™.

Let S(-|X) be a partial residual statistic associated with a positively homogeneous,
monotonic, and reqular measure of risk R. If¢ € S(g(X,V)|X) and & = R(g(X,V)—
(¢, X)), then for x € R™,

Rlg(x,V)) < o+ (¢ )+ R((6, X —=2)) + R(L(V) | X —2[) < o+ (¢, 2) +pR(| X —2[)),

where” p = sup L(V) + |||

Moreover, the upper bound on R(g(x,V)) is tight in the sense that if R is finite,
p < 0o, and XV € L2 is such that XV — x, then for ¢ € S(g(X",V)|X") and
¢y =R(g(X", V) — (", X")),

Rig(w, V) = lim [+ (", 2) + pR(| X" = z])|

vV—r0Q

when {€”}52 , is bounded.
Proof. The Lipschitz property for g(-,v) implies that

9(z,V) < g(X, V) + L(V)[| X -z as.
Since R is monotonic as well as sublinear, we obtain that
(14) R(g(z,V)) < R(g(X, V) + RIL(V)IIX — ).
Since
co+ (6, X)=co+ (¢c,x) + (¢, X —x),
sublinearity of R implies that
R(co + (¢, X)) < co + (G, x) + R((¢, X — ).
By Corollary 4.2,
R(9(X,V)) < R(eo + (¢, X))

Combining this result with (14) yields the first inequality of the theorem. The sec-
ond inequality is reached after realizing that the monotonicity and positive homo-
geneity of R imply that R((¢, X — z)) < [|g|R(||X — z|]) and R(L(V)||X — z|) <
sup L(VYR(|X — a )

We next consider the final assertion. Since R is continuous and | XY — z|| — 0,
PR(| XY — z||) — pR(0) = 0. Moreover,

&+ (@, ) < R(g(XV, V) + R((&,z — X))

"Here the essential supremum is denoted by “sup.”
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The Lipschitz property ensures that g(X",V) — g(x,V), and the boundedness of
{&"}22 results in (¢, x — X¥) — 0. In view of the continuity of R the conclusion
follows. d

Theorem 5.2 shows that an upper bound on the risk of a parameterized random
variable can be achieved by carrying out generalized regression with respect to a
constructed random vector X. We recall that in the setting of a parameterized random
variable Y, = g(x, V') there is no intrinsic probability distribution associated with “x.”
However, an analyst can select a random vector X, carry out generalized regression to
obtain ¢, and compute &. The obtained model ¢, + (¢, -) might not be conservative.
However, an additional term pR(||X —||) shifts the model sufficiently higher to ensure
conservativeness.

The additional term pR(||X — -||) has an interesting form that guides the con-
struction of X. If the focus is on z € R™ near £ € R™, say, within a “trust region”
framework, then X should be nearly the constant X = & such that || X — 2| is low as
quantified by R. We then expect a relatively low upper bound on R(g(z,V)) for x
near Z. In fact, this situation is addressed in the last part of the theorem. However,
as x moves away from Z, then the “penalty” pR(||X — z||) increases.

A possible approach for minimizing R(g(-,V)), relying on Theorem 5.2, would be
to use in generalized regression the observations {z7,y/}%_,, where 2/ € R" ¢/ =

o i Jj=b
g(27,v7), and realizations v7 of V, j = 1,..., v, and a carefully selected distribution on
{a? ¥_1, centered near a current best solution #, to construct ¢ and co as stipulated

in Theorem 5.2. The upper-bounding model ¢y + (¢, ) + pR(||X — -||) could then
be minimized, leading to a new “best solution” Z. The process could be repeated,
possibly with an updated set of observations. Within such a framework, the term
PR(||X — -||) can be viewed as a regularization of the affine model obtained through
regression.

The minimization of the upper-bounding model amounts to a specific risk mini-
mization problem. In the particular case of the superquantile/CVaR risk measure at
level o € [0,1) and realizations {«7}%_,, with probabilities {p’}%_;, the minimization
of that model is equivalent to the second-order cone program:

1 L
o (& b,
min (¢/p,z) + 2o —|—1 jglp Zj

subject to |2/ — x| —20 <z, j=1,...,1,
OSZJ', jZl,...,V,
reR", zeRVTL

We observe that the constant ¢y does not influence the optimal solutions of the upper-
bounding model and is therefore left out.

6. Duality and robustness. Conjugate duality theory links risk measures to
risk envelopes as specified in (1). As we see in this section, parallel connections emerge
for measures of residual risk that also lead to new distributionally robust optimization
models.

6.1. Duality of residual risk. Dual expressions for residual risk are available
from that of the underlying measure of risk.

THEOREM 6.1 (dual expression of residual risk). Suppose that X € L2 and
R(-|X) is a measure of residual risk associated with a finite reqular measure of risk
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R, with conjugate R*. Then,

R(YIX) = sup {E[QY] ~R*(Q) | ElQx] = E[X]} for Y € 2.

Proof. Let Y € £? and X € £2 be fixed. We start by constructing a perturbation.
Let F:R"” x £2 — R be given by

Fle,U) = (¢, E[X]) + R(Y — (¢, X) —=U) force R",U € L?,

which is convex and also finite because R is finite by assumption, and let U — ¢(U) :=
inf.ern F(c,U) be the associated optimal value function. Clearly, R(Y|X) = ¢(0)
by Theorem 3.4(i). Since F is finite (and also closed and convex), the functional
U — F(0,U) is continuous and, in particular, bounded above on a neighborhood of
0. By [21, Theorem 18] it follows that ¢ is also bounded above on a neighborhood
of 0.

Next, we consider the Lagrangian K : R" x £2 — [~00,00) given by

K(e.Q) = inf, {f(c, U) + E[QU]} for c € R", Q € L2,

and the perturbed dual function G : £? x R™ — [—00, 00) given by

G(Q,v) = gﬁgfn K(c,Q) — (c,v) for Q€ L? v e R™.

Then, the associated optimal value function of the dual problem is v — ~(v) :=
Supge2 G(Q,v). By [21, Theorem 17] it follows that »(0) = v(0) because ¢ is
bounded above on a neighborhood of 0. The conclusion then follows by writing out
an expression for v(0). Specifically,

6(Q.0) = inf K(c,Q)

= inf { inf {f(c, U)+E[QU]}}

ceR™ | UeL?
~ inf {U% {<c, E[X) +R(Y — (¢, X) — U) + E[QU]}}
~ inf {<c, BIX)) - sup {E[Q(—U)] ~R(Y = (e, X) — U)}}
= int {te.B1XD + ElQ0Y ~ (0. )] - sup {ElQUI-RW)} |
= inf {{c. BIX]) + E[Q(Y ~ (¢, X))] - R*(@)}
= inf {EIQV] - R*(Q) + (. FIX] - ElQX)) }

=E[Q(Y] - R"(Q) if E[X]=E[QX], and G(Q,0) = —oco otherwise,

which results in the given formula. a

The restriction of Q by the condition E[QX] = EQ)] is naturally interpreted as
another “risk envelope.”

DEFINITION 6.2 (residual risk envelope). For given X € L2 and risk envelope Q,
the associated residual risk envelope is defined as Q(X) ={Q € Q | E[QX] = E[X]}.



1204 R. TYRRELL ROCKAFELLAR AND JOHANNES O. ROYSET

Clearly, the subset {Q € Q | E[QX] = E[X]} of a risk envelope Q is nonempty
due to the fact that 1 € Q; see, for example, [25]. Consequently, Q(X) is a nonempty
convex set, which is also closed if Q is closed. The discussion of this “reduced” set in
the context of stochastic ambiguity is the next topic.

6.2. Distributionally robust models. We again return to the situation ex-
amined in section 5.2 where the focus is on the parameterized random variable Y, =
g(z,V) defined in terms of a function g : R* x R™ — R, with V € £2,. We now,
however, show that measures of residual risk give rise to a new class of distributionally
robust optimization models capturing decisions under ambiguity.

A risk-neutral decision maker might aim to select an & € R™ such that the ex-
pected value of Y, is minimized, possibly also considering various constraints. If
risk averse, she might instead want to minimize the risk of Y, as quantified by a
regular measure of risk. It is well known that the second problem might also arise
for a risk-neutral decision maker under distributional uncertainty. In fact, for every
positively homogeneous, monotonic, and regular measure of risk, the dual expression
R(Y) = SUPgeo E[QY] can be interpreted as computing the worst-case expectation
of Y over a set of probability measures induced by Q; see, for example, [3, 16, 19, 2, 18]
for extensive discussions of such optimization under stochastic ambiguity.

It is clear from Theorem 3.4 that the parameterized random variable Y., assumed
to be in £2 for all z € R™, satisfies

ElY;] < R(Yz|V) < R(Y;) forevery z € R™.

Here, we have shifted from X to V as the random vector that might help explain the
primary random variable of interest Y,. In this setting, x is simply a parameterization
of that variable. We show next that the problem of minimizing the residual risk, i.e.,
solving
(15) min R(Yy; V),
leads to a position between the distributional certainty in the expectation-minimization
model and the distributional robustness of a risk minimization model.

In view of Theorem 6.1, we see that when Y, € £2, x € R", V € L2, and R(-; V)
is a measure of residual risk associated with a positively homogeneous, finite, and
regular measure of risk, the problem (15) is equivalent to

(16) min {SE%{E[QYQE] | E[QV] = E[V]}}.

Here, the supremum is taken over a smaller set than in the case of the distribu-
tionally robust model of minimizing the risk of Y,. In fact, the supremum is taken
over the residual risk envelope Q(V'). The reduction is achieved in a particular man-
ner, which is most easily understood when the risk measure is monotonic: We re-
call that then R(Y,) = supgeo E[QY:] is the expected cost of Y, for a decision
maker that only nominally believes the probability measure P and considers a “worst-
case” probability measure as characterized by the risk envelope Q. In contrast,
R(Yz|V) = supge ol E[QY:] | E[QV] = E[V]} is the worst-case expected cost for
the decision maker if she is willing to believe that the nominal probability measure P
at least assigns the correct mean to V, i.e., E[V] = Ep[V], with P’ being the “true”
probability measure on 2. Of course, V can be artificially augmented to include terms
like V2 and even random variables that do not enter g and therefore do not influence
Y, directly. Consequently,
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minimizing residual risk is equivalent to minimizing a distributionally
robust model under moment matching.
In view of Theorem 3.4, the solution of (15) benefits from the representation of
residual risk in terms of the associated measure of regret V and therefore amounts to
solving

(17) co + (e, EV]) +V(g(@, V) = leo + (e, V)] },

min {
zER™ copER,ceR™
which is convex if g is linear in its first argument or if ¢ is convex in its first argument
and V is monotonic. Hence, residual risk gives rise to a tractable class of distribu-

tionally robust optimization models that captures ambiguity about the underlying
probability measure.

Appendix. Three risk quadrangles are especially relevant due to their connec-
tions with known regression techniques; see [25, 22, 23] for details.

Ezample 7 (mean risk quadrangle). For A > 0, the choice R(Y') = E[Y]+ Ao (Y),
where o(Y) := /E[(Y — E[Y])?], is a positively homogeneous and regular measure
of risk. The corresponding risk envelope Q@ = {Q = 1+ A\Z | \/E[Z?] < 1,E[Z] =
0}, the regret V(Y) = E[Y] + A\\/E[Y?], the deviation D(Y) = Ao(Y), the error
E(Y) = A\/E[Y?], and the statistic S(Y) = {E[Y]}, which of course corresponds to
least-squares regression.

Ezample 8 (quantile risk quadrangle). We recall that the a-quantile, « € (0, 1),
of a random variable Y is Gy (@) := min{y|Fy (y) > a}, where Fy is the cumulative
distribution function of Y. The a-superquantile is Gy () := (1/(1 —«)) f; Gy (B)ds.
The measure of risk R(X) = Gy () is positively homogeneous, monotonic, and regu-
lar and gives the superquantile-risk/CVaR for « € (0,1). The risk envelope Q@ = {Q €
L2]10<Q<1/(1-a),E[Q] =1}, the regret V(Y) = E[max{0,Y}]/(1 — «), the
deviation D(Y) = Gy (a) — E[Y], the error £(Y) = E[max{0,Y}]/(1—«)— E[Y], and
the statistic S(Y) = [Gy («), Gy ()], where G- () is the right-continuous companion
of Gy () defined by G- () := inf{y|Fy(y) > a}. Quantile regression relies on this
error measure.

Ezample 9 (superquantile risk quadrangle). The second-order a-superquantile
Gy(a) == 1/(1 — a) [ Gy(B)df for a € [0,1) and the choice R(Y) = Gy () is a
positively homogeneous, monotonic, and regular measure of risk. The risk envelope
is

1
O =cl {Q er? Q= ﬁ / q(B)dp, q an integrable selection from Qg, 8 € [a, 1) } ,

where cl denotes closure and Qg is the risk envelope of the quantile risk quadrangle
at level B. The regret (V) =1/(1 — «) fol max{0, Gy (3)}dB, the deviation D(Y) =
1/(1—a) [ Gy (B)dB — E[Y], the error £(Y) = = [} max{0, Gy (8)}dB — E[Y], and
the statistic S(Y') = {Gy(a)}. This error provides the foundation for superquantile
regression [24].

The risk quadrangles of these examples, with the corresponding statistic, are
summarized in Table 1; see [25] for many more examples.

We next give examples of representable risk identifiers and use the notation Fy
for the cumulative distribution function of ¥ and

Fy(y) = lim Fy(y'), yeR,
y Ty
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TABLE 1
Ezxamples of risk quadrangles.

Name of risk quadrangle
Functional Mean (A > 0) Quantile (e« € (0,1)) Superquantile (a € (0,1))
statistic S E[Y)] Gy (@), GY ()] Gy (a)
risk R E[Y]+ Ao(Y) Gy (a) Gy (a)
regret V EY]+MEN?] L E[max{0,X}] T fol max{0, Gy (8)}d3
deviation D | Ao(Y) Gy (a) — E[Y] Gy (@) — E[Y]
error &€ M/ E[Y?] ﬁE[max{O, X} - E[Y] ﬁ fol max{0, Gy (8)}dB — E[Y]

for its left-continuous “companion.”

Ezample 10 (representability of superquantile/CVaR risk identifiers). We re-
call that a risk identifier Q¥ corresponding to the superquantile/CVaR risk measure
R(Y)=(1/1-«)) f; Gy (8)df, where o € (0,1) and Gy () is the S-quantile of Y,
takes the form [23]

(18)
= ifY(w) > Gy(a),

forae. weQ, QY(w)=<rY if Y(w) = Gy (a) and Fy (Y (w)) — Fy (Y (w)) > 0,
0 otherwise,

where

(19) Ty =

In this case, we set

ﬁ ify>Gy(a),

h(y) =< rY if y = Gy («) and Fy (y) — Fy (y) > 0,
0 otherwise,

which is Borel-measurable. Moreover, h(Y (w)) = QY (w). Consequently, for any
Y € L2, there exists a representable risk identifier QY for superquantile/CVaR risk

measures.
Ezample 11 (representability of second-order superquantile risk identifiers). We

find that a risk identifier QY corresponding to the second-order superquantile risk
measure R(Y) = (1/(1 — «)) f; Gy (B)dB, where a € [0,1) and Gy (B) is the B-

superquantile of Y, i.e., the CVaR of Y at level 3, takes the following form [23]: for
a.e. w € (),

=5 log ‘1—_1;(%) ifa< flw)=Fw) <1,
1—a 1—F(w) 1-F(w)] .
QY (w) = ﬁ log =7 T T Foy=r@ log 17f(w)] if a < f(w) < F(w),
25 [Pt + P lor rEe it f(w) < @ < F(w) and f(w) < F(w),
0 otherwise,

where F(w) = Fy (Y (w)) and f(w) = Fy (Y (w)). In this case, we set

== log 70y ita< fly)=Fy) <L,
L |og Lz 414 1=FW@) 1—F(y)] if a < f(y) < F(y)
hy) =4 ° & =7 F—/(w) 08 T=7(y) Y Y
s [P + rty log L] if f(y) < a < F(y) and f(y) < F(y),

0 otherwise,
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where now F(y) = Fy(y) and f(y) = Fy (y), which is Borel-measurable. Moreover,
h(Y (w)) = QY (w). Consequently, for any Y € L2, there exists a representable risk
identifier QY for second-order superquantile risk measures.

[12
13
[14]
[15]
[16]
[17]
18]
(19
[20]
[21]

22]

23]

[24]

[25]
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