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ABSTRACT: Engineering decisions are invariably made under substantial uncertainty about current and fu-
ture system cost and response, including cost and response associated with low-probability, high-consequence
events. A risk-neutral decision maker would rely on expected values when comparing designs, while a risk-
averse decision maker might adopt nonlinear utility functions or failure probability criteria. The paper shows
that these models for making decisions fall within a framework of risk measures that includes many other pos-
sibilities. General recommendations for selecting risk measures lead to decision models for risk-averse decision
making that comprehensively represent risks in engineering systems, avoid paradoxes, and accrue substantial
benefits in subsequent risk, reliability, and cost optimization. The paper provides an overview of the framework
of decision making based on risk measures and illustrates the approach in a truss design example.

1 INTRODUCTION

In design and optimization of structures, engineers are
faced with the challenge of assessing the adequacy
of a system with uncertain performance or selecting
the best among several uncertain candidate systems.
We consider the situations where the uncertain per-
formance is captured by a random variable whose dis-
tribution is estimated by probabilistic models; see for
example Yang et al. (2009) and Mahsuli and Haukaas
(2013). A risk-neutral decision maker would make as-
sessments and ranking on the basis of expected values
of such random variables. Traditionally, a risk-averse
decision maker would rely on expected utility theory,
with a nonlinear utility function, or consider the prob-
ability of exceeding a threshold, i.e., a failure proba-
bility. In this paper, we outline a framework based on
risk measures for risk-averse decision making that en-
capsulates these approaches, but also offers new pos-
sibilities. Various alternatives are illustrated in a de-
sign optimization problem for a truss structure.

Since preferences of decision makers are highly sit-
uational dependent (Friedman et al. 2014), we avoid
a discussion about whether risk neutrality or risk
averseness is more appropriate; see Stewart et al.
(2011), Cha and Ellingwood (2012), Cha and Elling-
wood (2013), Rockafellar and Royset (2014) and ref-
erences therein. Here, we provide tools for handling

risk averseness regardless of its source and motiva-
tion.

Risk measures as the basis for decision making
are supported by a well-developed theory (Artzner
et al. 1999, Ruszczynski and Shapiro 2006, Ben-
Tal and Teboulle 2007, Rockafellar 2007, Krokhmal
et al. 2011, Rockafellar and Uryasev 2013) and exten-
sive use in financial engineering (Föllmer and Schied
2004, Dowd 2005) and increasingly in other fields
(Commander et al. 2007, Rockafellar and Royset
2010, Minguez et al. 2013). Their connections with
classical expected utility theory and risk-neutral de-
cision making are revealing as discussed below. For
other models of decision making under uncertainty,
we refer to Ditlevsen and Madsen (1996), Nathwani
et al. (1997), Murphy and Gardoni (2006), Murphy
and Gardoni (2012), Cha and Ellingwood (2012), Cha
and Ellingwood (2013), Faber and Lind (2013), and
Faber et al. (2013).

We proceed in Section 2 with a description and ex-
amples of risk measures. Section 3 makes connections
with expected utility theory. Section 4 illustrates that
certain measures of risk lead to rankings of random
variables that are identical to that of a risk-neutral de-
cision maker under distributional uncertainty. Section
5 discusses optimization of random variables that de-
pend on design parameters. Sections 2-5 summarize
the material in Rockafellar and Royset (2014). Sec-



tion 6 illustrates the framework with a numerical ex-
ample.

2 RISK MEASURES

A broad class of decision models that encapsulates es-
sentially all reasonable approaches rely on measures
of risk as defined next:

A measure of risk is a functional R that as-
signs to a response or cost random variable
Y a number R(Y ), which could be infinity,
as a quantification of the risk in Y .

The answer to the question of how “risky” is Y ,
is now simply defined to be R(Y ). The comparison
of two choices Y and Y ′ then reduces to comparing
R(Y ) and R(Y ′). A requirement that Y should be
“adequately” ≤ b is interpreted as having R(Y ) ≤ b.
The minimizing of R(Y ) over a set of candidate
random variables Y then amounts to finding the
lowest b such that there is a Y “adequately” ≤ b;
see Krokhmal et al. (2011) and Rockafellar and
Uryasev (2013) for recent reviews of risk measures.
Here and throughout the paper we assume that high
values of Y are undesirable. For example, Y might
be the (life-cycle) cost or response amplitude of a
system. For technical reasons and convenience, we
limit the scope to random variables with finite second
moments. We illustrate the breadth of possibilities
with examples.

Expectation. The choice R(Y ) = E[Y ], the expected
value, is simple, but not sensitive to the possibility of
high values. Obviously, this choice incorporates no
level of risk averseness.

Worst-case. The choice

R(Y ) = supY = the smallest value that Y exceeds
only with probability zero

is conservative, usually overly so as it is infinite for
distributions such as the normal and exponential. In
fact, the corresponding decision model ignores all the
information in the distribution of Y except its highest
“possible” realization. Still, in some applications
there may be thresholds that simply should not be
exceeded as discussed in Murphy and Gardoni (2012).

Quantile. For α ∈ (0,1), the α-quantile of a random
variable Y , qα(Y ), is simply F−1

Y (α) when the cumu-
lative distribution function FY of Y is strictly increas-
ing, with a slightly more complex formula in the gen-
eral case. The choice of risk measure

R(Y ) = qα(Y )

is widely used in financial engineering under the
name “value-at-risk” with typically an α of nearly

one, and is equivalent to the failure probability. We
recall that the probability of failure

p(Y ) = prob(Y > 0),

where we assume that positive realizations of Y are
considered “failure.” The failure probability is widely
used in reliability analysis; see for example Ditlevsen
and Madsen (1996, Chapter 12) for a discussion. Re-
cent proposals centered on the capabilities of individ-
uals after disasters also rely on probabilities of ex-
ceeding thresholds specifying essential needs (Mur-
phy and Gardoni 2006, Murphy and Gardoni 2008,
Gardoni and Murphy 2010, Murphy and Gardoni
2012). It is immediately clear that

p(Y ) ≤ 1− α if and only if qα(Y ) ≤ 0. (1)

Consequently, the choice of a quantile as risk mea-
sure is equivalent to adopting a failure probability
criterion. There are two immediate concerns with
these approaches. First, there may be two design with
the same failure probability, but their distributions
could be different, especially in the critical upper
tail. In fact, the failure probability is insensitive to
the tail of the distribution and an exclusive focus
on the corresponding decision models may hide
significant risks. The second concern when using
the failure probability is its lack of convexity and
smoothness as a function of the design parameters.
These deficiencies dramatically increase the difficulty
of solving design optimization problems involving
failure probability terms; see Rockafellar and Royset
(2010) and Rockafellar and Royset (2014) for details.

Safety margin. A natural choice motivated by statis-
tical confidence intervals is to set

R(Y ) = E[Y ] + λσ[Y ],

where σ[Y ] is the standard deviation of Y and λ a
positive constant. Here the risk includes a notion
of variability, but does so in a symmetrical manner.
Large variability on the high side can remain unde-
tected if it is compensated by small variability on the
low side. Moreover, this choice might assess the risk
of Y larger than the risk of Y ′ even though Y < Y ′

for all realizations, which of course counters our
understanding of what risk should mean.

Superquantile. The α-superquantile of Y at proba-
bility α ∈ (0,1) is given by

q̄α(Y ) =
1

1− α

∫ 1

α

qβ(Y )dβ, (2)

i.e., an α-superquantile is an average of quantiles for
probability levels α < β < 1. When the cumulative
distribution function of Y has no discontinuity at the
realization y = qα(Y ), we have the equivalent formula

q̄α(Y ) = E[Y | Y ≥ qα(Y )]



i.e., the α-superquantile is simply the conditional ex-
pectation of Y above the α-quantile. Despite its some-
what complicated definition, convenient expressions
facilitate the computation of superquantiles making
them almost as accessible as an expectation. If Y is
normally distributed with mean µ and standard devia-
tion σ, then

q̄α(Y ) = µ+
σϕ(Φ−1(α))

1− α
,

where ϕ and Φ are the probability density and cu-
mulative distribution functions for a standard normal
random variable. If Y follows a discrete distribution
with realizations y1 < y2 < ... < yn and corresponding
probabilities p1, p2, ..., pn, then

q̄α(Y ) =


∑n

j=1 pjyj for α = 0
1

1−α

[(∑i
j=1 pi − α

)
yi +

∑n
j=i+1 pjyj

]
for

∑i−1
j=1 pj < α ≤

∑i
j=1 pj < 1

yn for α > 1− pn.

We note that the realizations are sorted, without loss
of generality, to simplify the formula. Generally,

q̄α(Y ) = the minimum value of (3)

c+
1

1− α
E[max{0, Y − c}]

across all scalars c,

i.e., a superquantile is the minimum value of a one-
dimensional convex optimization problem involving
an expectation easily solved when the distribution of
Y is known. A risk measure that focuses primarily on
the important upper tail of the distribution of Y is then
the superquantile risk measure

R(Y ) = q̄α(Y );

also called conditional value-at-risk (Rockafellar
and Uryasev 2000). A superquantile risk measure
depends on the parameter α that represents the degree
of risk averseness of the decision maker. For α = 0,
q̄α(Y ) = E[Y ] and therefore corresponds to the
risk-neutral situation. An α = 1 gives q̄α(Y ) = supY
and therefore corresponds to the ultimate risk-averse
decision maker. The superquantile risk measure leads
to a number of benefits in subsequent analysis. For
example, if Y depends on a set of design parameters,
then the risk remains convex in the parameters as
long as the parameterization is convex; see Rock-
afellar and Royset (2014) for a detailed discussion.
The correspondence between a failure probability
constraint p(Y ) ≤ 1 − α and the quantile condition
qα(Y ) ≤ 0 is given in (1). Analogously, a superquan-
tile condition q̄α(Y ) ≤ 0 corresponds to the condition
p̄(Y ) ≤ 1 − α, where p̄(Y ) is the buffered failure

probability of Y defined as the probability 1 − α
that satisfies q̄α(Y ) = 0. We refer to Rockafellar and
Royset (2010) for a discussion of the advantages
that emerge from replacing a failure probability by a
buffered failure probability.

A measure of risk R is regular if it satisfies

R(Y ) = c when Y ≡ c (constant equivalence);

R((1− τ)Y + τY ′) ≤ (1− τ)R(Y ) + τR(Y ′)

for all Y,Y ′ and τ ∈ (0,1) (convexity);

{Y | R(Y ) ≤ c} is a closed set for every

constant c (closedness);

R(Y ) > E[Y ] for nonconstant Y (averseness).

The first condition is natural as it simply asserts that a
random variable that always takes on the same value,
has risk equal to that value. The second condition in-
sists that a linear combination of two random vari-
ables has a risk that is no larger than the linear com-
bination of the individual risks. This condition is also
natural as it promotes diversification. The third con-
dition is mostly technical as it simply asserts that a
risk measure should have a certain continuity prop-
erty. The last condition asserts that the risk should
be greater than the expectation of a random variable
as long as the random variable is not a determinis-
tic constant. The choice R(Y ) = E[Y ] is therefore
not regular, which is reasonable as it does not capture
any degree of risk averseness. Of the examples above,
the worst-case risk, the safety-margin risk, and the su-
perquantile risk measures satisfy the conditions.

3 REGULAR RISK MEASURES FROM
EXPECTED UTILITY FUNCTIONS

Although a utility function u from classical expected
utility theory (von Neumann and Morgenstern 1944)
leads to a “quantification” E[u(Y )] of a random vari-
able Y , it is not natural to call this quantity a measure
of risk. First, the orientation is flipped, with high val-
ues preferred to low ones. Second, the utility function
distorts even a deterministic constant and therefore
regularity cannot be achieved except in trivial cases.
Still, important connections exist as we see next.

To avoid the awkward inconsistency between our
orientation concerned with high values of Y with that
of utility theory, concerned with low values, we de-
fine an analogous concept to a utility function in our
context.

A measure of regret is a functional V that assigns to
a random variable Y a number V(Y ), which may be
infinity, as a quantification of the displeasure with the



mix of possible realizations of Y . It could correspond
to a utility function u through

V(Y ) = −E[u(−Y )], (4)

but we ensure that it is anchored at zero. Hence, we
insist that

V(0) = 0; and

V(Y ) > E[Y ] when Y is not the constant zero.

The correspondence is therefore with relative utility.
Analogously to the regularity of risk measures, we say
that a measure of regret is regular if it satisfies the
closedness, convexity, and the two above conditions.
If the random variable is not discrete, an additional
technical condition might also be required; see Rock-
afellar and Uryasev (2013) for details. Examples of
measures of regret include V(Y ) = E[Y ] + λE[Y 2],
with λ > 0, and V(Y ) = 1

1−α
E[max{0, Y }], with α ∈

(0,1). The latter expression has negative realizations
of Y being assigned zero regret, but positive realiza-
tions being viewed increasingly “regretable,” with the
increase being linear. This expression corresponds to
a piecewise linear utility function with a kink at zero.

Major advantages derive from the following fact
(Rockafellar and Uryasev 2013): A regular measure
of risk R can be constructed from a regular measure
of regret V through the one-dimensional optimization
problem

R(Y ) = the minimum value of c+ V(Y − c) (5)

across all scalars c.

For example, a superquantile measure of risk
R(Y ) = q̄α(Y ) derives from the measure of regret
V(Y ) = 1

1−α
E[max{0, Y }], which leads to the al-

ready claimed expression (3). A large number of other
measures of risk can be constructed in a similar man-
ner (Rockafellar and Uryasev 2013). With the connec-
tions between regret and relative utility, this implies
that

every utility function u, with u(0) = 0 and
u(y) > y for y ̸= 0, is in correspondence
with a regular measure of risk through (4)
and (5).

The trade-off formula (5) provides important inter-
pretations of a regular measure of risk as the result
of a two-stage decision process involving a regular
measure of regret (and therefore also a relative util-
ity function). As an example, suppose that Y gives
the damage cost of a system and the measure of re-
gret V(Y ) quantifies our displeasure with the possible
damage costs. In (5), view c as the money put aside
today to cover future damage costs and Y − c as the
net damage cost in the future. Then, c + V(Y − c)

becomes the total cost consisting of the sum of the
money put aside today plus the current displeasure
with future damage costs. The risk R(Y ) is then sim-
ply the smallest possible total cost one can obtain by
selecting the amount to put aside today in the best
possible manner. Consequently, a risk measure probes
deeper than a measure of regret as it also considers
how one can mitigate future displeasure.

With the close connection between regret (and
therefore also relative utility) and risk, one may be
led to believe that a decision model based on regret
(or equivalently relative utility) would be equivalent
to one based on the corresponding risk measure. Sec-
tion 6 shows that this conclusion is incorrect.

4 RISK NEUTRALITY AND DISTRIBUTIONAL
UNCERTAINTY

Regular measures of risk have alternative “dual” ex-
pressions (Rockafellar and Uryasev 2013). Specifi-
cally, every regular measure of risk that is positively
homogeneous (i.e., R(λY ) = λR(Y ) for all λ ≥ 0,
which implies scale invariance) can be expressed in
the form

R(Y ) = the max of E[Y Q] across all Q ∈ Q, (6)

where Q is a random variable that is taken from a
set Q of random variables called a risk envelope
associated with the risk measure. For example, if
R(Y ) = q̄α(Y ), then Q consists of those random vari-
ables with realizations between zero and 1/(1 − α)
and that has expectation one (Rockafellar and Urya-
sev 2013). An example illustrates the formula.

Example: Uncertainty about distribution. We con-
sider the simple situation where the random variable
Y of a system takes the value 1 with probability 0.1
and the value 0 with probability 0.9, with expected
value 0.1. A risk-neutral decision maker centered on
the expectation would use 0.1 in numerical compar-
isons with other systems and requirements. Next, we
consider a risk-averse decision maker that has adopted
the superquantile risk measure with α = 0.8. Since
qβ(Y ) = 0 for β ≤ 0.9 and qβ(Y ) = 1 for β > 0.9,
the formula (2) gives that R(Y ) = 0.5. A risk-averse
decision maker with this decision model would use
0.5 in comparison with other designs. We now con-
sider the dual expression. In this case, with the scaling
1/(1− α) = 5, (6) simplifies to

R(Y ) = maximum value of 0.9 · 0 · q1 + 0.1 · 1 · q2

such that 0 ≤ q1, q2 ≤ 5 and 0.9q1 + 0.1q2 = 1,

which has the optimal solution q1 = 5/9 and
q2 = 5. The maximum value then becomes
0.9 · 0 · 5/9 + 0.1 · 1 · 5 = 0.5 that confirms the
previous calculation of R(Y ). More interestingly



however, the expression can be interpreted as the
assessment made by a risk-neutral decision maker
that has a nominal distribution with probabilities 0.9
and 0.1 for the realizations 0 and 1, respectively, but
that is uncertain about the validity of this distribution.
To compensate, she allows the probabilities to be
scaled up with a factor of at most 5, while still making
sure that they sum to one, in a manner that is the
least favorable. This risk-neutral decision maker then
makes the exact same assessment of the situation as
the risk-averse decision maker.

The alternative formula (6) helps explain a source
of risk averseness: lack of trust in probabilistic mod-
els. In fact, this insight can help quantify the exact
benefit of better probabilistic models.

5 DESIGN OPTIMIZATION

In design, the random variable of interest is param-
eterized by a vector x = (x1, ..., xn) of design vari-
ables. The goal might then be to select x such that
the risk of the random variable is minimized, usually
subject to constraints on x. This leads to the design
optimization problem

minimize R(Y (x)) subject to x ∈ X ,

where R is a regular risk measure applied to a re-
sponse or cost random variable Y (x) depending on
the design vector x. For example, Y (x) = g(x,V ),
with g a (limit-state) function parameterized by the
design vector x and a random vector V . The set X
specifies constraints on x. This formulation can be ex-
panded to include multiple random variables and mul-
tiple measures of risk with few complications (Rock-
afellar and Royset 2014).

A key property of regular measures of risk is that
the canonical formulation is a convex optimization
problem whenever Y (x) is an affine function of x for
every realization, possibly except for an event with
probability zero, and X is a convex set. If R is mono-
tone, i.e., R(Y ) ≤ R(Y ′) whenever Y ≤ Y ′ with
probability one, then linearity can be relaxed to con-
vexity; see the convexity theorem of Rockafellar and
Uryasev (2013). The value of convexity of an opti-
mization problem cannot be overestimated as it dra-
matically improves the ability of algorithms to obtain
globally optimal solutions efficiently. In the absence
of convexity, a globally optimal solution is usually
inaccessible unless x only involves a small number
of variables and a huge computational effort is em-
ployed.

The trade-off formula (5) allows a simplification of
the canonical formulation into the following equiva-
lent form (see the regret theorem of Rockafellar and
Uryasev (2013)):

minimize c0 + V(Y (x)− c0) subject to x ∈ X ,

where V is a regular measures of risk correspond-
ing to the regular risk measure R through (5) and
c0 is an auxiliary design variable to be optimized un-
constrained. This equivalent form is computationally
beneficial as expressions for regret are usually sim-
pler than those for risk. For example, if R(Y (x)) =
q̄α(Y (x)), i.e., using a superquantile risk measure,
then V(Y (x)) = 1

1−α
E[max{0, Y (x)}] and the de-

sign optimization problem takes the following equiv-
alent form

minimize c0 +
1

1− α
E[max{0, Y (x)− c0}]

subject to x ∈ X ,

which simply involves an expectation. If Y (x) =
g(x,V ) for some function g and the distribution of
V is discrete with realizations v1, ...,vJ and probabil-
ities γ1, ..., γJ , then the formulation simplifies further
to

minimize c0 +
1

1− α

J∑
j=1

γjcj

subject to g(x,vj)− c0 ≤ cj, for all j = 1, ..., J

0 ≤ cj, for all j = 1, ..., J,

with cj , j = 1, ..., J , being auxiliary design variables.
The reformulation involves additional constraints and
variables, but this is outweighed by the removal of
all complicating expressions with the exception of
the unavoidable function g. In fact, the formulation
resembles the corresponding one in the absence of
uncertainty. Consequently, design optimization under
uncertainty using a superquantile risk measure is in
some sense only marginally harder than the corre-
sponding design optimization problem without uncer-
tainty.

6 DESIGN EXAMPLE

We consider the simply supported truss in Figure 1.
Let Vk be the yield stress of member k, k = 1,2, ...,7.
Members 1 and 2 have lognormally distributed yield
stresses with mean 100 N/mm2 and standard devia-
tion 20 N/mm2. The other members have lognormally
distributed yield stresses with mean 200 N/mm2 and
standard deviation 40 N/mm2. The yield stresses of
members 1 and 2 are correlated with correlation co-
efficients 0.8. However, their correlation coefficients
with the other yield stresses are 0.5. Similarly, the
yield stresses of members 3-7 are correlated with
correlation coefficients 0.8. The truss is subject to a
random load V8 in its mid-span. V8 is lognormally
distributed with mean 1000 kN and standard devia-
tion 400 kN. The load V8 is independent of the yield
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Figure 1: Design of Truss

stresses. We use a joint lognormal distribution (see
Ditlevsen and Madsen (1996), Section 7.2) and the
above correlation coefficients to approximate the joint
distribution of V = (V1, V2, ..., V8).

The design vector x = (x1, x2, ..., x7), where xk is
the cross-section area (in 1000 mm2) of member k.
The truss is constrained by the set

X = {x = (x1, ..., x7) | 0.5 ≤ xk ≤ 2, k = 1,2, ...,7

x1 + x2 + ...+ x7 ≤ 9},

where the first restriction limits each member to be
between 500 mm2 and 2000 mm2 and the last restric-
tion limits the total cross-section area.

For each member, we compare load effect with ca-
pacity through

gk(x,v) = v8/ζk − vkxk, k = 1,2, ...,7, (7)

where ζk is a factor given by the geometry and load-
ing of the truss. From Figure 1, we determine that
ζk = 1/(2

√
3) for k = 1,2, and ζk = 1/

√
3 for k =

3,4, ...,7. If gk(x,v) is positive the load effect is larger
than the capacity of the member. A random variable
of concern might then be the response

Y (x) = max
k=1,...,7

gk(x,V ),

which gives the highest difference between load effect
and capacity across all the members. In the following,
we approximate the distribution of V by the empiri-
cal distribution generated by an independent sample
of size 100,000. This approximation facilitates com-
putations.

We initially consider the design x = (9,9, ...,9)/7
that exactly satisfies the cross-section area budget.
The third row labelled “Fixed” in Table 1 gives the
mean E[Y (x)] and probability of failure p(Y (x)) =
prob(Y (x)> 0). The full probability density of Y (x)
is given by the solid line in Figure 2. Here, and below,
we smooth the discrete data using a logconcave ex-
ponential epi-spline (Royset et al. 2013) to construct
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Figure 2: Probability densities for x = (9, ...,9)/7 (labeled
“Fixed”) and regret-optimized design (labeled “Regret”).
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Figure 3: Tails of probability densities for x = (9, ...,9)/7 (la-
beled “Fixed”) and regret-optimized design (labeled “Regret”).

estimates of the density of Y (x). Figure 3 highlights
the corresponding upper tail. Although, the response
is typically negative, high values might occur.

The quality and risk of the design
x = (9, ....,9)/7 is assessed using various
quantifiers. First, we consider the regret
V(Y (x)) = (1/(1 − α))E[max{Y (x),0}], with
α = 0. This expression gives the average capacity ex-
ceedance. It corresponds to a piecewise linear utility
function. The expression can also be interpreted as
the expected cost under the assumption that no load
exceedance has a zero cost and a load exceedance has
a cost proportional to the degree of exceedance. The
last column, second row of Table 2 gives the regret of
Y (x) as V(Y (x)) = 0.01156.

Second, we consider the measures of risk
R(Y (x)) = q̄α(Y (x)) for α = 0,0.5,0.9,0.99,0.999;
see the last column of Table 2. We recall that
q̄α(Y (x)) is essentially the conditional expectation of
Y (x) given Y (x) is no smaller than its α-quantile.
Consequently, q̄α(Y (x)) gives the average of the (1−
α)100% worst responses. All these averages are well
below zero except for α = 0.999; the average of the
0.1% worst responses exceeds zero. In comparison,
the average load exceedance is only slightly above
zero at 0.01156. The choice of α depends on the de-
gree of risk averseness of the decision maker.

We next turn to optimization of the design. First,
we minimize the regret V(Y (x)) subject to the con-
straint x ∈X . The resulting optimization problem is a



Design Size of member (in mm2) Mean p(Y (x))
1 2 3 4 5 6 7

Fixed 1286 1286 1286 1286 1286 1286 1286 -93.5 0.00044
Regret 1220 1231 1316 1297 1315 1298 1323 -87.8 0.00053
α = 0 1804 1805 1079 1077 1078 1080 1078 -125.9 0.00162
α = 0.5 1755 1756 1099 1097 1096 1100 1097 -125.5 0.00145
α = 0.9 1650 1649 1142 1138 1139 1141 1141 -122.1 0.00114
α = 0.99 1465 1467 1212 1222 1210 1219 1204 -109.7 0.00060
α = 0.999 1292 1288 1290 1263 1281 1296 1289 -93.9 0.00043

Table 1: Designs of truss

Risk measure Optimized Fixed
Regret 0.01118 0.01156
α = 0 -125.9 -93.49
α = 0.5 -98.21 -72.82
α = 0.9 -65.41 -49.82
α = 0.99 -28.89 -24.17
α = 0.999 8.232 8.308

Table 2: Quantification of regret and risk in optimized and fixed
(x = (9, ...,9)/7) designs

linear program solved in the General Algebraic Mod-
eling System (GAMS) Distribution 24.1.3, with the
CPLEX 12.5.1 solver, on a laptop computer with 4
GB of RAM and 2.6 GHz processor running Win-
dows 7. The solver time is 0.78 seconds. The opti-
mal design, only marginally different than the previ-
ous design, is given in row four of Table 1. We note
that both the mean and probability of capacity ex-
ceedance are worst for the optimized design relative
to the fixed design x = (9, ....,9)/7. However, the re-
gret is 0.01118 and slightly better; see the second row
of Table 2. Although similar, the probability density
of the regret-optimized response is different than that
for x = (9, ....,9)/7 as seen by comparing the dot-
ted and solid lines in Figures 2 and 3. It is interest-
ing to note that the optimized design gives up average
response and worsens the probability of capacity ex-
ceedance to ensure slightly lower likelihood for high
realizations and therefore a slightly improved regret.
The reduction in likelihood is too small to be visible
in Figure 3.

Using the same computational platform, we sec-
ond minimize the superquantile risk q̄α(Y (x)) under
the same constraints and obtain the designs of rows
5-9 in Table 1 using α = 0,0.5,0.9,0.99,0.999. The
solver times vary between 4 and 218 seconds. As α
increases, the mean response worsens, but the proba-
bility of capacity exceedance decreases. The resulting
probability densities are given in Figure 4, with up-
per tails given in Figure 5, where we leave out the
case α = 0.5, which is similar to that with α = 0.
We see from Table 2 that the optimized designs have,
usually, substantially lower risk than those of the de-
sign x = (9, ...,9)/7. The effect of optimization di-
minishes as α increases simply to due to the fact that
x = (9, ...,9)/7 happens to be a better design in those
cases.
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Figure 4: Probability densities for risk optimized designs

As seen in Table 1, the minimization of regret
yields a rather different design than the minimiza-
tion of risk. (We note that the choice of α has no
bearing on the minimum-regret design as the fac-
tor 1/(1 − α) simply scales the regret.) Hence, al-
though the measure of regret V is the foundation of
the measures of risk q̄α, the latter measures examine
“deeper” the random variable in question by also con-
sidering how to best mitigate the displeasure of high
responses. For example, the minimum-regret design
in Table 1 is a substantially inferior design compared
to the minimum-risk design, as measure by the cor-
responding q̄α. The minimum-risk design is better in
this sense as it more easily allows mitigation of risk
through an intelligent choice of c in the trade-off for-
mula (3).

We note that a risk neutral decision maker would
select the design in row 5 of Table 1. In view of the
discussion in Section 4, a risk-neutral decision maker
that is uncertain about the underlying probability dis-
tribution might select one of the designs in the lower
rows of that table. As stated above, we approximate V
by a discrete random variable with 100,000 possible
realizations, each with probability 10−5. In this case,
the discussion of Section 4 takes the following form.
If the decision maker believes that she could have es-
timated the probabilities incorrectly with a factor of
1/(1 − α) = 1/(1 − 0.99) = 100, i.e., the probabil-
ity of each realization can be any number between 0
and 10−5 · 100 = 10−3, then she would have selected
the design of row 8 of Table 1. This results in a de-
sign that is significantly worse on average (−109.7
vs −125.9). Hence, the average worsening of the re-
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Figure 5: Tails of probability densities for risk optimized designs

sponse due to incomplete information about the distri-
bution is −109.7− (−125.9) = 16.2. Analysis of this
kind might help justifying efforts to improve proba-
bilistic models.
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