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Preface to the Second Edition

The preparation of this second edition of our book was triggered by a rush of fresh
developments leading to many interesting results. The text has significantly been
enlarged by this important new material, but it has also been expanded with cov-
erage of older material, complementary to the results in the the first edition and
allowing them to be further extended. We hope in this way to have provided a more
comprehensive picture of our subject, from classical to most recent.

Chapter 1 has a new preamble which better explains our approach to the implicit
function paradigm for solution mappings of equations, variational problems, and be-
yond. In the new Section 1H, we present an implicit function theorem for functions
that are merely continuous but on the other hand are monotone.

Substantial additions start appearing in Chapter 4, where generalized differenti-
ation is brought in. The coderivative criterion for metric regularity has now a proof
in 4C. Section 4D has been reconstituted to follow up with the strict derivative con-
dition for metric regularity and immediately go on to the inverse function theorems
of Clarke and Kummer, and an inverse function theorem for nonsmooth generalized
equations whose proof is postponed until Chapter 6. In that way, all basic regularity
properties are fully supplied with criteria involving generalized derivatives.

Chapter 5, dealing with infinite-dimensional branches of the theory, has been
augmented by much more. Section 5G presents parametric inverse function theo-
rems which are later put to use in Chapter 6. Section 5H translates the result to non-
linear metric spaces and furnishes a new proof to the (extended) Lyusternik–Graves
theorem. Section 5I links the Lyusternik–Graves theorem fixed point theorems and
other results in set-valued analysis. The final section 5K deploys an inverse func-
tion theorem in Banach spaces which relies only on selections of the inverse to the
directional derivative.

The biggest additions of new material, however, are in Chapter 6. Section 6C
has been reworked so that it now provides an easy-to-follow introduction to itera-
tive methods for solving generalized equations. The new Section 6D shows that the
paradigm of the Lyusternik–Graves/implicit function theorem extends to mappings
whose values are sets of sequences generated by iterative methods. Section 6E fo-
cuses on inexact Newton-type methods, while Section 6F deals with a nonsmooth
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Newton’s method. Section 6G studies the convergence of a path-following method
for solving variational inequalities. Section 6I features metric regularity as a tool for
obtaining error estimates for approximations in optimal control.

Some of the chapters and some the sections have new titles. The sections are
numbered in a new way to facilitate the electronic edition of the book and simul-
taneously to connect to the labeling used in the first edition; for example, Section
1A in the first edition now becomes Section 1.1 [1A]. A list of statement is added
and the notation is moved to the frontmatter. Typos were corrected and new figures
and exercises have been added. Also, the list of references has been updated and the
index extended.

Ann Arbor and Seattle Asen L. Dontchev
March 2014 R. Tyrrell Rockafellar



Preface to the First Edition

Setting up equations and solving them has long been so important that, in popular
imagination, it has virtually come to describe what mathematical analysis and its
applications are all about. A central issue in the subject is whether the solution to
an equation involving parameters may be viewed as a function of those parameters,
and if so, what properties that function might have. This is addressed by the classical
theory of implicit functions, which began with single real variables and progressed
through multiple variables to equations in infinite dimensions, such as equations
associated with integral and differential operators.

A major aim of the book is to lay out that celebrated theory in a broader way
than usual, bringing to light many of its lesser known variants, for instance where
standard assumptions of differentiability are relaxed. However, another major aim
is to explain how the same constellation of ideas, when articulated in a suitably
expanded framework, can deal successfully with many other problems than just
solving equations.

These days, forms of modeling have evolved beyond equations, in terms, for ex-
ample, of problems of minimizing or maximizing functions subject to constraints
which may include systems of inequalities. The question comes up of whether the
solution to such a problem may be expressed as a function of the problem’s pa-
rameters, but differentiability no longer reigns. A function implicitly obtainable
this manner may only have one-sided derivatives of some sort, or merely exhibit
Lipschitz continuity or something weaker. Mathematical models resting on equa-
tions are replaced by “variational inequality” models, which are further subsumed
by “generalized equation” models.

The key concept for working at this level of generality, but with advantages even
in the context of equations, is that of the set-valued solution mapping which as-
signs to each instance of the parameter element in the model all the corresponding
solutions, if any. The central question is whether a solution mapping can be local-
ized graphically in order to achieve single-valuedness and in that sense produce a
function, the desired implicit function.

In modern variational analysis, set-valued mappings are an accepted workhorse
in problem formulation and analysis, and many tools have been developed for han-
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dling them. There are helpful extensions of continuity, differentiability, and regula-
rity of several types, together with powerful results about how they can be applied.
A corresponding further aim of this book is to bring such ideas to wider attention
by demonstrating their aptness for the fundamental topic at hand.

In line with classical themes, we concentrate primarily on local properties of so-
lution mappings that can be captured metrically, rather than on results derived from
topological considerations or involving exotic spaces. In particular, we only briefly
discuss the Nash–Moser inverse function theorem. We keep to finite dimensions in
Chapters 1 to 4, but in Chapters 5 and 6 provide bridges to infinite dimensions.
Global implicit function theorems, including the classical Hadamard theorem, are
not discussed in the book.

In Chapter 1 we consider the implicit function paradigm in the classical case of
the solution mapping associated with a parameterized equation. We give two proofs
of the classical inverse function theorem and then derive two equivalent forms of it:
the implicit function theorem and the correction function theorem. Then we grad-
ually relax the differentiability assumption in various ways and even completely
exit from it, relying instead on the Lipschitz continuity. We also discuss situations
in which an implicit function fails to exist as a graphical localization of the so-
lution mapping, but there nevertheless exists a function with desirable properties
serving locally as a selection of the set-valued solution mapping. This chapter does
not demand of the reader more than calculus and some linear algebra, and it could
therefore be used by both teachers and students in analysis courses.

Motivated by optimization problems and models of competitive equilibrium,
Chapter 2 moves into wider territory. The questions are essentially the same as in
the first chapter, namely, when a solution mapping can be localized to a function
with some continuity properties. But it is no longer an equation that is being solved.
Instead it is a condition called a generalized equation which captures a more com-
plicated dependence and covers, as a special case, variational inequality conditions
formulated in terms of the set-valued normal cone mapping associated with a con-
vex set. Although our prime focus here is variational models, the presentation is
self-contained and again could be handled by students and others without special
background. It provides an introduction to a subject of great applicability which is
hardly known to the mathematical community familiar with classical implicit func-
tions, perhaps because of inadequate accessibility.

In Chapter 3 we depart from insisting on localizations that yield implicit func-
tions and approach solution mappings from the angle of a “varying set.” We identify
continuity properties which support the paradigm of the implicit function theorem in
a set-valued sense. This chapter may be read independently from the first two. Chap-
ter 4 continues to view solution mappings from this angle but investigates substitutes
for classical differentiability. By utilizing concepts of generalized derivatives, we are
able to get implicit mapping theorems that reach far beyond the classical scope.

Chapter 5 takes a different direction. It presents extensions of the Banach open
mapping theorem which are shown to fit infinite-dimensionally into the paradigm of
the theory developed finite-dimensionally in Chapter 3. Some background in basic
functional analysis is required. Chapter 6 goes further down that road and illustrates
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how some of the implicit function/mapping theorems from earlier in the book can
be used in the study of problems in numerical analysis.

This book is targeted at a broad audience of researchers, teachers and graduate
students, along with practitioners in mathematical sciences, engineering, economics
and beyond. In summary, it concerns one of the chief topics in all of analysis, his-
torically and now, an aid not only in theoretical developments but also in methods
for solving specific problems. It crosses through several disciplines such as real and
functional analysis, variational analysis, optimization, and numerical analysis, and
can be used in part as a graduate text as well as a reference. It starts with elementary
results and with each chapter, step by step, opens wider horizons by increasing the
complexity of the problems and concepts that generate implicit function phenom-
ena.

Many exercises are included, most of them supplied with detailed guides. These
exercises complement and enrich the main results. The facts they encompass are
sometimes invoked in the subsequent sections.

Each chapter ends with a short commentary which indicates sources in the liter-
ature for the results presented (but is not a survey of all the related literature). The
commentaries to some of the chapters additionally provide historical overviews of
past developments.

Whidbey Island, Washington Asen L. Dontchev
August, 2008 R. Tyrrell Rockafellar
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Chapter 1
Introduction and Equation-Solving Background

The idea of solving an equation f (p,x) = 0 for x as a function of p, say x = s(p),
plays a huge role in classical analysis and its applications. A function obtained in
this way is said to be defined implicitly by the equation. The closely related idea
of solving an equation f (x) = y for x as a function of y concerns the inversion of
f . The circumstances in which an implicit function or an inverse function exists
and has properties like differentiability have long been studied. But all this can now
be placed in a greatly expanded setting of modern problems, often involving more
than just equations, in which results about implicit functions can be developed along
remarkably similar lines.

The general picture at an introductory level is that of a “problem” which depends
on a parameter vector p and has “solutions” x. The nature of the “problem” and
what constitutes a “solution” matters less for the moment than the idea that for each
p there is an associated set S(p) of solutions x; this set could reduce to a single x or in
some cases be empty. Fundamentally, we have a solution mapping S as a set-valued
mapping from IRd to IRn. For now we restrict our attention to Euclidean spaces, but
it is clear that the general pattern goes far beyond finite dimensions. Signaled by the
notation

S : IRd →→ IRn,

it can be identified graphically with the set

gph S =
{
(p,x) ∈ IRd× IRn ∣∣x ∈ S(p)

}
.

The traditional case of solving equations has gph S =
{
(p,x)

∣∣ f (p,x) = 0
}

, but in
other situations gph S might be specified very differently. Still, the goal of extracting
from S an implicit function s could be essential.

Getting an implicit function typically requires some kind of localization. Con-
sider for instance the elementary case where gph S =

{
(p,x)

∣∣ p−x2 = 0
}

, that is, S
is the solution mapping of the equation x2 = p, as illustrated in Fig. 1.1. The graph
of S is not itself the graph of a function, but points (p̄, x̄) ∈ gph S can have a neigh-
borhood in which gph S reduces to the graph of a function s. This fails only for
(p̄, x̄) = (0,0).

1
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p

x

s

Fig. 1.1 Graphical localizations of the solution mapping of x2 = p.

Broadly speaking, the challenge in each case of a parameterized “problem” and
its “solutions” is to determine, for a pair (p̄, x̄) with x̄∈ S(p̄), conditions that support
the existence of a neighborhood in which gph S reduces to gph s for a function s,
and to characterize the properties of that implicit function s. The conditions need
to be derived from the given representation of the graph of S and usually rely on
a sort of local approximation in that representation. For example, the classical im-
plicit function theorem for f (p,x) = 0 utilizes the linearization of f (p̄,x) at x̄ and
requires it to be invertible by asking its Jacobian ∇x f (p̄, x̄) to be nonsingular. In
fact, much the same pattern can be traced through a vastly wider territory of so-
lution mappings. This is possible with the help of generalizations of differentiation
and approximation promoted by recent advances in variational analysis. Developing
that theme as the implicit function paradigm for solution mappings is the central aim
of this book, along with building a corresponding platform for problem formulation
and computation in various applications.

The purpose of this initial chapter is to pave the way with basic notation and ter-
minology and a review of the classical equation-based theory. Beyond that review,
however, many new ideas will already be brought into the picture in results which
will undergo extension later. In Chapter 2 there will be so-called “generalized equa-
tions,” covering variational inequalities as a special case. They offer a higher level
of structure in which the implicit function paradigm can be propagated.

To set the stage for these developments, we start out with a discussion of general
set-valued mappings F : IRn →→ IRm which are not necessarily to be interpreted as
“solution mappings” but could have a role in their formulation. We mean by a such
F a correspondence that assigns to each x ∈ IRn one or more elements of IRm, or
possibly none. The set of elements y ∈ IRm assigned by F to x is denoted by F(x).
However, instead of regarding F as going from IRn to a space of subsets of IRm, we
identify as the graph of F the set

gph F =
{
(x,y) ∈ IRn× IRm ∣∣y ∈ F(x)

}
.



1 Introduction and Equation-Solving Background 3

Every subset of IRn× IRm serves as gph F for a uniquely determined F : IRn→→ IRm,
so this concept is very broad indeed and opens up many possibilities.

When F assigns more than one element to x we say it is multivalued at x, and
when it assigns no element at all, it is empty-valued at x. When it assigns exactly
one element y to x, it is single-valued at x, in which case we allow ourselves to write
F(x) = y instead of F(x) = {y} and thereby build a bridge to handling functions as
special cases of set-valued mappings.

Domains and ranges get flexible treatment in this way. For F : IRn →→ IRm the
domain is the set

dom F =
{

x
∣∣F(x) 6= /0

}
,

while the range is
rge F =

{
y
∣∣y ∈ F(x) for some x

}
,

so that dom F and rge F are the projections of gph F on IRn and IRm respectively.
Any subset of gph F can freely be regarded then as the graph of a set-valued
submapping which likewise projects to some domain in IRn and range in IRm.

The functions from IRn to IRm are identified in this context with the set-valued
mappings F : IRn→→ IRm such that F is single-valued at every point of dom F . When
F is a function, we can emphasize this by writing F : IRn → IRm, but the notation
F : IRn →→ IRm doesn’t preclude F from actually being a function. Usually, though,
we use lower case letters for functions: f : IRn → IRm. Note that in this notation f
can still be empty-valued in places; it’s single-valued only on the subset dom f of
IRn. Note also that, although we employ “mapping” in a sense allowing for potential
multivaluedness (as in a “set-valued mapping”), no multivaluedness is ever involved
when we speak of a “function.”

A clear advantage of the framework of set-valued mappings over that of only
functions is that every set-valued mapping F : IRn→→ IRm has an inverse, namely the
set-valued mapping F−1 : IRm→→ IRn defined by

F−1(y) =
{

x
∣∣y ∈ F(x)

}
.

The graph of F−1 is generated from the graph of F simply by reversing (x,y) to
(y,x), which in the case of m = n = 1 corresponds to the reflection in Figure 1.1.
In this manner a function f always has an inverse f−1 as a set-valued mapping.
The question of an inverse function comes down then to passing to some piece of
the graph of f−1. For that, the notion of “localization” must come into play, as
we are about to explain after a bit more background. Traditionally, a function f :
IRn→ IRm is surjective when rge f = IRm and injective when dom f = IRn and f−1

is a function; full invertibility of f corresponds to the juxtaposition of these two
properties.

Graphical localization. For F : IRn →→ IRm and a pair (x̄, ȳ) ∈ gph F , a graphical
localization of F at x̄ for ȳ is a set-valued mapping F̃ such that

gph F̃ = (U×V )∩gph F for some neighborhoods U of x̄ and V of ȳ,
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so that

F̃ : x 7→
{

F(x)∩V when x ∈U,
/0 otherwise.

The inverse of F̃ then has

F̃−1(y) =
{

F−1(y)∩U when y ∈V,
/0 otherwise,

and is thus a graphical localization of the set-valued mapping F−1 at ȳ for x̄.

Often the neighborhoods U and V can conveniently be taken to be closed balls
centered at x̄ and ȳ, respectively. Observe, however, that the domain of a graphical
localization F̃ of F with respect to U and V may differ from U ∩ dom F and may
well depend on the choice of V .

Single-valuedness in localizations. By a single-valued localization of F at x̄ for ȳ
will be meant a graphical localization that is a function, its domain not necessarily
being a neighborhood of x̄. The case where the domain is indeed a neighborhood of
x̄ will be indicated by referring to a single-valued localization of F around x̄ for ȳ
instead of just at x̄ for ȳ.

In passing from inverse functions to implicit functions more generally, we need
to pass from an equation f (x) = y to one of the form

(1) f (p,x) = 0 for a function f : IRd× IRn→ IRm

in which p acts as a parameter. The question is no longer that of inverting f , but the
framework of set-valuedness is valuable nonetheless because it allows us to imme-
diately introduce the solution mapping

(2) S : IRd →→ IRn with S(p) =
{

x
∣∣ f (p,x) = 0

}
.

We can then look at pairs (p̄, x̄) in gph S and ask whether S has a single-valued
localization s around p̄ for x̄. Such a localization is exactly what constitutes an
implicit function coming out of the equation.

Most calculus books present a result going back to Dini, who formulated and
proved it in his lecture notes of 1877-78; the cover of Dini’s manuscript1 is displayed
in Fig. 1.3. The version typically seen in advanced calculus texts is what we will
refer to as the classical implicit function theorem or Dini’s theorem. In those texts
the set-valued solution mapping S in (2) never enters the picture directly, but a brief
statement in that mode will help to show where we are headed in this book.

Dini classical implicit function theorem. Let the function f : IRd× IRn→ IRn in (1)
be continuously differentiable in a neighborhood of (p̄, x̄) and such that f (p̄, x̄) = 0,
and let the partial Jacobian of f with respect to x at (p̄, x̄), namely ∇x f (p̄, x̄), be

1 Many thanks to Danielle Ritelli from the University of Bologna for a copy of Dini’s manuscript.



1 Introduction and Equation-Solving Background 5

Fig. 1.2 Ulisse Dini (1845–1918).

nonsingular. Then the solution mapping S defined in (2) has a single-valued local-
ization s around p̄ for x̄ which is continuously differentiable in a neighborhood Q of
p̄ with Jacobian satisfying

∇s(p) =−∇x f (p,s(p))−1
∇p f (p,s(p)) for every p ∈ Q.

The classical inverse function theorem is the particular case of Dini implicit func-
tion theorem in which f (p,x) =−p+ f (x) (with some abuse of notation). Actually,
these two theorems are equivalent; this will be shown in Section 1.B.

The example we started with illustrated in Fig. 1.1 corresponds to inverting the
function f (x) = x2 whose inverse f−1 is generally set-valued. Specifically, f−1 is
single-valued only at 0 with f−1(0) = 0, is empty-valued for p < 0 and two-valued
for p > 0. It has a single-valued localization around p̄ = 1 for x̄ = −1 since the
derivative of f at−1 is nonzero. Note that the derivative at x̄ = 0 is 0 and the inverse
f−1 has no single-valued localization around 0 for 0. Indeed, as we will see in
Section 1.2 [1B], the invertibility of the Jacobian is not only sufficient, as stated in
Dini’s theorem, but also necessary, for the existence of a single-valued localization
of the inverse.

The Dini classical implicit function theorem and its variants will be taken up in
detail in Section 1.2 [1B] after the development in Section 1.1 [1A] of an equiv-
alent inverse function theorem. Later in Chapter 1 we gradually depart from the
assumption of continuous differentiability of f to obtain far-reaching extensions of
this classical theorem. It will be illuminating, for instance, to reformulate the as-



6 1 Introduction and Equation-Solving Background

Fig. 1.3 The front page of Dini’s manuscript from 1877/78.

sumption about the Jacobian ∇x f (p̄, x̄) as an assumption about the function

h(x) = f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄)

giving the partial linearization of f at (p̄, x̄) with respect to x and having h(x̄) =
0. The condition corresponding to the invertibility of ∇x f (p̄, x̄) can be turned into
the condition that the inverse mapping h−1, with x̄ ∈ h−1(0), has a single-valued
localization around 0 for x̄. In this way the theme of single-valued localizations
can be carried forward even into realms where f might not be differentiable and h
could be some other kind of “local approximation” of f . We will be able to operate
with a broad implicit function paradigm, extending in later chapters to much more
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than solving equations. It will deal with single-valued localizations s of solution
mappings S to “generalized equations.” An illustration of such a mapping is given
in Fig. 1.4. These localizations s, if not differentiable, will at least have other key
properties.

Q× U(p̄, x̄)s
S

Fig. 1.4 Illustration of a single-valued localization.

At the end of this introductory preamble, some basic background needs to be
recalled, and this is also an opportunity to fix some additional notation and termi-
nology for subsequent use.

Terminology and notation

In working with IRn we will, in the first half of the book, keep to the Euclidean
norm |x| associated with the canonical inner product

〈x,x′〉= ∑
n
j=1 x jx′j for x = (x1, . . . ,xn) and x′ = (x′1, . . . ,x

′
n),

namely

|x|=
√
〈x,x〉=

[
∑

n
j=1 x2

j

]1/2
.

The closed ball around x̄ with radius r is then

IBr(x̄) =
{

x
∣∣ |x− x̄| ≤ r

}
.

We denote the closed unit ball IB1(0) by IB. A neighborhood of x̄ is any set U such
that IBr(x̄) ⊂ U for some r > 0. We recall for future needs that the interior of a
set C ⊂ IRn consists of all points x such that C is a neighborhood of x, whereas
the closure of C consists of all points x such that the complement of C is not a
neighborhood of x; C is open if it coincides with its interior and closed if it coincides
with its closure. The interior and closure of C will be denoted by int C and cl C.

A function f : IRn→ IR is upper semicontinuous at a point x̄ when x̄ ∈ int dom f
and for every ε > 0 there exists δ > 0 for which

f (x)− f (x̄)< ε whenever x ∈ dom f with |x− x̄|< δ .

If instead we have
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−ε < f (x)− f (x̄) whenever x ∈ dom f with |x− x̄|< δ ,

then f is said to be lower semicontinuous at x̄. Such upper and lower semicontinuity
combine to continuity, meaning the existence for every ε > 0 of a δ > 0 for which

| f (x)− f (x̄)|< ε whenever x ∈ dom f with |x− x̄|< δ .

This condition, in our norm notation, carries over to defining the continuity of a
vector-valued function f : IRn → IRm at a point x̄ ∈ int dom f . However, we also
speak more generally then of f being continuous at x̄ relative to a set D when
x̄ ∈D⊂ dom f and this last estimate holds for x ∈D; in that case x̄ need not belong
to int dom f . When f is continuous relative to D at every point of D, we say it is
continuous on D. The graph gph f of a function f : IRn→ IRm with closed domain
dom f that is continuous on D = dom f is a closed set in IRn× IRm.

A function f : IRn→ IRm is Lipschitz continuous relative to a set D, or on a set D,
if D⊂ dom f and there is a constant κ ≥ 0 such that

| f (x′)− f (x)| ≤ κ|x′− x| for all x′,x ∈ D.

If f is Lipschitz continuous relative to a neighborhood of a point x̄ ∈ int dom f , f is
said to be Lipschitz continuous around x̄. A function f : IRd× IRn→ IRm is Lipschitz
continuous with respect to x uniformly in p near (p̄, x̄) ∈ int dom f if there is a
constant κ ≥ 0 along with neighborhoods U of x̄ and Q of p̄ such that

| f (p,x′)− f (p,x)| ≤ κ|x′− x| for all x′,x ∈U and p ∈ Q.

Differentiability entails consideration of linear mappings. Although we gener-
ally allow for multivaluedness and even empty-valuedness when speaking of “map-
pings,” single-valuedness everywhere is required of a linear mapping, for which we
typically use a letter like A. A linear mapping from IRn to IRm is thus a function
A : IRn→ IRm with dom A = IRn which obeys the usual rule for linearity:

A(αx+βy) = αAx+βAy for all x, y ∈ IRn and all scalars α, β ∈ IR.

The kernel of A is
ker A =

{
x
∣∣Ax = 0

}
.

In the finite-dimensional setting, we carefully distinguish between a linear mapping
and its matrix, but often use the same notation for both. A linear mapping A : IRn→
IRm is represented then by a matrix A with m rows, n columns, and components ai, j:

A = (ai, j)
m,n
i, j=1 =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

am1 am2 · · · amn

 .
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The inverse A−1 of a linear mapping A : IRn→ IRm always exists in the set-valued
sense, but it isn’t a linear mapping unless it is actually a function with all of IRm as its
domain, in which case A is said to be invertible. From linear algebra, of course, that
requires m = n and corresponds to the matrix A being nonsingular. More generally,
if m ≤ n and the rows of the matrix A are linearly independent, then the rank of
the matrix A is m and the mapping A is surjective. In terms of the transpose of A,
denoted by AT, the matrix AAT is in this case nonsingular. On the other hand, if
m≥ n and the columns of A are linearly independent then ATA is nonsingular.

Both the identity mapping and its matrix will be denoted by I, regardless of
dimensionality. By default, |A| is the operator norm of A induced by the Euclidean
norm,

|A|= max
|x|≤1
|Ax|.

A function f : IRn → IRm is differentiable at a point x̄ when x̄ ∈ int dom f and
there is a linear mapping A : IRn→ IRm with the property that for every ε > 0 there
exists δ > 0 with

| f (x̄+h)− f (x̄)−Ah| ≤ ε|h| for every h ∈ IRn with |h|< δ .

If such a mapping A exists at all, it is unique; it is denoted by D f (x̄) and called the
derivative of f at x̄. A function f : IRn → IRm is said to be twice differentiable at a
point x̄ ∈ int dom f when there is a bilinear mapping N : IRn× IRn → IRm with the
property that for every ε > 0 there exists δ > 0 with

| f (x̄+h)− f (x̄)−D f (x̄)h−N(h,h)| ≤ ε|h|2 for every h ∈ IRn with |h|< δ .

If such a mapping N exists it is unique and is called the second derivative of f at x̄,
denoted by D2 f (x̄). Higher-order derivatives can be defined accordingly.

The m×n matrix that represents the derivative D f (x̄) is called the Jacobian of f
at x̄ and is denoted by ∇ f (x̄). In the notation x = (x1, . . . ,xn) and f = ( f1, . . . , fm),
the components of ∇ f (x̄) are the partial derivatives of the component functions fi:

∇ f (x̄) =
(

∂ f j

∂xi
(x̄)
)m,n

i, j=1
.

In distinguishing between D f (x̄) as a linear mapping and ∇ f (x̄) as its matrix, we
can guard better against ambiguities which may arise in some situations. When the
Jacobian ∇ f (x) exists and is continuous (with respect to the matrix norms associ-
ated with the Euclidean norm) on a set D ⊂ IRn, then we say that the function f is
continuously differentiable on D; we also call such a function smooth or C 1 on D.
Accordingly, we define k times continuously differentiable (C k) functions.

For a function f : IRd×IRn→ IRm and a pair (p̄, x̄)∈ int dom f , the partial deriva-
tive mapping Dx f (p̄, x̄) of f with respect to x at (p̄, x̄) is the derivative of the function
g(x) = f (p̄,x) at x̄. If the partial derivative mapping is continuous as a function of
the pair (p,x) in a neighborhood of (p̄, x̄), then f is said to be continuously differen-
tiable with respect to x around (p̄, x̄). The partial derivative Dx f (p̄, x̄) is represented
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by an m×n matrix, denoted ∇x f (p̄, x̄) and called the partial Jacobian. Respectively,
Dp f (p̄, x̄) is represented by the m×d partial Jacobian ∇p f (p̄, x̄). It’s a standard fact
from calculus that if f is differentiable with respect to both p and x around (p̄, x̄)
and the partial Jacobians ∇x f (p,x) and ∇p f (p,x) depend continuously on p and x,
then f is continuously differentiable around (p̄, x̄).
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1.1 [1A] The Classical Inverse Function Theorem

In this section of the book, we state and prove the classical inverse function theorem
in two ways. In these proofs, and also later in the chapter, we will make use of the
following two observations from calculus.

Fact 1 (estimates for differentiable functions). If a function f : IRn→ IRm is differen-
tiable at every point in a convex open neighborhood of x̄ and the Jacobian mapping
x 7→ ∇ f (x) is continuous at x̄, then for every ε > 0 there exists δ > 0 such that

(a) | f (x′)− f (x)−∇ f (x)(x′− x)| ≤ ε|x′− x| for every x′,x ∈ IBδ (x̄).

Equivalently, for every ε > 0 there exists δ > 0 such that

(b) | f (x′)− f (x)−∇ f (x̄)(x′− x)| ≤ ε|x′− x| for every x′,x ∈ IBδ (x̄).

Proof. For a vector h ∈ IRm with |h| = 1 and points x,x′, x 6= x′, in a convex open
neighborhood of x̄ where f is differentiable, define the function ϕ : IR→ IR as ϕ(t) =
〈h, f (x+ t(x′− x))〉. Then ϕ is continuous on [0,1] and differentiable in (0,1) and
also ϕ ′(t) = 〈h,∇ f (x+ t(x′−x))(x′−x)〉. A basic result in calculus, the mean value
theorem, says that when a function ψ : IR→ IR is continuous on an interval [a,b]
with a < b and differentiable in (a,b), then there exists a point c ∈ (a,b) such that
ψ(b)−ψ(a) = ψ ′(c)(b−a); see, e.g., Bartle and Sherbert [1992], p. 197. Applying
the mean value theorem to the function ϕ we obtain that there exists t̄ ∈ (0,1) such
that

〈h, f (x′)〉−〈h, f (x)〉= 〈h,∇ f (x+ t̄(x′− x))(x′− x)〉.
Then the triangle inequality and the assumed continuity of ∇ f at x̄ give us (a). The
equivalence of (a) and (b) follows from the continuity of ∇ f at x̄.

Later in the chapter, in 1D.7 we will show that (a) (and hence (b)) is equivalent
to the continuity of the Jacobian mapping ∇ f at x̄.

Fact 2 (stability of matrix nonsingularity). Suppose A is a matrix-valued function
from IRn to the space IRm×m of all m×m real matrices, such that the determinant
of A(x), as well as those of its minors, depends continuously on x around x̄ and the
matrix A(x̄) is nonsingular. Then there is a neighborhood U of x̄ such that A(x) is
nonsingular for every x ∈U and, moreover, the function x 7→ A(x)−1 is continuous
in U .

Proof. Since the nonsingularity of A(x) corresponds to det A(x) 6= 0, it is sufficient
to observe that the determinant of A(x) (along with its minors) depends continuously
on x.
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The classical inverse function theorem which parallels the classical implicit func-
tion theorem described in the introduction to this chapter reads as follows.

Theorem 1A.1 (classical inverse function theorem). Let f : IRn → IRn be continu-
ously differentiable in a neighborhood of a point x̄ and let ȳ := f (x̄). If ∇ f (x̄) is
nonsingular, then f−1 has a single-valued localization s around ȳ for x̄. Moreover,
the function s is continuously differentiable in a neighborhood V of ȳ, and its Jaco-
bian satisfies

(1) ∇s(y) = ∇ f (s(y))−1 for every y ∈V.

Examples.
1) For the function f (x) = x2 considered in the introduction, the inverse f−1 is

a set-valued mapping whose domain is [0,∞). It has two single-valued localizations
around any ȳ > 0 for x̄ 6= 0, represented by either x(y) =

√
y if x̄ > 0 or x(y) =−√y

if x̄ < 0. The inverse f−1 has no single-valued localization around ȳ = 0 for x̄ = 0.
2) The inverse f−1 of the function f (x) = x3 is single-valued everywhere; it is

the function x(y) = 3
√

y. The inverse f−1 = 3
√

y is not differentiable at 0, which fits
with the observation that f ′(0) = 0.

3) For a higher-dimensional illustration, we look at diagonal real matrices

A =

(
λ1 0
0 λ2

)
and the function f : IR2→ IR2 which assigns to (λ1,λ2) the trace y1 = λ1 +λ2 of A
and the determinant y2 = λ1λ2 of A,

f (λ1,λ2) =

(
λ1 +λ2

λ1λ2

)
.

What can be said about the inverse of f ? The range of f consists of all y = (y1,y2)
such that 4y2 ≤ y2

1. The Jacobian

∇ f (λ1,λ2) =

(
1 1
λ2 λ1

)
has determinant λ1−λ2, so it is nonsingular except along the line where λ1 = λ2,
which corresponds to 4y2 = y2

1. Therefore, f−1 has a smooth single-valued localiza-
tion around y = (y1,y2) for (λ1,λ2) as long as 4y2 < y2

1, in fact two such localiza-
tions. But it doesn’t have such a localization around other (y1,y2).

It will be illuminating to look at two proofs2 of the classical inverse function
theorem. The one we lay out first requires no more background than the facts listed

2 These two proofs are not really different, if we take into account that the contraction mapping
principle used in the second proof is proved by using an iterative procedure similar to the one used
in the first proof.
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at the beginning of this section, and it has the advantage of actually “calculating”
a single-valued localization of f−1 by a procedure which is well known in numer-
ical analysis, namely Newton’s iterative method3 for solving nonlinear equations.
The second, which we include for the sake of connections with later developments,
utilizes a nonconstructive, but very broad, fixed-point argument.

Proof I of Theorem 1A.1. First we introduce some constants. Let α > 0 be a scalar
so small that, by appeal to Fact 2 in the beginning of this section, the Jacobian
matrix ∇ f (x) is nonsingular for every x in IBα(x̄) and the function x 7→ ∇ f (x)−1 is
continuous in IBα(x̄). Set

c = max
x∈IBα (x̄)

|∇ f (x)−1|.

On the basis of the estimate (a) in Fact 1, choose a ∈ (0,α] such that

(2) | f (x′)− f (x)−∇ f (x)(x′− x)| ≤ 1
2c
|x′− x| for every x′,x ∈ IBa(x̄).

Let b = a/(16c). Let s be the localization of f−1 with respect to the neighborhoods
IBb(ȳ) and IBa(x̄):

(3) gph s =
[
IBb(ȳ)× IBa(x̄)

]
∩gph f−1.

We will show that s has the properties claimed. The argument is divided into three
steps.

STEP 1: The localization s is nonempty-valued on IBb(ȳ) with x̄ ∈ s(ȳ), in par-
ticular.

The fact that x̄ ∈ s(ȳ) is immediate of course from (3), inasmuch as x̄ ∈ f−1(ȳ).
Pick any y ∈ IBb(ȳ) and any x0 ∈ IBa/8(x̄). We will demonstrate that the iterative
procedure

(4) xk+1 = xk−∇ f (xk)−1( f (xk)− y), k = 0,1, . . .

produces a sequence of vectors x1,x2, . . . which is convergent to a point x∈ f−1(y)∩
IBa(x̄). The procedure (4) is the celebrated Newton’s iterative method for solving
the equation f (x) = y with a starting point x0. By using induction we will show
that this procedure generates an infinite sequence {xk} satisfying for k = 1,2, . . . the
following two conditions:

(5a) xk ∈ IBa(x̄)

3 Isaac Newton (1643–1727). In 1669 Newton wrote his paper De Analysi per Equationes Numero
Terminorum Infinitas, where, among other things, he describes an iterative procedure for approx-
imating real roots of the equation x3− 2x− 5 = 0. In 1690 Joseph Raphson proposed a similar
iterative procedure for solving more general polynomial equations and attributed it to Newton. It
was Thomas Simpson who in 1740 stated the method in today’s form (using Newton’s fluxions) for
an equation not necessarily polynomial, without making connections to the works of Newton and
Raphson; he also noted that the method can be used for solving optimization problems by setting
the gradient to zero.
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and

(5b) |xk− xk−1| ≤ a
2k+1 .

To initialize the induction, we establish (5a) and (5b) for k = 1. Since x0 ∈
IBa/8(x̄), the matrix ∇ f (x0) is indeed invertible, and (4) gives us x1. The equality
in (4) for k = 0 can also be written as

x1 =−∇ f (x0)−1( f (x0)− y−∇ f (x0)x0),

which we subtract from the obvious equality

x̄ =−∇ f (x0)−1( f (x̄)− ȳ−∇ f (x0)x̄),

obtaining

x̄− x1 =−∇ f (x0)−1( f (x̄)− f (x0)− ȳ+ y−∇ f (x0)(x̄− x0)).

Taking norms on both sides and utilizing (2) with x′ = x̄ and x = x0 we get

|x1− x̄| ≤ |∇ f (x0)−1|(| f (x̄)− f (x0)−∇ f (x0)(x̄− x0)|+ |y− ȳ|)≤ c
2c
|x0− x̄|+ cb.

Inasmuch as |x0− x̄| ≤ a/8, this yields

|x1− x̄| ≤ a
16

+ cb =
a
8
≤ a.

Hence (5a) holds for k = 1. Moreover, by the triangle inequality,

|x1− x0| ≤ |x1− x̄|+ |x̄− x0| ≤ a
8
+

a
8
=

a
4
,

which is (5b) for k = 1.
Assume now that (5a) and (5b) hold for k = 1,2, . . . , j. Then the matrix ∇ f (xk)

is nonsingular for all such k and the iteration (4) gives us for k = j the point x j+1:

(6) x j+1 = x j−∇ f (x j)−1( f (x j)− y).

Through the preceding iteration, for k = j−1, we have

y = f (x j−1)+∇ f (x j−1)(x j− x j−1).

Substituting this expression for y into (6), we obtain

x j+1− x j =−∇ f (x j)−1( f (x j)− f (x j−1)−∇ f (x j−1)(x j− x j−1)).

Taking norms, we get from (2) that
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|x j+1− x j| ≤ c| f (x j)− f (x j−1)−∇ f (x j−1)(x j− x j−1)| ≤ 1
2
|x j− x j−1|.

The induction hypothesis on (5b) for k = j then yields

|x j+1− x j| ≤ 1
2
|x j− x j−1| ≤ 1

2

( a
2 j+1

)
=

a
2 j+2 .

Hence, (5b) holds for k = j+1. Further,

|x j+1− x̄| ≤
j+1

∑
i=1
|xi− xi−1|+ |x0− x̄| ≤

j+1

∑
i=1

a
2i+1 +

a
8

<
a
4

∞

∑
i=0

1
2i +

a
8
=

a
2
+

a
8
=

5a
8
≤ a.

This gives (5a) for k = j+1 and the induction step is complete. Thus, both (5a) and
(5b) hold for all k = 1,2, . . ..

To verify that the sequence {xk} converges, we observe next from (5b) that, for
every k and j satisfying k > j, we have

|xk− x j| ≤
k−1

∑
i= j
|xi+1− xi| ≤

∞

∑
i= j

a
2i+2 =

a
2 j+1 .

Hence, the sequence {xk} satisfies the Cauchy criterion, which is known to guaran-
tee that it is convergent.

Let x be the limit of this sequence. Clearly, from (5a), we have x ∈ IBa(x̄).
Through passing to the limit in (4), x must satisfy x = x−∇ f (x)−1( f (x)−y), which
is equivalent to f (x) = y. Thus, we have proved that for every y ∈ IBb(ȳ) there exists
x ∈ IBa(x̄) such that x ∈ f−1(y). In other words, the localization s of the inverse f−1

at ȳ for x̄ specified by (3) has nonempty values. In particular, IBb(ȳ)⊂ dom f−1.
STEP 2: The localization s is single-valued on IBb(ȳ).
Let y ∈ IBb(ȳ) and suppose x and x′ belong to s(y). Then x,x′ ∈ IBa(x̄) and also

x =−∇ f (x)−1[ f (x)− y−∇ f (x)x
]

and x′ =−∇ f (x)−1[ f (x′)− y−∇ f (x)x′
]
.

Consequently

x′− x =−∇ f (x)−1[ f (x′)− f (x)−∇ f (x)(x′− x)
]
.

Taking norms on both sides and invoking (2), we get

|x′− x| ≤ c| f (x′)− f (x)−∇ f (x)(x′− x)| ≤ 1
2
|x′− x|

which can only be true if x′ = x.
STEP 3: The localization s is continuously differentiable in int IBb(ȳ) with ∇s(y)

expressed by (1).
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An extension of the argument in Step 2 will provide a needed estimate. Consider
any y and y′ in IBb(ȳ) and let x = s(y) and x′ = s(y′). These elements satisfy

x =−∇ f (x)−1[ f (x)−y−∇ f (x)x
]

and x′ =−∇ f (x)−1[ f (x′)−y′−∇ f (x)x′
]
,

so that

x′− x =−∇ f (x)−1[ f (x′)− f (x)−∇ f (x)(x′− x)− (y′− y)
]
.

This implies through (2) that

|x′− x| ≤ c| f (x′)− f (x)−∇ f (x)(x′− x)|+ c|y′− y| ≤ 1
2
|x′− x|+ c|y′− y|,

hence |x′− x| ≤ 2c|y′− y|. Thus,

(7) |s(y′)− s(y)| ≤ 2c|y′− y| for y,y′ ∈ IBb(ȳ).

This estimate means that the localization s is Lipschitz continuous on IBb(ȳ).
Now take any ε > 0. Then, from (a) in Fact 1, there exists a′ ∈ (0,a] such that

(8) | f (x′)− f (x)−∇ f (x)(x′− x)| ≤ ε

2c2 |x
′− x| for every x′,x ∈ IBa′(x̄).

Let b′ > 0 satisfy b′ ≤ min{b,a′/(2c)}. Then for every y ∈ IBb′(ȳ), from (7) we
obtain

(9) |s(y)− x̄|= |s(y)− s(ȳ)| ≤ 2c|y− ȳ| ≤ 2cb′ ≤ a′.

Choose any y ∈ int IBb′(ȳ); then there exists τ > 0 such that τ ≤ ε/(2c) and y+h ∈
IBb′(ȳ) for any h ∈ IRn with |h| ≤ τ . Writing the equalities f (s(y+ h)) = y+ h and
f (s(y)) = y as

s(y+h) =−∇ f (s(y))−1( f (s(y+h))− y−h−∇ f (s(y))s(y+h))

and
s(y) =−∇ f (s(y))−1( f (s(y))− y−∇ f (s(y))s(y))

and subtracting the second from the first, we obtain

s(y+h)− s(y)−∇ f (s(y))−1h

=−∇ f (s(y))−1( f (s(y+h))− f (s(y))−∇ f (s(y))(s(y+h)− s(y))).

Once again taking norms on both sides, and using (7), (8) and (9), we get

|s(y+h)− s(y)−∇ f (s(y))−1h| ≤ cε

2c2 |s(y+h)− s(y)| ≤ ε|h| whenever h ∈ IBτ(0).
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By definition, this says that the function s is differentiable at y and that its Jacobian
equals ∇ f (s(y))−1, as claimed in (1). This Jacobian is continuous in int IBb(ȳ); this
comes from the continuity of ∇ f−1 in IBa(x̄) where are the values of s, and the conti-
nuity of s in int IBb(ȳ), and also taking into account that a composition of continuous
functions is continuous.

We can make a shortcut through Steps 1 and 2 of the Proof I, arriving at the
promised Proof II, if we employ a deeper result of analysis far beyond the frame-
work so far, namely the contraction mapping principle. Although we work here
in Euclidean spaces, we state this theorem in the framework of a complete metric
space, as is standard in the literature. More general versions of this principle for
set-valued mappings will be proved in Section 5E, from which we will derive the
standard contraction mapping principle given next as Theorem 1A.2. The reader
who wants to stick with Euclidean spaces may assume that X is a closed nonempty
subset of IRn with metric ρ(x,y) = |x− y|.

Theorem 1A.2 (contraction mapping principle). Let X be a complete metric space
with metric ρ . Consider a point x̄ ∈ X and a function Φ : X → X for which there
exist scalars a > 0 and λ ∈ [0,1) such that:

(a) ρ(Φ(x̄), x̄)≤ a(1−λ );
(b) ρ(Φ(x′),Φ(x))≤ λρ(x′,x) for every x′,x ∈ IBa(x̄).

Then there is a unique x ∈ IBa(x̄) satisfying x = Φ(x), that is, Φ has a unique fixed
point in IBa(x̄).

Most common in the literature is another formulation of the contraction mapping
principle which seems more general but is actually equivalent to 1A.2. To distin-
guish it from 1A.2, we call it basic.

Theorem 1A.3 (basic contraction mapping principle). Let X be a complete metric
space with metric ρ and let Φ : X→ X . Suppose that there exists λ ∈ [0,1) such that

ρ(Φ(x′),Φ(x))≤ λρ(x′,x) for every x′, x ∈ X .

Then there is a unique x ∈ X satisfying x = Φ(x).

Another equivalent version of the contraction mapping principle involves a pa-
rameter.

Theorem 1A.4 (parametric contraction mapping principle). Let P be a metric space
with metric σ and X be a complete metric space with metric ρ , and let Φ : P×X →
X . Suppose that there exist λ ∈ [0,1) and µ ≥ 0 such that

(10) ρ(Φ(p,x′),Φ(p,x))≤ λ ρ(x′,x) for every x′, x ∈ X and p ∈ P

and

(11) ρ(Φ(p′,x),Φ(p,x))≤ µ σ(p′, p) for every p′, p ∈ P and x ∈ X .
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Then the mapping

(12) ψ : p 7→
{

x ∈ X
∣∣x = Φ(p,x)

}
for p ∈ P

is single-valued on P, which is moreover Lipschitz continuous on P with Lipschitz
constant µ/(1−λ ).

Exercise 1A.5. Prove that theorems 1A.2, 1A.3 and 1A.4 are equivalent.

Guide. Let 1A.2 be true and let Φ satisfy the assumptions in 1A.3 with some λ ∈
[0,1). Choose x̄ ∈ X ; then Φ(x̄) ∈ X . Let a > ρ(x̄,Φ(x̄))/(1−λ ). Then (a) and (b)
are satisfied with this a and hence there exists a unique fixed point x of Φ in IBa(x̄).
The uniqueness of this fixed point in the whole X follows from the contraction
property. To prove the converse implication first use (a)(b) to obtain that Φ maps
IBa(x̄) into itself and then use the fact that the closed ball IBa(x̄) equipped with
metric ρ is a complete metric space. Another way to have equivalence of 1A.2 and
1A.3 is to reformulate 1A.2 with a being possibly ∞.

Let 1A.3 be true and let Φ satisfy the assumptions (10) and (11) in 1A.4 with
corresponding λ and µ . Then, by 1A.3, for every fixed p ∈ P the set

{
x ∈ X

∣∣x =
Φ(p,x)

}
is a singleton; that is, the mapping ψ in (12) is a function with domain

P. To complete the proof, choose p′, p ∈ P and the corresponding x′ = Φ(p′,x′),
x = Φ(p,x), and use (10), (11) and the triangle inequality to obtain

ρ(x′,x) = ρ(Φ(p′,x′),Φ(p,x))

≤ ρ(Φ(p′,x′),Φ(p′,x))+ρ(Φ(p′,x),Φ(p,x))≤ λ ρ(x′,x)+µ σ(p′, p).

Rearranging the terms gives us the desired Lipschitz continuity.

Proof II of Theorem 1A.1. Let A = ∇ f (x̄) and let c := |A−1|. There exists a > 0
such that from the estimate (b) in Fact 1 (in the beginning of this section) we have

(13) | f (x′)− f (x)−∇ f (x̄)(x′− x)| ≤ 1
2c
|x′− x| for every x′,x ∈ IBa(x̄).

Let b = a/(4c). The space IRn equipped with the Euclidean norm is a complete
metric space, so in this case X in Theorem 1A.2 is identified with IRn. Fix y ∈ IBb(ȳ)
and consider the function

Φy : x 7→ x−A−1( f (x)− y) for x ∈ IBa(x̄).

We have

|Φy(x̄)− x̄|= |−A−1(ȳ− y)| ≤ cb =
ca
4c

< a
(

1− 1
2

)
,

hence condition (a) in the contraction mapping principle 1A.2 holds with the so
chosen a and λ = 1/2. Further, for any x,x′ ∈ IBa(x̄), from (13) we obtain that

|Φy(x)−Φy(x′)| = |x− x′−A−1( f (x)− f (x′))|
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≤ |A−1|| f (x)− f (x′)−A(x− x′)|

≤ c
1
2c
|x− x′|= 1

2
|x− x′|.

Thus condition (b) in 1A.2 is satisfied with the same λ = 1/2. Hence, there is a
unique x ∈ IBa(x̄) such that Φy(x) = x; that is equivalent to f (x) = y.

Translated into our terminology, this tells us that f−1 has a single-valued local-
ization around ȳ for x̄ whose graph satisfies (3). The continuous differentiability is
argued once more through Step 3 of Proof I.

Exercise 1A.6. For a function f : IRn→ IRm prove that ( f−1)−1(x) = f (x) for every
x ∈ dom f .

Guide. Let x∈ dom f and let y = f (x). Then x∈ f−1(y) and hence y∈ ( f−1)−1(x);
thus f (x) ∈ ( f−1)−1(x). Then show by contradiction that the mapping ( f−1)−1 is
single-valued.

Exercise 1A.7. Prove Theorem 1A.1 by using, instead of iteration (4), the iteration

xk+1 = xk−∇ f (x̄)−1( f (xk)− y), k = 0,1, . . . .

Guide. Follow the argument in Proof I with respective adjustments of the constants
involved.

In this and the following chapters we will derive the classical inverse function
theorem 1A.1 a number of times and in different ways from more general theorems
or utilizing other basic results. For instance, in Section 1.6 [1F] we will show how
to obtain 1A.1 from Brouwer’s invariance of domain theorem and in Section 4B we
will prove 1A.1 again with the help of the Ekeland variational principle.

There are many roads to be taken from here, by relaxing the assumptions in the
classical inverse function theorem, that lead to a variety of results. Some of them
are paved and easy to follow, others need more advanced techniques, and a few lead
to new territories which we will explore later in the book.

1.2 [1B] The Classical Implicit Function Theorem

In this section we give a proof of the classical implicit function theorem stated by
Dini and described in the introduction to this chapter. We consider a function f :
IRd × IRn → IRn with values f (p,x), where p is the parameter and x is the variable
to be determined, and introduce for the equation f (p,x) = 0 the associated solution
mapping

(1) S : p 7→
{

x ∈ IRn ∣∣ f (p,x) = 0
}

for p ∈ IRd .
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We restate the result, furnishing it with a label for reference.

Theorem 1B.1 (Dini classical implicit function theorem). Let f : IRd × IRn → IRn

be continuously differentiable in a neighborhood of (p̄, x̄) and such that f (p̄, x̄) = 0,
and let the partial Jacobian of f with respect to x at (p̄, x̄), namely ∇x f (p̄, x̄), be
nonsingular. Then the solution mapping S defined in (1) has a single-valued local-
ization s around p̄ for x̄ which is continuously differentiable in a neighborhood Q of
p̄ with Jacobian satisfying

(2) ∇s(p) =−∇x f (p,s(p))−1
∇p f (p,s(p)) for every p ∈ Q.

The classical inverse function theorem is the particular case of the classical im-
plicit function theorem in which f (p,x) = −p+ f (x) (with a slight abuse of nota-
tion). However, it will also be seen now that the classical implicit function theorem
can be obtained from the classical inverse function theorem. For that, we first state
an easy-to-prove fact from linear algebra.

Lemma 1B.2. Let I be the d× d identity matrix, 0 be the d× n zero matrix, B be
an n×d matrix, and A be an n×n nonsingular matrix. Then the square matrix

J =

(
I 0
B A

)
is nonsingular.

Proof. If J is singular, then there exists

y =
(

p
x

)
6= 0 such that Jy = 0,

which reduces to the equation (
p

Bp+Ax

)
= 0.

Hence there exists x 6= 0 with Ax = 0, which contradicts the nonsingularity of A.

Proof of Theorem 1B.1. Consider the function

ϕ(p,x) =
(

p
f (p,x)

)
acting from IRd× IRn to itself. The inverse of this function is defined by the solutions
of the equation

(3) ϕ(p,x) =
(

p
f (p,x)

)
=

(
y1
y2

)
,
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where the vector (y1,y2) ∈ IRd × IRn is now the parameter and (p,x) is the depen-
dent variable. The nonsingularity of the partial Jacobian ∇x f (p̄, x̄) implies through
Lemma 1B.2 that the Jacobian of the function ϕ in (3) at the point (x̄, p̄), namely
the matrix

J(p̄, x̄) =
(

I 0
∇p f (p̄, x̄) ∇x f (p̄, x̄)

)
,

is nonsingular as well. Then, according to the classical inverse function theorem
1A.1, the inverse ϕ−1 of the function in (3) has a single-valued localization

(y1,y2) 7→ (q(y1,y2),r(y1,y2)) around (p̄,0) for (p̄, x̄)

which is continuously differentiable around (p̄,0). To develop formula (2), we note
that {

q(y1,y2) = y1,
f (y1,r(y1,y2)) = y2.

Differentiating the second equality with respect to y1 by using the chain rule, we get

(4) ∇p f (y1,r(y1,y2))+∇x f (y1,r(y1,y2)) ·∇y1r(y1,y2) = 0.

When (y1,y2) is close to (p̄,0), the point (y1,r(y1,y2)) is close to (p̄, x̄) and then
∇x f (y1,r(y1,y2)) is nonsingular (Fact 2 in Section 1.1 [1A]). Thus, solving (4) with
respect to ∇y1r(y1,y2) gives

∇y1r(y1,y2) =−∇x f (y1,r(y1,y2))
−1

∇p f (y1,r(y1,y2)).

In particular, at points (y1,y2) = (p,0) close to (p̄,0) we have that the mapping
p 7→ s(p) := r(p,0) is a single-valued localization of the solution mapping S in
(1) around p̄ for x̄ which is continuously differentiable around p̄ and its derivative
satisfies (2).

Thus, the classical implicit function theorem 1B.1 is equivalent to the classical
inverse function theorem 1A.1. We now look at yet another equivalent result.

Theorem 1B.3 (correction function theorem). Let f : IRn → IRn be continuously
differentiable in a neighborhood of x̄. If ∇ f (x̄) is nonsingular, then the correction
mapping

Ξ : x 7→
{

u ∈ IRn ∣∣ f (x+u) = f (x̄)+∇ f (x̄)(x− x̄)
}

for x ∈ IRn

has a single-valued localization ξ around x̄ for 0. Moreover, ξ is continuously dif-
ferentiable in a neighborhood U of x̄ with ∇ξ (x̄) = 0.

Proof. Consider the function

ϕ : (x,u) 7→ f (x+u)− f (x̄)−∇ f (x̄)(x− x̄) for (x,u) ∈ IRn× IRn

in a neighborhood of (x̄, ū) for ū := 0. Since ∇uϕ(x̄, ū) = ∇ f (x̄) is nonsingular,
we apply the classical implicit function theorem 1B.1 obtaining that the solution
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mapping
Ξ : x 7→

{
u ∈ IRn ∣∣ϕ(x,u) = 0

}
for x ∈ IRn

has a smooth single-valued localization ξ around x̄ for 0. The chain rule gives us
∇ξ (x̄) = 0.

Exercise 1B.4. Prove that the correction function theorem 1B.3 implies the inverse
function theorem 1A.1.

Guide. Let ȳ := f (x̄) and assume A := ∇ f (x̄) is nonsingular. In these terms the
correction function theorem 1B.3 claims that the mapping

Ξ : z 7→
{

ξ ∈ IRn ∣∣ f (z+ξ ) = ȳ+A(z− x̄)
}

for z ∈ IRn

has a single-valued localization ξ around x̄ for 0 and that ξ is continuously dif-
ferentiable around x̄ and has zero derivative at x̄. The affine function y 7→ z(y) :=
x̄+A−1(y− ȳ) is the solution mapping of the linear equation ȳ+A(z− x̄) = y having
z(ȳ) = x̄. The composite function y 7→ ξ (z(y)) hence satisfies

f (z(y)+ξ (z(y))) = ȳ+∇ f (x̄)(z(y)− x̄) = y.

The function s(y) := z(y)+ξ (z(y)) is a single-valued localization of the inverse f−1

around ȳ for x̄. To show that ∇s(y) = ∇ f (s(y))−1, use the chain rule.

Inasmuch as the classical inverse function theorem implies the classical implicit
function theorem, and the correction function theorem is a corollary of the classical
implicit function theorem, all three theorems — the inverse, the implicit and the
correction function theorems, stated in 1A.1, 1B.1 and 1B.3, respectively — are
equivalent.

Proposition 1B.5 (higher derivatives). In Theorem 1B.1, if f is k times continu-
ously differentiable around (p̄, x̄) then the localization s of the solution mapping S
is k times continuously differentiable around p̄. Likewise in Theorem 1A.1, if f is k
times continuously differentiable around x̄, then the localization s of f−1 is k times
continuously differentiable around ȳ.

Proof. For the implicit function theorem 1B.1, this is an immediate consequence of
the formula in (2) by way of the chain rule for differentiation. It follows then for the
inverse function theorem 1A.1 as a special case.

If we relax the differentiability assumption for the function f , we obtain a result
of a different kind, the origins of which go back to the work of Goursat [1903].

Theorem 1B.6 (Goursat implicit function theorem). For the solution mapping S
defined in (1), consider a pair (p̄, x̄) with x̄ ∈ S(p̄). Assume that:

(a) f (p,x) is differentiable with respect to x in a neighborhood of the point (p̄, x̄),
and both f (p,x) and ∇x f (p,x) depend continuously on (p,x) in this neighborhood;
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(b) ∇x f (p̄, x̄) is nonsingular.
Then S has a single-valued localization around p̄ for x̄ which is continuous at p̄.

We will prove a far reaching generalization of this result in Section 2B, which we
supply with a detailed proof. In the following exercise we give a guide for a direct
proof.

Exercise 1B.7. Prove Theorem 1B.6.

Guide. Mimic the proof of 1A.1 by choosing α and β sufficiently small so that

c = max
x∈IBα (x̄)
p∈IBβ (p̄)

|∇x f (p,x)−1|.

Then pick a ∈ (0,α] and q ∈ (0,β ] such that, as in the estimate (a) in Fact 1, for
every x′,x ∈ IBa(x̄) and p ∈ IBq(p̄),

(5) | f (p,x′)− f (p,x)−∇x f (p,x)(x′− x)| ≤ 1
2c
|x′− x|.

Then use the iteration

xk+1 = xk−∇x f (p̄, x̄)−1 f (p,xk)

to obtain that S has a nonempty graphical localization s around p̄ for x̄. As in Step 2
in Proof I of 1A.1, show that s is single-valued. To show continuity at p̄, for x = s(p)
subtract from

x =−∇x f (p̄, x̄)−1( f (p,x)−∇x f (p̄, x̄)x)

the equality
x̄ =−∇x f (p̄, x̄)−1( f (p̄, x̄)−∇x f (p̄, x̄)x̄),

and, after adding and subtracting terms, use (5).

It turns out that the nonsingularity of the partial Jacobian ∇x f (p̄, x̄) is not only
sufficient but also becomes a necessary condition for the solution mapping of (1) to
have a single-valued smooth localization provided that ∇p f (p̄, x̄) is of full rank. In
Section 2C we consider in more detail such a parameterization in a much broader
context and call it ample parameterization. In the classical context the corresponding
result is as follows.

Theorem 1B.8 (symmetric implicit function theorem). Let f : IRd × IRn → IRn be
continuously differentiable in a neighborhood of (p̄, x̄) and such that f (p̄, x̄) = 0,
and let ∇p f (p̄, x̄) be of full rank n. Then the solution mapping S defined in (1) has a
single-valued localization s around p̄ for x̄ which is continuously differentiable in a
neighborhood Q of p̄ if and only if the partial Jacobian ∇x f (p̄, x̄) is nonsingular.

Proof. We only need to proof the “only if” part. Without loss of generality let p̄ = 0
and x̄ = 0 and let A = ∇x f (0,0) and B = ∇p f (0,0). Consider the function
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ψ(q,x,y) = f (BTq,x)−Ax+ y.

Observe that ∇qψ(0,0,0) = BBT is nonsingular since B is assumed onto. Hence, by
the classical implicit function theorem the solution mapping

IRn× IRn 3 (x,y) 7→Ψ(x,y) :=
{

q ∈ IRn ∣∣ψ(q,x,y) = 0
}

has a single-valued smooth localization at (0,0) for 0; denote this localization by σ .
Now assume that the solution mapping p 7→ S(p)=

{
x
∣∣ f (p,x)= 0

}
has a single-

valued smooth localization s at 0 for 0, i.e. f (p,s(p))= 0 for all p near 0, s is smooth
near 0 and s(0) = 0. Clearly, we could choose x and y so close to 0 that the norms
of p = BTq, q = σ(x,y) and s(p) are small enough to satisfy q = σ(x,y) ∈Ψ(x,y)
and x = s(BTq) ∈ S(BTq). Then s(BTσ(x,y)) satisfies −As(BTσ(x,y))+y = 0. We
obtain that for every y in a neighborhood of 0, hence by linearity, for every y ∈ IRn

the equation Ax = y has a solution, hence A must be nonsingular.

The classical inverse function theorem 1A.1 combined with Theorem 1B.8 gives
us

Theorem 1B.9 (symmetric inverse function theorem). Let f : IRn→ IRn be contin-
uously differentiable around x̄. Then the following are equivalent:

(a) ∇ f (x̄) is nonsingular;
(b) f−1 has a single-valued localization s around ȳ := f (x̄) for x̄ which is con-

tinuously differentiable around ȳ.

The formula for the Jacobian of the single-valued localization s of the inverse,

∇s(y) = ∇ f (s(y))−1 for y around ȳ,

comes as a byproduct of the statement (b) by way of the chain rule.

Exercise 1B.10. Consider a polynomial of degree n > 0,

p(x) =
n

∑
i=0

aixi,

where the coefficients a0, . . . ,an are real numbers. For each coefficient vector a =
(a0, . . . ,an) ∈ IRn+1 let S(a) be the set of all real zeros of p, so that S is a mapping
from IRn+1 to IR whose domain consists of the vectors a such that p has at least one
real zero. Let ā be a coefficient vector such that p has a simple real zero s̄; thus
p(s̄) = 0 but p′(s̄) 6= 0. Prove that S has a smooth single-valued localization around
ā for s̄. Is such a statement correct when s̄ is a double zero?
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1.3 [1C] Calmness

In this section we introduce a continuity property of functions which will play an
important role in the book.

Calmness. A function f : IRn→ IRm is said to be calm at x̄ relative to a set D in IRn

if x̄ ∈ D∩dom f and there exists a constant κ ≥ 0 such that

(1) | f (x)− f (x̄)| ≤ κ|x− x̄| for all x ∈ D∩dom f .

The calmness property (1) can alternatively be expressed in the form of the in-
clusion

f (x) ∈ f (x̄)+κ|x− x̄|IB for all x ∈ D∩dom f .

That expression connects with the generalization of the definition of calmness to
set-valued mappings, which we will discuss at length in Chapter 3.

Note that a function f which is calm at x̄ may have empty values at some points
x near x̄ when x̄ is on the boundary of dom f . If x̄ is an isolated point of D∩dom f ,
then trivially f is calm at x̄ relative to D with κ = 0.

We will mostly use a local version of the calmness property where the set D in
the condition (1) is a neighborhood of x̄; if such a neighborhood exists we simply
say that f is calm at x̄. Calmness of this kind can be identified with the finiteness of
the modulus which we proceed to define next.

Calmness modulus. For a function f : IRn→ IRm and a point x̄ ∈ dom f , the calm-
ness modulus of f at x̄, denoted clm( f ; x̄), is the infimum of the set of values κ ≥ 0
for which there exists a neighborhood D of x̄ such that (1) holds.

According to this, as long as x̄ is not an isolated point of dom f , the calmness
modulus satisfies

clm( f ; x̄) = limsup
x∈dom f ,x→x̄,

x 6=x̄

| f (x)− f (x̄)|
|x− x̄| .

If x̄ is an isolated point we have clm( f ; x̄) = 0. When f is not calm at x̄, from the
definition we get clm( f ; x̄) = ∞. In this way,

f is calm at x̄ ⇐⇒ clm( f ; x̄)< ∞.

Examples.
1) The function f (x) = x for x ≥ 0 is calm at every point of its domain [0,∞),

always with calmness modulus 1.
2) The function f (x) =

√
|x|, x∈ IR is not calm at zero but calm everywhere else.

3) The linear mapping A : x 7→ Ax, where A is an m×n matrix, is calm at every
point x ∈ IRn and everywhere has the same modulus clm(A;x) = |A|.

Straight from the definition of the calmness modulus, we observe that
(i) clm( f ; x̄)≥ 0 for every x̄ ∈ dom f ;
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(ii) clm(λ f ; x̄) = |λ |clm( f ; x̄) for any λ ∈ IR and x̄ ∈ dom f ;
(iii) clm( f +g; x̄)≤ clm( f ; x̄)+ clm(g; x̄) for any x̄ ∈ dom f ∩dom g.

These properties of the calmness modulus resemble those of a norm on a space of
functions f , but because clm( f ; x̄) = 0 does not imply f = 0, one could at most
contemplate a seminorm. However, even that falls short, since the modulus can take
on ∞, as can the functions themselves, which do not form a linear space because
they need not even have the same domain.

Exercise 1C.1 (properties of the calmness modulus). Prove that
(a) clm( f ◦g; x̄)≤ clm( f ;g(x̄))·clm(g; x̄) whenever x̄∈ dom g and g(x̄)∈ dom f ;
(b) clm( f−g; x̄)= 0⇒ clm( f ; x̄)= clm(g; x̄) whenever x̄∈ int(dom f ∩dom g),

but the converse is false.

With the concept of calmness in hand, we can interpret the differentiability of a
function f : IRn→ IRm at a point x̄ ∈ int dom f as the existence of a linear mapping
A : IRn→ IRm, represented by an n×m matrix, such that

(2) clm(e; x̄) = 0 for e(x) = f (x)− [ f (x̄)+A(x− x̄)].

According to property (iii) before 1C.1 there is at most one mapping A satisfying
(2). Indeed, if A1 and A2 satisfy (2) we have for the corresponding approximation
error terms e1(x) and e2(x) that

|A1−A2|= clm(e1− e2; x̄)≤ clm(e1; x̄)+ clm(e2; x̄) = 0.

Thus, A is unique and the associated matrix has to be the Jacobian ∇ f (x̄). We con-
clude further from property (b) in 1C.1 that

clm( f ; x̄) = |∇ f (x̄)|.

The following theorem complements Theorem 1A.1. It shows that the invertibil-
ity of the derivative is a necessary condition to obtain a calm single-valued localiza-
tion of the inverse.

Theorem 1C.2 (Jacobian nonsingularity from inverse calmness). Given f : IRn →
IRn and x̄ ∈ int dom f , let f be differentiable at x̄ and let ȳ := f (x̄). If f−1 has a
single-valued localization around ȳ for x̄ which is calm at ȳ, then the matrix ∇ f (x̄)
must be nonsingular.

Proof. The assumption that f−1 has a calm single-valued localization s around ȳ
for x̄ means several things: first, s is nonempty-valued around ȳ, that is, dom s is a
neighborhood of ȳ; second, s is a function; and third, s is calm at ȳ. Specifically,
there exist positive numbers a, b and κ and a function s with dom s ⊃ IBb(ȳ) and
values s(y) ∈ IBa(x̄) such that for every y ∈ IBb(ȳ) we have s(y) = f−1(y)∩ IBa(x̄)
and s is calm at ȳ with constant κ . Taking b smaller if necessary we have

(3) |s(y)− x̄| ≤ κ|y− ȳ| for every y ∈ IBb(ȳ).
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Choose τ to satisfy 0 < τ < 1/κ . Then, since x̄ ∈ int dom f and f is differentiable
at x̄, there exists δ > 0 such that

(4) | f (x)− f (x̄)−∇ f (x̄)(x− x̄)| ≤ τ|x− x̄| for all x ∈ IBδ (x̄).

If the matrix ∇ f (x̄) were singular, there would exist d ∈ IRn, |d| = 1, such that
∇ f (x̄)d = 0. Pursuing this possibility, let ε satisfy 0 < ε < min{a,b/τ,δ}. Then,
by applying (4) with x = x̄+ εd, we get f (x̄+ εd) ∈ IBb(ȳ). In terms of yε := f (x̄+
εd), we then have x̄+ εd ∈ f−1(yε)∩ IBa(x̄), hence s(yε) = x̄+ εd. The calmness
condition (3) then yields

1 = |d|= 1
ε
|x̄+ εd− x̄|= 1

ε
|s(yε)− x̄| ≤ κ

ε
|yε − ȳ|= κ

ε
| f (x̄+ εd)− f (x̄)|.

Combining this with (4) and taking into account that ∇ f (x̄)d = 0, we arrive at 1 ≤
κτ|d|< 1 which is absurd. Hence ∇ f (x̄) is nonsingular.

Note that in the particular case of an affine function f (x) = Ax+b, where A is a
square matrix and b is a vector, calmness can be dropped from the set of assumptions
of Theorem 1C.2; the existence of a single-valued localization of f−1 around any
point is already equivalent to the nonsingularity of the Jacobian. This is not always
true even for polynomials. Indeed, the inverse of f (x) = x3, x ∈ IR, has a single-
valued localization around the origin (which is not calm), but ∇ f (0) = 0.

Exercise 1C.3. Using 1C.2 give a new proof of the symmetric inverse function
theorem 1B.9.

Exercise 1C.4. Let f : IRn→ IRn be differentiable at x̄ and suppose that the correc-
tion mapping

Ξ : x 7→
{

u ∈ IRn ∣∣ f (x+u) = f (x̄)+∇ f (x̄)(x− x̄)
}

for x ∈ IRn

has a single-valued localization ξ around x̄ for 0 such that ξ is calm at x̄ with
clm(ξ ; x̄) = 0. Prove that ∇ f (x̄) is nonsingular.

Guide. If ∇ f (x̄) is singular, there must exist a vector d ∈ IRn with |d|= 1 such that
∇ f (x̄)d = 0. Then for all sufficiently small ε > 0 we have

f (x̄+ εd +ξ (x̄+ εd)) = f (x̄).

Thus, εd+ξ (x̄+ εd) ∈ Ξ(x̄) for all small ε > 0. Since Ξ has a single-valued local-
ization around x̄ for 0 we get εd +ξ (x̄+ εd) = 0. Then

1 = |d|= 1
ε
|ξ (x̄+ εd)| → 0 as ε → 0,

a contradiction.

Next, we extend the definition of calmness to its partial counterparts.
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Partial calmness. A function f : IRd× IRn→ IRm is said to be calm with respect to x
at (p̄, x̄) ∈ dom f when the function ϕ with values ϕ(x) = f (p̄,x) is calm at x̄. Such
calmness is said to be uniform in p at (p̄, x̄) when there exists a constant κ ≥ 0 and
neighborhoods Q of p̄ and U of x̄ such that actually

| f (p,x)− f (p, x̄)| ≤ κ|x− x̄| for all (p,x) ∈ (Q×U)∩dom f .

Correspondingly, the partial calmness modulus of f with respect to x at (p̄, x̄) is
denoted as clm x( f ;(p̄, x̄)), while the uniform partial calmness modulus is

ĉlm x( f ;(p̄, x̄)) := limsup
x→x̄, p→ p̄,

(p,x)∈dom f ,x 6=x̄

| f (p,x)− f (p, x̄)|
|x− x̄|

provided that every neighborhood of (p̄, x̄) contains points (p,x)∈ dom f with x 6= x̄.

Observe in this context that differentiability of f (p,x) with respect to x at (p̄, x̄)∈
int dom f is equivalent to the existence of a linear mapping A : IRn→ IRm, the partial
derivative of f with respect to x at (p̄, x̄), which satisfies

clm(e; x̄) = 0 for e(x) = f (p̄,x)− [ f (p̄, x̄)+A(x− x̄)],

and then A is the partial derivative Dx f (p̄, x̄). In contrast, under the stronger condi-
tion that

ĉlm x(e;(p̄, x̄)) = 0, for e(p,x) = f (p,x)− [ f (p̄, x̄)+A(x− x̄)],

we say f is differentiable with respect to x uniformly in p at (p̄, x̄). This means that
for every ε > 0 there are neighborhoods Q of p̄ and U of x̄ such that

| f (p,x)− f (p̄, x̄)−Dx f (p̄, x̄)(x− x̄)| ≤ ε|x− x̄| for p ∈ Q and x ∈U.

Exercise 1C.5 (joint calmness criterion). Let f : IRd × IRn→ IRm be calm in x uni-
formly in p and calm in p, both at (p̄, x̄). Show that f is calm at (p̄, x̄).

Exercise 1C.6 (nonsingularity characterization). Let f : IRn→ IRn be differentiable
at x̄, let ȳ = f (x̄), and suppose that f−1 has a single-valued localization s around ȳ
for x̄ which is continuous at ȳ. Prove in this setting that s is differentiable at ȳ if and
only if the Jacobian ∇ f (x̄) is nonsingular.

Guide. The “only if” part can be obtained from Theorem 1C.2, using the fact that
if s is differentiable at x̄, it must be calm at x̄. In the other direction, starting from
the assumption that ∇ f (x̄) is nonsingular, argue in a manner parallel to the first part
of Step 3 of Proof I of Theorem 1A.1.
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1.4 [1D] Lipschitz Continuity

Calmness is a “one-point” version of the well-known “two-point” property of func-
tions named after Rudolf Otto Sigismund Lipschitz (1832–1903). That property has
already entered our deliberations in Section 1.1 [1A] in connection with the Proof
II of the classical inverse function theorem by way of the contraction mapping. For
convenience we recall the definition:

Lipschitz continuous functions. A function f : IRn → IRm is said to be Lipschitz
continuous relative to a set D, or on a set D, if D⊂ dom f and there exists a constant
κ ≥ 0 (Lipschitz constant) such that

(1) | f (x′)− f (x)| ≤ κ|x′− x| for all x′,x ∈ D.

It is said to be Lipschitz continuous around x̄ when this holds for some neighborhood
D of x̄. We say further, in the case of an open set C, that f is locally Lipschitz
continuous on C if it is a Lipschitz continuous function around every point x of C.

Lipschitz modulus. For a function f : IRn → IRm and a point x̄ ∈ int dom f , the
Lipschitz modulus of f at x̄, denoted lip( f ; x̄), is the infimum of the set of values of
κ for which there exists a neighborhood D of x̄ such that (1) holds. Equivalently,

(2) lip( f ; x̄) := limsup
x′,x→x̄,

x 6=x′

| f (x′)− f (x)|
|x′− x| .

Note that, by this definition, for the Lipschitz modulus we have lip( f ; x̄) = ∞

precisely in the case where, for every κ > 0 and every neighborhood D of x̄, there
are points x′,x ∈ D violating (1). Thus,

f is Lipschitz continuous around x̄ ⇐⇒ lip( f ; x̄)< ∞.

A function f with lip( f ; x̄)<∞ is also called strictly continuous at x̄. For an open set
C, a function f is locally Lipschitz continuous on C exactly when lip( f ;x)< ∞ for
every x ∈C. Every continuously differentiable function on an open set C is locally
Lipschitz continuous on C.

Examples.
1) The function x 7→ |x|, x ∈ IRn, is Lipschitz continuous everywhere with

lip(|x|;x) = 1; it is not differentiable at 0.
2) An affine function f : x 7→ Ax+b, corresponding to a matrix A ∈ IRm×n and a

vector b ∈ IRm, has lip( f ; x̄) = |A| for every x̄ ∈ IRn.
3) If f is continuously differentiable in a neighborhood of x̄, then lip( f ; x̄) =

|∇ f (x̄)|.
Like the calmness modulus, the Lipschitz modulus has the properties of a semi-

norm, except in allowing for ∞:
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(i) lip( f ; x̄)≥ 0 for every x̄ ∈ int dom f ;
(ii) lip(λ f ; x̄) = |λ | lip( f ; x̄) for every λ ∈ IR and x̄ ∈ int dom f ;
(iii) lip( f +g; x̄)≤ lip( f ; x̄)+ lip(g; x̄) for every x̄ ∈ int dom f ∩ int dom g.

Exercise 1D.1 (properties of the Lipschitz modulus). Prove that
(a) lip( f ◦g; x̄)≤ lip( f ;g(x̄)) · lip(g; x̄) when x̄∈ int dom g and g(x̄)∈ int dom f ;
(b) lip( f −g; x̄) = 0⇒ lip( f ; x̄) = lip(g; x̄) when x̄ ∈ int dom f ∩ int dom g;
(c) lip( f ; ·) is upper semicontinuous at every x̄ ∈ int dom f where it is finite;
(d) the set

{
x ∈ int dom f

∣∣ lip( f ;x)< ∞
}

is open.

Bounds on the Lipschitz modulus lead to Lipschitz constants relative to sets, as
long as convexity is present. First, recall that a set C ⊂ IRn is convex if

(1− τ)x0 + τx1 ∈C for all τ ∈ (0,1) when x0, x1 ∈C,

or in other words, if C contains for any pair of its points the entire line segment that
joins them. The most obvious convex set is the ball IB as well as its interior, while
the boundary of the ball is of course nonconvex.

Exercise 1D.2 (Lipschitz continuity on convex sets). Show that if C is a convex sub-
set of int dom f such that lip( f ;x)≤ κ for all x ∈C, then f is Lipschitz continuous
relative to C with constant κ .

Guide. It is enough to demonstrate for an arbitrary choice of points x and x′ in C
and ε > 0 that | f (x′)− f (x)| ≤ (κ + ε)|x′− x|. Argue that the line segment joining
x and x′ is a compact subset of int dom f which can be covered by finitely many
balls on which f is Lipschitz continuous with constant κ + ε . Moreover these balls
can be chosen in such a way that a finite sequence of points x0,x1, . . . ,xr along the
segment, starting with x0 = x and ending with xr = x′, has each consecutive pair in
one of them. Get the Lipschitz inequality for x and x′ from the Lipschitz inequalities
for these pairs.

Exercise 1D.3 (Lipschitz continuity from differentiability). If f is continuously dif-
ferentiable on an open set O and C is a compact convex subset of O, then f is Lip-
schitz continuous relative to C with constant κ = maxx∈C |∇ f (x)|.

Convexity also provides an important class of examples of Lipschitz continu-
ous functions from IRn into itself which are not everywhere differentiable, namely
distance and projection mappings; for an illustration see Fig. 1.5.

Distance and projection. For a point x ∈ IRn and a set C ⊂ IRn, the quantity

(3) dC(x) = d(x,C) = inf
y∈C
|x− y|

is called the distance from x to C. (Whether the notation dC(x) or d(x,C) is used is a
matter of convenience in a given context.) Any point y of C which is closest to x in
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the sense of achieving this distance is called a projection of x on C. The set of such
projections is denoted by PC(x). Thus,

(4) PC(x) = argmin
y∈C

|x− y|.

y

x

P
C

(x) C

Fig. 1.5 Distance and projection.

In this way, C gives rise to a distance function dC and a projection mapping PC. If
C is empty, then trivially dC(x) = ∞ for all x, whereas if C is nonempty, then dC(x)
is finite (and nonnegative) for all x. As for PC, it is, in general, a set-valued mapping
from IRn into C, but additional properties follow from particular assumptions on C,
as we explore next.

Proposition 1D.4 (properties of distance and projection).
(a) For a nonempty set C ⊂ IRn, one has dC(x) = dcl C(x) for all x. Moreover, C

is closed if and only if every x with dC(x) = 0 belongs to C.
(b) For a nonempty set C⊂ IRn, the distance function dC is Lipschitz continuous

on IRn with Lipschitz constant κ = 1. As long as C is closed, one has

lip(dC; x̄) =
{0 if x̄ ∈ int C,

1 otherwise.

(c) For a nonempty, closed set C ⊂ IRn, the projection set PC(x) is nonempty,
closed and bounded for every x ∈ IRn.

Proof. For (a), we fix any x ∈ IRn and note that dcl C(x) ≤ dC(x). This inequality
can’t be strict because for every ε > 0 we can find y∈ cl C making |x−y|< dcl C(x)+
ε but then also find y′ ∈C with |y−y′|< ε , in which case we have dC(x)≤ |x−y′|<
dcl C(x) + 2ε . In particular, this argument reveals that dcl C(x) = 0 if and only if
x ∈ cl C. Having demonstrated that dC(x) = dcl C(x), we may conclude that C ={

x
∣∣dC(x) = 0

}
if and only if C = cl C.

For (b), consider any points x and x′ along with any ε > 0. Take a point y ∈ C
such that |x− y| ≤ dC(x)+ ε . We have
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dC(x′)≤ |x′− y| ≤ |x′− x|+ |x− y| ≤ |x′− x|+dC(x)+ ε,

and through the arbitrariness of ε therefore dC(x′)−dC(x)≤ |x′−x|. The same thing
must hold with the roles of x and x′ reversed, so this demonstrates that dC is Lipschitz
continuous with constant 1.

Let C be nonempty and closed. If x̄ ∈ int C, we have dC(x) = 0 for all x in a
neighborhood of x̄ and consequently lip(dC; x̄) = 0. Suppose now that x̄ /∈ int C. We
will show that lip(dC; x̄)≥ 1, in which case equality must actually hold because we
already know that dC is Lipschitz continuous on IRn with constant 1. According to
the property of the Lipschitz modulus displayed in Exercise 1D.1(c), it is sufficient
to consider x̄ /∈C. Let x̃ ∈ PC(x̄). Then on the line segment from x̃ to x̄ the distance
increases linearly, that is, dC(x̃+τ(x̄− x̃)) = τd(x̄,C) for 0≤ τ ≤ 1 (prove!). Hence,
for τ,τ ′ ∈ [0,1], the two points x = x̃ + τ(x̄− x̃) and x′ = x̃ + τ ′(x̄− x̃) we have
|dC(x′)−dC(x)| = |τ ′− τ||x̃− x̄| = |x′− x|. Note that x̄ can be approached by such
pairs of points and hence lip(dC; x̄)≥ 1.

Turning now to (c), we again fix x ∈ IRn and choose a sequence of points yk ∈C
such that |x−yk| → dC(x) as k→∞. This sequence is bounded and therefore has an
accumulation point y in C, inasmuch as C is closed. Since |x− yk| ≥ dC(x) for all
k, it follows that |x− y| = dC(x). Thus, y ∈ PC(x), so PC(x) is not empty. Since by
definition PC(x) is the intersection of C with the closed ball with center x and radius
dC(x), it’s clear that PC(x) is furthermore closed and bounded.

It has been seen in 1D.4(c) that for any nonempty closed set C⊂ IRn the projection
mapping PC : IRn →→C is nonempty-compact-valued, but when might it actually be
single-valued as well? The convexity of C is the additional property that yields this
conclusion, as will be shown in the following proposition4.

Proposition 1D.5 (Lipschitz continuity of projection mappings). For a nonempty,
closed, convex set C ⊂ IRn, the projection mapping PC is single-valued (a function)
from IRn onto C which moreover is Lipschitz continuous with Lipschitz constant
κ = 1. Also,

(5) PC(x̄) = ȳ ⇐⇒ 〈x̄− ȳ,y− ȳ〉 ≤ 0 for all y ∈C.

Proof. We have PC(x) 6= /0 in view of 1D.4(c). Suppose ȳ∈PC(x̄). For any τ ∈ (0,1),
any y ∈ IRn and yτ = (1− τ)ȳ+ τy we have the identity

(6)
|x̄− yτ |2−|x̄− ȳ|2 = |(yτ − ȳ)− (x̄− ȳ)|2−|x̄− ȳ|2

= |yτ − ȳ|2−2〈x̄− ȳ,yτ − ȳ〉
= τ2|y− ȳ|2−2τ〈x̄− ȳ,y− ȳ〉.

If y ∈ C, we also have yτ ∈ C by convexity, so the left side is nonnegative. This
implies that τ|y− ȳ|2 ≥ 2〈x̄− ȳ,y− ȳ〉 for all τ ∈ (0,1). Thus, the inequality in (5)

4 A set C such that PC is single-valued is called a Chebyshev set. A nonempty, closed, convex set
is always a Chebyshev set, and in IRn the converse is also true; for proofs of this fact see Borwein
and Lewis [2006] and Deutsch [2001]. The question of whether a Chebyshev set in an arbitrary
infinite-dimensional Hilbert space must be convex is still open.
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holds. On the other hand, let 〈x̄− ȳ,y− ȳ〉 ≤ 0 for all y ∈ C. If y ∈ C is such that
|x̄− y| ≤ |x̄− ȳ| then for τ ∈ (0,1) from (6) we get τ|y− ȳ|2 ≤ 2〈x̄− ȳ,y− ȳ〉 ≤ 0
showing that y = ȳ. Thus (5) is fully confirmed along with the fact that PC(x̄) can’t
contain any y 6= ȳ.

Consider now two points x0 and x1 and their projections y0 = PC(x0) and y1 =
PC(x1). On applying (5), we see that

〈x0− y0,y1− y0〉 ≤ 0 and 〈x1− y1,y0− y1〉 ≤ 0.

When added, these inequalities give us

0≥ 〈x0− y0− x1 + y1,y1− y0〉= |y1− y0|2−〈x1− x0,y1− y0〉

and consequently

|y1− y0|2 ≤ 〈x1− x0,y1− y0〉 ≤ |x1− x0||y1− y0|.

It follows that
|y1− y0| ≤ |x1− x0|.

Thus, PC is Lipschitz continuous with Lipschitz constant 1.

Projection mappings have many uses in numerical analysis and optimization.
Note that PC always fails to be differentiable on the boundary of C. As an example,
when C is the set of nonpositive reals IR− one has

PC(x) =
{0 for x≥ 0,

x for x < 0

and this function is not differentiable at x = 0.
It is clear from the definitions of the calmness and Lipschitz moduli that we

always have
clm( f ; x̄)≤ lip( f ; x̄).

This relation is illustrated in Fig. 1.6.
In the preceding section we showed how to characterize differentiability through

calmness. Now we introduce a sharper concept of derivative which is tied up with
the Lipschitz modulus.

Strict differentiability. A function f : IRn→ IRm is said to be strictly differentiable
at a point x̄ if there is a linear mapping A : IRn→ IRm such that

lip(e; x̄) = 0 for e(x) = f (x)− [ f (x̄)+A(x− x̄)].

In particular, in this case we have that clm(e; x̄) = 0 and hence f is differentiable
at x̄ with A = ∇ f (x̄), but strictness imposes a requirement on the difference

e(x)− e(x′) = f (x)− [ f (x′)+∇ f (x̄)(x− x′)]
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Fig. 1.6 Plots of a calm and a Lipschitz continuous function. On the left is the plot of the func-
tion f (x) = (−1)n+19x+(−1)n22n+1/5n−2, |x| ∈ [xn+1,xn] for xn = 4n−1/5n−2, n = 1,2, . . . for
which clm( f ;0)< lip( f ;0)< ∞. On the right is the plot of the function f (x) = (−1)n+1(6+n)x+
(−1)n210(5+ n)!/(6+ n)!, |x| ∈ [xn+1,xn] for xn = 210(4+ n)!/(6+ n)!, n = 1,2, . . . for which
clm( f ;0)< lip( f ;0) = ∞.

also when x′ 6= x̄. Specifically, it demands the existence for each ε > 0 of a neigh-
borhood U of x̄ such that

| f (x)− [ f (x′)+∇ f (x̄)(x− x′)]| ≤ ε|x− x′| for every x,x′ ∈U.

Exercise 1D.6 (strict differentiability from continuous differentiability). Prove that
every function f that is continuously differentiable in a neighborhood of x̄ is strictly
differentiable at x̄.

Guide. Adopt formula (b) in Fact 1 in the beginning of Section 1.1 [1A].

The converse to the assertion in Exercise 1D.6 is false, however: f can be
strictly differentiable at x̄ without being continuously differentiable around x̄. This
is demonstrated in Fig. 1.7 showing the graphs of two functions that are both dif-
ferentiable at origin but otherwise have different properties. On the left is the graph
of the continuous function f : [−1,1]→ IR which is even, and on [0,1] has values
f (0) = 0, f (1/n) = 1/n2, and is linear in the intervals [1/n,1/(n+1)]. This function
is strictly differentiable at 0, but in every neighborhood of 0 there are points where
differentiability is lacking. On the right is the graph of the function5

f (x) =
{

x/2+ x2 sin(1/x) for x 6= 0,
0 for x = 0,

which is differentiable at 0 but not strictly differentiable there.
The second of these examples has the interesting feature that, even though

f (0) = 0 and f ′(0) 6= 0, no single-valued localization of f−1 exists around 0 for

5 These two examples are from Nijenhuis [1974], where the introduction of strict differentiability
is attributed to Leach [1961], but a recent paper by Dolecki and Grecco [2011] suggests that it
goes back to Peano [1892]. By the way, Nijenhuis dedicated his paper to Carl Allendoerfer “for
not taking the implicit function theorem for granted,” which is the leading quotation in this book.
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Fig. 1.7 Plots of functions differentiable at the origin. The function on the left is strictly differen-
tiable at the origin but not continuously differentiable. The function on the right is differentiable at
the origin but not strictly differentiable there.

0. In contrast, we will see in 1D.9 that strict differentiability would ensure the avail-
ability of such a localization.

Proposition 1D.7 (strict differentiability from differentiability). Consider a func-
tion f which is differentiable at every point in a neighborhood of x̄. Prove that f is
strictly differentiable at x̄ if and only if the Jacobian ∇ f is continuous at x̄.

Proof. Let f be strictly differentiable at x̄ and let ε > 0. Then there exists δ1 > 0
such that for every x1,x2 ∈ IBδ1(x̄) we have

(7) | f (x2)− f (x1)−∇ f (x̄)(x2− x1)| ≤
1
2

ε|x1− x2|.

Fix an x1 ∈ IBδ1/2(x̄). For this x1 there exists δ2 > 0 such that for every x′ ∈ IBδ2(x1),

(8) | f (x′)− f (x1)−∇ f (x1)(x′− x1)| ≤
1
2

ε|x′− x1|.

Make δ2 smaller if necessary so that IBδ2(x1) ⊂ IBδ1(x̄). By (7) with x2 replaced by
x′ and by (8), we have

|∇ f (x1)(x′− x1)−∇ f (x̄)(x′− x1)| ≤ ε|x′− x1|.

This implies
|∇ f (x1)−∇ f (x̄)| ≤ ε.

Since x1 is arbitrarily chosen in IBδ1/2(x̄), we obtain that the Jacobian is continuous
at x̄.

For the opposite direction, use Fact 1 in the beginning of Section 1.1 [1A].

Exercise 1D.8 (continuous differentiability from strict differentiability). Prove that
a function f is strictly differentiable at every point of an open set O if and only if it
is continuously differentiable on O.

Guide. Apply 1D.7.
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With the help of the strict derivative we can obtain a new version of the classical
inverse function theorem 1A.1.

Theorem 1D.9 (symmetric inverse function theorem under strict differentiabil-
ity). Let f : IRn→ IRn be strictly differentiable at x̄. Then the following are equiva-
lent:

(a) ∇ f (x̄) is nonsingular;
(b) f−1 has a single-valued localization s around ȳ := f (x̄) for x̄ which is strictly

differentiable at ȳ. In that case, moreover, ∇s(ȳ) = ∇ f (x̄)−1.

Proof. The implication (a)⇒ (b) can be accomplished by combining various pieces
already present in the proofs of Theorem 1A.1, since strict differentiability of f at x̄
gives us by definition the estimate (b) in Fact 1 in Section 1.1 [1A]. Parallel to Proof
II of 1A.1 we find positive constants a and b and a single-valued localization of f−1

of the form
s : y 7→ f−1(y)∩ IBa(x̄) for y ∈ IBb(ȳ).

Next, by using the equation

s(y) =−A−1( f (s(y))− y−As(y)) for y ∈ IBb(ȳ),

where A=∇ f (x̄), we demonstrate Lipschitz continuity of s around ȳ as in the begin-
ning of Step 3 of Proof I of Theorem 1A.1. Finally, to obtain strict differentiability
of s at ȳ, repeat the second part of Step 3 of Proof I with ∇ f (s(y)) replaced with A.
For the converse implication we invoke Theorem 1C.2 and the fact that strict differ-
entiability entails calmness.

Working now towards a corresponding version of the implicit function theorem,
we look at additional forms of Lipschitz continuity and strict differentiability.

Partial Lipschitz continuity. A function f : IRd× IRn→ IRm is said to be Lipschitz
continuous with respect to x around (p̄, x̄)∈ int dom f when the function x 7→ f (p̄,x)
is Lipschitz continuous around x̄; the associated Lipschitz modulus of f with respect
to x is denoted by lip x( f ;(p̄, x̄)). We say f is Lipschitz continuous with respect to x
uniformly in p around (p̄, x̄) ∈ int dom f when there are neighborhoods Q of p̄ and
U of x̄ along with a constant κ ≥ 0 and such that

| f (p,x)− f (p,x′)| ≤ κ|x− x′| for all x,x′ ∈U and p ∈ Q.

Accordingly, the partial uniform Lipschitz modulus with respect to x has the form

l̂ip x( f ;(p̄, x̄)) := limsup
x,x′→x̄,p→ p̄,

x 6=x′

| f (p,x′)− f (p,x)|
|x′− x| .

Exercise 1D.10 (partial uniform Lipschitz modulus with differentiability). Show
that if the function f : IRd× IRn→ IRm is differentiable with respect to x at all points
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(p,x) in some neighborhood of (p̄, x̄), then

l̂ip x( f ;(p̄, x̄)) = limsup
(p,x)→(p̄,x̄)

|∇x f (p,x)|.

Strict partial differentiability. A function f : IRd× IRn→ IRm is said to be strictly
differentiable with respect to x at (p̄, x̄) if the function x 7→ f (p̄,x) is strictly differ-
entiable at x̄. It is said to be strictly differentiable with respect to x uniformly in p at
(p̄, x̄) if

l̂ip x(e;(p̄, x̄)) = 0 for e(p,x) = f (p,x)− [ f (p̄, x̄)+Dx f (p̄, x̄)(x− x̄)],

or in other words, if for every ε > 0 there are neighborhoods Q of p̄ and U of x̄ such
that

| f (p,x)− [ f (p,x′)+Dx f (p̄, x̄)(x− x′)]| ≤ ε|x− x′| for all x,x′ ∈U and p ∈ Q.

Exercise 1D.11 (joint differentiability criterion). Let f : IRd× IRn→ IRm be strictly
differentiable with respect to x uniformly in p and be differentiable with respect to
p, both at (p̄, x̄). Prove that f is differentiable at (p̄, x̄).

Exercise 1D.12 (joint strict differentiability criterion). Prove that f : IRd×IRn→ IRm

is strictly differentiable at (p̄, x̄) if and only if it is strictly differentiable with respect
to x uniformly in p and strictly differentiable with respect to p uniformly in x, both
at (p̄, x̄).

We state next the implicit function counterpart of Theorem 1D.9.

Theorem 1D.13 (implicit functions under strict partial differentiability). Given f :
IRd × IRn→ IRn and (p̄, x̄) with f (p̄, x̄) = 0, suppose that f is strictly differentiable
at (p̄, x̄) and let the partial Jacobian ∇x f (p̄, x̄) be nonsingular. Then the solution
mapping

S : p 7→
{

x ∈ IRn ∣∣ f (p,x) = 0
}

has a single-valued localization s around p̄ for x̄ which is strictly differentiable at p̄
with its Jacobian expressed by

∇s(p̄) =−∇x f (p̄, x̄)−1
∇p f (p̄, x̄).

Proof. We apply Theorem 1D.9 in a manner parallel to the way that the classical
implicit function theorem 1B.1 was derived from the classical inverse function the-
orem 1A.1.

Exercise 1D.14. Let f : IR→ IR be strictly differentiable at 0 and let f (0) 6= 0.
Consider the following equation in x with a parameter p:
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p f (x) =
∫ x

0
f (pt)dt.

Prove that the solution mapping associated with this equation has a strictly differen-
tiable single-valued localization around 0 for 0.

Guide. The function g(p,x) = p f (x)−∫ x
0 f (pt)dt satisfies (∂g/∂x)(0,0) =− f (0),

which is nonzero by assumption. For every ε > 0 there exist open intervals Q and U
centered at 0 such that for every p ∈ Q and x,x′ ∈U we have

|g(p,x)−g(p,x′)− ∂g
∂x

(0,0)(x− x′)|

= |p( f (x)− f (x′))−
∫ x

x′
f (pt)dt + f (0)(x− x′)|

= |p( f (x)− f (x′))− ( f (px̃)− f (0))(x− x′)|
≤ |p( f (x)− f (x′)− f ′(0)(x− x′))|+ |p f ′(0)(x− x′)|
+|( f (px̃)− f (0))(x− x′)| ≤ ε|x− x′|,

where the mean value theorem guarantees that
∫ x

x′ f (pt)dt = (x−x′) f (px̃) for some
x̃ between x′ and x. Hence, g is strictly differentiable with respect to x uniformly in
p at (0,0). Prove in a similar way that g is strictly differentiable with respect to p
uniformly in x at (0,0). Then apply 1D.12 and 1D.13.

1.5 [1E] Lipschitz Invertibility from Approximations

In this section we completely depart from differentiation and develop inverse and
implicit function theorems for equations in which the functions are merely Lipschitz
continuous. The price to pay is that the single-valued localization of the inverse that
is obtained might not be differentiable, but at least it will have a Lipschitz property.

The way to do that is found through notions of how a function f may be “approx-
imated” by another function h around a point x̄. Classical theory focuses on f being
differentiable at x̄ and approximated there by the function h giving its “linearization”
at x̄, namely h(x) = f (x̄) +∇ f (x̄)(x− x̄). Differentiability corresponds to having
f (x) = h(x)+o(|x− x̄|) around x̄, which is the same as clm( f −h; x̄) = 0, whereas
strict differentiability corresponds to the stronger requirement that lip( f −h; x̄) = 0.
The key idea is that conditions like this, and others in a similar vein, can be applied
to f and h even when h is not a linearization dependent on the existence of ∇ f (x̄).
Assumptions on the nonsingularity of ∇ f (x̄), corresponding in the classical setting
to the invertibility of the linearization, might then be replaced by assumptions on
the invertibility of some other approximation h.

First-order approximations of functions. Consider a function f : IRn → IRm and
a point x̄ ∈ int dom f . A function h : IRn → IRm with x̄ ∈ int dom h is a first-order
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approximation to f at x̄ if h(x̄) = f (x̄) and

clm(e; x̄) = 0 for e(x) = f (x)−h(x),

which can also be written as f (x) = h(x)+o(|x− x̄|). It is a strict first-order approx-
imation if the stronger condition holds that

lip(e; x̄) = 0 for e(x) = f (x)−h(x).

In other words, h is a first-order approximation to f at x̄ when f (x̄) = h(x̄) and
for every ε > 0 there exists δ > 0 such that

| f (x)−h(x)| ≤ ε|x− x̄| for every x ∈ IBδ (x̄),

and a strict first-order approximation when

|[ f (x)−h(x)]− [ f (x′)−h(x′)]| ≤ ε|x− x′| for all x,x′ ∈ IBδ (x̄).

Clearly, if h is a (strict) first-order approximation to f , then f is a (strict) first-
order approximation to h.

First-order approximations obey calculus rules which follow directly from the
corresponding properties of the calmness and Lipschitz moduli:

(i) If q is a (strict) first-order approximation to h at x̄ and h is a (strict) first-order
approximation to f at x̄, then q is a (strict) first-order approximation to f at x̄.

(ii) If f1 and f2 have (strict) first-order approximations h1 and h2, respectively,
at x̄, then h1 +h2 is a (strict) first-order approximation of f1 + f2 at x̄.

(iii) If f has a (strict) first-order approximation h at x̄, then for any λ ∈ IR, λh is
a (strict) first-order approximation of λ f at x̄.

(iv) If h is a first-order approximation of f at x̄, then clm( f ; x̄) = clm(h; x̄).
Similarly, if h is a strict first-order approximation of f at x̄, then lip( f ; x̄) = lip(h; x̄).

The next proposition explains how first-order approximations can be chained
together.

Proposition 1E.1 (composition of first-order approximations). Let h be a first-order
approximation of f at x̄ which is calm at x̄. Let v be a first-order approximation of u
at ȳ for ȳ := f (x̄) which is Lipschitz continuous around ȳ. Then v◦h is a first-order
approximation of u◦ f at x̄.

Proof. By the property (iv) of the first-order approximations displayed before the
statement, the function f is calm at x̄. Choose ε > 0 and let µ and λ be such that
clm( f ; x̄)< µ and lip(v; x̄)< λ . Then there exist neighborhoods U of x̄ and V of ȳ
such that f (x) ∈V and h(x) ∈V for x ∈U ,

| f (x)−h(x)| ≤ ε|x− x̄| and | f (x)− f (x̄)| ≤ µ|x− x̄| for x ∈U,

and moreover,
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|u(y)− v(y)| ≤ ε|y− ȳ| and |v(y)− v(y′)| ≤ λ |y− y′| for y,y′ ∈V.

Then for x ∈U , taking into account that ȳ = f (x̄) = h(x̄), we have

|(u◦ f )(x)− (v◦h)(x)| = |u( f (x))− v(h(x))|
≤ |u( f (x))− v( f (x))|+ |v( f (x))− v(h(x))|
≤ ε| f (x)− f (x̄)|+λ | f (x)−h(x)|
≤ εµ|x− x̄|+λε|x− x̄| ≤ ε(µ +λ )|x− x̄|.

Since ε can be arbitrarily small, the proof is complete.

Exercise 1E.2 (strict approximations through composition). Let the function f sat-
isfy lip( f ; x̄) < ∞ and let the function g have a strict first-order approximation q at
ȳ, where ȳ := f (x̄). Then q◦ f is a strict first-order approximation of g◦ f at x̄.

Guide. Mimic the proof of 1E.1.

For our purposes here, and in later chapters as well, first-order approximations
offer an appealing substitute for differentiability, but an even looser notion of ap-
proximation will still lead to important conclusions.

Estimators beyond first-order approximations. Consider a function f : IRn→ IRm

and a point x̄∈ int dom f . A function h : IRn→ IRm with x̄∈ int dom h is an estimator
of f at x̄ with constant µ if h(x̄) = f (x̄) and

clm(e; x̄)≤ µ < ∞ for e(x) = f (x)−h(x),

which can also be written as | f (x)−h(x)| ≤ µ|x− x̄|+o(|x− x̄|). It is a strict esti-
mator if the stronger condition holds that

lip(e; x̄)≤ µ < ∞ for e(x) = f (x)−h(x).

In this terminology, a first-order approximation is simply an estimator with con-
stant µ = 0. Through that, any result involving estimators can immediately be spe-
cialized to a result about first-order approximations.

Estimators can be of interest even when differentiability is present. For instance,
in the case of a function f that is strictly differentiable at x̄ a strict estimator of f
at x̄ with constant µ is furnished by h(x) = f (x̄)+A(x− x̄) for any matrix A with
|∇ f (x̄)−A| ≤ µ . Such relations have a role in certain numerical procedures, as will
be seen at the end of this section and later in the book.

Theorem 1E.3 (inverse function theorem beyond differentiability). Let f : IRn →
IRn be a function with x̄ ∈ int dom f , and let h : IRn→ IRn be a strict estimator of f
at x̄ with constant µ . At the point ȳ = f (x̄) = h(x̄), suppose that h−1 has a Lipschitz
continuous single-valued localization σ around ȳ for x̄ with lip(σ ; ȳ) ≤ κ for a
constant κ such that κµ < 1. Then f−1 has a Lipschitz continuous single-valued
localization s around ȳ for x̄ with
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lip(s; ȳ)≤ κ

1−κµ
.

This result is a particular case of the implicit function theorem 1E.13 presented
later in this section, which in turn follows from a more general result proven in
Chapter 2. It also goes back to an almost a ninety years old theorem by Hildebrand
and Graves which is presented in the commentary to this chapter.

Proof. First, fix any

λ ∈ (κ,∞) and ν ∈ (µ,κ−1) with λν < 1.

Without loss of generality, suppose that x̄ = 0 and ȳ = 0 and take a small enough
that the mapping

y 7→ h−1(y)∩aIB for y ∈ aIB

is a localization of σ that is Lipschitz continuous with constant λ and also the dif-
ference e = f −h is Lipschitz continuous on aIB with constant ν . Next we choose α

satisfying

0 < α <
1
4

a(1−λν)min{1,λ}

and let b := α/(4λ ). Pick any y ∈ bIB and any x0 ∈ (α/4)IB; this gives us

|y− e(x0)| ≤ |y|+ |e(x0)− e(0)| ≤ |y|+ν |x0| ≤ α

4λ
+ν

α

4
≤ α

2λ
.

In particular |y− e(x0)| < a, so the point y− e(x0) lies in the region where σ is
Lipschitz continuous. Let x1 = σ(y− e(x0)); then

|x1|= |σ(y− e(x0))|= |σ(y− e(x0))−σ(0)| ≤ λ |y− e(x0)| ≤ α

2
,

so in particular x1 belongs to the ball aIB. Furthermore,

|x1− x0| ≤ |x1|+ |x0| ≤ α/2+α/4 = 3α/4.

We also have

|y− e(x1)| ≤ |y|+ν |x1| ≤ α/(4λ )+α/(2λ )≤ a,

so that y− e(x1) ∈ aIB.
Having started in this pattern, proceed to construct an infinite sequence of points

xk by taking
xk+1 = σ(y− e(xk))

and prove by induction that

xk ∈ aIB, y− e(xk) ∈ aIB and |xk− xk−1| ≤ (λν)k−1|x1− x0| for k = 2,3, . . . .

Observe next that, for k > j,
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|xk− x j| ≤
k−1

∑
i= j
|xi+1− xi| ≤

k−1

∑
i= j

(λν)ia≤ a
1−λν

(λν) j,

hence
lim

j,k→∞

k> j

|xk− x j|= 0.

Then the sequence {xk} is Cauchy and hence convergent. Let x be its limit. Since
all xk and all y−e(xk) are in aIB, where both e and σ are continuous, we can pass to
the limit in the equation xk+1 = σ(y− e(xk)) as k→ ∞, getting

x = σ(y− e(x)), that is, x ∈ f−1(y).

According to our construction, we have

|x| ≤ λ (|y|+ |e(x)− e(0)|)≤ λ |y|+λν |x|,

so that, since |y| ≤ b, we obtain

|x| ≤ λb
1−λν

.

Thus, it is established that for every y ∈ bIB there exists x ∈ f−1(y) with |x| ≤
λb/(1−λν). In other words, we have shown the nonempty-valuedness of the lo-
calization of f−1 given by

s : y 7→ f−1(y)∩ λb
1−λν

IB for y ∈ bIB.

Next, demonstrate that this localization s is in fact single-valued and Lipschitz con-
tinuous. If for some y ∈ bIB we have two points x 6= x′, both of them in s(y), then
subtracting x = σ(y− e(x)) from x′ = σ(y− e(x′)) gives

0 < |x′−x|= |σ(y−e(x′))−σ(y−e(x))| ≤ λ |e(x′)−e(x)| ≤ λν |x′−x|< |x′−x|,

which is absurd. Further, considering y′,y ∈ bIB and recalling that s(y) = σ(y−
e(s(y))), one gets

|s(y′)− s(y)|= |σ(y′− e(s(y′)))−σ(y− e(s(y)))| ≤ λ (|y′− y|+ν |s(y′)− s(y)|),

and hence s is Lipschitz continuous relative to bIB with constant λ/(1−λν). This
expression is continuous and increasing as a function of λ and ν , which are greater
than κ and µ but can be chosen arbitrarily close to them, hence the Lipschitz mod-
ulus of s at ȳ satisfies the desired inequality.
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Exercise 1E.4. Prove Theorem 1E.3 by using the contraction mapping principle
1A.2.

Guide. In parallel to Proof II of 1A.1, show that Φy(x) = σ
(
y− ( f −h)(x)

)
has a

fixed point.

When µ = 0 in Theorem 1E.3, so that h is a strict first-order approximation of
f at x̄, the conclusion about the localization s of f−1 is that lip(s; ȳ) ≤ κ . The
strict derivative version 1D.9 of the inverse function theorem corresponds to the
case where h(x) = f (x̄)+D f (x̄)(x− x̄). The assumption on h−1 in Theorem 1E.3
is tantamount then to the invertibility of D f (x̄), or equivalently the nonsingularity
of the Jacobian ∇ f (x̄); we have lip(σ ; ȳ) = |D f (x̄)−1| = |∇ f (x̄)−1|, and κ can be
taken to have this value. Again, though, Theorem 1E.3 does not, in general, insist
on h being a first-order approximation of f at x̄.

The following example sheds light on the sharpness of the assumptions in 1E.3
about the relative sizes of the Lipschitz modulus of the localization of h−1 and the
Lipschitz modulus of the “approximation error” f −h.

Example 1E.5 (loss of single-valued localization without strict differentiability). With
α ∈ (0,∞) as a parameter, let f (x) = αx+g(x) for the function

g(x) =
{

x2 sin(1/x) for x 6= 0,
0 for x = 0,

noting that f and g are differentiable with

g′(x) =
{

2xsin(1/x)− cos(1/x) for x 6= 0,
0 for x = 0,

but f and g are not strictly differentiable at 0, although g is Lipschitz continuous
there with lip(g;0) = 1.

Let h(x) = αx and consider applying Theorem 1E.3 to f and h at x̄ = 0, where
f (0) = h(0) = 0. Since f − h = g, we have for every µ > 1 that f − h is Lipschitz
continuous with constant µ on some neighborhood of 0. On the other hand, h−1

is Lipschitz continuous with constant κ = 1/α . Therefore, as long as α > 1, the
assumptions of Theorem 1E.3 are fulfilled (by taking µ in (1,α) arbitrarily close
to 1). We are able to conclude from 1E.3 that f−1 has a single-valued localization s
around 0 for 0 such that lip(s;0)≤ (α−1)−1, despite the inapplicability of 1D.9.

When 0 < α < 1, however, f−1 has no single-valued localization around the
origin at all. This comes out of the fact that, for such α , the derivative f ′(x) has
infinitely many changes of sign in every neighborhood of x̄ = 0, hence infinitely
many consecutive local maximum values and minimum values of f in any such
neighborhood, with both values tending to 0 as the origin is approached. Let x1
and x2, 0 < x1 < x2, be two consecutive points where f ′ vanishes and f has a local
maximum at x1 and local minimum at x2. For a value y > 0 the equation f (x) = y
must have not only a solution in (x1,x2), but also one in (0,x1). Hence, regardless of
the size of the neighborhood U of x̄ = 0, there will be infinitely many y values near
ȳ = 0 for which U ∩ f−1(y) is not a singleton. Both cases are illustrated in Fig. 1.8.
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Fig. 1.8 Graphs of the function f in Example 1E.5 when α = 2 on the left and α = 0.5 on the
right.

When the approximation h to f in Theorem 1E.3 is itself strictly differentiable at
the point in question, a simpler statement of the result can be made.

Corollary 1E.6 (estimators with strict differentiability). For f : IRn → IRn with
x̄ ∈ int dom f and f (x̄) = ȳ, suppose there is a strict estimator h : IRn→ IRn of f at x̄
with constant µ which is strictly differentiable at x̄ with nonsingular Jacobian ∇h(x̄)
satisfying µ|∇h(x̄)−1| < 1. Then f−1 has a Lipschitz continuous single-valued lo-
calization s around ȳ for x̄ with

lip(s; ȳ)≤ |∇h(x̄)−1|
1−µ|∇h(x̄)−1| .

Proof. A localization σ of h−1 having lip(σ ; ȳ) = |∇h(x̄)−1| is obtained by apply-
ing Theorem 1D.9 to h. Theorem 1E.3 can be invoked then with κ = |∇h(x̄)−1|.

An even more special application, to the case where both f and h are linear,
yields a well-known estimate for matrices.

Corollary 1E.7 (estimation for perturbed matrix inversion). Let A and B be n× n
matrices such that A is nonsingular and |B| < |A−1|−1. Then A+B is nonsingular
with

|(A+B)−1| ≤
(
|A−1|−1−|B|

)−1
.

Proof. This comes from Corollary 1E.6 by taking f (x)= (A+B)x, h(x)=Ax, x̄= 0,
and writing

(
|A−1|−1−|B|

)−1 as |A−1|/(1−|A−1||B|).
We can state 1E.7 in other two equivalent ways, which we give next as an exer-

cise. More about the estimate in 1E.7 will be said in Chapter 5.

Exercise 1E.8 (equivalent estimation rules for matrices). Prove that the following
two statements are equivalent to Corollary 1E.7:

(a) For any n×n matrix C with |C|< 1, the matrix I +C is nonsingular and

(1) |(I +C)−1| ≤ 1
1−|C| .
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(b) For any n×n matrices A and B with A nonsingular and |BA−1|< 1, the matrix
A+B is nonsingular and

|(A+B)−1| ≤ |A−1|
1−|BA−1| .

Guide. Clearly, (b) implies Corollary 1E.7 which in turn implies (a) with A = I and
B=C. Let (a) hold and let the matrices A and B satisfy |BA−1|< 1. Then, by (a) with
C = BA−1 we obtain that I +BA−1 is nonsingular, and hence A+B is nonsingular,
too. Using the equality A+B = (I +BA−1)A in (1) we have

|(A+B)−1|= |A−1(I +BA−1)−1| ≤ |A−1|
1−|BA−1| ,

that is, (a) implies (b).

Corollary 1E.7 implies that, given a nonsingular matrix A,

(2) inf
{
|B|
∣∣A+B is singular

}
≥ |A−1|−1.

It turns out that this inequality is actually equality, another classical result in matrix
perturbation theory.

Theorem 1E.9 (radius theorem for matrix nonsingularity). For any nonsingular ma-
trix A,

inf
{
|B|
∣∣A+B is singular

}
= |A−1|−1.

Proof. It is sufficient to prove the inequality opposite to (2). Choose ȳ ∈ IRn with
|ȳ|= 1 and |A−1ȳ|= |A−1|. For x̄ = A−1ȳ we have |x̄|= |A−1|. The matrix

B =− ȳ x̄T

|x̄|2

satisfies

|B|= max
|x|=1

|ȳ x̄Tx|
|x̄|2 ≤max

|x|=1

|x̄Tx|
|x̄|2 =

|x̄Tx̄|
|x̄|3 =

1
|x̄| = |A

−1|−1.

On the other hand (A+ B)x̄ = Ax̄− ȳ = 0, and since x̄ 6= 0, the matrix A+ B is
singular. Thus the infimum in (2) is not greater than |A−1|−1.

Exercise 1E.10 (radius theorem for function invertibility). Consider a function f :
IRn→ IRn and a point x̄∈ int dom f . Call f smoothly locally invertible at x̄, for short,
when f−1 has a Lipschitz continuous single-valued localization around f (x̄) for x̄
which is strictly differentiable at f (x̄). In this terminology, prove in the case of f
being strictly differentiable at x̄ with its Jacobian ∇ f (x̄) nonsingular, that

inf
{
|B|
∣∣ f +B is not smoothly locally invertible at x̄

}
= |A−1|−1,
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where A = ∇ f (x̄) and the infimum is taken over all linear mappings B : IRn→ IRn.

Guide. Combine 1E.9 and 1D.9.

We will extend the facts in 1E.9 and 1E.10 to the much more general context of
set-valued mappings in Chapter 6.

In the case of Theorem 1E.3 with µ = 0, an actual equivalence emerges between
the invertibility of f and that of h, as captured by the following statement. The key
is the fact that first-order approximation is a symmetric relationship between two
functions.

Theorem 1E.11 (Lipschitz invertibility with first-order approximations). Let h :
IRn→ IRn be a strict first-order approximation to f : IRn→ IRn at x̄ ∈ int dom f , and
let ȳ denote the common value f (x̄) = h(x̄). Then f−1 has a Lipschitz continuous
single-valued localization s around ȳ for x̄ if and only if h−1 has such a localization
σ around ȳ for x̄, in which case

(3) lip(s; ȳ) = lip(σ ; ȳ),

and moreover σ is then a first-order approximation to s at ȳ: s(y) =σ(y)+o(|y− ȳ|).
Proof. Applying Theorem 1E.3 with µ = 0 and κ = lip(σ ; ȳ), we see that f−1 has a
single-valued localization s around ȳ for x̄ with lip(s; ȳ)≤ lip(σ ; ȳ). In these circum-
stances, though, the symmetry in the relation of first-order approximation allows us
to conclude from the existence of this s that h−1 has a single-valued localization σ ′

around ȳ for x̄ with lip(σ ′; ȳ) ≤ lip(s; ȳ). The two localizations of h have to agree
graphically in a neighborhood of (ȳ, x̄), so we can simply speak of σ and conclude
the validity of (3).

To argue that σ is a first-order approximation of s, we begin by using the iden-
tity h(σ(y)) = y to get f (σ(y)) = y+ e(σ(y)) for the function e = f − h and then
transform that into

(4) σ(y) = s(y+ e(σ(y))) for y near ȳ.

Let κ > lip(s; ȳ). From (3) there exists b > 0 such that

(5) max
{
|σ(y)−σ(y′)|, |s(y)− s(y′)|

}
≤ κ|y− y′| for y,y′ ∈ IBb(ȳ).

Because e(x̄) = 0 and lip(e; x̄) = 0, we know that for every ε > 0 there exists a
positive a > 0 for which

(6) |e(x)− e(x′)| ≤ ε|x− x′| for all x,x′ ∈ IBa(x̄).

Choose
0 < β ≤min

{ a
κ
,

b
(1+ εκ)

}
.

Then, for every y ∈ IBβ (ȳ) from (5) we have
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|σ(y)− x̄| ≤ κβ ≤ a,

and
|y+ e(σ(y))− ȳ| ≤ |y− ȳ|+ ε|σ(y)− x̄| ≤ β + εκβ ≤ b.

Hence, utilizing (4), (5) and (6), we obtain

|σ(y)− s(y)| = |s(y+ e(σ(y)))− s(y)|
≤ κ|e(σ(y))− e(σ(ȳ))|
≤ κε|σ(y)−σ(ȳ)| ≤ κ

2
ε|y− ȳ|.

Since ε can be arbitrarily small, we arrive at the equality clm(s−σ ; ȳ) = 0, and this
completes the proof.

Finally, we observe that these results make it possible to deduce a slightly sharper
version of the equivalence in Theorem 1D.9.

Theorem 1E.12 (extended equivalence under strict differentiability). Let f : IRn→
IRn be strictly differentiable at x̄ with f (x̄) = ȳ. Then the following are equivalent:

(a) ∇ f (x̄) is nonsingular;
(b) f−1 has a Lipschitz continuous single-valued localization around ȳ for x̄;
(c) f−1 has a single-valued localization around ȳ for x̄ that is strictly differen-

tiable at ȳ.

In parallel to Theorem 1E.3, it is possible also to state and prove a correspond-
ing implicit function theorem with Lipschitz continuity. For that purpose, we need
to introduce the concept of partial first-order approximations for functions of two
variables.

Partial first-order estimators and approximations. For f : IRd× IRn→ IRm and a
point (p̄, x̄) ∈ int dom f , a function h : IRn→ IRm is said to be an estimator of f with
respect to x uniformly in p at (p̄, x̄) with constant µ if h(x̄) = f (x̄, p̄) and

ĉlm x(e;(p̄, x̄))≤ µ < ∞ for e(p,x) = f (p,x)−h(x).

It is a strict estimator in this sense if the stronger condition holds that

l̂ip x(e;(p̄, x̄))≤ µ < ∞ for e(p,x) = f (p,x)−h(x).

In the case of µ = 0, such an estimator is called a partial first-order approximation.

Theorem 1E.13 (implicit function theorem beyond differentiability). Consider f :
IRd× IRn→ IRn and (p̄, x̄) ∈ int dom f with f (p̄, x̄) = 0 and l̂ip p( f ;(p̄, x̄))≤ γ < ∞.
Let h be a strict estimator of f with respect to x uniformly in p at (p̄, x̄) with constant
µ . Suppose at the point h(x̄) = 0 that h−1 has a Lipschitz continuous single-valued
localization σ around 0 for x̄ with lip(σ ;0)≤ κ for a constant κ such that κµ < 1.
Then the solution mapping
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S : p 7→
{

x ∈ IRn ∣∣ f (p,x) = 0
}

for p ∈ IRd

has a Lipschitz continuous single-valued localization s around p̄ for x̄ with

lip(s; p̄)≤ κγ

1−κµ
.

Moreover, when µ = 0 the function η(p) = σ(− f (p, x̄)) is a first-order approxima-
tion to s at p̄: s(p) = η(p)+o(|p− p̄|).

This is a special instance of the combination of Theorem 2B.7 (for µ > 0) and of
Theorem 2B.8 (for µ = 0) which we will prove in Chapter 2, so there is no purpose
in giving a separate argument for it here. If f (p,x) has the form f (x)− p, in which
case l̂ip p( f ;(p̄, x̄)) = 1, taking γ = 1 we immediately obtain Theorem 1E.3.

Exercise 1E.14 (approximation criteria). Consider f : IRd× IRn→ IRm and h : IRd×
IRn→ IRm with f (p̄, x̄) = h(p̄, x̄), and the difference e(p,x) = f (p,x)−h(p,x). Prove
that

(a) If ĉlm x(e;(p̄, x̄)) = 0 and ĉlm p(e;(p̄, x̄)) = 0, then h is a first-order approx-
imation to f at (p̄, x̄).

(b) If l̂ip x(e;(p̄, x̄)) = 0 and clm p(e;(p̄, x̄)) = 0, then h is a first-order approxi-
mation to f at (p̄, x̄).

(c) If l̂ip x(e;(p̄, x̄)) = 0 and l̂ip p(e;(p̄, x̄)) = 0, then h is a strict first-order ap-
proximation to f at (p̄, x̄).

Exercise 1E.15 (partial first-order approximation from differentiability). Let f :
IRd × IRn → IRm be differentiable with respect to x in a neighborhood of (p̄, x̄) and
let f and ∇x f be continuous in this neighborhood. Prove that the function h(x) =
f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄) is a strict first-order approximation to f with respect to
x uniformly in p at (p̄, x̄). Based on this, derive the Dini classical implicit function
theorem 1B.1 from 1E.13.

Exercise 1E.16 (the zero function as an approximation). Let f : IRd × IRn → IRm

satisfy l̂ip x( f ;(p̄, x̄)) < ∞, and let u : IRd × IRm → IRk have a strict first-order ap-
proximation v with respect to y at (p̄, ȳ), where ȳ := f (p̄, x̄). Show that the zero
function is a strict first-order approximation with respect to x at (p̄, x̄) to the func-
tion (p,x) 7→ u(p, f (p,x))− v( f (p,x)).

As another illustration of applicability of Theorem 1E.3 beyond first-order ap-
proximations, we sketch now a proof of the quadratic convergence of Newton’s
method for solving equations, a method we used in Proof I of the classical inverse
function theorem 1A.1.

Consider the equation g(x) = 0 for a continuously differentiable function g :
IRn → IRn with a solution x̄ at which the Jacobian ∇g(x̄) is nonsingular. Newton’s
method consists in choosing a starting point x0 possibly close to x̄ and generating a
sequence of points x1,x2, . . . according to the rule



1 Introduction and Equation-Solving Background 49

(7) xk+1 = xk−∇g(xk)−1g(xk), k = 0,1, . . . .

According to the classical inverse function theorem 1A.1, g−1 has a smooth single-
valued localization around 0 for x̄. Consider the function f (x) = ∇g(x0)(x− x̄) for
which f (x̄) = g(x̄) = 0 and f (x)−g(x) =−g(x)+∇g(x0)(x− x̄). An easy calcula-
tion shows that the Lipschitz modulus of e = f −g at x̄ can be made arbitrarily small
by making x0 close to x̄. However, this modulus must be nonzero — but less than
|∇g(x̄)−1|−1, the Lipschitz modulus of the single-valued localization of g−1 around
0 for x̄ — if one wants to choose x0 as an arbitrary starting point from an open neigh-
borhood of x̄. Here Theorem 1E.3 comes into play with h = g and ȳ = 0, saying that
f−1 has a Lipschitz continuous single-valued localization s around 0 for x̄ with Lip-
schitz constant, say, µ . (In the simple case considered this also follows directly from
the fact that if ∇g(x̄) is nonsingular at x̄, then ∇g(x) is likewise nonsingular for all x
in a neighborhood of x̄, see Fact 2 in Section 1.1 [1A].) Hence, the Lipschitz constant
µ and the neighborhood V of 0 where s is Lipschitz continuous can be determined
before the choice of x0, which is to be selected so that ∇g(x0)(x0− x̄)−g(x0) is in
V . Noting for the iteration (7) that x1 = s(∇g(x0)(x0− x̄)−g(x0)) and x̄ = s(g(x̄)),
and using the smoothness of g, we obtain

|x1− x̄| ≤ µ|g(x̄)−g(x0)−∇g(x0)(x̄− x0)| ≤ c|x0− x̄|2

for a suitable constant c. This kind of argument works for any k, and in that way,
through induction, we obtain quadratic convergence for Newton’s iteration (7).

In Chapter 6 we will present, in a broader framework of generalized equations in
possibly infinite-dimensional spaces, a detailed proof of this quadratic convergence
of Newton’s method and study its stability properties.

1.6 [1F] Selections of Multi-valued Inverses

Consider a function f which acts between Euclidean spaces of possibly different
dimensions, say f : IRn → IRm. What can be said then about the inverse mapping
f−1? The case of f (x) = Ax+ b with A ∈ IRm×n and b ∈ IRm gives an indication of
the differences that must be expected: when m < n, the equation Ax+ b = y either
has no solution x or a continuum of solutions, so that the existence of single-valued
localizations is totally hopeless. Anyway, though, if A has full rank m, we know at
least that f−1(y) will be nonempty for every y.

Do we really always have to assume that m = n in order to get a single-valued
localization of the inverse? Specifically, consider a function f acting from IRn to
IRm with m ≤ n and a point x̄ in the interior of the domain of f . Suppose that f is
continuous in an open neighborhood U of x̄ and the inverse f−1 has a single-valued
localization around f (x̄) for x̄. It turns out that in this case we necessarily must have
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m = n. This is due to a basic result in topology, the following version of which,
stated here without proof, will serve our purposes.

Theorem 1F.1 (Brouwer invariance of domain theorem). Let O⊂ IRn be open and
for m≤ n let f : O→ IRm be continuous and such that f−1 is single-valued on f (O).
Then f (O) is open, f−1 is continuous on f (O), and m = n.

This topological result reveals that, for continuous functions f , the dimension of
the domain space has to agree with the dimension of the range space, if there is to be
any hope of an inverse function theorem claiming the existence of a single-valued
localization of f−1. Of course, in the theorems already viewed for differentiable
functions f , the dimensions were forced to agree because of a rank condition on
the Jacobian matrix, but we see now that this limitation has a deeper source than a
matrix condition.

Brouwer’s invariance of domain theorem 1F.1 helps us to obtain the following
characterization of the existence of a Lipschitz continuous single-valued localization
of the inverse:

Theorem 1F.2 (invertibility characterization). For a function f : IRn → IRn that is
continuous around x̄, the inverse f−1 has a Lipschitz continuous single-valued lo-
calization around f (x̄) for x̄ if and only if, in some neighborhood U of x̄, there is a
constant c > 0 such that

(1) c|x′− x| ≤ | f (x′)− f (x)| for all x′,x ∈U.

Proof. Let (1) hold. There is no loss of generality in supposing that U is open and
f is continuous on U . For any y ∈ f (U) :=

{
f (x)

∣∣x ∈U
}

, we have from (1) that
if both f (x) = y and f (x′) = y with x and x′ in U , then x = x′; in other words, the
mapping s which takes y∈ f (U) to U∩ f−1(y) is actually a function on f (U). More-
over |s(y′)−s(y)| ≤ (1/c)|y′−y| by (1), so that this function is Lipschitz continuous
relative to f (U).

But this is not yet enough to get us to the desired conclusion about f−1. For that,
we need to know that s, or some restriction of s, is a localization of f−1 around
f (x̄) for x̄, with graph equal to (V ×U)∩ gph f−1 for some neighborhood V of
f (x̄). Brouwer’s invariance of domain theorem 1F.1 enters here: as applied to the
restriction of f to the open set U , it tells us that f (U) is open. We can therefore take
V = f (U) and be done.

Conversely, suppose that f−1 has a Lipschitz continuous single-valued localiza-
tion around f (x̄) for x̄, its domain being a neighborhood V of f (x̄). Let κ be a
Lipschitz constant for s on V . Because f is continuous around x̄, there is a neigh-
borhood U of x̄ such that f (U) ⊂ V . For x and x′ in U , we have s( f (x)) = x and
s( f (x′)) = x′, hence |x′− x| ≤ κ| f (x′)− f (x)|. Thus, (1) holds for any c > 0 small
enough such that cκ ≤ 1.

We will now re-prove the classical inverse function theorem in a somewhat dif-
ferent formulation having an important extra feature, which is here derived from
Brouwer’s invariance of domain theorem 1F.1.
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A continuously differentiable function f acting between some open sets U and V
in IRn and having the property that the inverse mapping f−1 is continuously differ-
entiable, is called a diffeomorphism (or C 1 diffeomorphism) between U and V . The
theorem stated next says that when ∇ f (x̄) is nonsingular, then f is a diffeomorphism
relative to open neighborhoods U of x̄ and V of f (x̄).

Theorem 1F.3 (inverse function theorem for local diffeomorphism). Let f : IRn→
IRn be continuously differentiable in a neighborhood of a point x̄ and let the Jacobian
∇ f (x̄) be nonsingular. Then for some open neighborhood U of x̄ there exists an open
neighborhood V of ȳ := f (x̄) and a continuously differentiable function s : V →U
which is one-to-one from V onto U and which satisfies s(y) = f−1(y)∩U for all
y ∈V . Moreover, the Jacobian of s is given by

∇s(y) = ∇ f (s(y))−1 for every y ∈V.

Proof. First, we utilize a simple observation from linear algebra: for a nonsingular
n× n matrix A, one has |Ax| ≥ |x|/|A−1| for every x ∈ IRn. Thus, let c > 0 be such
that |∇ f (x̄)u| ≥ 2c|u| for every u ∈ IRn and choose a > 0 to have, on the basis of (b)
in Fact 1 of Section 1.1 [1A], that

| f (x′)− f (x)−∇ f (x̄)(x′− x)| ≤ c|x′− x| for every x′,x ∈ IBa(x̄).

Using the triangle inequality, for any x′,x ∈ IBa(x̄) we then have

| f (x′)− f (x)| ≥ |∇ f (x̄)(x′− x)|− c|x′− x| ≥ 2c|x′− x|− c|x′− x| ≥ c|x′− x|.

We can therefore apply 1F.2, obtaining that there is an open neighborhood U of x̄
relative to which f is continuous and f−1 is single-valued on V := f (U). Brouwer’s
theorem 1F.1 then tells us that V is open. Then the mapping s : V →U whose graph
is gph s = gph f−1 ∩ (V ×U) is the claimed single-valued localization of f−1 and
the rest is argued through Step 3 in Proof I of 1A.1.

Exercise 1F.4 (implicit function version). Let f : IRd × IRn → IRn be continuously
differentiable in a neighborhood of (p̄, x̄) and such that f (p̄, x̄) = 0, and let ∇x f (p̄, x̄)
be nonsingular. Then for some open neighborhood U of x̄ there exists an open neigh-
borhood Q of p̄ and a continuously differentiable function s : Q → U such that{
(p,s(p))

∣∣ p ∈ Q
}
=
{
(p,x)

∣∣ f (p,x) = 0
}
∩ (Q×U); that is, s is a single-valued

localization of the solution mapping S(p) =
{

x
∣∣ f (p,x) = 0

}
with associated open

neighborhoods Q for p̄ and U for x̄. Moreover, the Jacobian of s is given by

∇s(p) =−∇x f (p,s(p))−1
∇p f (p,s(p)) for every p ∈ Q.

Guide. Apply 1F.3 in the same way as 1A.1 is used in the proof of 1B.1.

Exercise 1F.5. Derive Theorem 1D.9 from 1F.2.
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Guide. By 1D.7, strict differentiability is equivalent to the assumption in Fact 1 of
Section 1.1 [1A]; then repeat the argument in the proof of 1F.3.

Brouwer’s invariance of domain theorem tells us that, for a function f : IRn→ IRm

with m < n, the inverse f−1 fails to have a localization which is single-valued. In
this case, however, although multivalued, f−1 may “contain” a function with the
properties of the single-valued localization for the case m = n. Such functions are
generally called selections and their formal definition is as follows.

Selections. Given a set-valued mapping F : IRn→→ IRm and a set D⊂ dom F , a func-
tion w : IRn→ IRm is said to be a selection of F on D if dom w⊃D and w(x) ∈ F(x)
for all x ∈ D. If (x̄, ȳ) ∈ gph F , D is a neighborhood of x̄ and w is a selection on D
which satisfies w(x̄) = ȳ, then w is said to be a local selection of F around x̄ for ȳ.

A selection of the inverse f−1 of a function f : IRn → IRm might provide a left
inverse or a right inverse to f . A left inverse to f on D is a selection l : IRm→ IRn of
f−1 on f (D) such that l( f (x)) = x for all x∈D. Analogously, a right inverse to f on
D is a selection r : IRm→ IRn of f−1 on f (D) such that f (r(y)) = y for all y ∈ f (D).
Commonly known are the right and the left inverses of the linear mapping from
IRn to IRm represented by a matrix A ∈ IRm×n that is of full rank. When m ≤ n, the
right inverse of the mapping corresponds to AT(AAT)−1, while when m≥ n, the left
inverse6 corresponds to (ATA)−1AT. For m = n they coincide and equal the inverse.
In general, of course, whenever a mapping f is one-to-one from a set C to f (C), any
left inverse to f on C is also a right inverse, and vice versa, and the restriction of
such an inverse to f (C) is uniquely determined.

The following result can be viewed as an extension of the classical inverse func-
tion theorem 1A.1 for selections.

Theorem 1F.6 (inverse selections when m ≤ n). Let f : IRn → IRm, where m ≤ n,
be k times continuously differentiable in a neighborhood of x̄ and suppose that its
Jacobian ∇ f (x̄) is full rank m. Then, for ȳ = f (x̄), there exists a local selection s of
f−1 around ȳ for x̄ which is k times continuously differentiable in a neighborhood
V of ȳ and whose Jacobian satisfies

(2) ∇s(ȳ) = AT(AAT)−1, where A := ∇ f (x̄).

Proof. There are various ways to prove this; here we apply the classical inverse
function theorem. Since A has rank m, the m×m matrix AAT is nonsingular. Then
the function ϕ : IRm→ IRm defined by ϕ(u) = f (ATu) is k times continuously differ-
entiable in a neighborhood of the point ū := (AAT)−1Ax̄, its Jacobian ∇ϕ(ū) = AAT

is nonsingular, and noting that x̄ = ATū we get ϕ(ū) = ȳ. Then, from Theorem 1A.1
supplemented by Proposition 1B.5, it follows that ϕ−1 has a single-valued local-
ization σ at ȳ for ū which is k times continuously differentiable near ȳ with Jaco-
bian ∇σ(ȳ) = (AAT)−1. But then the function s(y) = ATσ(y) satisfies s(ȳ) = x̄ and

6 The left inverse and the right inverse are particular cases of the Moore-Penrose pseudo-inverse
A+ of a matrix A. For more on this, including the singular-value decomposition, see Golub and
Van Loan [1996].



1 Introduction and Equation-Solving Background 53

f (s(y)) = y for all y near ȳ and is k times continuously differentiable near ȳ with
Jacobian satisfying (2). Thus, s(y) is a solution of the equation f (x) = y for y close
to ȳ and x close to x̄, but perhaps not the only solution there, as it would be in the
classical inverse function theorem. Therefore, s is a local selection of f−1 around ȳ
for x̄ with the desired properties.

When m = n the Jacobian becomes nonsingular and the right inverse of A in (2)
is just A−1. The uniqueness of the localization can be obtained much as in Step 2 of
Proof I of the classical theorem 1A.1.

Exercise 1F.7 (parameterization of solution sets). Let M =
{

x
∣∣ f (x) = 0

}
for a

function f : IRn→ IRm, where n−m = d > 0. Let x̄ ∈M be a point around which f
is k times continuously differentiable, and suppose that the Jacobian ∇ f (x̄) has full
rank m. Then for some open neighborhood U of x̄ there is an open neighborhood
O of the origin in IRd and a k times continuously differentiable function s : O→U
which is one-to-one from O onto M∩U , such that the Jacobian ∇s(0) has full rank
d and

∇ f (x̄)w = 0 if and only if there exists q ∈ IRd with ∇s(0)q = w.

Guide. Choose an d×n matrix B such that the matrix(
∇ f (x̄)

B

)
is nonsingular. Consider the function

f̄ : (p,x) 7→
(

f (x)
B(x− x̄)− p

)
for (p,x) near (0, x̄),

and apply 1F.6 (with a modification parallel to 1B.5) to the equation f̄ (p,x) = (0,0),
obtaining for the solution mapping of this equation a localization s with f̄ (p,s(p))=
(0,0), i.e., Bs(p) = p+Bx̄ and f (s(p)) = 0. Show that this function s has the prop-
erties claimed.

Exercise 1F.8 (strictly differentiable selections). Let f : IRn → IRm, where m ≤ n,
be strictly differentiable at x̄ with Jacobian A := ∇ f (x̄) of full rank. Then there
exists a local selection s of the inverse f−1 around ȳ := f (x̄) for x̄ which is strictly
differentiable at ȳ and with Jacobian ∇s(ȳ) satisfying (2).

Guide. Mimic the proof of 1F.6 taking into account 1D.9.

Exercise 1F.9 (implicit selections). Consider a function f : IRd× IRn→ IRm, where
m≤ n, along with the associated solution mapping

S : p 7→
{

x ∈ IRn ∣∣ f (p,x) = 0
}

for p ∈ IRd .
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Let f (p̄, x̄) = 0, so that x̄ ∈ S(p̄). Assume that f is strictly differentiable at (p̄, x̄)
and suppose further that the partial Jacobian ∇x f (p̄, x̄) is of full rank m. Then the
mapping S has a local selection s around p̄ for x̄ which is strictly differentiable at p̄
with Jacobian

∇s(p̄) = AT(AAT)−1
∇p f (p̄, x̄), where A = ∇x f (p̄, x̄).

Guide. Use 1F.8 and the argument in the proof of 1B.1.

1.7 [1G] Selections from Nonstrict Differentiability

Even in the case when a function f maps IRn to itself, the inverse f−1 may fail to
have a single-valued localization around ȳ = f (x̄) for x̄ if f is not strictly differ-
entiable but merely differentiable at x̄ with Jacobian ∇ f (x̄) nonsingular. As when
m < n, we have to deal with just a local selection of f−1.

Theorem 1G.1 (inverse selections from nonstrict differentiability). Let f : IRn →
IRn be continuous in a neighborhood of a point x̄ ∈ int dom f and differentiable at
x̄ with ∇ f (x̄) nonsingular. Then, for ȳ = f (x̄), there exists a local selection of f−1

around ȳ for x̄ which is continuous at ȳ. Moreover, every local selection s of f−1

around ȳ for x̄ which is continuous at ȳ has the property that

(1) s is differentiable at ȳ with Jacobian ∇s(ȳ) = ∇ f (x̄)−1.

The verification of this claim relies on the following fixed point theorem, which
we state here without proof.

Theorem 1G.2 (Brouwer fixed point theorem). Let Q be a compact and convex set
in IRn, and let Φ : IRn→ IRn be a function which is continuous on Q and maps Q into
itself. Then there exists a point x ∈ Q such that Φ(x) = x.

Proof of Theorem 1G.1. Without loss of generality, we can suppose that x̄ = 0 and
f (x̄) = 0. Let A := ∇ f (0) and choose a neighborhood U of 0 ∈ IRn. Take c≥ |A−1|.
Choose any α ∈ (0,c−1). From the assumed differentiability of f , there exists a > 0
such that x ∈ aIB implies | f (x)−Ax| ≤ α|x|. By making a smaller if necessary, we
can arrange that f is continuous in aIB and aIB ⊂U . Let b = a(1− cα)/c and pick
any y ∈ bIB. Consider the function

Φy : x 7→ x−A−1( f (x)− y
)

for x ∈ aIB.

This function is of course continuous on the compact and convex set aIB. Further-
more, for any x ∈ aIB we have



1 Introduction and Equation-Solving Background 55

|Φy(x)| = |x−A−1( f (x)− y)|= |A−1(Ax− f (x)+ y)| ≤ |A−1|(|Ax− f (x)|+ |y|)
≤ c|Ax− f (x)|+ c|y| ≤ cα|x|+ cb≤ cαa+ ca(1− cα)/c = a,

so Φy maps aIB into itself. Then, by Brouwer’s fixed point theorem 1G.2, there
exists a point x ∈ aIB such that Φy(x) = x. Note that, in contrast to the contraction
mapping principle 1A.2, this point may be not unique in aIB. But Φy(x) = x if and
only if f (x) = y. For each y ∈ bIB, y 6= 0, we pick one x ∈ aIB such that x = Φy(x);
then x ∈ f−1(y). For y = 0 we take x = 0, which is clearly in f−1(0). Denoting this
x by s(y), we deduce the existence of a local selection s : bIB→ aIB of f−1 around 0
for 0, also having the property that for any neighborhood U of 0 there exists b > 0
such that s(y) ∈U for y ∈ bIB, that is, s is continuous at 0.

Let s be a local selection of f−1 around 0 for 0 that is continuous at 0. Choose c,
α and a as in the beginning of the proof. Then there exists b′ > 0 with the property
that s(y) ∈ f−1(y)∩aIB for every y ∈ b′IB. This can be written as

s(y) = A−1(As(y)− f (s(y))+ y) for every y ∈ b′IB,

which gives

|s(y)| ≤ |A−1|(|As(y)− f (s(y))|+ |y|)≤ cα|s(y)|+ c|y|,

that is,

(2) |s(y)| ≤ c
1− cα

|y| for all y ∈ b′IB.

In particular, s is calm at 0. But we have even more. Choose any ε > 0. The differ-
entiability of f with ∇ f (0) = A furnishes the existence of τ ∈ (0,a) such that

(3) | f (x)−Ax| ≤ (1− cα)ε

c2 |x| whenever |x| ≤ τ.

Let δ = min{b′,τ(1− cα)/c}. Then on δ IB we have our local selection s of f−1

satisfying (2) and consequently

|s(y)| ≤ c
1− cα

δ ≤ c
1− cα

(1− cα)τ

c
= τ when |y| ≤ δ .

Taking norms in the identity

s(y)−A−1y =−A−1( f (s(y))−As(y)
)
,

and using (2) and (3), we obtain for |y| ≤ δ that

∣∣s(y)−A−1y
∣∣≤ |A−1|| f (s(y))−As(y)| ≤ c(1− cα)ε

c2 |s(y)| ≤ c(1− cα)εc
c2(1− cα)

|y|= ε|y|.

Having demonstrated that for every ε > 0 there exists δ > 0 such that
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|s(y)−A−1y| ≤ ε|y| when |y| ≤ δ ,

we conclude that (1) holds, as claimed.

In order to gain more insight into what Theorem 1G.1 does or does not say, think
about the case where the assumptions of the theorem hold and f−1 has a localiza-
tion around ȳ for x̄ that avoids multivaluedness. This localization must actually be
single-valued around ȳ, coinciding in some neighborhood with the local selection s
in the theorem. Then we have a result which appears to be fully analogous to the
classical inverse function theorem, but its shortcoming is the need to guarantee that
a localization of f−1 without multivaluedness does exist. That, in effect, is what
strict differentiability of f at x̄, in contrast to just ordinary differentiability, is able to
provide. An illustration of how inverse multivaluedness can indeed come up when
the differentiability is not strict has already been encountered in Example 1E.5 with
α ∈ (0,1). Observe that in this example there are infinitely many (even uncountably
many) local selections of the inverse f−1 and, as the theorem says, each is continu-
ous and even differentiable at 0, but also each selection is discontinuous at infinitely
many points near but different from zero.

We can now partially extend Theorem 1G.1 to the case when m≤ n.

Theorem 1G.3 (differentiable inverse selections). Let f : IRn→ IRm be continuous
in a neighborhood of a point x̄ ∈ int dom f and differentiable at x̄ with A := ∇ f (x̄)
of full rank m. Then, for ȳ = f (x̄), there exists a local selection s of f−1 around ȳ
for x̄ which is differentiable at ȳ.

Comparing 1G.1 with 1G.3, we see that the equality m = n gives us not only the
existence of a local selection which is differentiable at ȳ but also that every local
selection which is continuous at ȳ, whose existence is assured also for m < n, is
differentiable at ȳ with the same Jacobian. Of course, if we assume in addition that
f is strictly differentiable, we obtain strict differentiability of s at ȳ. To get this last
result, however, we do not have to resort to Brouwer’s fixed point theorem 1G.2.

Theorem 1G.1 is in fact a special case of a still broader result in which f does
not need to be differentiable.

Theorem 1G.4 (inverse selections from first-order approximation). Let f : IRn →
IRm be continuous around x̄ with f (x̄) = ȳ, and let h : IRn → IRm be a first-order
approximation of f at x̄ which is continuous around x̄. Suppose h−1 has a Lipschitz
continuous local selection σ around ȳ for x̄. Then f−1 has a local selection s around
ȳ for x̄ for which σ is a first-order approximation at ȳ: s(y) = σ(y)+o

(
|y− ȳ|

)
.

Proof. We follow the proof of Theorem 1G.1 with some important modifications.
Without loss of generality, take x̄ = 0, ȳ = 0. Let U be a neighborhood of the origin
in IRn. Let γ > 0 be such that σ is Lipschitz continuous on γIB, and let c > 0 be a
constant for this. Choose α such that 0 < α < c−1 and a > 0 with aIB⊂U and such
that αa≤ γ/2, f and h are continuous on aIB, and

(4) |e(x)| ≤ α|x| for all x ∈ aIB, where e(x) = f (x)−h(x).
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Let

(5) 0 < b≤min
{

a(1− cα)

c
,

γ

2

}
.

For x ∈ aIB and y ∈ bIB we have

(6) |y− e(x)| ≤ αa+b≤ γ.

Fix y ∈ bIB and consider the function

(7) Φy : x 7→ σ(y− e(x)) for x ∈ aIB.

This function is of course continuous on aIB; moreover, from (6), the Lipschitz con-
tinuity of σ on γIB with constant c, the fact that σ(0) = 0, and the choice of b in (5),
we obtain

|Φy(x)|= |σ(y− e(x))|= |σ(y− e(x))−σ(0)| ≤ c(αa+b)≤ a for all x ∈ aIB.

Hence, by Brouwer’s theorem 1G.2, there exists x ∈ aIB with x = σ(y−e(x)). Then
h(x) = h(σ(y− e(x))) = y− e(x), that is, f (x) = y. For each y ∈ bIB, y 6= 0 we pick
one such fixed point x of the function Φy in (7) in aIB and call it s(y); for y = 0
we set s(0) = 0 ∈ f−1(0). The function s is a local selection of f−1 around 0 for 0
which is, moreover, continuous at 0, since for an arbitrary neighborhood U of 0 we
found b > 0 such that s(y) ∈U whenever |y| ≤ b. Also, for any y ∈ bIB we have

(8) s(y) = σ(y− e(s(y))).

From the continuity of s at 0 there exists b′ ∈ (0,b) such that |s(y)| ≤ a for all y ∈
b′IB. For y ∈ b′IB, we see from (4), (8), the Lipschitz continuity of σ with constant c
and the equality σ(0) = 0 that

|s(y)|= |σ(y− e(s(y)))−σ(0)| ≤ cα|s(y)|+ c|y|.

Hence, since cα < 1,

(9) |s(y)| ≤ c
1−αc

|y| when |y| ≤ b′.

Now, let ε > 0. By the assumption that h is a first-order approximation of f at 0,
there exists τ ∈ (0,a) such that

(10) |e(x)| ≤ (1−αc)ε
c2 |x| whenever |x| ≤ τ.

Finally, taking b′ > 0 smaller if necessary and using (9) and (10), for any y with
|y| ≤ b′ we obtain

|s(y)−σ(y)| =
∣∣σ(y− e(s(y)))−σ(y)|
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≤ c|e(s(y))| ≤ c
(1−αc)ε

c2 |s(y)|

≤ c
(1−αc)ε

c2
c

1−αc
|y|= ε|y|.

Since for any ε > 0 we found b′ > 0 for which this holds when |y| ≤ b′, the proof is
complete.

Proof of Theorem 1G.3. Apply Theorem 1G.4 with

h(x) = f (x̄)+A(x− x̄) and σ(y) = AT(AAT)−1y.

We state next as an exercise an implicit function counterpart of 1G.3.

Exercise 1G.5 (differentiability of a selection). Consider a function f : IRd× IRn→
IRm with m≤ n, along with the solution mapping

S : p 7→
{

x
∣∣ f (p,x) = 0

}
for p ∈ IRd .

Let f (p̄, x̄) = 0, so that x̄ ∈ S(p̄), and suppose f is continuous around (p̄, x̄) and
differentiable at (p̄, x̄). Assume further that ∇x f (p̄, x̄) has full rank m. Prove that the
mapping S has a local selection s around p̄ for x̄ which is differentiable at p̄ with
Jacobian

∇s(ȳ) = AT(AAT)−1
∇p f (p̄, x̄), where A = ∇x f (p̄, x̄).

The existence of a local selection of the inverse of a function f around ȳ = f (x̄)
for x̄ implies in particular that f−1(y) is nonempty for all y in a neighborhood of
ȳ = f (x̄). This weaker property has even deeper significance and is defined next.

Openness. A function f : IRn→ IRm is said to be open at x̄ if x̄ ∈ int dom f and for
every neighborhood U of x̄ the set f (U) is a neighborhood of f (x̄).

Thus, f is open at x̄ if for every open neighborhood U of x̄ there is an open
neighborhood V of ȳ = f (x̄) such that f−1(y)∩U 6= /0 for every y ∈V . In particular,
this corresponds to the localization of f−1 relative to V and U being nonempty-
valued on V , but goes further than referring just to one such localization at ȳ for x̄. It
actually requires the existence of a nonempty-valued graphical localization for every
neighborhood U of x̄, no matter how small. From 1G.3 we obtain the following basic
result about openness:

Corollary 1G.6 (Jacobian criterion for openness). For a function f : IRn → IRm,
where m ≤ n, suppose that f is continuous around x̄ and differentiable at x̄ with
∇ f (x̄) being of full rank m. Then f is open at x̄.

There is much more to say about openness of functions and set-valued mappings,
and we will explore this in detail in Chapters 3 and 5.
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1.8 [1H] An Implicit Function Theorem for Monotone Functions

In the preceding sections we considered implicit function theorems for for differen-
tiable functions, or functions having first-order approximations at least. What could
we say about the inverse f−1 of a function f : IRn→ IRn when f is merely continu-
ous? A good motivation to have a closer look at this issue is the fact, often mentioned
in basic calculus texts, that if a continuous function f : IR→ IR is strictly increas-
ing (decreasing) on an interval [a,b] then the inverse f−1 restricted to [ f (a), f (b)]
([ f (b), f (a)]) is a continuous function. There is no need to require differentiability
here; the condition that the derivative is nonzero on [a,b] guarantees that the graph
of the function f is not “flat”, which makes it invertible. We can extend the pattern
to higher dimensions when we utilize the concept of monotonicity.

Monotone functions. A function f : IRn → IRn is said to be monotone on a set
C ⊂ dom f if C is convex and

(1) 〈 f (x′)− f (x),x′− x〉 ≥ 0 for all x,x′ ∈C.

It is strictly monotone on C if (1) holds as a strict inequality for all x,x′ ∈ C with
x 6= x′. Further, f is strongly monotone on C if there exists µ > 0 such that

〈 f (x′)− f (x),x′− x〉 ≥ µ|x′− x|2 for all x,x′ ∈C.

The name “monotonicity” comes from the following characterization of the
defining property.

Exercise 1H.1 (monotonicity along line segments). Prove the following statements:
A function f : IRn→ IRn is monotone on a convex set C⊂ dom f when for every x̂ ∈
C and w∈ IRn with |w|= 1, the function τ 7→ϕ(τ)= 〈 f (x̂+τw),w〉 is nondecreasing
over the (interval of) τ values such that x̂+ τw ∈ C. If f is strictly monotone on
C, then ϕ is strictly increasing over the same interval. Strong monotonicity with
constant µ > 0 corresponds to the condition that ϕ(τ ′)−ϕ(τ) ≥ µ(τ ′− τ) when
τ ′ > τ .

An affine function f (x) = a+Ax with a ∈ IRn and A ∈ IRn×n is monotone on IRn

if and only if 〈w,Aw〉 ≥ 0 for all w, i.e., A is positive semidefinite. It is strongly
monotone if and only if 〈w,Aw〉> 0 for all w 6= 0, i.e., A is positive definite. These
terms make no requirement of symmetry on A. It may be recalled that any square
matrix A can be written as a sum As +Aa in which As is symmetric (AT

s = As) and
Aa is antisymmetric (AT

a =−Aa), namely with As =
1
2 [A+AT] and Aa =

1
2 [A−AT];

then 〈w,Aw〉 = 〈w,Asw〉. The monotonicity of f (x) = a+Ax thus depends only on
the symmetric part As of A; the antisymmetric part Aa can be anything.

For differentiable functions f that aren’t affine, monotonicity has a similar char-
acterization with respect to the Jacobian matrices ∇ f (x).

Exercise 1H.2 (monotonicity from derivatives). For a function f : IRn→ IRn that is
continuously differentiable on an open convex set O⊂ dom f , verify the following
facts.
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(a) A necessary and sufficient condition for f to be monotone on O is the positive
semidefiniteness of ∇ f (x) for all x ∈ O.

(b) If ∇ f (x) is positive definite at every point x of a convex set C ⊂ O, then f is
strictly monotone on C.

(c) If ∇ f (x) is positive definite at every point x of a closed, bounded, convex set
C ⊂ O, then f is strongly monotone on C.

(d) If C is a convex subset of O such that 〈∇ f (x)w,w〉 ≥ 0 for every x ∈C and
w ∈C−C, then f is monotone on C.

(e) If C is a convex subset of O such that 〈∇ f (x)w,w〉 > 0 for every x ∈C and
w ∈C−C, then f is strictly monotone on C.

(f) If C is a convex subset of O such that 〈∇ f (x)w,w〉 ≥ µ|w|2 for every x ∈C
and every w∈C−C for some µ > 0, then f is strongly monotone on C with constant
µ .

Guide. Derive this from the characterizations in 1H.1 by investigating the deriva-
tives of the function ϕ(τ) introduced there. In proving (c), argue by way of the mean
value theorem that 〈 f (x′)− f (x),x′−x〉 equals 〈∇ f (x̃)(x′−x),x′−x〉 for some point
x̃ on the line segment joining x with x′.

We will present next an implicit function theorem for strictly monotone func-
tions. Monotonicity will be employed again in Section 2F to obtain inverse function
theorems in the broader context of variational inequalities.

Theorem 1H.3 (implicit function theorem for strictly monotone functions). Consider
a function f : IRd × IRn→ IRn and a point (p̄, x̄) ∈ int dom f satisfying f (p̄, x̄) = 0.
Suppose that there are neighborhoods Q of p̄ and U of x̄ such that f is continuous
on Q×U and for each p ∈ Q the function f (p, ·) is strictly monotone on U . Then
the solution mapping

S(p) =
{

x ∈ IRn ∣∣ f (p,x) = 0
}

for p ∈ IRd

has a single-valued localization around p̄ for x̄ which is continuous at p̄. If f (p, ·) is
strongly monotone on U uniformly in p ∈ Q and f (·,x) is Lipschitz continuous on
Q uniformly in x ∈U , then S has a Lipschitz continuous single-valued localization
around p̄ for x̄.

Proof. First, observe that if p ∈ dom S∩Q then S(p)∩U consists of one element,
if any. Indeed, if there exist two elements x,x′ ∈ S(p)∩U with x 6= x′, then from the
strict monotonicity we obtain 0 = 〈 f (p,x)− f (p,x′),x− x′〉 > 0, a contradiction.
Thus, all we need is to establish that dom S contains a neighborhood of p̄.

Without loss of generality, let x̄ = 0 and choose δ > 0 such that δ IB ⊂U . For
ε ∈ (0,δ ] define

d(ε) = inf
ε≤|x|≤δ

[
1
|x| 〈x, f (p̄,x)〉

]
.

Choose x ∈ IRn with |x| ∈ [ε,δ ]. Since f (p̄,0) = 0, from the strict monotonicity of
f (p̄, ·) we obtain that 〈 f (p̄,x),x〉 > 0, hence d(ε) ≥ 0 for all ε > 0. Assume that
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there exists ε0 > 0 such that d(ε0) = 0. Then there exists a sequence {xk} with
ε0 ≤ |xk| ≤ δ such that

1
|xk|
〈xk, f (p̄,xk)〉 → 0.

Since xk ∈ δ IB the sequence {xk} has an accumulation point x̃ satisfying 〈x̃, f (p̄, x̃)〉=
0. But |x̃| ≥ ε0 which, combined with the strict monotonicity, gives us

0 = 〈x̃, f (p̄, x̃)− f (p̄,0)〉> 0,

a contradiction. Hence d(ε)> 0 for all ε ∈ (0,δ ]. Clearly, d(ε)↘0 as ε↘0, and d(·)
is strictly increasing; thus d(δ )> 0.

Let µ ∈ (0,d(δ )) and let τ > 0 be such that IBτ(p̄) ⊂ Q. From the continuity of
f with respect to p ∈ IBτ(p̄) uniformly in x ∈ {x | ‖x‖= δ IB} there exists ν ∈ (0,τ)
such that for any p ∈ IBν(p̄) and any x on the boundary of δ IB, we have

(2)
1
|x| 〈x, f (p,x)〉 ≥ 1

|x| 〈x, f (p̄,x)〉−µ ≥ d(δ )−µ > 0.

For a fixed p ∈ IBτ(p̄) consider the function

x 7→Φ(x) = Pδ IB(x− f (p,x)) for x ∈ δ IB,

where, as usual, PC(y) is the Euclidean projection of y on the set C. By the Brouwer
fixed point theorem 1G.2, Φ has a fixed point x̂ in δ IB. Let |x̂| = δ , that is, x̂ is on
the boundary of the ball δ IB. Then, by the properties of the projection we have that

〈0− x̂, x̂− f (p, x̂)− x̂〉 ≤ 0, that is,
1
|x̂| 〈x̂, f (p, x̂)〉 ≤ 0.

On the other hand, the inequality (2) for the fixed p and x = x̂ leads us to

1
|x̂| 〈x̂, f (p, x̂)〉 ≥ 1

|x̂| 〈x, f (p̄, x̂)〉−µ ≥ d(δ )−µ > 0.

The obtained contradiction implies that x̂ is in the interior of δ IB, in which case we
have x̂ = x̂− f (p, x̂), that is, x̂ ∈ S(p), which means that S(p)∩ δ IB 6= /0. Thus, the
mapping p 7→ S(p)∩U is a function, to be denoted by x(·), whose domain contains
IBν(p̄).

To prove the continuity of S at p̄ it is sufficient to repeat the preceding argument.
Indeed, we have chosen δ > 0 and then found ν > 0 such that for all p ∈ IBν(p̄) the
value x(p) of the localization of S(p) is at distance less than δ from 0 = x̄ = x(p̄).
Hence x(·) is continuous at p̄.

Suppose that f (p, ·) is strongly monotone on U uniformly in p ∈ Q. For p, p′ ∈
IBν(p̄), p 6= p′, let x(p) and x(p′) be the values of the single-valued localization of
S around p̄ for 0. From the strong monotonicity we have that for some c > 0,

〈 f (p,x(p))− f (p,x(p′)),x(p)− x(p′)〉 ≥ c|x(p)− x(p′)|2.
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Combining this with the equalities f (p,x(p)) = f (p′,x(p′)) = 0, taking norms, and
utilizing the Lipschitz continuity of f (·,x) with constant L, we get

L|p− p′||x(p)− x(p′)| ≥
|x(p)− x(p′)|| f (p′,x(p′))− f (p,x(p′))| ≥ c|x(p)− x(p′)|2.

This gives us Lipschitz continuity of x(·), and the proof is complete.
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Commentary

Although functions given implicitly by equations had been considered earlier by
Descartes, Newton, Leibnitz, Lagrange, Bernoulli, Euler, and others, Cauchy [1831]
is credited by historians to be the first who stated and rigorously proved an im-
plicit function theorem — for analytic functions, by using his calculus of residuals
and limits. As we mentioned in the preamble to this chapter, Dini [1877/78] gave
the form of the implicit function theorem for continuously differentiable functions
which is now used in most calculus books; in his proof he relied on the mean value
theorem. More about early history of the implicit function theorem can be found
in historical notes of the paper of Hurwicz and Richter [2003] and in the book of
Krantz and Parks [2002].

Proof I of the classical inverse function theorem, 1A.1, goes back to Goursat
[1903]7. Most likely not aware of Dini’s theorem and inspired by Picard’s suc-
cessive approximation method for proving solution existence of differential equa-
tions, Goursat stated an implicit function theorem under assumptions weaker than
in Dini’s theorem, and supplied it with a new path-breaking proof. With updated
notation, Goursat’s proof employs the iterative scheme

(1) xk+1 = xk−A−1 f (p,xk), where A = ∇x f (p̄, x̄).

This scheme would correspond to Newton’s method for solving f (p,x) = 0 with
respect to x if A were replaced by Ak giving the partial derivative at (p,xk) instead
of (p̄, x̄). But Goursat proved anyway that for each p near enough to p̄ the sequence
{xk} is convergent to a unique point x(p) close to x̄, and furthermore that the func-
tion p 7→ x(p) is continuous at p̄. Behind the scene, as in Proof I of Theorem 1A.1,
is the contraction mapping idea. An updated form of Goursat’s implicit function
theorem is given in Theorem 1B.6. In the functional analysis text by Kantorovich
and Akilov [1964], Goursat’s iteration is called a “modified Newton’s method.”

The rich potential in this proof was seen by Lamson [1920], who used the itera-
tions in (1) to generalize Goursat’s theorem to abstract spaces. Especially interesting
for our point of view in the present book is the fact that Lamson was motivated by an
optimization problem, namely the problem of Lagrange in the calculus of variations
with equality constraints, for which he proved a Lagrange multiplier rule by way of
his implicit function theorem.

Lamson’s work was extended in a significant way by Hildebrand and Graves in
their paper from 1927. They first stated a contraction mapping result (their Theorem
1), in which the only difference with the statement of Theorem 1A.2 is the pres-
ence of a superfluous parameter. The contraction mapping principle, as formulated
in 1A.3, was published five years earlier in Banach [1922] (with some easily fixed
typos), but the idea behind the contraction mapping was evidently known to Gour-
sat, Picard and probably even earlier. Hildebrand and Graves cited in their paper

7 Edouard Jean-Baptiste Goursat (1858–1936). Goursat’s paper from 1903 is available at
http://www.numdam.org/.
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Banach’s work [1922], but only in the context of the definition of a Banach space8.
Further, based on their parameterized formulation of 1A.2, they established an im-
plicit function theorem in the classical form of 1B.1 (their Theorem 4) for functions
acting in linear metric spaces. More intriguing, however, for its surprising foresight,
is their Theorem 3, called by the authors a “neighborhood theorem,” where they
do not assume differentiability; they say “only an approximate differential . . . is re-
quired;” this is in contrast to the works of Goursat and Lamson where an “exact
differential” is used. In this, Hildebrand and Graves are far ahead of their time. (We
will see a similar picture with Graves’ theorem later in Section 5D.) Because of the
importance of this result of Hildebrand and Graves, we provide a statement of it
here in finite dimensions with some adjustments in terminology and notation.

Theorem (Hildebrand–Graves theorem). Let Q ⊂ IRd and consider a function f :
Q× IRn→ IRn along with a point x̄ ∈ IRn. Suppose there are a positive constant a, a
linear bounded mapping A : IRn→ IRn which is invertible, and a positive constant M
with M|A−1|< 1 such that

(a) for all p ∈ Q and x,x′ ∈ IBa(x̄), one has | f (p,x)− f (p,x′)− A(x− x′)| ≤
M|x− x′|;

(b) for every p ∈ Q, one has |A−1|| f (p, x̄)| ≤ a(1−M|A−1|).
Then the solution mapping S : p 7→

{
x
∣∣ f (p,x) = 0

}
is single-valued on Q [when

its values are restricted to a neighborhood of x̄].

The phrase in brackets in the last sentence is our addition: Hildebrand and Graves
apparently overlooked the fact, which is still overlooked by some writers, that the
implicit function theorem is about a graphical localization of the solution mapping.
If we assume in addition that f is Lipschitz continuous with respect to p uniformly
in x, we will obtain, according to 1E.13, that the solution mapping has a Lipschitz
continuous single-valued localization. When f is assumed strictly differentiable at
(p̄, x̄), by taking A = Dx f (p̄, x̄) we come to 1D.13.

The main novelty in the Hildebrand–Graves theorem is that differentiability is
replaced by Lipschitz continuity. This is not spelled out in their paper but can be
gleaned from their proof. This becomes apparent in the following slightly extended
inverse function version of it which can be easily derived from their proof, compare
with 1E.3.

Theorem (extended Hildebrand–Graves theorem in inverse form). Consider a func-
tion f : IRn→ IRn along with a point x̄ ∈ IRn such that f (x̄) = 0, and a linear bounded
mapping A : IRn→ IRn which is invertible. If

lip( f −A; x̄) · |A−1|< 1,

then the inverse f−1 has a Lipschitz continuous single-valued localization around 0
for x̄.

8 They mention in a footnote that the name “Banach spaces” for normed linear spaces that are
complete was coined by Fréchet.
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The classical implicit function theorem is present in many of the textbooks in
calculus and analysis written in the last hundred years. The proofs on the introduc-
tory level are mainly variations of Dini’s proof, depending on the material covered
prior to the theorem’s statement. Interestingly enough, in his text Goursat [1904]
applies the mean value theorem, as in Dini’s proof, and not the contraction mapping
iteration he introduced in his paper of 1903. Similar proofs are given as early as the
30s in Courant [1988] and most recently in Fitzpatrick [2006]. In more advanced
textbooks from the second half of the last century, such as in the popular texts of
Apostol [1962], Schwartz [1967] and Dieudonné [1969], it has become standard to
use the contraction mapping principle. We were not able to identify a calculus text
in which the implicit function theorem is given in the symmetric form 1B.8.

The material in sections 1.3 [1C] and 1.4 [1D] is mostly known, but the way
it is presented is new. First-order approximations of functions were introduced in
Robinson [1991].

Theorem 1E.3 can be viewed as an extension of the Hildebrand–Graves theorem
where the “approximate differential” is not required to be a linear mapping; we will
get back to this result in Chapter 2 and also later in the book. The statement of
1E.8(a) is sometimes called the Banach lemma, see, e.g., Noble and Daniel [1977].
Kahan [1966] and many after him attribute Theorem 1E.9 to Gastinel, without giv-
ing a reference. This result can be also found in the literature as the “Eckart–Young
theorem” with the citation of Eckart and Young [1936], which however is a related
but different kind of result, concerning the distance from a matrix from another ma-
trix with lower rank. That result in turn is much older still and is currently referred
to as the Schmidt–Eckart–Young–Mirsky theorem on singular value decomposition.
For history see Chipman [1997] and the book by Stewart and Sun [1990].

On the other hand, 1E.9 can be derived with the help of the Schmidt–Eckart–
Young–Mirsky theorem, inasmuch as the latter implies that the distance from a non-
singular matrix to the set of rank-one matrices is equal to the smallest singular value,
which is the reciprocal to the norm of the inverse. Hence the distance from a non-
singular matrix to the set of singular matrices is not greater than the reciprocal to
the norm of the inverse. Combining this with 1E.7 gives us the radius equality. More
about stability of perturbed inversions will be presented in Chapters 5 and 6.

Brouwer’s invariance of domain theorem 1F.1 can be found, e.g., in Spanier
[1966], while Brouwer’s fixed point theorem 1G.2 is given in Dunford and Schwartz
[1958]. Theorem 1G.3 slightly extends a result in Halkin [1974]; for extensions in
other directions, see Hurwicz and Richter [2003].

A one-dimensional version of Theorem 1H.39 is given on p. 449 in the calculus
textbook by Fikhtengolts [1962]. A more general theorem is given in Kassay and
Kolumbán [1988], for extensions to variational inequalities see Section 2F.

9 The reviewer of the first edition of this book in Zentralblatt für Mathematik named this theorem
after Peano. We were unable to find evidence that this theorem is indeed due to Peano.





Chapter 2
Solution Mappings for Variational Problems

Solutions mappings in the classical setting of the implicit function theorem concern
problems in the form of parameterized equations. The concept can go far beyond
that, however. In any situation where some kind of problem in x depends on a pa-
rameter p, there is the mapping S that assigns to each p the corresponding set of
solutions x. The same questions then arise about the extent to which a localization
of S around a pair (p̄, x̄) in its graph yields a function s which might be continuous
or differentiable, and so forth.

This chapter moves into that much wider territory in replacing equation-solving
problems by more complicated problems termed “generalized equations.” Such
problems arise in constrained optimization, models of equilibrium, and many other
areas. An important feature, in contrast to ordinary equations, is that functions ob-
tained implicitly from their solution mappings typically lack differentiability, but
often exhibit Lipschitz continuity and sometimes combine that with the existence of
one-sided directional derivatives.

The first task is to introduce “generalized equations” and their special case, “va-
riational inequality” problems, which arises from the variational geometry of sets
expressing constraints. Problems of optimization and the Lagrange multiplier con-
ditions characterizing their solutions provide key examples. Convexity of sets and
functions enters as a valuable ingredient.

From that background, the chapter proceeds to Robinson’s implicit function the-
orem for parameterized variational inequalities and several of its extensions. Sub-
sequent sections introduce concepts of ample parameterization and semidifferentia-
bility, building toward major results in 2E for variational inequalities over convex
sets that are polyhedral. A follow-up in 2F looks at a class of monotone variational
inequalities, after which, in 2G, a number of applications in optimization are worked
out.

67
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2A. Generalized Equations and Variational Problems

By a generalized equation in IRn will be meant a condition on x of the form

(1) f (x)+F(x) 3 0, or equivalently − f (x) ∈ F(x),

for a function f : IRn→ IRm and a (generally) set-valued mapping F : IRn→→ IRm. The
name refers to the fact that (1) reduces to an ordinary equation f (x) = 0 when F is
the zero mapping (with F(x) containing 0 and nothing else, for every x), which we
indicate in notation by F ≡ 0. Any x satisfying (1) is a solution to (1).

Generalized equations take on importance in many situations, but an especially
common and useful type arises from normality conditions with respect to convex
sets.

Normal cones. For a convex set C ⊂ IRn and a point x ∈C, a vector v is said to be
normal to C at x if 〈v,x′−x〉 ≤ 0 for all x′ ∈C. The set of all such vectors v is called
the normal cone to C at x and is denoted by NC(x). For x /∈C, NC(x) is taken to be
the empty set. The normal cone mapping is thus defined as

NC : x 7→
{

NC(x) for x ∈C,
/0 otherwise.

The term cone refers to a set of vectors which contains 0 and contains with any
of its elements v all positive multiples of v. For each x ∈C, the normal cone NC(x)
is indeed a cone in this sense. Moreover it is closed and convex. The normal cone
mapping NC : x 7→NC(x) has dom NC =C. When C is a closed subset of IRn, gph NC
is a closed subset of IRn× IRn.

Variational inequalities. For a function f : IRn→ IRn and a closed convex set C ⊂
dom f , the generalized equation

(2) f (x)+NC(x) 3 0, or equivalently − f (x) ∈ NC(x),

is called the variational inequality for f and C.

Note that, because NC(x) = /0 when x /∈C, a solution x to (2) must be a point of
C. The name of this condition originated from the fact that, through the definition of
the normal vectors to C, (2) is equivalent to having

(3) x ∈C and 〈 f (x),x′− x〉 ≥ 0 for all x′ ∈C.

Instead of contemplating a system of infinitely many linear inequalities, however, it
is usually better to think in terms of the properties of the set-valued mapping NC,
which the formulation in (2) helps to emphasize.

When x ∈ int C, the only normal vector at x is 0, and the condition in (2) just
becomes f (x) = 0. Indeed, the variational inequality (2) is totally the same as the
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equation f (x) = 0 in the case of C = IRn, which makes NC ≡ 0. In general, though,
(2) imposes a relationship between f (x) and the boundary behavior of C at x.

There is a simple connection between the normal cone mapping NC and the pro-
jection mapping PC introduced in 1D: one has

(4) v ∈ NC(x) ⇐⇒ PC(x+ v) = x.

Interestingly, this projection rule for normals means for the mappings NC and PC
that

(5) NC = P−1
C − I, PC = (I +NC)

−1.

A consequence of (5) is that the variational inequality (2) can actually be written as
an equation, namely

(6) f (x)+NC(x) 3 0 ⇐⇒ PC(x− f (x))− x = 0.

It should be kept in mind, though, that this doesn’t translate the solving of variatio-
nal inequalities into the classical framework of solving nonlinear equations. There,
“linearizations” are essential, but PC often fails to be differentiable, so linearizations
generally aren’t available for the equation in (6), regardless of the degree of differ-
entiability of f . Other approaches can sometimes be brought in, however, depending
on the nature of the set C. Anyway, the characterization in (6) has the advantage of
leading quickly to a criterion for the existence of a solution to a variational inequal-
ity in a basic case.

Theorem 2A.1 (solutions to variational inequalities). For a function f : IRn → IRn

and a nonempty, closed convex set C ⊂ dom f relative to which f is continuous,
the set of solutions to the variational inequality (2) is always closed. It is sure to be
nonempty when C is bounded.

Proof. Let M(x) = PC(x− f (x)). Because C is nonempty, closed and convex, the
projection mapping PC is, by 1D.5, a Lipschitz continuous function from IRn to C.
Then M is a continuous function from C to C under our continuity assumption on f .
According to (6), the set of solutions x to (2) is the same as the set of points x ∈C
such that M(x) = x, which is closed. When C is bounded, we can apply Brouwer’s
fixed point theorem 1G.2 to conclude the existence of at least one such point x.

Other existence theorems which don’t require C to be bounded can also be given,
especially for situations in which f has the property of monotonicity which we
introduced in 1H. This will be taken up in 2F.

The examples and properties to which the rest of this section is devoted will
help to indicate the scope of the variational inequality concept. They will also lay
the foundations for the generalizations of the implicit function theorem that we are
aiming at.



70 2 Solution Mappings for Variational Problems

Exercise 2A.2 (some normal cone formulas).
(a) If M is a linear subspace of IRn, then NM(x) = M⊥ for every x ∈ M, where

M⊥ is the orthogonal complement of M.
(b) The unit Euclidean ball IB has NIB(x) = {0} when |x| < 1, but NIB(x) ={

λx
∣∣λ ≥ 0

}
when |x|= 1.

(c) The nonnegative orthant IRn
+ =

{
x = (x1, . . . ,xn)

∣∣x j ≥ 0 for j = 1, . . . ,n
}

has

(v1, . . . ,vn) ∈ NIRn
+
(x1, . . . ,xn) ⇐⇒ v≤ 0, v⊥ x

⇐⇒
{

v j ≤ 0 for j with x j = 0,
v j = 0 for j with x j > 0.

Guide. The projection rule (4) provides an easy way of identifying the normal vec-
tors in these examples.

The formula in 2A.2(c) comes up far more frequently than might be anticipated.
A variational inequality (2) in which C = IRn

+ is called a complementarity problem;
one has

− f (x) ∈ NIRn
+
(x) ⇐⇒ x≥ 0, f (x)≥ 0, x⊥ f (x).

Here the common notation is adopted that a vector inequality like x ≥ 0 is to be
taken componentwise, and that x ⊥ y means 〈x,y〉 = 0. Many variational inequali-
ties can be recast, after some manipulation, as complementarity problems, and the
numerical methodology for solving such problems has therefore received especially
much attention.

The orthogonality relation in 2A.2(a) extends to a “polarity” relation for cones
which has a major presence in our subject.

Proposition 2A.3 (polar cone). Let K be a closed, convex cone in IRn and let K∗ be
its polar, defined by

(7) K∗ =
{

y
∣∣〈x,y〉 ≤ 0 for all x ∈ K

}
.

Then K∗ is likewise a closed, convex cone, and its polar (K∗)∗ is in turn K. Further-
more, the normal vectors to K and K∗ are related by

(8) y ∈ NK(x) ⇐⇒ x ∈ NK∗(y) ⇐⇒ x ∈ K, y ∈ K∗, 〈x,y〉= 0.

Proof. First consider any x ∈ K and y ∈ NK(x). From the definition of normality in
(7) we have 〈y,x′− x〉 ≤ 0 for all x′ ∈ K, so the maximum of 〈y,x′〉 over x′ ∈ K is
attained at x. Because K contains all positive multiples of each of its vectors, this
comes down to having 〈y,x〉 = 0 and 〈y,x′〉 ≤ 0 for all x′ ∈ K. Therefore NK(x) ={

y ∈ K∗
∣∣y⊥ x

}
.

It’s elementary that K∗ is a cone which is closed and convex, with (K∗)∗ ⊃ K.
Consider any z /∈K. Let x=PK(z) and y= z−x. Then y 6= 0 and PK(x+y) = x, hence
y ∈ NK(x), so that y ∈ K∗ and y⊥ x. We have 〈y,z〉= 〈y,y〉> 0, which confirms that
z /∈ (K∗)∗. Therefore (K∗)∗ = K. The formula for normals to K must hold then
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equally for K∗ through symmetry: NK∗(y) =
{

x ∈ K
∣∣x ⊥ y

}
for any y ∈ K∗. This

establishes the normality relations that have been claimed.

x

N
C

(x)

T
C

(x)

C

Fig. 2.1 Tangent and normal cone to a convex set.

Polarity has a basic role in relating the normal vectors to a convex set to its
“tangent vectors.”

Tangent cones. For a set C ⊂ IRn (not necessarily convex) and a point x ∈ C, a
vector v is said to be tangent to C at x if

1
τk (x

k− x)→ v for some xk→ x, xk ∈C, τ
k↘0.

The set of all such vectors v is called the tangent cone to C at x and is denoted by
TC(x). For x /∈C, TC(x) is taken to be the empty set.

Although we will mainly be occupied with normal cones to convex sets at
present, tangent cones to convex sets and even nonconvex sets will be put to se-
rious use later in the book. Note from the definition that 0 ∈ TC(x) for all x ∈C.

Exercise 2A.4 (tangent and normal cones). The tangent cone TC(x) to a closed,
convex set C at a point x ∈C is the closed, convex cone that is polar to the normal
cone NC(x): one has

(9) TC(x) = NC(x)∗, NC(x) = TC(x)∗.

Guide. The second of the equations (9) comes immediately from the definition of
NC(x), and the first is then obtained from Proposition 2A.3.
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Variational inequalities are instrumental in capturing conditions for optimality in
problems of minimization or maximization and even “equilibrium” conditions such
as arise in games and models of conflict. To explain this motivation, it will be helpful
to be able to appeal to the convexity of functions, at least in part.

Convex functions. A function g : IRn→ IR is said to be convex relative to a convex
set C (or just convex, when C = IRn) if

g((1− τ)x+ τx′)≤ (1− τ)g(x)+ τg(x′) for all τ ∈ (0,1) when x,x′ ∈C.

It is strictly convex if this holds with strict inequality for x 6= x′. It is strongly convex
with constant µ when µ > 0 and, for every x,x′ ∈C,

g((1− τ)x+ τx′)≤ (1− τ)g(x)+ τg(x′)−µτ(1− τ)|x− x′|2 for all τ ∈ (0,1).

A function g is concave, strictly concave or strongly concave, if −g is convex,
strictly convex or strongly convex, respectively. It is affine relative to C when the
inequality is an equation, which corresponds to g being simultaneously convex and
concave relative to C.

The following are the standard criteria for convexity or strict convexity of g which
can be obtained from the definitions in terms of the gradient vectors

∇g(x) =
(

∂g
∂x j

(x1, . . . ,xn)

)n

j=1

and the Hessian matrices

∇
2g(x) =

(
∂ 2g

∂xi∂x j
(x1, . . . ,xn)

)n,n

i, j=1
.

Exercise 2A.5 (characterizations of convexity).
(a) A differentiable function g : IRn → IR on an open convex set O is convex if

and only if
g(x′)≥ g(x)+ 〈∇g(x),x′− x〉 for all x,x′ ∈ O.

It is strictly convex if and only if this inequality is always strict when x′ 6= x. It is
strongly convex with constant µ , where µ > 0, if and only if

g(x′)≥ g(x)+ 〈∇g(x),x′− x〉+ µ

2
|x′− x|2 for all x,x′ ∈ O.

(b) A twice differentiable function g on an open convex set O is convex if and
only if ∇2g(x) is positive semidefinite for every x ∈O. It is strictly convex if ∇2g(x)
is positive definite for every x ∈ O. (This sufficient condition for strict convexity is
not necessary, however, in general.) It is strongly convex with constant µ if and only
if µ > 0 and 〈∇2g(x)w,w〉 ≥ µ for all x ∈ O and w ∈ IRn with |w|= 1.
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Guide. Because the definition of convexity revolves only around points that are
collinear, the convexity of g can be verified by showing that, for arbitrary x ∈O and
w∈ IRn, the function ϕ(t) = g(x+tw) is convex on the interval

{
t
∣∣x+tw∈O

}
. The

conditions for this on ϕ ′(t) and ϕ ′′(t), known from basic calculus, can be applied
by expressing these derivatives in terms of the gradients and Hessian of g. This
approach can be used to verify all the claims.

In Section 1H we introduced the class of monotone functions and presented some
of their properties. The following exercise establishes a connection between convex
functions and monotonicity of their first derivatives.

Exercise 2A.6 (gradient connections).
(a) Let g be continuously differentiable from an open set O ⊂ IRn to IR, and let

C be a convex subset of O. Show that the function f (x) = ∇g(x) is monotone on C
if and only if g is convex on C. Show further that f is strictly monotone on C if and
only if g is strictly convex on C. Finally, show that f is strongly monotone on C with
constant µ if and only if g is strongly convex on C with constant µ .

(b) Let h be continuously differentiable from a product O1×O2 of open sets
O1 ⊂ IRn1 and O2 ⊂ IRn2 to IR, and let C1 ⊂ O1 and C2 ⊂ O2 be convex. Show that
the function

f (x1,x2) = (∇x1
h(x1,x2),−∇x2

h(x1,x2))

is monotone on C1×C2 if and only if h(x1,x2) is convex with respect to x1 ∈ C1
for fixed x2 ∈ C2, and on the other hand concave with respect to x2 ∈ C2 for fixed
x1 ∈C1.

Guide. Derive (a) from the characterization of the convexity and strong convexity
of g in 2A.5. Proceed similarly in (b), applying also the corresponding characteriza-
tion of concavity.

Optimization problems. In this chapter and later, we consider optimization prob-
lems which, for a given objective function g : IRn → IR and a given constraint set
C ⊂ IRn, take the form

minimize g(x) over all x ∈C.

The greatest lower bound of the objective function g on C, namely infx∈C g(x), is
the optimal value in the problem, which may or may not be attained, however, and
could even be infinite. If it is attained at a point x̄, then x̄ is said to furnish a global
minimum, or just a minimum, and to be a globally optimal solution; the set of such
points is denoted as argminx∈C g(x). A point x∈C is said to furnish a local minimum
of g relative to C and to be a locally optimal solution when, at least, g(x)≤ g(x′) for
every x′ ∈C belonging to some neighborhood of x. A global or local maximum of g
corresponds to a global or local minimum of −g.

In the context of variational inequalities, the gradient mapping ∇g : IRn → IRn

associated with a differentiable function g : IRn → IR will be a focus of attention.
Observe that
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∇
2g(x) = ∇ f (x) when f (x) = ∇g(x).

Theorem 2A.7 (basic variational inequality for minimization). Let g : IRn→ IR be
differentiable on an open convex set O, and let C be a closed convex subset of O. In
minimizing g over C, the variational inequality

(10) ∇g(x)+NC(x) 3 0, or equivalently −∇g(x) ∈ NC(x),

is necessary for x to furnish a local minimum. It is both necessary and sufficient for
a global minimum if g is convex.

Proof. Along with x ∈C, consider any other point x′ ∈C and the function ϕ(t) =
g(x+ tw) with w = x′− x. From convexity we have x+ tw ∈ C for all t ∈ [0,1]. If
a local minimum of g occurs at x relative to C, then ϕ must have a local minimum
at 0 relative to [0,1], and consequently ϕ ′(0) ≥ 0. But ϕ ′(0) = 〈∇g(x),w〉. Hence
〈∇g(x),x′− x〉 ≥ 0. This being true for arbitrary x′ ∈ C, we conclude through the
characterization of (2) in (3) that −∇g(x) ∈ NC(x).

In the other direction, if g is convex and−∇g(x)∈NC(x) we have for every x′ ∈C
that 〈∇g(x),x′ − x〉 ≥ 0, but also g(x′)− g(x) ≥ 〈∇g(x),x′ − x〉 by the convexity
criterion in 2A.5(a). Hence g(x′)− g(x) ≥ 0 for all x′ ∈ C, and we have a global
minimum at x.

To illustrate the condition in Theorem 2A.7, we may use it to reconfirm the pro-
jection rule for normal vectors in (4), which can be stated equivalently as saying
that PC(z) = x if and only if z− x ∈ NC(x). Consider any nonempty, closed, convex
set C ⊂ IRn and any point z ∈ IRn. Let g(x) = 1

2 |x− z|2, which has ∇g(x) = x− z and
∇2g(x) ≡ I, implying strong convexity. The projection x = PC(z) is the solution to
the problem of minimizing g over C. The variational inequality (10) characterizes it
by the relation −(x− z) ∈ NC(x), which is exactly what was targeted.

According to Theorem 2A.7, minimizing a differentiable convex function g over
a closed, convex set C is equivalent to solving a type of variational inequality (2)
in which f is the gradient mapping ∇g. When C = IRn, so that we are dealing with
unconstrained minimization, this is equivalent to solving f (x) = 0 for f = ∇g. The
notion of a variational inequality thus makes it possible to pass from unconstrained
minimization to constrained minimization. Whether the problem is constrained or
unconstrained, there is no guarantee that the minimum will be attained at a unique
point (although nonuniqueness is impossible when g is strictly convex, at least), but
still, local uniqueness dominates the picture conceptually. For that reason, it does
make sense to be thinking of the task as one of “solving a generalized equation.”

When g is not convex, solving the variational inequality (2) is no longer equiva-
lent to minimization over C, but nevertheless it has a strong association with identi-
fying a local minimum. Anyway, there’s no need really to insist on a minimum. Just
as the equation ∇g(x) = 0 describes, in general, a “stationary point” of g (uncon-
strained), the variational inequality (10) can be viewed as describing a constrained
version of a stationary point, which could be of interest in itself.
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The minimization rule in Theorem 2A.7 can be employed to deduce a rule for
determining normal vectors to intersections of convex sets, as in the second part of
the following proposition.

Proposition 2A.8 (normals to products and intersections).
(a) If C =C1×C2 for closed, convex sets C1 ⊂ IRn1 and C2 ⊂ IRn2 , then for any

x = (x1,x2) ∈C one has NC(x) = NC1(x1)×NC2(x2).
(b) If C =C1∩C2 for closed, convex sets C1 and C2 in IRn, then the formula

NC(x) = NC1(x)+NC2(x) =
{

v1 + v2
∣∣v1 ∈ NC1(x), v2 ∈ NC2(x)

}
holds for every x ∈C such that there is no v 6= 0 with v ∈ NC1(x) and −v ∈ NC2(x).
This condition is fulfilled in particular for every x ∈ C if C1 ∩ int C2 6= /0 or C2 ∩
int C1 6= /0.

Proof. To prove (a), we note that, by definition, a vector v = (v1,v2) belongs to
NC(x) if and only if, for every x′ = (x′1,x

′
2) in C1×C2 we have 0 ≥ 〈v,x′− x〉 =

〈v1,x′1−x1〉+〈v2,x′2−x2〉. That’s the same as having 〈v1,x′1−x1〉 ≤ 0 for all x′1 ∈C1
and 〈v2,x′2−x2〉≤ 0 for all x′2 ∈C2, or in other words, v1 ∈NC1(x1) and v2 ∈NC2(x2).

In proving (b), it is elementary that if v = v1 + v2 with v1 ∈ NC1(x) and v2 ∈
NC2(x), then for every x′ in C1∩C2 we have both 〈v1,x′−x〉 ≤ 0 and 〈v2,x′−x〉 ≤ 0,
so that 〈v,x′− x〉 ≤ 0. Thus, NC(x)⊃ NC1(x)+NC2(x).

The opposite inclusion takes more work to establish. Fix any x∈C and v∈NC(x).
As we know from (4), this corresponds to x being the projection of x+v on C, which
we can elaborate as follows: (x,x) is the unique solution to the problem

minimize |x1− (x+ v)|2 + |x2− (x+ v)|2 over all (x1,x2) ∈C1×C2 with x1 = x2.

Consider for k = 1,2, . . . the version of this minimization problem in which the
constraint x1 = x2 is relaxed by a penalty expression dependent on k:

(11) minimize |x1− (x+ v)|2 + |x2− (x+ v)|2 + k|x1− x2|2
over all (x1,x2) ∈C1×C2.

The expression being minimized here is nonnegative and, as seen from the case of
x1 = x2 = x, has minimum no greater than 2|v|2. It suffices therefore in the minimiza-
tion to consider only points x1 and x2 such that |x1−(x+v)|2+ |x2−(x+v)|2≤ 2|v|2
and k|x1− x2|2 ≤ 2|v|2. For each k, therefore, the minimum in (11) is attained by
some (xk

1,x
k
2), and these pairs form a bounded sequence such that xk

1 − xk
2 → 0.

Any accumulation point of this sequence must be of the form (x̃, x̃) and satisfy
|x̃− (x+v)|2+ |x̃− (x+v)|2 ≤ 2|v|2, or in other words |x̃− (x+v)| ≤ |v|. But by the
projection rule (4), x is the unique closest point of C to x+ v, the distance being |v|,
so this inequality implies x̃ = x. Therefore, (xk

1,x
k
2)→ (x,x).

We investigate next the necessary condition for optimality (10) provided by The-
orem 2A.7 for problem (11). Invoking the formula in (a) for the normal cone to
C1×C2 at (xk

1,x
k
2), we see that it requires
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−2[xk
1− (x+ v)+ k(xk

1− xk
2)] ∈ NC1(x

k
1),

−2[xk
2− (x+ v)− k(xk

1− xk
2)] ∈ NC2(x

k
2),

or equivalently, for wk = k(xk
2− xk

1),

(12) v+(x− xk
1)+wk ∈ NC1(x

k
1) and v+(x− xk

2)−wk ∈ NC2(x
k
2).

Two cases have to be analyzed now separately. In the first case, we suppose that
the sequence of vectors wk is bounded and therefore has an accumulation point w.
Let vk

1 = v+(x− xk
1)+wk and vk

2 = v+(x− xk
2)−wk, so that, through (4), we have

PC1(x
k
1 + vk

1) = xk
1 and PC2(x

k
2 + vk

2) = xk
2. Since xk

1 → x and xk
2 → x, the sequences

of vectors vk
1 and vk

2 have accumulation points v1 = v+w and v2 = v−w; note that
v1 + v2 = 2v. By the continuity of the projection mappings coming from 1D.5, we
get PC1(x+v1) = x and PC2(x+v2) = x. By (6), these relations mean v1 ∈NC1(x) and
v2 ∈ NC2(x) and hence 2v ∈ NC1(x)+NC2(x). Since the sum of cones is a cone, we
get v ∈ NC1(x)+NC2(x). Thus NC(x)⊂ NC1(x)+NC2(x), and since we have already
shown the opposite inclusion, we have equality.

In the second case, we suppose that the sequence of vectors wk is unbounded. By
passing to a subsequence if necessary, we can reduce this to having 0 < |wk| → ∞

with wk/|wk| converging to some v̄ 6= 0. Let

v̄k
1 = [v+(x− xk

1)+wk]/|wk| and v̄k
2 = [v+(x− xk

2)−wk]/|wk|.

Then v̄k
1 → v̄ and v̄k

2 → −v̄. By (12) we have v̄k
1 ∈ NC1(x

k
1) and v̄k

2 ∈ NC1(x
k
2), or

equivalently through (4), the projection relations PC1(x
k
1 + v̄k

1) = xk
1 and PC2(x

k
2 +

v̄k
2) = xk

2. In the limit we get PC1(x+ v̄) = x and PC2(x− v̄) = x, so that v̄ ∈ NC1(x)
and −v̄ ∈ NC2(x). This contradicts our assumption in (b), and we see thereby that
the second case is impossible.

We turn now to minimization over sets C that might not be convex and are speci-
fied by systems of constraints which have to be handled with Lagrange multipliers.
This will lead us to other valuable examples of variational inequalities, after some
elaborations.

Theorem 2A.9 (Lagrange multiplier rule). Let X ⊂ IRn and D ⊂ IRm be nonempty,
closed, convex sets, and consider the problem

(13) minimize g0(x) over C =
{

x ∈ X
∣∣g(x) ∈ D

}
,

for g(x) = (g1(x), . . . ,gm(x)), where the functions gi : IRn → IR, i = 0,1, . . . ,m are
continuously differentiable. Let x be a point of C at which the following constraint
qualification condition is fulfilled:

(14) there is no y ∈ ND(g(x)), y 6= 0, such that − y∇g(x) ∈ NX (x).

If g0 has a local minimum relative to C at x, then
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(15) there exists y ∈ ND(g(x)) such that − [∇g0(x)+ y∇g(x)] ∈ NX (x).

Proof. Assume that a local minimum occurs at x. Let X ′ and D′ be compact, convex
sets which coincide with X and D in neighborhoods of x and g(x), respectively, and
are small enough that g0(x′)≥ g0(x) for all x′ ∈ X ′ having g(x′) ∈ D′. Consider the
auxiliary problem

(16) minimize g0(x′)+ 1
2 |x′− x|2

over all (x′,u′) ∈ X ′×D′ satisfying g(x′)−u′ = 0.

Obviously the unique solution to this is (x′,u′) = (x,g(x)). Next, for k→∞, consider
the following sequence of problems, which replace the equation in (16) by a penalty
expression:

(17) minimize g0(x′)+
1
2
|x′− x|2 + k

2
|g(x′)−u′|2 over all (x′,u′) ∈ X ′×D′.

For each k let (xk,uk) give the minimum in this relaxed problem (the minimum being
attained because the functions are continuous and the sets X ′ and D′ are compact).
The minimum value in (17) can’t be greater than the minimum value in (16), as seen
by taking (x′,u′) to be the unique solution (x,g(x)) to (16). It’s apparent then that
the only possible cluster point of the bounded sequence {(xk,uk)}∞

k=1 as k→ ∞ is
(x,g(x)). Thus, (xk,uk)→ (x,g(x)).

Next we apply the optimality condition in Theorem 2A.7 to problem (17) at its
solution (xk,uk). We have NX ′×D′(xk,uk) = NX ′(xk)×ND′(uk), and on the other hand
NX ′(xk) = NX (xk) and ND′(uk) = ND(uk) by the choice of X ′ and D′, at least when
k is sufficiently large. The variational inequality condition in Theorem 2A.7 comes
down in this way to

(18)
{
−[∇g0(xk)+(xk− x)+ k(g(xk)−uk)∇g(xk) ] ∈ NX (xk),
k(g(xk)−uk) ∈ ND(uk).

By passing to subsequences if necessary, we can reduce the rest of the analysis to
distinguishing between case (A), where the norms of the vectors k(g(xk)−uk)∈ IRm

stay bounded as k→ ∞, and case (B), where these norms go to ∞.
In case (A) we can arrange, by passing again to a subsequence if necessary, that

the sequence of vectors k(g(xk)−uk) converges to some y. Then y satisfies the de-
sired relations in (18), inasmuch as (xk,uk)→ (x,g(x)) and the graphs of the map-
pings NX and ND are closed.

In case (B) we look at the vectors yk = k(g(xk)−uk)/ρk with ρk = k|g(xk)−uk|→
∞, which have |yk|= 1 and, from (18), satisfy

(19) −ρ
−1
k (∇g0(xk)+(xk− x))− yk∇g(xk) ∈ NX (xk), yk ∈ ND(uk).

(Here we use the fact that any positive multiple of a vector in NX (xk) or ND(uk) is
another such vector.) By passing to a subsequence, we can arrange that the sequence
of vectors yk converges to some y, necessarily with |y| = 1. In this limit, (19) turns



78 2 Solution Mappings for Variational Problems

into the relation in (14), which has been forbidden to hold for any y 6= 0. Hence case
(B) is impossible under our assumptions, and we are left with the conclusion (15)
obtained from case (A).

In the first-order optimality condition (15), y is said to be a Lagrange multiplier
vector associated with x. More can be said about this condition by connecting it with
the Lagrangian function for problem (13), which is defined by

(20) L(x,y) = g0(x)+ 〈y,g(x)〉 = g0(x)+ y1g1(x)+ · · ·+ ymgm(x)

for y = (y1, . . . ,ym).

Theorem 2A.10 (Lagrangian variational inequalities). In the minimization problem
(13), suppose that the set D is a cone, and let Y be the polar cone D∗,

Y =
{

y
∣∣〈u,y〉 ≤ 0 for all u ∈ D

}
.

Then, in terms of the Lagrangian L in (20), the condition on x and y in (15) can be
written in the form

(21) −∇xL(x,y) ∈ NX (x), ∇yL(x,y) ∈ NY (y),

which furthermore can be identified with the variational inequality

(22) − f (x,y) ∈ NX×Y (x,y) for f (x,y) = (∇xL(x,y),−∇yL(x,y)).

The existence of y ∈ Y satisfying this variational inequality with x is thus necessary
for the local optimality of x in problem (13) when the constraint qualification (14)
is fulfilled. If L(·,y) is convex on X when y ∈ Y , the existence of a y satisfying this
variational inequality with x is moreover sufficient for x to give a global minimum
in problem (13), without any need for invoking (14).

Proof. We have ∇xL(x,y) = ∇g0(x)+y∇g(x) and ∇yL(x,y) = g(x). The NX condi-
tion in (15) amounts therefore to the first condition in (21). The choice of Y = D∗

makes it possible through the polarity rule for normal vectors in (8) to express the
ND condition in (15) as g(x) ∈ NY (y) and identify it with the second condition in
(21), while deducing from it also that 〈y,g(x)〉 = 0, hence L(x,y) = g0(x). The re-
casting of (21) as the variational inequality in (22) comes out of the product rule in
2A.8(a).

When the function L(·,y) is convex on X , the condition −∇xL(x,y) ∈ NX (x) im-
plies through Theorem 2A.7 that L(x′,y) ≥ L(x,y) for all x′ ∈ X , where it may be
recalled that L(x,y) = g0(x) because 〈y,g(x)〉 = 0. Thus, L(x′,y) ≥ g0(x) for all
x′ ∈ X . On the other hand, since y ∈ Y and Y = D∗, we have 〈y,g(x′)〉 ≤ 0 when
g(x′) ∈ D. Therefore g0(x′)≥ L(x′,y)≥ g0(x) for all x′ satisfying the constraints in
(13). It follows that all such x′ have g0(x′) ≥ g0(x), so x furnishes the global mini-
mum in problem (13).
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Application to nonlinear programming. Theorems 2A.9 and 2A.10 cover the
case of a standard problem of nonlinear programming, where the task is to

(23) minimize g0(x) over all x satisfying gi(x)
{
≤ 0 for i ∈ [1,s],
= 0 for i ∈ [s+1,m].

This problem1 corresponds in (13) to taking X = IRn and having D be the closed,
convex cone in IRm consisting of all u = (u1, . . . ,um) such that ui ≤ 0 for i∈ [1,s] but
ui = 0 for i ∈ [s+1,m]. The polar cone Y = D∗ is Y = IRs

+× IRm−s. The optimality
condition in (18) can equally well be placed then in the Lagrangian framework in
(21), corresponding to the variational inequality (22). The requirements it imposes
on x and y come out as

(24) y ∈ IRs
+× IRm−s, gi(x)

{
≤ 0 for i ∈ [1,s] with yi = 0,
= 0 for all other i ∈ [1,m],

∇g0(x)+ y1∇g1(x)+ · · ·+ ym∇gm(x) = 0.

These are the Karush–Kuhn–Tucker conditions for the nonlinear programming prob-
lem (23). According to Theorem 2A.9, the existence of y satisfying these conditions
with x is necessary for the local optimality of x under the constraint qualification
(14), which insists on the nonexistence of y 6= 0 satisfying the same conditions with
the term ∇g0(x) suppressed. The existence of y satisfying (24) is sufficient for the
global optimality of x by Theorem 2A.10 as long as L(x,y) is convex as a function
of x ∈ IRn for each fixed y ∈ IRs

+× IRm−s, which is equivalent to having

g0,g1, . . . ,gs convex, but gs+1, . . . ,gm affine.

Then (23) is a problem of convex programming. The Karush–Kuhn–Tucker condi-
tions correspond then to a saddle point property, as indicated next.

Exercise 2A.11 (variational inequality for a saddle point). Let X ⊂ IRn and Y ⊂ IRm

be any nonempty, closed, convex sets, and let L be a C 1 function on IRn× IRm such
that L(·,y) is a convex function on X for each y∈Y , and L(x, ·) is a concave function
on Y for each x ∈ X . The variational inequality (22) is equivalent to having (x,y) be
a saddle point of L with respect to X×Y in the sense that

x ∈ X , y ∈ Y, and L(x′,y)≥ L(x,y)≥ L(x,y′) for all x′ ∈ X , y′ ∈ Y.

Guide. Rely on the equivalence between (21) and (22), plus Theorem 2A.7.

A saddle point as defined in Exercise 2A.11 represents an equilibrium in the two-
person zero-sum game in which Player 1 chooses x∈ X , Player 2 chooses y∈Y , and
then Player 1 pays the amount L(x,y) (possibly negative) to Player 2. Other kinds
of equilibrium can likewise be captured by other variational inequalities.

For example, in an N-person game there are players 1, . . . ,N, with Player k hav-
ing a nonempty strategy set Xk. Each Player k chooses some xk ∈ Xk, and is then

1 In (23) and later in the book [1,s] denotes the set of integers {1,2, . . . ,s}.
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obliged to pay—to an abstract entity (not necessarily another player)—an amount
which depends not only on xk but also on the choices of all the other players; this
amount can conveniently be denoted by

Lk(xk,x−k), where x−k = (x1, . . . ,xk−1,xk+1, . . . ,xN).

(The game is zero-sum if ∑
N
k=1 Lk(xk,x−k) = 0.) A choice of strategies xk ∈ Xk for

k = 1, . . . ,N is said to furnish a Nash equilibrium if

Lk(x′k,x−k)≥ Lk(xk,x−k) for all x′k ∈ Xk, k = 1, . . . ,N.

A saddle point as in Exercise 2A.11 corresponds to the case of this where N = 2, so
x−1 and x−2 are just x2 and x1 respectively, and one has L2(x2,x1) =−L1(x1,x2).

Exercise 2A.12 (variational inequality for a Nash equilibrium). In an N-person
game as described, suppose that Xk is a closed, convex subset of IRnk and that
L(xk,x−k) is differentiable with respect to xk for every k. Then for x = (x1, . . . ,xN)
to furnish a Nash equilibrium, it must solve the variational inequality (2) for f and
C in the case of

C =X1×·· ·×XN , f (x)= f (x1, . . . ,xN)=
(

∇x1L1(x1,x−1), . . . ,∇xN LN(xN ,x−N)
)T

.

This necessary condition is sufficient for a Nash equilibrium if, in addition, the
functions Lk(·,x−k) on IRnk are convex.

Guide. Make use of the product rule for normals in 2A.8(a) and the optimality
condition in Theorem 2A.7.

Finally, we look at a kind of generalized equation (1) that is not a variational
inequality (2), but nonetheless has importance in many situations:

(25) (g1(x), . . . ,gm(x)) ∈ D,

which is (1) for f (x) =−(g1(x), . . . ,gm(x)), F(x)≡D. Here D is a subset of IRm; the
format has been chosen to be that of the constraints in problem (13), or as a special
case, problem (23).

Although (25) would reduce to an equation, pure and simple, if D consists of
a single point, the applications envisioned for it lie mainly in situations where in-
equality constraints are involved, and there is little prospect or interest in a solution
being locally unique. In the study of generalized equations with parameters, to be
taken up next in 2B, our attention will at first be concentrated on issues parallel to
those in Chapter 1. Only later, in Chapter 3, will generalized equations like (25) be
brought in.

The example in (25) also brings a reminder about a feature of generalized equa-
tions which dropped out of sight in the discussion of the variational inequality case.
In (2), necessarily f had to go from IRn to IRn, whereas in (25), and in (1), f may go
from IRn to a space IRm of different dimension. Later in the book, and in particular
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in chapters 5 and 6 we will see that the generalized equations cover much larger
territory than the variational inequalities.

2B. Implicit Function Theorems for Generalized Equations

With the concept of a generalized equation, and in particular that of a variational
inequality problem at our disposal, we are ready to embark on a broad exploration
of implicit function theorems beyond those in Chapter 1. The object of study is now
a parameterized generalized equation

(1) f (p,x)+F(x) 3 0

for a function f : IRd × IRn→ IRm and a set-valued mapping F : IRn→→ IRm. Specifi-
cally, we consider the properties of the solution mapping S : IRd →→ IRn defined by

(2) S : p 7→
{

x
∣∣ f (p,x)+F(x) 3 0

}
for p ∈ IRd .

The questions we will concentrate on answering, for now, are nevertheless the same
as in Chapter 1. To what extent might S be single-valued and possess various prop-
erties of continuity or some type of differentiability?

In a landmark paper2, S. M. Robinson studied the solution mapping S in the
case of a parameterized variational inequality, where m = n and F is a normal cone
mapping NC : IRn→→ IRn:

(3) f (p,x)+NC(x) 3 0, with C ⊂ IRn convex, closed and nonempty.

His results were, from the very beginning, stated in abstract spaces, and we will
come to that in Chapter 5. Here, we confine the exposition to Euclidean spaces, but
the presentation is tailored in such a way that, for readers who are familiar with some
basic functional analysis, the expansion of the framework from Euclidean spaces to
general Banach spaces is straightforward. The original formulation of Robinson’s
theorem, up to some rewording to fit this setting, is as follows.

Theorem 2B.1 (Robinson implicit function theorem). For the solution mapping S
to a parameterized variational inequality (3), consider a pair (p̄, x̄) with x̄ ∈ S(p̄).
Assume that:

(a) f (p,x) is differentiable with respect to x in a neighborhood of the point (p̄, x̄),
and both f (p,x) and ∇x f (p,x) depend continuously on (p,x) in this neighborhood;

(b) the inverse G−1 of the set-valued mapping G : IRn→→ IRn defined by

(4) G(x) = f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄)+NC(x), with G(x̄) 3 0,

2 Cf. Robinson [1980].
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has a Lipschitz continuous single-valued localization σ around 0 for x̄ with

lip(σ ;0)≤ κ.

Then S has a single-valued localization s around p̄ for x̄ which is continuous at
p̄, and moreover for every ε > 0 there is a neighborhood Q of p̄ such that

(5) |s(p′)− s(p)| ≤ (κ + ε)| f (p′,s(p))− f (p,s(p))| for all p′, p ∈ Q.

An extended version of this result will be stated shortly as Theorem 2B.5, so
we can postpone the discussion of its proof until then. Instead, we can draw some
immediate conclusions from the estimate (5) which rely on additional assumptions
about partial calmness and Lipschitz continuity properties of f (p,x) with respect to
p and the modulus notation for such properties that was introduced in 1C and 1D.

Corollary 2B.2 (calmness of solutions). In the setting of Theorem 2B.1, if f is
calm with respect to p at (p̄, x̄), having clm p( f ;(p̄, x̄))≤ λ , then s is calm at p̄ with
clm(s; p̄) ≤ κλ .

Corollary 2B.3 (Lipschitz continuity of solutions). In the setting of Theorem 2B.1,
if f is Lipschitz continuous with respect to p uniformly in x around (p̄, x̄), having
l̂ip p( f ;(p̄, x̄))≤ λ , then s is Lipschitz continuous around p̄ with lip(s; p̄) ≤ κλ .

Differentiability of the localization s around p̄ can’t be deduced from the estimate
in (5), not to speak of continuous differentiability around p̄, and in fact differentia-
bility may fail. Elementary one-dimensional examples of variational inequalities
exhibit solution mappings that are not differentiable, usually in connection with the
“solution trajectory” hitting or leaving the boundary of the set C. For such map-
pings, weaker concepts of differentiability are available. We will touch upon this in
2D.

In the special case where the variational inequality treated by Robinson’s the-
orem reduces to the equation f (p,x) = 0 (namely with C = IRn, so NC ≡ 0), the
invertibility condition on the mapping G in assumption (b) of Robinson’s theorem
comes down to the nonsingularity of the Jacobian ∇x f (p̄, x̄) in the Dini classical
implicit function theorem 1B.1. But because of the absence of an assertion about
the differentiability of s, Theorem 2B.1 falls short of yielding all the conclusions of
that theorem. It could, though, be used as an intermediate step in a proof of Theo-
rem 1B.1, which we leave to the reader as an exercise.

Exercise 2B.4. Supply a proof of the classical implicit function theorem 1B.1 based
on Robinson’s theorem 2B.1.

Guide. In the case C = IRn, so NC ≡ 0, use the Lipschitz continuity of the single-
valued localization s following from Corollary 2B.3 to show that s is continuously
differentiable around p̄ when f is continuously differentiable near (p̄, x̄).
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The invertibility property in assumption (b) of 2B.1 is what Robinson called
“strong regularity” of the generalized equation (3). A related term, “strong metric
regularity,” will be employed in Chapter 3 for set-valued mappings in reference to
the existence of Lipschitz continuous single-valued localizations of their inverses.

In the extended version of Theorem 2B.1 which we present next, the differen-
tiability assumptions on f are replaced by assumptions about an estimator h for
f (p̄, ·), which could in particular be a first-order approximation in the x argument.
This mode of generalization was initiated in 1E.3 and 1E.13 for equations, but now
we use it for a generalized equation (1). In contrast to Theorem 2B.1, which was
concerned with the case of a variational inequality (3), the mapping F : IRn →→ IRm

need not be of form NC and the dimensions n and m could in principle be different.
Remarkably, no direct assumptions need be made about F , but certain properties of
F will implicitly underlie the “invertibility” condition imposed jointly on F and the
estimator h.

Theorem 2B.5 (Robinson theorem extended beyond differentiability). For a gen-
eralized equation (1) and its solution mapping S in (2), let p̄ and x̄ be such that
x̄ ∈ S(p̄). Assume that:

(a) f (·, x̄) is continuous at p̄, and h is a strict estimator of f with respect to x
uniformly in p at (p̄, x̄) with constant µ;

(b) the inverse G−1 of the mapping G = h+F , for which G(x̄) 3 0, has a Lip-
schitz continuous single-valued localization σ around 0 for x̄ with lip(σ ;0)≤ κ for
a constant κ such that κµ < 1.

Then S has a single-valued localization s around p̄ for x̄ which is continuous at
p̄, and moreover for every ε > 0 there is a neighborhood Q of p̄ such that

(6) |s(p′)− s(p)| ≤ κ + ε

1−κµ
| f (p′,s(p))− f (p,s(p))| for all p′, p ∈ Q.

Theorem 2B.1 follows at once from Theorem 2B.5 by taking F to be NC and
h to be the linearization of f (p̄, ·) given by h(x) = f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄), and
employing 1E.15. More generally, h could be a strict first-order approximation: the
case when µ = 0. That case, which has further implications, will be taken up later.
However, Theorem 2B.5 is able to extract information from much weaker relation-
ships between f and h than strict first-order approximation, and this information
can still have important consequences for the behavior of solutions to a generalized
equation, as seen in this pattern already for equations in 1E.

Our proof of Theorem 2B.5 will proceed through an intermediate stage in which
we isolate an equivalent formulation of the contracting mapping principle 1A.2,
with a somewhat lengthy statement.

Theorem 2B.6 (contracting mapping principle for composition). Consider a func-
tion ϕ : IRd × IRn → IRm and a point (p̄, x̄) ∈ int dom ϕ and let the scalars ν ≥ 0,
b≥ 0, a > 0, and the set Q⊂ IRd be such that p̄ ∈ Q and

(7)
{
|ϕ(p,x′)−ϕ(p,x)| ≤ ν |x− x′| for all x′,x ∈ IBa(x̄) and p ∈ Q,
|ϕ(p, x̄)−ϕ(p̄, x̄)| ≤ b for all p ∈ Q.
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Consider also a set-valued mapping M : IRm→→ IRn with (ȳ, x̄) ∈ gph M where ȳ :=
ϕ(p̄, x̄), such that for each y ∈ IBνa+b(ȳ) the set M(y)∩ IBa(x̄) consists of exactly
one point, denoted by r(y), and suppose that the function

(8) r : y 7→M(y)∩ IBa(x̄) for y ∈ IBνa+b(ȳ)

is Lipschitz continuous on IBνa+b(ȳ) with a Lipschitz constant λ . In addition, sup-
pose that

(a) λν < 1;
(b) λνa+λb≤ a.

Then for each p ∈ Q the set {x ∈ IBa(x̄) | x ∈ M(ϕ(p,x))} consists of exactly one
point, and the associated function

(9) s : p 7→ {x | x = M(ϕ(p,x))∩ IBa(x̄)} for p ∈ Q

satisfies

(10) |s(p′)− s(p)| ≤ λ

1−λν
|ϕ(p′,s(p))−ϕ(p,s(p))| for all p′, p ∈ Q.

Proof. Fix p ∈ Q and consider the function Φp : IRn→ IRn defined by

Φp : x 7→ r(ϕ(p,x)) for x ∈ IBa(x̄).

First, note that for x ∈ IBa(x̄) from (7) one has |ȳ−ϕ(p,x)| ≤ b+νa, thus, by (8),
IBa(x̄)⊂ dom Φp. Next, if x ∈ IBa(x̄), we have from the identity x̄ = r(ϕ(p̄, x̄)), the
Lipschitz continuity of r, and conditions (7) and (b) that

|Φp(x̄)− x̄|= |r(ϕ(p, x̄))− r(ϕ(p̄, x̄))| ≤ λ |ϕ(p, x̄)−ϕ(p̄, x̄)| ≤ λb≤ a(1−λν).

For any x′,x ∈ IBa(x̄) we obtain

|Φp(x′)−Φp(x)|= |r(ϕ(p,x′))− r(ϕ(p,x))| ≤ λ |ϕ(p,x′)−ϕ(p,x)| ≤ λν |x′− x|,

that is, Φp is Lipschitz continuous in IBa(x̄) with constant λν < 1, from condition
(a). We are in position then to apply the contraction mapping principle 1A.2 and to
conclude from it that Φp has a unique fixed point in IBa(x̄).

Denoting that fixed point by s(p), and doing this for every p ∈ Q, we get
a function s : Q → IBa(x̄). But having x = Φp(x) is equivalent to having x =
r(ϕ(p,x)) = M(ϕ(p,x))∩ IBa(x̄). Hence s is the function in (9). Moreover, since
s(p) = r(ϕ(p,s(p))), we have from the Lipschitz continuity of r and (7) that, for
any p′, p ∈ Q,

|s(p′)− s(p)| = |r(ϕ(p′,s(p′)))− r(ϕ(p,s(p)))|
≤ |r(ϕ(p′,s(p′)))− r(ϕ(p′,s(p)))|+ |r(ϕ(p′,s(p)))− r(ϕ(p,s(p)))|
≤ λ |ϕ(p′,s(p′))−ϕ(p′,s(p))|+λ |ϕ(p′,s(p))−ϕ(p,s(p))|
≤ λν |s(p′)− s(p)|+λ |ϕ(p′,s(p))−ϕ(p,s(p))|.
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Since λν < 1, we see that s satisfies (10), as needed.

To show that the contraction mapping principle 1A.2 utilized in proving 2B.6
(namely, with X = IRn equipped with the metric induced by the Euclidean norm | · |)
can in turn be derived from Theorem 2B.6, choose d = m = n, ν = λ , a unchanged,
b = |Φ(x̄)− x̄|, p̄ = 0, Q = IBb(0), ϕ(p,x) = Φ(x)+ p, ȳ = Φ(x̄), M(y) = y+ x̄−
Φ(x̄), and consequently the λ in 1A.2 is 1. All the conditions of 2B.6 hold for such
data under the assumptions of the contraction mapping principle 1A.2. Hence for
p = Φ(x̄)− x̄ ∈ Q the set

{
x ∈ IBa(x̄)

∣∣x = M(ϕ(p,x)) = Φ(x)
}

consists of exactly
one point; that is, Φ has a unique fixed point in IBa(x̄). Thus, Theorem 2B.6 is
actually equivalent3 to the form of the contraction mapping principle 1.A.2 used in
its proof.

Proof of Theorem 2B.5. For an arbitrary ε > 0, choose any λ > lip(σ ;0) and
ν > µ such that λν < 1 and

(11)
λ

1−λν
≤ κ + ε

1−κµ
,

as is possible under the assumption that κµ < 1. Let a, b and c be positive numbers
such that

|σ(y)−σ(y′)| ≤ λ |y− y′| for y,y′ ∈ IBνa+b(0),

|e(p,x′)− e(p,x)| ≤ ν |x− x′| for x,x′ ∈ IBa(x̄) and p ∈ IBc(p̄),

where e(p,x) = f (p,x)−h(x), and

(12) | f (p, x̄)− f (p̄, x̄)| ≤ b for p ∈ IBc(p̄).

Take b smaller if necessary so that bλ < a(1− λν), and accordingly adjust c to
ensure having (12). Now apply Theorem 2B.6 with r = σ , M = (h+F)−1, ȳ = 0
and ϕ =−e, keeping the rest of the notation the same. It’s straightforward to check
that the estimates in (7) and the conditions (a) and (b) hold for the function in (8).
Then, through the conclusion of Theorem 2B.6 and the observation that

(13) x ∈ (h+F)−1(−e(p,x)) ⇐⇒ x ∈ S(p),

we obtain that the solution mapping S in (2) has a single-valued localization s around
p̄ for x̄. Due to (11), the inequality in (6) holds for Q = IBc(p̄). That estimate implies
the continuity of s at p̄, in particular.

3 Theorem 2B.6 can be stated in a complete metric space X and then it will be equivalent to the
standard formulation of the contraction mapping principle in Theorem 1A.2. There is no point,
of course, in giving a fairly complicated equivalent formulation of a classical result unless, as in
our case, this formulation would bring some insights and dramatically simplify the proofs of later
results. This is yet another confirmation of the common opinion shared also by the authors that the
various reincarnations of the contraction mapping principle should be treated as tools for handling
specific problems rather than isolated results.
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From Theorem 2B.5 we obtain a generalization of Theorem 1E.13, the result in
Chapter 1 about implicit functions without differentiability, in which the function f
is replaced now by the sum f +F for an arbitrary set-valued mapping F . The next
statement, 2B.7, covers most of this generalization; the final part of 1E.13 (giving
special consequences when µ = 0) will be addressed in the follow-up statement,
2B.8.

Theorem 2B.7 (implicit function theorem for generalized equations). Consider a
function f : IRd × IRn → IRn and a mapping F : IRn →→ IRn with (p̄, x̄) ∈ int dom f
and f (p̄, x̄)+F(x̄) 3 0, and suppose that l̂ip p( f ;(p̄, x̄)) ≤ γ < ∞. Let h be a strict
estimator of f with respect to x uniformly in p at (p̄, x̄) with constant µ . Suppose
that (h+F)−1 has a Lipschitz continuous single-valued localization σ around 0 for
x̄ with lip(σ ;0)≤ κ for a constant κ such that κµ < 1. Then the solution mapping

S : p 7→
{

x ∈ IRn ∣∣ f (p,x)+F(x) 3 0
}

for p ∈ IRd

has a Lipschitz continuous single-valued localization s around p̄ for x̄ with

lip(s; p̄)≤ κγ

1−κµ
.

The inverse function version of 2B.7 has the following simpler form:

Theorem 2B.8 (inverse function theorem for set-valued mappings). Consider a a
mapping G : IRn →→ IRn with with G(x̄) 3 ȳ and suppose that G−1 has a Lipschitz
continuous single-valued localization σ around ȳ for x̄ with lip(σ ; ȳ)≤ κ for a con-
stant κ . Let g : IRn→ IRn be Lipschitz continuous around x̄ with Lipschitz constant
µ such that κµ < 1. Then the mapping (g+G)−1 has a Lipschitz continuous single-
valued localization around ȳ+g(x̄) for x̄ with Lipschitz constant κ/(1−κµ).

For the case of 2B.7 with µ = 0, in which case h is a partial first-order approxima-
tion of f with respect to x at (p̄, x̄), much more can be said about the single-valued
localization s. The details are presented in the next result, which extends the part of
1E.13 for this case, and with it, Corollaries 2B.2 and 2B.3. We see that, by adding
some relatively mild assumptions about the function f (while still allowing F to
be arbitrary!), we can develop a first-order approximation of the localized solution
mapping s in Theorem 2B.5. This opens the way to obtain differentiability proper-
ties of s, for example.

Theorem 2B.9 (extended implicit function theorem with first-order approxima-
tions). Specialize Theorem 2B.5 to the case where µ = 0 in 2B.5(a), so that h is
a strict first-order approximation of f with respect to x uniformly in p at (p̄, x̄).
Then, with the localization σ in 2B.5(b) we have the following additions to the
conclusions of Theorem 2B.5:

(a) If clm p( f ;(p̄, x̄)) < ∞ then the single-valued localization s of the solution
mapping S in (2) is calm at p̄ with
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(14) clm(s; p̄) ≤ lip(σ ;0) · clm p( f ;(p̄, x̄)).

(b) If l̂ip p( f ;(p̄, x̄)) < ∞, then the single-valued localization s of the solution
mapping S in (2) is Lipschitz continuous near p̄ with

(15) lip(s; p̄) ≤ lip(σ ;0) · l̂ip p( f ;(p̄, x̄)).

(c) If, along with (a), f has a first-order approximation r with respect to p at
(p̄, x̄), then, for Q as in (6), the function η : Q→ IRn defined by

(16) η(p) = σ(−r(p)+ f (p̄, x̄)) for p ∈ Q

is a first-order approximation at p̄ to the single-valued localization s.
(d) If, in addition to (b)(c), σ is affine, i.e., σ(y) = x̄+Ay for some n×m ma-

trix A, and furthermore the first-order approximation r is strict with respect to p
uniformly in x at (p̄, x̄), then η is a strict first-order approximation of s at p̄ in the
form

(17) η(p) = x̄+A(−r(p)+ f (p̄, x̄)) for p ∈ Q.

Proof. Let the constants a and c be as in the proof of Theorem 2B.5; then Q =
IBc(p̄). Let U = IBa(x̄). For p ∈ Q, from (13) we have

(18) s(p) = σ(−e(p,s(p))) for e(p,x) = f (p,x)−h(x), and x̄ = s(p̄) = σ(0).

Let κ equal lip(σ ;0) and consider for any ε > 0 the estimate in (6) with µ = 0. Let
p′ ∈ Q, p′ 6= p̄ and p = p̄ in (6) and divide both sides of (6) by |p′− p̄|. Taking the
limsup as p′→ p̄ and ε → 0 gives us (14).

Observe that (15) follows directly from 2B.7 under the assumptions of (b). Al-
ternatively, it can be obtained by letting p′, p ∈ Q, p′ 6= p in (6), dividing both sides
of (6) by |p′− p| and passing to the limit.

Consider now any λ > clm(s; p̄) and ε > 0. Make the neighborhoods Q and U
smaller if necessary so that for all p∈Q and x∈U we have |s(p)−s(p̄)| ≤ λ |p− p̄|
and

(19) |e(p,x)− e(p, x̄)| ≤ ε|x− x̄|, | f (p, x̄)− r(p)| ≤ ε|p− p̄|,

and furthermore so that the points −e(p,x) and −r(p)+ f (p̄, x̄) are contained in a
neighborhood of 0 on which the function σ is Lipschitz continuous with Lipschitz
constant κ + ε = lip(σ ;0)+ ε . Then, for p ∈ Q, we get by way of (18), along with
the first inequality in (19) and the fact that e(p̄, x̄) = 0, the estimate that

|s(p)−η(p)| = |s(p)−σ(−r(p)+ f (p̄, x̄))|
= |σ(−e(p,s(p)))−σ(−r(p)+ f (p̄, x̄))|
≤ (κ + ε)(|− e(p,s(p))+ e(p, x̄)|+ | f (p, x̄)− r(p)|)
≤ (κ + ε)ε|s(p)− x̄|+(κ + ε)ε|p− p̄| ≤ ε(κ + ε)(λ +1)|p− p̄|.
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Since ε can be arbitrarily small and also s(p̄) = x̄ = σ(0) = η(p̄), the function η

defined in (16) is a first-order approximation of s at p̄.
Moving on to part (d) of the theorem, suppose that the assumptions in (b)(c) are

satisfied and also σ(y) = x̄+Ay. Again, choose any ε > 0 and further adjust the
neighborhoods Q of p̄ and U of x̄ so that

(20)
|e(p,x)− e(p,x′)| ≤ ε|x− x′| for all x,x′ ∈U and p ∈ Q,
| f (p′,x)− r(p′)− f (p,x)+ r(p)| ≤ ε|p′− p| for all x ∈U and p′, p ∈ Q,

and moreover s(p) ∈ U for p ∈ Q. By part (b), the single-valued localization s is
Lipschitz continuous near p̄; let λ > lip(s; p̄) and shrink Q even more if necessary
so as to ensure that s is Lipschitz continuous with constant λ on Q. For p, p′ ∈ Q,
using (17), (18) and (20), we obtain

|s(p)− s(p′)−η(p)+η(p′)| = |s(p)− s(p′)−A(−r(p)+ r(p′))|
= |A(−e(p,s(p))+ e(p′,s(p′))+ r(p)− r(p′))|
≤ |A||− e(p,s(p))+ e(p,s(p′))|

+|A|| f (p′,s(p′))− r(p′)− f (p,s(p′))+ r(p)|
≤ |A|(ε|s(p)− s(p′)|+ ε|p′− p|)
≤ |A|ε(λ +1)|p− p′|.

Since ε can be arbitrarily small, we see that the first-order approximation of s fur-
nished by η is strict, and the proof is complete.

Note that the assumption in part (d), that the localization σ of G−1 = (h+F)−1

around 0 for x̄ is affine, can be interpreted as a sort of differentiability condition on
G−1 at 0 with A giving the derivative mapping.

Corollary 2B.10 (utilization of strict differentiability). Suppose in the generalized
equation (1) with solution mapping S given by (2), that x̄ ∈ S(p̄) and f is strictly
differentiable at (p̄, x̄). Assume that the inverse G−1 of the mapping

G(x) = f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄)+F(x), with G(x̄) 3 0,

has a Lipschitz continuous single-valued localization σ around 0 for x̄. Then not
only do the conclusions of Theorem 2B.5 hold for a solution localization s, but also
there is a first-order approximation η to s at p̄ given by

η(p) = σ
(
−∇p f (p̄, x̄)(p− p̄)

)
.

Moreover, if F ≡ 0, then the first-order approximation η is strict and given by

(21) η(p) = x̄−∇x f (p̄, x̄)−1
∇p f (p̄, x̄)(p− p̄),

so that s is strictly differentiable at p̄.
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Proof. In this case Theorem 2B.9 is applicable with h taken to be the linearization
of f (p̄, ·) at x̄ and r taken to be the linearization of f (·, x̄) at p̄. When F ≡ 0, we
get σ(y) = x̄+∇x f (p̄, x̄)−1y, so that η as defined in (16) achieves the form in (21).
Having a strict first-order approximation by an affine function means strict differen-
tiability.

The second part of Corollary 2B.10 shows how the implicit function theorem for
equations as stated in Theorem 1D.13 is covered as a special case of Theorem 2B.7.

In the case of the generalized equation (1) where f (p,x) = g(x)− p for a function
g : IRn→ IRm (d = m), so that

(22) S(p) =
{

x
∣∣ p ∈ g(x)+F(x)

}
= (g+F)−1(p),

the inverse function version of Theorem 2B.9 has the following symmetric form.

Theorem 2B.11 (extended inverse function theorem with first-order approxima-
tions). In the framework of the solution mapping (22), consider any pair (p̄, x̄) with
x̄ ∈ S(p̄). Let h be any strict first-order approximation to g at x̄. Then (g+F)−1

has a Lipschitz continuous single-valued localization s around p̄ for x̄ if and only if
(h+F)−1 has such a localization σ around p̄ for x̄, in which case σ is a first-order
approximation of s at p̄ and

(23) lip(s; p̄) = lip(σ ; p̄).

If, in addition, σ is affine, σ(y) = x̄+Ay, then s is strictly differentiable at p̄ with
Ds(p̄) = A.

Proof. For the “if” part, suppose that (h+F)−1 has a localization σ as described.
Then, from (15) with f (p,x) =−p+g(x) we get lip(s; p̄)≤ lip(σ ;0). The “only if”
part is completely analogous because g and h play symmetric roles in the statement,
and yields lip(σ ; p̄) ≤ lip(s′;0) for some single-valued localization s′ of S. The
localizations s and s′ have to agree graphically around (0, x̄), so we pass to a smaller
localization, again called s, and get the equality in (23). Through the observation
that r(p) = g(x̄)− p+ p̄, the rest follows from Theorem 2B.9(d).

We also can modify the results presented so far in this section in the direction
indicated in Section 1F, where we considered local selections instead of single-
valued localizations. We state such a result here as an exercise.

Exercise 2B.12 (implicit selections). Let S(p) =
{

x ∈ IRn
∣∣ f (p,x)+F(x) 3 0

}
for

a function f : IRd× IRn→ IRm and a mapping F : IRn→→ IRm, along with a pair (p̄, x̄)
such that x̄ ∈ S(p̄), and suppose that l̂ip p( f ;(p̄, x̄)) ≤ γ < ∞. Let h be a strict first-
order approximation of f with respect to x at (p̄, x̄) for which (h+F)−1 has a Lip-
schitz continuous local selection σ around 0 for x̄ with lip(σ ;0)≤ κ . Then S has a
Lipschitz continuous local selection s around p̄ for x̄ with

lip(s; p̄)≤ κγ.
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If in addition f has a first-order approximation r with respect to p at (p̄, x̄), then
there exists a neighborhood Q of p̄ such that the function

η : p 7→ σ(−r(p)+ f (p̄, x̄)) for p ∈ Q

is a first-order approximation of s at p̄.

Guide. First verify the following statement, which is a simple modification of The-
orem 2B.6. For a function ϕ : IRd× IRn→ IRm and a point (p̄, x̄) ∈ int dom ϕ , let the
nonnegative scalars ν , b, the positive scalar a, and the set Q⊂ IRd be such that p̄∈Q
and the conditions (7) hold. Consider also a set-valued mapping M : IRm→→ IRn with
(ȳ, x̄) ∈ gph M, where ȳ := ϕ(p̄, x̄), and assume that there exists a Lipschitz contin-
uous function r on IBνa+b(ȳ) such that

r(y) ∈M(y)∩ IBa(x̄) for y ∈ IBνa+b(ȳ) and r(ȳ) = x̄.

In addition, suppose now that the Lipschitz constant λ for the function r is such that
the conditions (a) and (b) in the statement of Theorem 2B.6 are fulfilled. Then for
each p ∈ Q the set

{
x ∈ IBa(x̄)

∣∣x ∈M(ϕ(p,x))
}

contains a point s(p) such that the
function p 7→ s(p) satisfies s(p̄) = x̄ and

(24) |s(p′)− s(p)| ≤ λ

1−λν
|ϕ(p′,s(p))−ϕ(p,s(p))| for all p′, p ∈ Q.

Thus, the mapping N := p 7→
{

x
∣∣x ∈ M(ϕ(p,x))

}
∩ IBa(x̄) has a local selection s

around p̄ for x̄ which satisfies (24). The difference from Theorem 2B.6 is that r is
now required only to be a local selection of the mapping M with specified properties,
and then we obtain a local selection s of N at p̄ for x̄. For the rest use the proofs of
Theorems 2B.5 and 2B.9.

Exercise 2B.13 (inverting perturbed inverse). Consider functions f and g from IRn

into itself, a point x̄ ∈ int dom f such that f (x̄) ∈ int dom g, and positive numbers
κ and µ such that κµ < 1. Let f be Lipschitz continuous around x̄ with Lipschitz
constant κ and g be Lipschitz continuous around f (x̄) with Lipschitz constant µ .
Then ( f−1 +g)−1 has a Lipschitz continuous single-valued localization around x̄+
g( f (x̄)) for f (x̄) with Lipschitz constant κ/(1−κµ).

Guide. Apply 2B.9 with G−1 = f .

2C. Ample Parameterization and Parametric Robustness

The results in 2B, especially the broad generalization of Robinson’s theorem in 2B.5
and its complement in 2B.9 dealing with solution approximations, provide a sub-
stantial extension of the classical theory of implicit functions. Equations have been
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replaced by generalized equations, with variational inequalities as a particular case,
and technical assumptions about differentiability have been greatly relaxed. Much
of the rest of this chapter will be concerned with working out the consequences in
situations where additional structure is available. Here, however, we reflect on the
ways that parameters enter the picture and the issue of whether there are “enough”
parameters, which emerges as essential in drawing good conclusions about solution
mappings.

The differences in parameterization between an inverse function theorem and an
implicit function theorem are part of a larger pattern which deserves, at this stage, a
closer look. Let’s start by considering a generalized equation without parameters,

(1) g(x)+F(x) 3 0,

for a function g : IRn→ IRm and a set-valued mapping F : IRn→→ IRm. We can think
of a parameterization as the choice of a function

(2) f : IRd× IRn→ IRm having f (p̄,x)≡ g(x) for a particular p̄ ∈ IRd .

The specification of such a parameterization leads to an associated solution mapping

(3) S : p 7→
{

x
∣∣ f (p,x)+F(x) 3 0

}
,

which we proceed to study around p̄ and a point x̄ ∈ S(p̄) for the presence of a nice
localization σ . Different parameterizations yield different solution mappings, which
may possess different properties according to the assumptions placed on f .

That’s the general framework, but the special kind of parameterization that corre-
sponds to the “inverse function” case has a fundamental role which is worth trying to
understand more fully. In that case, we simply have f (p,x) = g(x)− p in (2), so that
in (1) we are solving g(x)+F(x) 3 p and the solution mapping is S = (g+F)−1.
Interestingly, this kind of parameterization comes up even in obtaining “implicit
function” results through the way that approximations are utilized. Recall that in
Theorem 2B.5, for a function h which is “close” to f (p̄, ·) near x̄, the mapping
(h+F)−1 having x̄∈ (h+F)−1(0) is required to have a Lipschitz continuous single-
valued localization around 0 for x̄. Only then are we able to deduce that the solution
mapping S in (3) has a localization of such type at p̄ for x̄. In other words, the de-
sired conclusion about S is obtained from an assumption about a simpler solution
mapping in the “inverse function” category.

When S itself already belongs to that category, because f (p,x) = g(x)− p and
S = (g+F)−1, another feature of the situation emerges. Then, as seen in 2B.11,
the assumption made about (h+F)−1 is not only sufficient for obtaining the de-
sired localization of S but also necessary. This distinction was already observed in
the classical setting. In the “symmetric” version of the inverse function theorem
in 1B.9, the invertibility of a linearized mapping is both necessary and sufficient
for the conclusion, whereas such invertibility acts only as a sufficient condition in
the implicit function theorem 1B.2. On an additional assumption on the rank of the
Jacobian with respect to the parameter however, as noted in 1B.8, this sufficient
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condition becomes also necessary. In other words, to achieve necessity as well as
sufficiency, the parameterization must be “rich” enough.

Ample parameterization. A parameterization of the generalized equation (1) as
in (2) will be called ample at x̄ if f (p,x) is strictly differentiable with respect to p
uniformly in x at (p̄, x̄) and the partial Jacobian ∇p f (p̄, x̄) is of full rank:

(4) rank ∇p f (p̄, x̄) = m.

The reason why the rank condition in (4) can be interpreted as ensuring the rich-
ness of the parameterization is that it can always be achieved through supplementary
parameters. Any parameterization function f having the specified strict differentia-
bility can be extended to a parameterization function f̃ with

(5) f̃ (q,x) = f (p,x)− y, q = (p,y), q̄ = (p̄,0),

which does satisfy the ampleness condition, since trivially rank ∇q f̃ (q̄, x̄) = m. The
generalized equation being solved then has solution mapping

(6) S̃ : (p,y) 7→
{

x
∣∣ f (p,x)+F(x) 3 y

}
.

Results about localizations of S̃ can be specialized to results about S by taking y = 0.
In order to arrive at the key result about ample parameterization, asserting an

equivalence about the existence of several kinds of localizations, we need a lemma
about local selections which is related to the results presented in Section 1F.

Lemma 2C.1 local selection from ampleness). Let f : IRd× IRn→ IRm with (p̄, x̄) ∈
int dom f afford an ample parameterization of the generalized equation (1) at x̄.
Suppose that f has a strict first-order approximation h : IRn→ IRm with respect to x
uniformly in p at (p̄, x̄). Then the mapping

(7) Ψ : (x,y) 7→
{

p
∣∣e(p,x)+ y = 0

}
for (x,y) ∈ IRn× IRm,

where e(p,x) = f (p,x)− h(x), has a local selection ψ around (x̄,0) for p̄ which
satisfies

(8a) l̂ip x(ψ;(x̄,0)) = 0

and

(8b) l̂ip y(ψ;(x̄,0))< ∞.

Proof. Let A = ∇p f (p̄, x̄); then AAT is invertible. Without loss of generality, sup-
pose x̄ = 0, p̄ = 0, and f (0,0) = 0; then h(0) = 0. Let c = |AT(AAT)−1|. Let
0 < ε < 1/(2c) and choose a positive a such that for all x,x′ ∈ aIB and p, p′ ∈ aIB
we have
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(9) |e(p,x′)− e(p,x)| ≤ ε|x− x′|

and

(10) | f (p,x)− f (p′,x)−A(p− p′)| ≤ ε|p− p′|.

For b = a(1−2cε)/c, fix x ∈ aIB and y ∈ bIB, and consider the mapping

Φx,y : p 7→ −AT(AAT)−1(e(p,x)+ y−Ap) for p ∈ aIB.

Through (9) and (10), keeping in mind that e(0,0) = 0, we see that

|Φx,y(0)| ≤ c|e(0,x)+ y| ≤ c|e(0,x)− e(0,0)|+ c|y| ≤ cεa+ cb = a(1− cε),

and for every p, p′ ∈ aIB

|Φx,y(p)−Φx,y(p′)| ≤ c| f (p,x)− f (p′,x)−A(p− p′)| ≤ cε|p− p′|.

The contraction mapping principle 1A.2 then applies, and we obtain from it the
existence of a unique p ∈ aIB such that

(11) p =−AT(AAT)−1(e(p,x)+ y−Ap).

We denote by ψ(x,y) the unique solution in aIB of this equation for x ∈ aIB and
y ∈ bIB. Multiplying both sides of (11) by A and simplifying, we get e(p,x)+y = 0.
This means that for each (x,y) ∈ aIB× bIB the equation e(p,x)+ y = 0 has ψ(x,y)
as a solution. From (11), we know that

(12) ψ(x,y) =−AT(AAT)−1( f (ψ(x,y),x)−h(x)+ y−Aψ(x,y)).

Let x,x′ ∈ aIB and y,y′ ∈ bIB. Using (9) and (10) we have

|ψ(x,y)−ψ(x′,y)| ≤ c|e(ψ(x,y),x)− e(ψ(x,y),x′)|
+c| f (ψ(x,y),x′)− f (ψ(x′,y),x′)−A(ψ(x,y)−ψ(x′,y))|

≤ cε|x− x′|+ cε|ψ(x,y)−ψ(x′,y)|.

Hence
|ψ(x,y)−ψ(x′,y)| ≤ cε

1− cε
|x− x′|.

Since ε can be arbitrarily small, we conclude that (8a) holds. Analogously, from
(12) and using again (9) and (10) we obtain

|ψ(x,y)−ψ(x,y′)|
≤ c| f (ψ(x,y),x)+ y−Aψ(x,y)− f (ψ(x,y′),x)− y′+Aψ(x,y′)|
≤ c|y− y′|+ cε|ψ(x,y)−ψ(x,y′)|,

and then
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|ψ(x,y)−ψ(x,y′)| ≤ c
1− cε

|y− y′|

which gives us (8b).

We are now ready to present the first main result of this section:

Theorem 2C.2 (equivalences from ampleness). Let f parameterize the generalized
equation (1) as in (2). Suppose the parameterization is ample at (p̄, x̄), and let h be a
strict first-order approximation of f with respect to x uniformly in p at (p̄, x̄). Then
the following properties are equivalent:

(a) S in (3) has a Lipschitz continuous single-valued localization around p̄ for x̄;
(b) (h+F)−1 has a Lipschitz continuous single-valued localization around 0

for x̄;
(c) (g+F)−1 has a Lipschitz continuous single-valued localization around 0

for x̄;
(d) S̃ in (6) has a Lipschitz continuous single-valued localization around (p̄,0)

for x̄.

Proof. If the mapping (h+F)−1 has a Lipschitz continuous single-valued local-
ization around 0 for x̄, then from Theorem 2B.5 together with Theorem 2B.11 we
may conclude that the other three mappings likewise have such localizations at the
respective reference points. In other words, (b) is sufficient for (a) and (d). Also, (b)
is equivalent to (c) inasmuch as g and h are first-order approximations to each other
(Theorem 2B.11). Since (d) implies (a), the issue is whether (b) is necessary for (a).

Assume that (a) holds with a Lipschitz localization s around p̄ for x̄ and choose
λ > lip(s; p̄). Let ν > 0 be such that λν < 1, and consider a Lipschitz continuous
local selection ψ of the mapping Ψ in Lemma 2C.1. Then there exist positive a, b
and c such that λνa+λb < a,

S(p)∩ IBa(x̄) = s(p) for p ∈ IBνa+b(p̄),

|s(p)− s(p′)| ≤ λ |p− p′| for p, p′ ∈ IBνa+b(p̄),

h(x)− f (ψ(x,y),x) = y for y ∈ IBc(0),x ∈ IBa(x̄),

|ψ(x,y)−ψ(x′,y)| ≤ ν |x− x′| for x,x′ ∈ IBa(x̄) and y ∈ IBc(0),

the last from (8a), and

|ψ(y, x̄)−ψ(0, x̄)| ≤ b for y ∈ IBc(0).

We now apply Theorem 2B.6 with ϕ(p,x) = ψ(x,y) for p = y and M(p) = S(p),
thereby obtaining that the mapping

IBc(0) 3 y 7→
{

x ∈ IBa(x̄)
∣∣x ∈ S(ψ(x,y))

}
is a function which is Lipschitz continuous on IBc(0). Noting that

(h+F)−1(y)∩ IBa(x̄) = {x | x = S(ψ(x,y))∩ IBa(x̄)},
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we conclude that (h+F)−1 has a Lipschitz continuous single-valued localization
around 0 for x̄. Thus, (a) implies (b).

The strict differentiability property with respect to p which is assumed in the
definition of ample parameterization is satisfied of course when f is strictly differ-
entiable with respect to (p,x) at (p̄, x̄). Then, moreover, the linearization of f (p̄, ·)
at x̄, which is the same as the linearization of g at x̄, can be taken as the function h.
This leads to a statement about an entire class of parameterizations.

Theorem 2C.3 (parametric robustness). Consider the generalized equation (1) un-
der the assumption that x̄ is a point where g is strictly differentiable. Let h(x) =
g(x̄)+∇g(x̄)(x− x̄). Then the following statements are equivalent:

(a) (h+F)−1 has a Lipschitz continuous single-valued localization around 0
for x̄;

(b) For every parameterization (2) in which f is strictly differentiable at (x̄, p̄),
the mapping S in (3) has a Lipschitz continuous single-valued localization around p̄
for x̄.

Proof. The implication from (a) to (b) already follows from Theorem 2B.9. The
focus is on the reverse implication. This is valid because, among the parameteriza-
tions covered by (b), there will be some that are ample. For instance, one could pass
from a given one to an ample parameterization in the mode of (5). For the solution
mapping for such a parameterization, we have the implication from (a) to (b) in
Theorem 2C.2. That specializes to what we want.

2D. Semidifferentiable Functions

The notion of a first-order approximation of a function at a given point has already
served us for various purposes as a substitute for differentiability, where the ap-
proximation is a linearization. We now bring in an intermediate concept in which
linearity is replaced by positive homogeneity.

A function ϕ : IRn → IRm is positively homogeneous if 0 = ϕ(0) and ϕ(λw) =
λϕ(w) for all w ∈ dom ϕ and λ > 0. These conditions mean geometrically that
the graph of ϕ is a cone in IRn× IRm. A linear function is positively homogeneous
in particular, of course. The graph of a linear function ϕ : IRn → IRm is actually a
subspace of IRn× IRm.

Semiderivatives. A function f : IRn → IRm is said to be semidifferentiable4 at x̄
if it has a first-order approximation at x̄ of the form h(x) = f (x̄)+ϕ(x− x̄) with
ϕ continuous and positively homogeneous; when the approximation is strict, f is

4 Also called Bouligand differentiable or B-differentiable functions.
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strictly semidifferentiable at x̄. Either way, the function ϕ , necessarily unique, is
called the semiderivative of f at x̄ and denoted by D f (x̄), so that h(x) = f (x̄) +
D f (x̄)(x− x̄).

In a first-order approximation we have by definition that clm( f − h)(x̄) = 0,
which in the “strict” case is replaced by lip( f − h)(x̄) = 0. The uniqueness of the
semiderivative, when it exists, comes from the fact that any two first-order approxi-
mations f (x̄)+ϕ(x− x̄) and f (x̄)+ψ(x− x̄) of f at x̄ must have clm(ϕ−ψ)(0)= 0,
and under positive homogeneity that cannot hold without having ϕ =ψ . The unique-
ness can also be gleaned through comparison with directional derivatives.

One-sided directional derivatives. For f : IRn → IRm, a point x̄ ∈ dom f and a
vector w ∈ IRn, the limit

(1) f ′(x̄;w) = lim
t↘0

f (x̄+ tw)− f (x̄)
t

,

when it exists, is the (one-sided) directional derivative of f at x̄ for w; here t↘0
means that t→ 0 with t > 0. If this directional derivative exists for every w, f is said
to be directionally differentiable at x̄.

Note that f ′(x̄;w) is positively homogeneous in the w argument. This comes out
of the limit definition itself. Directional differentiability is weaker than semidiffer-
entiability in general, but equivalent to it in the presence of Lipschitz continuity, as
we demonstrate next.

Proposition 2D.1 (directional differentiability and semidifferentiability). If a func-
tion f : IRn → IRm is semidifferentiable at x̄, then f is in particular directionally
differentiable at x̄ and has

(2) D f (x̄)(w) = f ′(x̄;w) for all w,

so that the first-order approximation in the definition of semidifferentiability has the
form

h(x) = f (x̄)+ f ′(x̄;x− x̄).

When lip( f ; x̄)< ∞, directional differentiability at x̄ in turn implies semidifferentia-
bility at x̄.

Proof. Having clm( f − h)(x̄) = 0 for h(x) = f (x̄)+ϕ(x− x̄) as in the definition
of semidifferentiability entails having [ f (x̄+ tw)− h(x̄+ tw)]/t → 0 as t↘0 with
h(x̄+ tw) = f (x̄)+ tϕ(w). Thus, ϕ(w) must be f ′(x̄;w).

For the converse claim, consider λ > lip( f ; x̄) and observe that for any u and v,

(3) | f ′(x̄;u)− f ′(x̄;v)|= lim
t↘0

1
t
| f (x̄+ tu)− f (x̄+ tv)| ≤ λ |u− v|.

Next, consider an arbitrary sequence uk→ 0 and, without loss of generality, assume
that uk/|uk| → ū with |ū| = 1. Letting tk = |uk| and using the positive homogeneity
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of the directional derivative, we obtain

0 ≤ 1
|uk|
| f (x̄+uk)− f (x̄)− f ′(x̄;uk)|

≤ 1
tk

(
| f (x̄+uk)− f (x̄+ tkū)|+ | f ′(x̄; tkū)− f ′(x̄;uk)|

+| f (x̄+ tkū)− f (x̄)− f ′(x̄; tkū)|
)

≤ 2λ |uk

tk
− ū|+ | 1

tk
( f (x̄+ tkū)− f (x̄))− f ′(x̄; ū)|,

where in the final inequality we invoke (3). Since uk is arbitrarily chosen, we con-
clude by passing to the limit as k→∞ that for h(x) = f (x̄)+ f ′(x̄;x− x̄) we do have
clm( f −h; x̄) = 0.

When the semiderivative D f (x̄) : IRn → IRm is linear, semidifferentiability turns
into differentiability, and strict semidifferentiability turns into strict differentiability.
The connections known between D f (x̄) and the calmness modulus and Lipschitz
modulus of f at x̄ under differentiability can be extended to semidifferentiability by
adopting the definition that

|ϕ|= sup
|x|≤1
|ϕ(x)| for a positively homogeneous function ϕ.

We then have clm(D f (x̄);0) = |D f (x̄)| and consequently clm( f ; x̄) = |D f (x̄)|,
which in the case of strict semidifferentiability becomes lip( f ; x̄) = |D f (x̄)|. Thus
in particular, semidifferentiability of f at x̄ implies that clm( f ; x̄)< ∞, while strict
semidifferentiability at x̄ implies that lip( f ; x̄)< ∞.

Exercise 2D.2 (alternative characterization of semidifferentiability). For a function
f : IRn→ IRm and a point x̄ ∈ dom f , semidifferentiability is equivalent to the exis-
tence for every w ∈ IRn of

(4) lim
t↘0

w′→w

f (x̄+ tw′)− f (x̄)
t

.

Guide. Directional differentiability of f at x̄ corresponds to the difference quotient
functions ∆t(w) = [ f (x̄+ tw)− f (x̄)]/t converging pointwise to something, namely
f ′(x̄; ·), as t↘0. Show that the existence of the limits in (4) means that these func-
tions converge to f ′(x̄; ·) not just pointwise, but uniformly on bounded sets. Glean
from that the equivalence with having a first-order approximation as in the definition
of semidifferentiability.

Examples.
1) The function f (x) = e|x| for x ∈ IR is not differentiable at 0, but it is semidif-

ferentiable there and its semiderivative is given by D f (0) : w 7→ |w|. This is actually
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a case of strict semidifferentiability. Away from 0, f is of course continuously dif-
ferentiable (hence strictly differentiable).

2) The function f (x1,x2) = min{x1,x2} on IR2 is continuously differentiable at
every point away from the line where x1 = x2. On that line, f is strictly semidiffer-
entiable with

D f (x1,x2)(w1,w2) = min{w1,w2}.
3) A function of the form f (x) =max{ f1(x), f2(x)}, with f1 and f2 continuously

differentiable from IRn to IR, is strictly differentiable at all points x where f1(x) 6=
f2(x) and semidifferentiable where f1(x) = f2(x), the semiderivative being given
there by

D f (x)(w) = max{D f1(x)(w),D f2(x)(w)}.
However, f might not be strictly semidifferentiable at such points; see Example
2D.5.

The semiderivative obeys standard calculus rules, such as semidifferentiation of
a sum, product and ratio, and, most importantly, the chain rule. We pose the verifi-
cation of these rules as exercises.

Exercise 2D.3. Let f be semidifferentiable at x̄ and let g be Lipschitz continuous
and semidifferentiable at ȳ := f (x̄). Then g◦ f is semidifferentiable at x̄ and

D(g◦ f )(x̄) = Dg(ȳ)◦D f (x̄).

Guide. Apply Proposition 1E.1 and observe that a composition of positively homo-
geneous functions is positively homogeneous.

Exercise 2D.4. Let f be strictly semidifferentiable at x̄ and g be strictly differen-
tiable at f (x̄). Then g◦ f is strictly semidifferentiable at x̄.

Guide. Apply 1E.2.

Example 2D.5. The functions f and g in Exercise 2D.4 cannot exchange places: the
composition of a strictly semidifferentiable function with a strictly differentiable
function is not always strictly semidifferentiable. For a counterexample, consider
the function f : IR2→ IR given by

f (x1,x2) = min{x3
1,x2} for (x1,x2) ∈ IR2.

According to 2D.3, the function f is semidifferentiable at (0,0) with semiderivative
D f (0,0)(w1,w2) = min{0,w2}. To see that f is not strictly semidifferentiable at
(0,0), however, observe for the function g = f −D f (0,0) that

|g(x′1,x′2)−g(x1,x2)|
|(x′1,x′2)− (x1,x2)|

=
1

1+2ε
for (x1,x2)= (−ε,−ε

3/2) and (x′1,x
′
2)= (−ε,ε4).
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As ε goes to 0 this ratio tends to 1, and therefore lip( f −D f (0,0);(0,0))≥ 1.

Our aim now is to forge out of Theorem 2B.9 a result featuring semideriva-
tives. For this purpose, we note that if f (p,x) is (strictly) semidifferentiable at (p̄, x̄)
jointly in its two arguments, it is also “partially (strictly) semidifferentiable” in these
arguments separately. In denoting the semiderivative of f (p̄, ·) at x̄ by Dx f (p̄, x̄) and
the semiderivative of f (·, x̄) at p̄ by Dp f (p̄, x̄), we have

Dx f (p̄, x̄)(w) = D f (p̄, x̄)(0,w), Dp f (p̄, x̄)(q) = D f (p̄, x̄)(q,0).

In contrast to the situation for differentiability, however, D f (p̄, x̄)(q,w) isn’t neces-
sarily the sum of these two partial semiderivatives.

Theorem 2D.6 (implicit function theorem utilizing semiderivatives). Let x̄ ∈ S(p̄)
for the solution mapping

S : p 7→
{

x ∈ IRn ∣∣ f (p,x)+F(x) 3 0
}

associated with a choice of F : IRn →→ IRm and f : IRd × IRn → IRm such that f is
strictly semidifferentiable at (p̄, x̄). Suppose that the inverse G−1 of the mapping

G(x) = f (p̄, x̄)+Dx f (p̄, x̄)(x− x̄)+F(x), with G(x̄) 3 0,

has a Lipschitz continuous single-valued localization σ around 0 for x̄ which is
semidifferentiable at 0. Then S has a Lipschitz continuous single-valued localization
s around p̄ for x̄ which is semidifferentiable at p̄ with its semiderivative given by

Ds(p̄) = Dσ(0)◦(−Dp f (p̄, x̄)).

Proof. First, note that s(p̄) = σ(0) = x̄ and the function r in Theorem 2B.9 may be
chosen as r(p) = f (x̄, p̄)+Dp f (p̄, x̄)(p− p̄). Then we have

|s(p)− s(p̄)− (Dσ(0)◦(−Dp f (p̄, x̄)))(p− p̄)| ≤ |s(p)−σ(−r(p)+ r(p̄))|
+|σ(−Dp f (p̄, x̄)(p− p̄))−σ(0)−Dσ(0)(−Dp f (p̄, x̄)(p− p̄))|.

According to Theorem 2B.9 the function p 7→ σ(−r(p)+ r(p̄)) is a first-order ap-
proximation to s at p̄, hence the first term on the right side of this inequality is of
order o(|p− p̄|) when p is close to p̄. The same is valid for the second term, since σ

is assumed to be semidifferentiable at 0. It remains to observe that the composition
of positively homogeneous mappings is positively homogeneous.

An important class of semidifferentiable functions will be brought in next.

Piecewise smooth functions. A function f : IRn → IRm is said to be piecewise
smooth on an open set O⊂ dom f if it is continuous on O and for each x ∈ O there
is a finite collection { fi}i∈I of smooth (C 1) functions defined on a neighborhood of
x such that, for some ε > 0, one has
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(5) f (y) ∈
{

fi(y)
∣∣ i ∈ I

}
when |y− x|< ε.

The collection { fi}i∈I(x), where I(x) =
{

i ∈ I
∣∣ f (x) = fi(x)

}
, is said then to furnish

a local representation of f at x. A local representation in this sense is minimal if no
proper subcollection of it forms a local representation of f at x.

Note that a local representation of f at x characterizes f on a neighborhood of x,
and minimality means that this would be lost if any of the functions fi were dropped.

The piecewise smoothness terminology finds its justification in the following
observation.

Proposition 2D.7 (decomposition of piecewise smooth functions). Let f be piece-
wise smooth on an open set O with a minimal local representation { fi}i∈I at a
point x̄ ∈ O. Then for each i ∈ I(x̄) there is an open set Oi such that x̄ ∈ cl Oi and
f (x) = fi(x) on Oi.

Proof. Let ε > 0 be as in (5) with x = x̄ and assume that IBε(x̄) ⊂ O. For each
i∈ I(x̄), let Ui =

{
x∈ int IBε(x̄)

∣∣ f (x) = fi(x)
}

and Oi = int IBε(x̄)\∪ j 6=iU j. Because
f and fi are continuous, Ui is closed relative to int IBε(x̄) and therefore Oi is open.
Furthermore x̄ ∈ cl Oi, for if not, the set ∪ j 6=iU j would cover a neighborhood of
x̄, and then fi would be superfluous in the local representation, thus contradicting
minimality.

It’s not hard to see from this fact that a piecewise smooth function on an open
set O must be continuous on O and even locally Lipschitz continuous, since each
of the C 1 functions fi in a local representation is locally Lipschitz continuous, in
particular. Semidifferentiability in this situation takes only a little more effort to
confirm.

Proposition 2D.8 (semidifferentiability of piecewise smooth functions). If a func-
tion f : IRn→ IRm is piecewise smooth on an open set O⊂ dom f , then f is semidif-
ferentiable on O. Furthermore, the semiderivative function D f (x̄) at any point x̄ ∈O
is itself piecewise smooth, in fact with local representation composed by the linear
functions {D fi(x̄)}i∈I(x̄) when f has a minimal local representation { fi}i∈I around
x̄.

Proof. Let { fi}i∈I(x̄) be a minimal local representation of f around x̄. For a suitably
small δ > 0 and any w ∈ IRn, let ϕ(t) = f (x̄+ tw) and ϕi(t) = fi(x̄+ tw) for t ∈
(−δ ,δ ). Then ϕ is piecewise smooth with ϕ(0) = ϕi(0) for i ∈ I(x̄) and ϕ(t) ∈
{ϕi(t)

∣∣ i ∈ I(x̄)} for every t ∈ (−δ ,δ ). Since ϕi are smooth, taking δ smaller if
necessary we have that ϕi(t) 6= ϕ j(t) for all t ∈ (0,δ ) whenever ϕ ′i (0) 6= ϕ ′j(0).
Thus, there must exist a nonempty index set I ⊂ I(x̄) such that ϕ ′i (0) = ϕ ′j(0) for all
i, j ∈ I and also ϕ(t) ∈ {ϕi(t)

∣∣ i ∈ I} for every t ∈ (0,δ ). But then

lim
t↘0

1
t
[ϕ(t)−ϕ(0)] = ϕ

′
i (0) for every i ∈ I.
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Hence, ϕ is directionally differentiable at the origin and ϕ ′(0;1)∈{ϕ ′i (0) | i∈ I}. In-
voking 2D.1, this confirms semidifferentiability and establishes that the semideriva-
tive function is a selection from

{
D fi(x̄)

∣∣ i ∈ I(x̄)
}

.

The functions in the examples given after 2D.2 are not only semidifferentiable
but also piecewise smooth. Of course, a semidifferentiable function does not have to
be piecewise smooth, e.g., when it is a selection of infinitely many, but not finitely
many, smooth functions.

A more elaborate example of a piecewise smooth function is the projection map-
ping PC on a nonempty, convex and closed set C ⊂ IRn specified by finitely many
inequalities.

Exercise 2D.9 (piecewise smoothness of special projection mappings). For a con-
vex set C of the form

C =
{

x ∈ IRn ∣∣gi(x)≤ 0, i = 1, . . . ,m
}

for convex functions gi of class C 2 on IRn, let x̄ be a point of C at which the gra-
dients ∇gi(x̄) associated with the active constraints, i.e., the ones with gi(x̄) = 0,
are linearly independent. Then there is an open neighborhood O of x̄ such that the
projection mapping PC is piecewise smooth on O.

Guide. Since in a sufficiently small neighborhood of x̄ the inactive constraints re-
main inactive, one can assume without loss of generality that gi(x̄) = 0 for all
i = 1, . . . ,m. Recall that because C is nonempty, closed and convex, PC is a Lipschitz
continuous function from IRn onto C (see 1D.5). For each u around x̄ the projection
PC(u) is the unique solution to the problem of minimizing 1

2 |x−u|2 in x subject to
gi(x) ≤ 0 for i = 1, . . . ,m. The associated Lagrangian variational inequality (Theo-
rem 2A.10) tells us that when u belongs to a small enough neighborhood of x̄, the
point x solves the problem if and only if x is feasible and there is a subset J of the
index set {1,2, . . . ,m} and Lagrange multipliers yi ≥ 0, i ∈ J, such that

(6)
{

x+∑i∈J yi∇gi(x)T = u,
gi(x) = 0, i ∈ J.

The linear independence of the gradients of the active constraint gradients yields
that the Lagrange multiplier vector y is unique, hence it is zero for u = x = x̄. For
each fixed subset J of the index set {1,2, . . . ,m} the Jacobian of the function on the
left of (6) at (x̄,0) is

Q =

(
In +∑i∈J yi∇

2gi(x̄) ∇gJ(x̄)T

∇gJ(x̄) 0

)
,

where

∇gJ(x̄) =
[

∂gi

∂x j
(x̄)
]

i∈J, j∈{1,...,n}
and In is the n×n identity matrix.
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Since ∇gJ(x̄) has full rank, the matrix Q is nonsingular and then we can apply the
classical inverse function theorem (Theorem 1A.1) to the equation (6), obtaining
that its solution mapping u 7→ (xJ(u),yJ(u)) has a smooth single-valued localization
around u = x̄ for (x,y) = (x̄,0). There are finitely many subsets J of

{
1, . . . ,m

}
,

and for each u close to x̄ we have PC(u) = xJ(u) for some J. Thus, the projection
mapping PC is a selection of finitely many smooth functions.

Exercise 2D.10 (projection mapping). For a set of the form C =
{

x ∈ IRn
∣∣Ax =

b ∈ IRm
}

, if the m× n matrix A has linearly independent rows, then the projection
mapping is given by

PC(x) = (I−AT(AAT)−1A)x+AT(AAT)−1b.

Guide. The optimality condition (6) in this case leads to the system of equations(
x
b

)
=

(
I AT

A 0

)(
PC(x)

λ

)
.

Use the identity(
I AT

A 0

)
=

(
I−AT(AAT)−1A AT(AAT)−1

(AAT)−1A −(AAT)−1

)−1

to reach the desired conclusion.

2E. Variational Inequalities with Polyhedral Convexity

In this section we apply the theory presented in the preceding sections of this chapter
to the parameterized variational inequality

(1) f (p,x)+NC(x) 3 0

where f : IRd× IRn→ IRn and C is a nonempty, closed and convex subset of IRn. The
corresponding solution mapping S : IRp→→ IRn, with

(2) S(p) =
{

x
∣∣ f (p,x)+NC(x) 3 0

}
,

has already been the direct subject of Theorem 2B.1, the implicit function theorem
of Robinson. From there we moved on to broader results about solution mappings to
generalized equations, but now wish to summarize what those results mean back in
the variational inequality setting, and furthermore to explore special features which
emerge under additional assumptions on the set C.



2 Solution Mappings for Variational Problems 103

Theorem 2E.1 (solution mappings for parameterized variational inequalities). For
a variational inequality (1) and its solution mapping (2), let p̄ and x̄ be such that
x̄ ∈ S(p̄). Assume that

(a) f is strictly differentiable at (p̄, x̄);
(b) the inverse G−1 of the mapping

(3) G(x) = f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄)+NC(x), with G(x̄) 3 0,

has a Lipschitz continuous single-valued localization σ around 0 for x̄.
Then S has a Lipschitz continuous single-valued localization s around p̄ for x̄

with
lip(s; p̄) ≤ lip(σ ;0) · |∇p f (p̄, x̄)|,

and this localization s has a first-order approximation η at p̄ given by

(4) η(p) = σ(−∇p f (p̄, x̄)(p− p̄)).

Moreover, under the ample parameterization condition

rank ∇p f (p̄, x̄) = n,

the existence of a Lipschitz continuous single-valued localization s of S around p̄
for p̄ not only follows from but also necessitates the existence of a localization σ of
G−1 having the properties described.

Proof. This comes from the application to S of the combination of Theorem 2B.5
and its specialization in Corollary 2B.10, together with the ample parameterization
result in Theorem 2C.2.

If the localization σ that is assumed to exist in Theorem 2E.1 is actually linear,
the stronger conclusion is obtained that s is differentiable at p̄. But that’s a circum-
stance which can hardly be guaranteed without supposing, for instance, that C is
an affine set (given by a system of linear equations). In some situations, however, s
could be at least piecewise smooth, as the projection mapping in 2D.9.

Our special goal here is trying to understand better the circumstances in which
the existence of a single-valued localization σ of G−1 around 0 for x̄ of the kind
assumed in (b) of Theorem 2E.1 is assured. It’s clear from the formula for G in (3)
that everything hinges on how a normal cone mapping NC : IRn →→ IRn may relate
to an affine function x 7→ a+Ax. The key lies in the local geometry of the graph
of NC. We will be able to make important progress in analyzing this geometry by
restricting our attention to the following class of sets C.

Polyhedral convex sets. A set C in IRn is said to be polyhedral convex when it can
be expressed as the intersection of finitely many closed half-spaces and/or hyper-
planes.

In other words, C is a polyhedral convex set when it can be described by a finite
set of constraints fi(x) ≤ 0 or fi(x) = 0 on affine functions fi : IRn → IR. Since an
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equation fi(x) = 0 is equivalent to the pair of inequalities fi(x)≤ 0 and − fi(x)≤ 0,
a polyhedral convex set C is characterized by having a (nonunique) representation
of the form

(5) C =
{

x
∣∣〈bi,x〉 ≤ αi for i = 1, . . . ,m

}
.

Any such set must obviously be closed. The empty set /0 and the whole space IRn are
regarded as polyhedral convex sets, in particular.

Polyhedral convex cones are characterized by having a representation (5) in
which αi = 0 for all i. A basic fact about polyhedral convex cones is that they can
equally well be represented in another way, which we recall next.

Theorem 2E.2 (Minkowski–Weyl theorem). A set K ⊂ IRn is a polyhedral convex
cone if and only if there is a collection of vectors b1, . . . ,bm such that

(6) K =
{

y1b1 + · · ·+ ymbm
∣∣yi ≥ 0 for i = 1, . . . ,m

}
.

It is easy to see that the cone K∗ that is polar to a cone K having a representation
of the kind in (6) consists of the vectors x satisfying 〈bi,x〉 ≤ 0 for i = 1, . . . ,m. The
polar of a polyhedral convex cone having such an inequality representation must
therefore have the representation in (6), inasmuch as (K∗)∗ = K for any closed,
convex cone K. This fact leads to a special description of the tangent and normal
cones to a polyhedral convex set.

Theorem 2E.3 (variational geometry of polyhedral convex sets). Let C be a poly-
hedral convex set represented as in (5). Let x ∈C and I(x) =

{
i
∣∣〈bi,x〉 = αi

}
, this

being the set of indices of the constraints in (5) that are active at x. Then the tangent
and normal cones to C at x are polyhedral convex, with the tangent cone having the
representation

(7) TC(x) =
{

w
∣∣〈bi,w〉 ≤ 0 for i ∈ I(x)

}
and the normal cone having the representation

(8) NC(x) =
{

v
∣∣∣v = ∑

m
i=1 yibi with yi ≥ 0 for i ∈ I(x), yi = 0 for i /∈ I(x)

}
.

Furthermore, the tangent cone has the properties that

(9) W ∩ [C− x] =W ∩TC(x) for some neighborhood W of 0

and

(10) TC(x)⊃ TC(x̄) for all x in some neighborhood U of x̄.

Proof. The formula (7) for TC(x) follows from (5) just by applying the definition
of the tangent cone in 2A. Then from (7) and the preceding facts about polyhedral
cones and polarity, utilizing also the relation in 2A(8), we obtain (8). The equality
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(9) is deduced simply by comparing (5) and (7). To obtain (10), observe that I(x)⊂
I(x̄) for x close to x̄ and then the inclusion follows from (7).

N
C

(x)

T
C

(x)

K
C

(x,v)

x

C

v

Fig. 2.2 Tangent, normal and critical cones to a polyhedral set.

The normal cone mapping NC associated with a polyhedral convex set C has a
special property which will be central to our analysis. It revolves around the follow-
ing notion.

Critical cone. For a convex set C, any x ∈C and any v ∈ NC(x), the critical cone to
C at x for v is

KC(x,v) =
{

w ∈ TC(x)
∣∣w⊥ v

}
.

If C is polyhedral, then KC(x,v) is polyhedral as well, as seen immediately from
the representation in (7).

Lemma 2E.4 (reduction lemma). Let C be a polyhedral convex set in IRn, and let

x̄ ∈C, v̄ ∈ NC(x̄), K = KC(x̄, v̄).

The graphical geometry of the normal cone mapping NC around (x̄, v̄) reduces then
to the graphical geometry of the normal cone mapping NK around (0,0), in the sense
that

O∩ [gph NC− (x̄, v̄)] = O∩gph NK for some neighborhood O of (0,0).

In other words, one has

(11) v̄+u ∈ NC(x̄+w) ⇐⇒ u ∈ NK(w) for (w,u) sufficiently near to (0,0).

Proof. Since we are only involved with local properties of C around one of its points
x̄, and C− x̄ agrees with the cone TC(x̄) around 0 by Theorem 2E.3, we can assume
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without loss of generality that x̄ = 0 and C is a cone, and TC(x̄) =C. Then, in terms
of the polar cone C∗ (which likewise is polyhedral on the basis of Theorem 2E.2),
we have the characterization from 2A.3 that

(12) v ∈ NC(w) ⇐⇒ w ∈ NC∗(v) ⇐⇒ w ∈C, v ∈C∗, 〈v,w〉= 0.

In particular for our focus on the geometry of gph NC around (0, v̄), we have from
(12) that

(13) NC∗(v̄) =
{

w ∈C
∣∣〈v̄,w〉= 0

}
= K.

We know on the other hand from 2E.3 that U ∩ [C∗ − v̄] = U ∩ TC∗(v̄) for some
neighborhood U of 0, where moreover TC∗(v̄) is polar to NC∗(v̄), hence equal to K∗

by (13). Thus, there is a neighborhood O of (0,0) such that

(14) for (w,u) ∈ O : v̄+u ∈ NC(w) ⇐⇒ w ∈C, u ∈ K∗, 〈v̄+u,w〉= 0.

This may be compared with the fact that

(15) u ∈ NK(w) ⇐⇒ w ∈ K, u ∈ K∗, 〈u,w〉= 0.

Our goal (in the context of x̄ = 0) is to show that (14) reduces to (11), at least
when the neighborhood O in (14) is chosen still smaller, if necessary. Because of
(15), this comes down to demonstrating that 〈v̄,w〉= 0 in the circumstances of (14).

We can take C to be represented by

(16) C =
{

w
∣∣〈bi,w〉 ≤ 0 for i = 1, . . . ,m

}
,

in which case, as observed after 2E.2, the polar C∗ is represented by

(17) C∗ =
{

y1b1 + · · ·+ ymbm
∣∣yi ≥ 0 for i = 1, . . . ,m

}
.

The relations in (12) can be coordinated with these representations as follows. For
each index set I ⊂ {1, . . . ,m}, consider the polyhedral convex cones

WI =
{

w ∈C
∣∣〈bi,w〉= 0 for i ∈ I

}
, VI =

{
∑i∈I yibi with yi ≥ 0

}
,

with W/0 =C and V/0 = {0}. Then v∈NC(w) if and only if, for some I, one has w∈WI
and v ∈ VI . In other words, gph NC is the union of the finitely many polyhedral
convex cones GI =WI×VI in IRn× IRn.

Among these cones GI , we will only be concerned with the ones containing (0, v̄).
Let I be the collection of index sets I ⊂{1, . . . ,m} having that property. According
to (9) in 2E.3, there exists for each I ∈ I a neighborhood OI of (0,0) such that
OI ∩ [GI − (0, v̄)] = OI ∩ TGI

(0, v̄). Furthermore, TGI
(0, v̄) = WI × TVI

(v̄). This has
the crucial consequence that when v̄+u ∈ NC(w) with (w,u) near enough to (0,0),
we also have v̄+ τu ∈ NC(w) for all τ ∈ [0,1]. Since having v̄+ τu ∈ NC(w) entails
having 〈v̄+ τu,w〉 = 0 through (12), this implies that 〈v̄,w〉 = −τ〈u,w〉 for all τ ∈
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[0,1]. Hence 〈v̄,w〉= 0, as required. We merely have to shrink the neighborhood O
in (14) to lie within every OI for I ∈I .

Example 2E.5. The nonnegative orthant IRn
+ is a polyhedral convex cone in IRn,

since it consists of the vectors x = (x1, . . . ,xn) satisfying the linear inequalities x j ≥
0, j = 1, . . . ,n. For v = (v1, . . . ,vn), one has

v ∈ NIRn
+
(x) ⇐⇒ x j ≥ 0, v j ≤ 0, x jv j = 0 for j = 1, . . . ,n.

Thus, whenever v ∈ NIRn
+
(x) one has in terms of the index sets

J1 =
{

j
∣∣x j > 0, v j = 0

}
,

J2 =
{

j
∣∣x j = 0, v j = 0

}
,

J3 =
{

j
∣∣x j = 0, v j < 0

}
that the vectors w = (w1, . . . ,wn) belonging to the critical cone to IRn

+ at x for v are
characterized by

w ∈ KIRn
+
(x,v) ⇐⇒


w j free for j ∈ J1,
w j ≥ 0 for j ∈ J2,
w j = 0 for j ∈ J3.

In the developments ahead, we will make use of not only critical cones but also
certain subspaces.

Critical subspaces. The smallest linear subspace that includes the critical cone
KC(x,v) will be denoted by K+

C (x,v), whereas the largest linear subspace that is
included in KC(x,v) will be denoted by K−C (x,v), the formulas being

(18)
K+

C (x,v) = KC(x,v)−KC(x,v) =
{

w−w′
∣∣w,w′ ∈ KC(x,v)

}
,

K−C (x,v) = KC(x,v)∩ [−KC(x,v)] =
{

w ∈ KC(x,v)
∣∣ −w ∈ KC(x,v)

}
.

The formulas follow from the fact that KC(x,v) is already a convex cone. Obvi-
ously, KC(x,v) is itself a subspace if and only if K+

C (x,v) = K−C (x,v).

Theorem 2E.6 (affine-polyhedral variational inequalities). For an affine function
x 7→ a + Ax from IRn into IRn and a polyhedral convex set C ⊂ IRn, consider the
variational inequality

a+Ax+NC(x) 3 0.

Let x̄ be a solution and let v̄ = −a−Ax̄, so that v̄ ∈ NC(x̄), and let K = KC(x̄, v̄) be
the associated critical cone. Then for the mappings

(19)
G(x) = a+Ax+NC(x) with G(x̄) 3 0,
G0(w) = Aw+NK(w) with G0(0) 3 0,

the following properties are equivalent:
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(a) G−1 has a Lipschitz continuous single-valued localization σ around 0 for x̄;
(b) G−1

0 is a single-valued mapping with all of IRn as its domain,

in which case G−1
0 is necessarily Lipschitz continuous globally and the function

σ(v) = x̄+G−1
0 (v) furnishes the localization in (a). Moreover, in terms of critical

subspaces K+ = K+

C (x̄, v̄) and K− = K−C (x̄, v̄), the following condition is sufficient
for (a) and (b) to hold:

(20) w ∈ K+
, Aw⊥ K−, 〈w,Aw〉 ≤ 0 =⇒ w = 0.

Proof. According to reduction lemma 2E.4, we have, for (w,u) in some neighbor-
hood of (0,0), that v̄+ u ∈ NC(x̄+w) if and only if u ∈ NK(w). In the change of
notation from u to v = u + Aw, this means that, for (w,v) in a neighborhood of
(0,0), we have v ∈ G(x̄ +w) if and only if v ∈ G0(w). Thus, the existence of a
Lipschitz continuous single-valued localization σ of G−1 around 0 for x̄ as in (a)
corresponds to the existence of a Lipschitz continuous single-valued localization σ0
of G−1

0 around 0 for 0; the relationship is given by σ(v) = x̄+σ0(v). But when-
ever v ∈ G0(w) we have λv ∈ G0(λw) for all λ > 0, i.e., the graph of G0 is a cone.
Therefore, when σ0 exists it can be scaled arbitrarily large and must correspond to
G−1

0 being a single-valued mapping with all of IRn as its domain.
We claim next that when G−1

0 is single-valued everywhere it is necessarily Lip-
schitz continuous. This comes out of the argument pursued in the proof of 2E.4 in
analyzing the graph of NC, which applies equally well to NK , inasmuch as K is a
polyhedral convex cone. Specifically, the graph of NK is the union of finitely many
polyhedral convex cones in IRn× IRn. The same also holds then for the graphs of G0
and G−1

0 . It remains only to observe that if a single-valued mapping has its graph
composed of the union of finitely many polyhedral convex sets it has to be Lipschitz
continuous (prove or see 3D.6).

This leaves us with verifying that the condition in (20) is sufficient for G−1
0 to be

single-valued with all of IRn as its domain. We note in preparation for this that

(21) (K+
)⊥ = K∗∩ (−K∗) = (K∗)−, (K−)⊥ = K∗−K∗ = (K∗)+.

We first argue that if w1 ∈ G−1
0 (v) and w2 ∈ G−1

0 (v), then v−Aw1 ∈ NK(w1) and
v−Aw2 ∈ NK(w2). This entails having

w1 ∈ K, v−Aw1 ∈ K∗, 〈w1,v−Aw1〉= 0,
w2 ∈ K, v−Aw2 ∈ K∗, 〈w2,v−Aw2〉= 0,

with 〈w1,v−Aw2〉 ≤ 0 and 〈w2,v−Aw1〉 ≤ 0. Then w1−w2 ∈ K−K = K+ and
−A(w1 −w2) ∈ K∗ −K∗ = (K−)⊥, with 〈w1 −w2,A(w1 −w2)〉 = 〈w1 −w2, [v−
Aw2]− [v−Aw2]〉 ≤ 0. Under our condition (20), these relations require w1−w2 = 0.
Thus, (20) guarantees that G−1

0 (v) can never contain more than a single w.
Working toward showing that (20) guarantees also that dom G−1

0 = IRn, we next
consider the case where dom G−1

0 omits some point ṽ and analyze what that would
imply. Again we utilize the fact that the graph of G−1

0 is the union of finitely many
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polyhedral convex cones in IRn× IRn. Under the mapping (v,w)→ v, each of them
projects onto a cone in IRn; the union of these cones is dom G−1

0 . Since the image
of a polyhedral convex cone under a linear transformation is another polyhedral
convex cone, in consequence of 2E.2 (since the image of a cone generated by finitely
many vectors is another such cone), and polyhedral convex cones are closed sets
in particular, this ensures that dom G−1

0 is closed. Then there is certain to exist a
point v0 ∈ dom G−1

0 that is closest to ṽ; for all τ > 0 sufficiently small, we have
v0 + τ(ṽ− v0) /∈ dom G−1

0 . For each of the polyhedral convex cones D in the finite
union making up dom G−1

0 , if v0 ∈ D, then v0 must be the projection PD(ṽ), so
that ṽ− v0 must belong to ND(v0) (cf. relation (4) in 2A). It follows that, for some
neighborhood U of v0, we have

(22) 〈ṽ− v0,u− v0〉 ≤ 0 for all u ∈U ∩dom G−1
0 .

Consider any w0 ∈G−1
0 (v0); this means v0−Aw0 ∈NK(w0). Let K0 be the critical

cone to K at w0 for v0−Aw0:

(23) K0 =
{

w′ ∈ TK(w0)
∣∣w′ ⊥ (v0−Aw0)

}
.

In the line of argument already pursued, the geometry of the graph of NK around
(w0,v0−Aw0) can be identified with that of the graph of NK0 around (0,0). Equiv-
alently, the geometry of the graph of G−1

0 = (A+NK)
−1 around (v0,w0) can be

identified with that of (A+NK0)
−1 around (0,0); for (v′,w′) near enough to (0,0),

we have w0 +w′ ∈ G−1
0 (v0 + v′) if and only if w′ ∈ (A+NK0)

−1(v′). Because of
(22) holding for the neighborhood U of v0, this implies that 〈ṽ− v0,v′〉 ≤ 0 for all
v′ ∈ dom(A+NK0)

−1 close to 0. Thus,

(24) 〈ṽ− v0,Aw′+u′〉 ≤ 0 for all w′ ∈ K0 and u′ ∈ NK0(w
′).

The case of w′ = 0 has NK0(w
′) = K∗0 , so (24) implies in particular that 〈ṽ−v0,u′〉 ≤

0 for all u′ ∈ K∗0 , so that ṽ− v0 ∈ (K∗0 )
∗ = K0. On the other hand, since u′ = 0 is

always one of the elements of NK0(w
′), we must have from (24) that 〈ṽ−v0,Aw′〉≤ 0

for all w′ ∈ K0. Here 〈ṽ− v0,Aw′〉= 〈AT(ṽ− v0),w′〉 for all w′ ∈ K0, so this means
AT(ṽ− v0) ∈ K∗0 . In summary, (24) requires, among other things, having

(25)
ṽ− v0 ∈ K0 and AT(ṽ− v0) ∈ K∗0 ,

hence in particular 〈AT(ṽ− v0), ṽ− v0〉 ≤ 0.

We observe now from the formula for K0 in (23) that K0 ⊂ TK(w0), where further-
more TK(w0) is the cone generated by the vectors w−w0 with w ∈ K and hence
lies in K−K. Therefore K0 ⊂ K+. On the other hand, because TK(w0) and NK(w0)
are polar to each other by 2E.3, we have from (23) that K0 is polar to the cone
comprised by all differences v− τ(v0−Aw0) with v ∈ NK(w0) and τ ≥ 0, which is
again polyhedral. That cone of differences must then in fact be K∗0 . Since we have
taken v0 and w0 to satisfy v0−Aw0 ∈NK(w0), and also NK(w0)⊂K∗, it follows that
K∗0 ⊂ K∗−K∗ = (K−)⊥. Thus, (25) implies that ṽ− v0 ∈ K+, AT(ṽ− v0) ∈ (K−)⊥,
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with 〈AT(ṽ−v0), ṽ−v0〉 ≤ 0. In consequence, (25) would be impossible if we knew
that

(26) w ∈ K+
, ATw⊥ K−, 〈ATw,w〉 ≤ 0 =⇒ w = 0.

Our endgame will be to demonstrate that (26) is actually equivalent to condition
(20).

Of course, 〈ATw,w〉 is the same as 〈w,Aw〉. For additional comparison between
(20) and (26), we can simplify matters by expressing IRn as W1×W2×W3 for the
linear subspaces W1 = K−, W3 = (K+)⊥, and W2 the orthogonal complement of K−

within K+. Any vector w ∈ IRn corresponds then to a triple (w1,w2,w3) in this prod-
uct, and there are linear transformations Ai j : Wj→Wi such that

Aw←→ (A11w1+A12w2+A13w3,A21w1+A22w2+A23w3,A31w1+A32w2+A33w3).

In this schematic, (20) has the form

(27) A11w1 +A12w2 = 0, 〈w2,A21w1 +A22w2〉 ≤ 0 =⇒ w1 = 0, w2 = 0,

whereas (26) has the form

(28) AT
11w1 +AT

21w2 = 0, 〈w2,AT
12w1 +AT

22w2〉 ≤ 0 =⇒ w1 = 0, w2 = 0.

In particular, through the choice of w2 = 0, (27) insists that the only w1 with A11w1 =
0 is w1 = 0. Thus, A11 must be nonsingular. Then the initial equation in (27) can be
solved for w1, yielding w1 = −A−1

11 A12w2, and this expression can be substituted
into the inequality, thereby reducing the condition to

〈w2,(A22−A21A−1
11 A12)w2〉 ≤ 0 =⇒ w2 = 0.

In the same manner, (28) comes out as the nonsingularity of AT
11 and the property

that
〈w2,(AT

22−AT
12(A

T
11)
−1AT

21)w2〉 ≤ 0 =⇒ w2 = 0.

Since the nonsingularity of AT
11 is equivalent to that of A11, and

AT
22−AT

12(A
T
11)
−1AT

21 = (A22−A21A−1
11 A12)

T,

the equivalence of (27) and (28) is now evident.

Examples 2E.7.
(a) When the critical cone K in Theorem 2E.6 is a subspace, the condition in

(20) reduces to the nonsingularity of the linear transformation K 3 w 7→ PK(Aw),
where PK is the projection onto K.

(b) When the critical cone K in Theorem 2E.6 is pointed, in the sense that K ∩
(−K) = {0}, the condition in (20) reduces to the requirement that 〈w,Aw〉 > 0 for
all nonzero w ∈ K+.

(c) Condition (20) always holds when A is the identity matrix.
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Theorem 2E.6 tells us that, for a polyhedral convex set C, the assumption in (b)
of Theorem 2E.1 is equivalent to the critical cone K = KC(x̄,− f (p̄, x̄)) being such
that the inverse G−1

0 of the mapping G0 : w 7→ ∇x f (x̄, p̄)w+NK(w) is single-valued
from all of IRn into itself and hence Lipschitz continuous globally. Furthermore,
Theorem 2E.6 provides a sufficient condition for this to hold. In putting these facts
together with observations about the special nature of G0, we obtain a powerful fact
which distinguishes variational inequalities with polyhedral convexity from other
variational inequalities.

Theorem 2E.8 (localization criterion under polyhedral convexity). For a variational
inequality (1) and its solution mapping (2) under the assumption that C is polyhedral
convex and f is strictly differentiable at (p̄, x̄), with x̄ ∈ S(p̄), let

A = ∇x f (p̄, x̄) and K = KC(x̄, v̄) for v̄ =− f (p̄, x̄).

Suppose that for each u ∈ IRn there is a unique solution w = s̄(u) to the auxiliary
variational inequality Aw−u+NK(w) 3 0, this being equivalent to saying that

(29) s̄ = (A+NK)
−1 is everywhere single-valued,

in which case the mapping s̄ is Lipschitz continuous globally. (A sufficient condi-
tion for this assumption to hold is the property in (20) with respect to the critical
subspaces K+ = K+

C (x̄, v̄) and K− = K−C (x̄, v̄).)
Then S has a Lipschitz continuous single-valued localization s around p̄ for x̄

which is semidifferentiable with

(30) lip(s; p̄) ≤ lip(s̄;0) · |∇p f (p̄, x̄)|, Ds(p̄)(q) = s̄(−∇p f (p̄, x̄)q).

Moreover, under the ample parameterization condition, rank ∇p f (p̄, x̄) = n, condi-
tion (29) is not only sufficient but also necessary for a Lipschitz continuous single-
valued localization of S around p̄ for x̄.

Proof. We merely have to combine the observation made before this theorem’s
statement with the statement of Theorem 2E.1. According to formula (4) in that
theorem for the first-order approximation η of s at p̄, we have η(p̄ + q)− x̄ =
s̄(−∇p f (p̄, x̄)q). Because K is a cone, the mapping NK is positively homogeneous,
and the same is true then for A+NK and its inverse, which is s̄. Thus, the function
q 7→ s̄(−∇p f (p̄, x̄)q) gives a first-order approximation to s(p̄+ q)− s(p̄) at q = 0
that is positively homogeneous. We conclude that s is semidifferentiable at p̄ with
this function furnishing its semiderivative, as indicated in (30).

As a special case of Example 2E.7(a), if C = IRn the result in Theorem 2E.8 re-
duces once more to a version of the classical implicit function theorem. Further in-
sights into solution mappings associated with variational inequalities will be gained
in Chapter 4.

Exercise 2E.9. Prove that the projection mapping PC associated with a polyhedral
convex set C is Lipschitz continuous and semidifferentiable everywhere, with its
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semiderivative being given by

DPC(x)(u) = PK(u) for K = KC(PC(x),x−PC(x)).

Guide. Use the relation between the projection mapping and the normal cone map-
ping given in formula 2A(4).

Additional facts about critical cones, which will be useful later, can be developed
from the special geometric structure of polyhedral convex sets.

Proposition 2E.10 (local behavior of critical cones and subspaces). Let C ⊂ IRn be
a polyhedral convex set, and let v̄ ∈ NC(x̄). Then the following properties hold:

(a) KC(x,v)⊂ K+

C (x̄, v̄) for all (x,v) ∈ gph NC in some neighborhood of (x̄, v̄);
(b) KC(x,v) = K+

C (x̄, v̄) for some (x,v) ∈ gph NC in each neighborhood of (x̄, v̄).

Proof. By appealing to 2E.3 as in the proof of 2E.4, we can reduce to the case
where x̄ = 0 and C is a cone. Theorem 2E.2 then provides a representation in terms
of a collection of nonzero vectors b1, . . . ,bm, in which C consists of all linear combi-
nations y1b1 + · · ·+ymbm with coefficients yi ≥ 0, and the polar cone C∗ consists of
all v such that 〈bi,v〉 ≤ 0 for all i. We know from 2A.3 that, at any x ∈C, the normal
cone NC(x) is formed by the vectors v ∈C∗ such that 〈x,v〉= 0, so that NC(x) is the
cone that is polar to the one comprised of all vectors w−λx with w ∈C and λ ≥ 0.
Since the latter cone is again polyhedral (in view of Theorem 2E.2), hence closed,
it must in turn be the cone polar to NC(x) and therefore equal to TC(x). Thus,

TC(x) =
{

y1b1 + · · ·+ ymbm−λx
∣∣yi ≥ 0, λ ≥ 0

}
for any x ∈C.

On the other hand, in the notation

(31)
I(v) =

{
i
∣∣〈bi,v〉= 0

}
,

F(v) =
{

y1b1 + · · ·+ ymbm
∣∣yi ≥ 0 for i ∈ I(v), yi = 0 for i /∈ I(v)

}
,

we see that for v ∈C∗ we have F(v) =
{

x ∈C
∣∣v ∈ NC(x)

}
, i.e.,

v ∈ NC(x) ⇐⇒ x ∈ F(v).

Then too, for such x and v, the critical cone KC(x,v) =
{

w ∈ TC(x)
∣∣〈w,v〉= 0

}
we

have

(32) KC(x,v) =
{

w−λx
∣∣w ∈ F(v), λ ≥ 0

}
,

and actually KC(x̄, v̄) = F(v̄) (inasmuch as x̄ = 0). In view of the fact, evident from
(31), that

I(v)⊂ I(v̄) and F(v)⊂ F(v̄) for all v near enough to v̄,

we have, for v in some neighborhood of v̄, that
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x ∈ F(v̄) and KC(x,v)⊂
{

w−λx
∣∣w ∈ F(v̄), λ ≥ 0

}
when v ∈ NC(x).

In that case KC(x,v)⊂ F(v̄)−F(v̄) = KC(x̄, v̄)−KC(x̄, v̄) = K+

C (x̄, v̄), so (a) is valid.
To confirm (b), it will be enough now to demonstrate that, arbitrarily close to

x̄ = 0, we can find a vector x̃ for which KC(x̃, v̄) = F(v̄)−F(v̄). Here F(v̄) consists
by definition of all nonnegative linear combinations of the vectors bi with i ∈ I(v̄),
whereas F(v̄)−F(v̄) is the subspace consisting of all linear combinations. For arbi-
trary ε > 0, let x̃ = ỹ1b1 + · · ·+ ỹmbm with ỹi = ε for i ∈ I(v̄) but ỹi = 0 for i /∈ I(v̄).
Then KC(x̃, v̄), equaling

{
w−λ x̃

∣∣w ∈ F(v̄), λ ≥ 0
}

by (32), consists of all linear
combinations of the vectors bi for i ∈ I(v̄) in which the coefficients have the form
yi−λε with yi ≥ 0 and λ ≥ 0. Can any given choice of coefficients y′i for i ∈ I(v̄)
be obtained in this manner? Yes, by taking λ high enough that y′i +λε ≥ 0 for all
i ∈ I(v̄) and then setting yi = y′i +λε . This completes the argument.

2F. Variational Inequalities with Monotonicity

Our attention shifts now from special properties of the set C in a variational inequal-
ity to special properties of the function f and their effect on solutions.

In Section 1H we presented an implicit function theorem for equations involving
strictly monotone functions. In this section we develop some special results for the
variational inequality

(1) f (x)+NC(x) 3 0,

in the case when f is monotone or strongly monotone. Recall that a function f :
IRn→ IRn is said to be monotone on a convex set C ⊂ dom f if

(2) 〈 f (x′)− f (x),x′− x〉 ≥ 0 for all x,x′ ∈C.

It is strongly monotone on C with constant µ > 0 when

(3) 〈 f (x′)− f (x),x′− x〉 ≥ µ|x′− x|2 for all x,x′ ∈C.

We work with the basic perturbation scheme in which f (x) is replaced by f (x)−
p for a parameter vector p ∈ IRn. The solution mapping is then

(4) S(p) =
{

x
∣∣ p− f (x) ∈ NC(x)

}
= ( f +NC)

−1(p),

with the solution set to (1) then being S(0).

Theorem 2F.1 (solution convexity for monotone variational inequalities). For a
function f : IRn → IRn and a nonempty closed convex set C ⊂ dom f relative to
which f is monotone and continuous, the solution mapping S in (4) is closed and
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convex valued. In particular, therefore, the set of solutions (if any) to the variational
inequality (1) is not only closed but also convex.

Proof. It suffices to deal with S(0), since S(p) = ( fp+NC)
−1(0) for fp(x) = f (x)−

p (which is monotone and continuous like f ).
The closedness of S(0) already follows from Theorem 2A.1. To see the convexity,

consider any two points x0 and x1 in S(0). We have − f (x0) ∈ NC(x0) and − f (x1) ∈
NC(x1); this is equivalent to

(5) 〈 f (x0),x− x0〉 ≥ 0 and 〈 f (x1),x− x1〉 ≥ 0 for all x ∈C.

Let x̄ = (1−λ )x0 +λx1 for any λ ∈ (0,1). Then x̄ ∈C by convexity. Consider an
arbitrary point x̃ ∈C. The goal is to show that 〈 f (x̄), x̃− x̄〉 ≥ 0, which will confirm
that − f (x̄) ∈ NC(x̄), i.e., that x̄ ∈ S(0).

Taking t ∈ (0,1) as a parameter, let x(t) = x̄+ t(x̃− x̄) and note that the convexity
of C ensures x(t) ∈C. From the monotonicity of f and the first inequality in (5) we
have

0≤ 〈 f (x(t))− f (x0),x(t)− x0〉+ 〈 f (x0),x(t)− x0〉= 〈 f (x(t)),x(t)− x0〉.

In parallel from the second inequality in (5), we have 0≤ 〈 f (x(t)),x(t)−x1〉. There-
fore

0 ≤ (1−λ )〈 f (x(t)),x(t)− x0〉+λ 〈 f (x(t)),x(t)− x1〉
= 〈 f (x(t)),x(t)− (1−λ )x0−λx1〉,

where the final expression equals 〈 f (x(t)),x(t)− x̄〉= t〈 f (x(t)), x̃− x̄〉, since x(t)−
x̄ = t[x̃− x̄]. Thus, 0≤ 〈 f (x(t)), x̃− x̄〉. Because x(t)→ x̄ as t→ 0, and f is contin-
uous, we conclude that 〈 f (x̄), x̃− x̄〉 ≥ 0, as required.

In order to add nonemptiness of the solution set to the conclusions of Theorem
2F.1 we need an existence theorem for the variational inequality (1). There is already
such a result in 2A.1, but only for bounded sets C. The following result goes beyond
that boundedness restriction, without yet imposing any monotonicity assumption
on f . When combined with monotonicity, it will have particularly powerful conse-
quences.

Theorem 2F.2 (solution existence for variational inequalities without bounded-
ness). Consider a function f : IRn → IRn and a nonempty closed convex set C ⊂
dom f relative to which f is continuous (but not necessarily monotone). Suppose
there exist x̂ ∈C and ρ > 0 such that

(6) there is no x ∈C with |x− x̂| ≥ ρ and 〈 f (x),x− x̂〉 ≤ 0.

Then the variational inequality (1) has a solution, and every solution x of (1) satisfies
|x− x̂|< ρ .
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Proof. Any solution x to (1) would have 〈 f (x),x− x̂〉 ≤ 0 in particular, and then
necessarily |x− x̂| < ρ under (6). Hence it will suffice to show that (6) guarantees
the existence of at least one solution x to (1) with |x− x̂|< ρ .

Let Cρ =
{

x ∈ C
∣∣ |x− x̂| ≤ ρ

}
and consider the modified variational inequal-

ity (1) in which C is replaced by Cρ . According to Theorem 2A.1, this modi-
fied variational inequality has a solution x̄. We have x̄ ∈ Cρ and − f (x̄) ∈ NCρ

(x̄).
From 2A.8(b) we know that NCρ

(x̄) = NC(x̄) + NB(x̄) for the ball B = IBρ(x̂) ={
x
∣∣ |x− x̂| ≤ ρ

}
. Thus,

(7) − f (x̄)−w ∈ NC(x̄) for some w ∈ NB(x̄).

By demonstrating that this implies w = 0, we will be able to see that x̄ actually
satisfies (1).

The normal cone formula for the unit ball in 2A.2(b) extends in an elementary
way to the ball B and indicates that w can only be nonzero if |x̄− x̂| = ρ and w =
λ [x̄− x̂] for some λ > 0. The normality relation in (7), requiring 0≥ 〈− f (x̄)−w,x−
x̄〉 for all x ∈ C, can be invoked then in the case of x = x̂ to obtain 0 ≥ 〈− f (x̄)−
λ [x̄− x̂], x̂− x̄〉, which simplifies to 〈 f (x̄), x̄− x̂〉 ≤ −λρ2. But this is impossible
under (6).

The assumption in (6) is fulfilled trivially when C is bounded, and in that way
Theorem 2A.1 is seen to be covered by Theorem 2F.2.

Corollary 2F.3 (uniform local existence). Consider a function f : IRn → IRn and a
nonempty closed convex set C ⊂ dom f relative to which f is continuous (but not
necessarily monotone). Suppose there exist x̂ ∈C, ρ > 0 and η > 0 such that

(8) there is no x ∈C with |x− x̂| ≥ ρ and 〈 f (x),x− x̂〉
/
|x− x̂| ≤ η .

Then the solution mapping S in (4) has the property that

/0 6= S(v)⊂
{

x ∈C
∣∣ |x− x̂|< ρ

}
when |v| ≤ η .

Proof. The stronger assumption here ensures that assumption (6) of Theorem 2F.2
is fulfilled by the function fv(x) = f (x)− v for every v with |v| ≤ η . Since S(v) =
( fv +NC)

−1(0), this leads to the desired conclusion.

We can proceed now to take advantage of monotonicity of f on C through the
property in 2F.1 and the observation that

〈 f (x),x− x̂〉/|x− x̂|= 〈 f (x̂+ τw),w〉 when x = x̂+ τw with τ > 0, |w|= 1.

Then, for every vector w such that x̂+ τw ∈ C for all τ ∈ (0,∞), the expression
〈 f (x̂ + τw),w〉 is nondecreasing as a function of τ ∈ (0,∞) and thus has a limit
(possibly ∞) as τ → ∞.

Theorem 2F.4 (solution existence for monotone variational inequalities). Consider
a function f : IRn → IRn and a nonempty closed convex set C ⊂ dom f relative to
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which f is continuous and monotone. Let x̂ ∈C and let W consist of the vectors w
with |w|= 1 such that x̂+ τw ∈C for all τ ∈ (0,∞), if any.

(a) If limτ→∞〈 f (x̂+ τw),w〉 > 0 for every w ∈W , then the solution mapping S
in (4) is nonempty-valued on a neighborhood of 0.

(b) If limτ→∞〈 f (x̂+ τw),w〉= ∞ for every w ∈W , then the solution mapping S
in (4) is nonempty-valued on all of IRn.

Proof. To establish (a), we aim at showing that the limit criterion it proposes is
enough to guarantee the condition (8) in Corollary 2F.3. Suppose the latter didn’t
hold. Then there would be a sequence of points xk ∈ C and a sequence of scalars
ηk > 0 such that

〈 f (xk),xk− x̂〉
/
|xk− x̂| ≤ ηk with |xk− x̂| → ∞, ηk→ 0.

Equivalently, in terms of τk = |xk − x̂| and wk = τ
−1
k (xk − x̂) we have 〈 f (x̂ +

τkwk),wk〉 ≤ ηk with |wk| = 1, x̂+ τkwk ∈ C and τk → ∞. Without loss of gener-
ality we can suppose that wk → w for a vector w again having |w| = 1. Then for
every τ > 0 and k high enough that τk ≥ τ , we have from the convexity of C that
x̂+ τwk ∈C and from the monotonicity of f that 〈 f (x̂+ τwk),wk〉 ≤ ηk. On taking
the limit as k→ ∞ and utilizing the closedness of C and the continuity of f , we get
x̂+τw∈C and 〈 f (x̂+τw),w〉 ≤ 0. This being true for any τ > 0, we see that w∈W
and the limit condition in (a) is violated. The validity of the claim in (a) is thereby
confirmed.

The condition in (b) not only implies the condition in (a) but also, by a slight
extension of the argument, guarantees that the criterion in Corollary 2F.3 holds for
every η > 0.

Exercise 2F.5 (Jacobian criterion for existence and uniqueness). Let f : IRn → IRn

and C⊂ IRn be such that f is continuously differentiable on C and monotone relative
to C. Fix x̂ ∈C and let W consist of the vectors w with |w|= 1 such that x̂+ τw ∈C
for all τ ∈ (0,∞). Suppose there exists µ > 0 such that 〈∇ f (x)w,w〉 ≥ µ for every
w ∈W and x ∈C, if any, when x ∈C. Then the solution mapping S in (4) is single-
valued on all of IRn.

Guide. Argue through the mean value theorem as applied to ϕ(τ) = 〈 f (x̂+τw),w〉
that ϕ(τ) = τ〈∇ f (x̂+ θw)w,w〉+ 〈 f (x̂),w〉 for some θ ∈ (0,τ). Work toward ap-
plying the criterion in Theorem 2F.4(b).

In the perspective of 2F.4(b), the result in 2F.5 seems to come close to invoking
strong monotonicity of f in the case where f is continuously differentiable. How-
ever, it only involves special vectors w, not every nonzero w ∈ IRn. For instance, in
the affine case where f (x) = Ax+b and C = IRn

+, the criterion obtained from 2F.5 by
choosing x̂ = 0 is simply that 〈Aw,w〉 > 0 for every w ∈ IRn

+ with |w| = 1, whereas
strong monotonicity of f would require this for w in IRn, not just IRn

+. In fact, full
strong monotonicity has bigger implications than those in 2F.5.
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Theorem 2F.6 (variational inequalities with strong monotonicity). For a function
f : IRn→ IRn and a nonempty closed convex set C ⊂ dom f , suppose that f is con-
tinuous relative to C and strongly monotone on C with constant µ > 0 in the sense of
(3). Then the solution mapping S in (4) is single-valued on all of IRn and moreover
Lipschitz continuous with constant µ−1.

Proof. The strong monotonicity condition in (3) implies for an arbitrary choice of
x̂ ∈C and w ∈ IRn with |w|= 1 that 〈 f (x̂+τw)− f (x̂),τw〉 ≥ µτ2 when x̂+τw ∈C.
Then 〈 f (x̂+ τw),w〉 ≥ 〈 f (x̂),w〉+µτ , from which it’s clear that the limit criterion
in Theorem 2F.4(b) is satisfied, so that S is nonempty-valued and hence, by the strict
monotonicity, single-valued on all of IRn.

Consider now any two vectors v0 and v1 in IRn and the corresponding solutions
x0 = S(v0) and x1 = S(v1). We have v0− f (x0) ∈ NC(x0) and v1− f (x1) ∈ NC(x1),
hence in particular 〈v0− f (x0),x1−x0〉≤ 0 and 〈v1− f (x1),x0−x1〉≤ 0. The second
of these inequalities can also be written as 0 ≤ 〈v1− f (x1),x1− x0〉, and from this
we see that 〈v0− f (x0),x1− x0〉 ≤ 〈v1− f (x1),x1− x0〉, which is equivalent to

〈 f (x1)− f (x0),x1− x0〉 ≤ 〈v1− v0,x1− x0〉.

Since 〈 f (x1)− f (x0),x1 − x0〉 ≥ µ|x1 − x0|2 by our assumption of strong mono-
tonicity, while 〈v1 − v0,x1 − x0〉 ≤ |v1 − v0||x1 − x0|, it follows that |x1 − x0| ≤
µ−1|v1− v0|. This verifies the claimed Lipschitz continuity with constant µ−1.

We extend our investigations now to the more broadly parameterized variational
inequalities of the form

(9) f (p,x)+NC(x) 3 0

and their solution mappings

(10) S(p) =
{

x
∣∣ f (p,x)+NC(x) 3 0

}
,

with the aim of drawing on the achievements in Section 2E in the presence of mono-
tonicity properties of f with respect to x.

Theorem 2F.7 (strong monotonicity and strict differentiability). For a variational
inequality (9) and its solution mapping (10) in the case of a nonempty, closed, con-
vex set C, let x̄ ∈ S(p̄) and assume that f is strictly differentiable at (p̄, x̄). Suppose
for some µ > 0 that

(11) 〈∇x f (p̄, x̄)w,w〉 ≥ µ|w|2 for all w ∈C−C.

Then S has a Lipschitz continuous single-valued localization s around p̄ for x̄ with

(12) lip(s; p̄)≤ µ
−1|∇p f (p̄, x̄)|.

Proof. We apply Theorem 2E.1, observing that its assumption (b) is satisfied on
the basis of Theorem 2F.6 and the criterion in 1H.2(f) for strong monotonicity with
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constant µ . Theorem 2F.6 tells us moreover that the Lipschitz constant for the lo-
calization σ in Theorem 2E.1 is no more than µ−1, and we then obtain (12) from
Theorem 2E.1.

Theorem 2F.7 can be compared to the result in Theorem 2E.8. That result requires
C to be polyhedral but allows (11) to be replaced by a weaker condition in terms of
the critical cone K = KC(x̄, v̄) for v̄ = − f (p̄, x̄). Specifically, instead of asking the
inequality in (11) to hold for all w∈C−C, one only asks it to hold for all w∈K−K
such that ∇x f (p̄, x̄)w⊥K∩(−K). The polyhedral convexity leads in this case to the
further conclusion that the localization is semidifferentiable.

2G. Consequences for Optimization

Several types of variational inequalities are closely connected with problems of op-
timization. These include the basic condition for minimization in Theorem 2A.7 and
the Lagrange condition in Theorem 2A.10, in particular. In this section we investi-
gate what the general results obtained for variational inequalities provide in such
cases.

Recall from Theorem 2A.7 that in minimizing a continuously differentiable func-
tion g over a nonempty, closed, convex set C ⊂ IRn, the variational inequality

(1) ∇g(x)+NC(x) 3 0

stands as a necessary condition for x to furnish a local minimum. When g is convex
relative to C, it is sufficient for x to furnish a global minimum, but in the absence
of convexity, an x satisfying (1) might not even correspond to a local minimum.
However, there is an important case beyond convexity, which we will draw on later,
in which an x satisfying (1) can be identified through additional criteria as yielding
a local minimum.

In elucidating this case, we will appeal to the fact noted in 2A.4 that the normal
cone NC(x) and the tangent cone TC(x) are polar to each other, so that (1) can be
written equivalently in the form

(2) 〈∇g(x),w〉 ≥ 0 for all w ∈ TC(x).

This gives a way to think about the first-order condition for a local minimum of
g in which the vectors w in (2) making the inequality hold as an equation can be
anticipated to have a special role. In fact, those vectors w comprise the critical cone
KC(x,−∇g(x)) to C at x with respect to the vector −∇g(x) in NC(x), as defined in
Section 2E:

(3) KC(x,−∇g(x)) =
{

w ∈ TC(x)
∣∣〈∇g(x),w〉= 0

}
.
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When C is polyhedral, at least, this critical cone is able to serve in the expression of
second-order necessary and sufficient conditions for the minimization of g over C.

Theorem 2G.1 (second-order optimality on a polyhedral convex set). Let C be a
polyhedral convex set in IRn and let g : IRn→ IR be twice continuously differentiable
on C. Let x̄ ∈C and v̄ =−∇g(x̄).

(a) (necessary condition) If g has a local minimum with respect to C at x̄, then x̄
satisfies the variational inequality (1) and has 〈w,∇2g(x̄)w〉 ≥ 0 for all w ∈ KC(x̄, v̄).

(b) (sufficient condition) If x̄ satisfies the variational inequality (1) and has
〈w,∇2g(x̄)w〉 > 0 for all nonzero w ∈ KC(x̄, v̄), then g has a local minimum rela-
tive to C at x̄, indeed a strong local minimum in the sense of there being an ε > 0
such that

(4) g(x) ≥ g(x̄)+ ε|x− x̄|2 for all x ∈C near x̄.

Proof. The necessity emerges through the observation that for any x ∈ C the
function ϕ(t) = g(x̄ + tw) for w = x− x̄ has ϕ ′(0) = 〈∇g(x̄),w〉 and ϕ ′′(0) =
〈w,∇2g(x̄)w〉. From one-dimensional calculus, it is known that if ϕ has a local min-
imum at 0 relative to [0,1], then ϕ ′(0) ≥ 0 and, in the case of ϕ ′(0) = 0, also has
ϕ ′′(0)≥ 0. Having ϕ ′(0) = 0 corresponds to having w ∈ KC(x̄,−∇g(x̄)).

Conversely, if ϕ ′(0) ≥ 0 and in the case of ϕ ′(0) = 0 also has ϕ ′′(0) > 0, then
ϕ has a local minimum relative to [0,1] at 0. That one-dimensional sufficient condi-
tion is inadequate for concluding (b), however, because (b) requires a neighborhood
of x̄ relative to C, not just a separate neighborhood relative to each line segment
proceeding from x into C.

To get (b), we have to make use of the properties of the second-order Taylor
expansion of g at x̄ which are associated with g being twice differentiable there: the
error expression

e(w) = g(x̄+w)−g(x̄)−〈∇g(x̄),w〉− 1
2 〈w,∇2g(x̄)w〉

is of type o(|w|2). It will help to translate this into the notation where w = tz with
t ≥ 0 and |z|= 1. Let Z =

{
z
∣∣ |z|= 1

}
. To say that e(w) is of type o(|w|2) is to say

that the functions
ft(z) = e(tz)/t2 for t > 0

converge to 0 on Z uniformly as t→ 0.
We furthermore need to rely on the tangent cone property at the end of 2E.3,

which is available because C is polyhedral: there is a neighborhood W of the origin
in IRn such that, as long as w ∈W , we have x̄+w ∈ C if and only if w ∈ TC(x̄).
Through this, it will be enough to show, on the basis of the assumption in (b), that
the inequality in (4) holds for w∈ TC(x̄) when |w| is sufficiently small. Equivalently,
it will be enough to produce an ε > 0 for which

(5) t−2[g(x̄+ tz)−g(x̄)]≥ ε for all z ∈ Z∩TC(x̄) when t is sufficiently small.
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The assumption in (b) entails (in terms of w = tz) the existence of ε > 0 such that
〈z,∇2g(x̄)z〉> 2ε when z ∈ Z∩KC(x̄, v̄). This inequality also holds then for all z in
some open set containing Z∩KC(x̄, v̄). Let Z0 be the intersection of the complement
of that open set with Z ∩ TC(x̄). Since (1) is equivalent to (2), we have for z ∈ Z0
that 〈∇g(x̄),z〉 > 0. Because Z0 is compact, we actually have an η > 0 such that
〈∇g(x̄),z〉> η for all z ∈ Z0. We see then, in writing

t−2[g(x̄+ tz)−g(x̄)] = ft(z)+ t−1〈∇g(x̄),z〉+ 1
2 〈z,∇2g(x̄)z〉

and referring to the uniform convergence of the functions ft to 0 on Z as t→ 0, that
for t sufficiently small the left side is at least t−1η when z ∈ Z0 and at least 2ε when
z ∈ Z ∩TC(x̄) but z /∈ Z0. By taking t small enough that t−1η > 2ε , we get (5) as
desired.

When x̄ belongs to the interior of C, as for instance when C = IRn (an extreme case
of a polyhedral convex set), the first-order condition in (1) is simply ∇g(x̄) = 0. The
second-order conditions in 2G.1 then specify positive semidefiniteness of ∇2g(x̄)
for necessity and positive definiteness for sufficiency. Second-order conditions for
a minimum can also be developed for convex sets that aren’t polyhedral, but not in
such a simple form. When the boundary of C is “curved,” the tangent cone property
in 2E.3 fails, and the critical cone KC(x̄, v̄) for v̄ = −∇g(x̄) no longer captures the
local geometry adequately. Second-order optimality with respect to nonpolyhedral
and even nonconvex sets specified by constraints as in nonlinear programming will
be addressed later in this section (Theorem 2G.6).

Stationary points. An x satisfying (1), or equivalently (2), will be called a station-
ary point of g with respect to minimizing over C, regardless of whether or not it
furnishes a local or global minimum.

Stationary points attract attention for their own sake, due to the role they have
in the design and analysis of minimization algorithms, for example. Our immediate
plan is to study how stationary points, as “quasi-solutions” in problems of mini-
mization over a convex set, behave under perturbations. Along with that, we will
clarify circumstances in which a stationary point giving a local minimum continues
to give a local minimum when perturbed by not too much.

Moving in that direction, we look now at parameterized problems of the form

(6) minimize g(p,x) over all x ∈C,

where g : IRd × IRn → IR is twice continuously differentiable with respect to x (not
necessarily convex), and C is a nonempty, closed, convex subset of IRn. In the pattern
already seen, the variational inequality

(7) ∇xg(p,x)+NC(x) 3 0

provides for each p a first-order condition which x must satisfy if it furnishes a local
minimum, but only describes, in general, the stationary points x for the minimization
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in (6). If C is polyhedral the question of a local minimum can be addressed through
the second-order conditions provided by Theorem 2G.1 relative to the critical cone

(8) KC(x,−∇xg(p,x)) =
{

w ∈ TC(x)
∣∣w⊥ ∇xg(p,x)

}
.

The basic object of interest to us for now, however, is the stationary point mapping
S : IRd →→ IRn defined by

(9) S(p) =
{

x
∣∣∇xg(p,x)+NC(x) 3 0

}
.

With respect to a choice of p̄ and x̄ such that x̄∈ S(p̄), it will be useful to consider
alongside of (6) an auxiliary problem with parameter v ∈ IRn in which g(p̄, ·) is
essentially replaced by its second-order expansion at x̄:

(10)
minimize ḡ(w)−〈v,w〉 over all w ∈W,

where
{

ḡ(w) = g(p̄, x̄)+ 〈∇xg(p̄, x̄),w〉+ 1
2 〈w,∇2

xxg(p̄, x̄)w〉,
W =

{
w
∣∣ x̄+w ∈C

}
=C− x̄.

The subtraction of 〈v,w〉 “tilts” ḡ, and is referred to therefore as a tilt perturbation.
When v = 0, ḡ itself is minimized.

For this auxiliary problem the basic first-order condition comes out to be the
parameterized variational inequality

(11) ∇xg(p̄, x̄)+∇
2
xxg(p̄, x̄)w− v+NW (w) 3 0, where NW (w) = NC(x̄+w).

The stationary point mapping for the problem in (10) is accordingly the mapping
S̄ : IRn→→ IRn defined by

(12) S̄(v) =
{

w
∣∣∇xg(p̄, x̄)+∇

2
xxg(p̄, x̄)w+NW (w) 3 v

}
.

The points w ∈ S̄(v) are sure to furnish a minimum in (10) if, for instance, the
matrix ∇2

xg(p̄, x̄) is positive semidefinite, since that corresponds to the convexity of
the “tilted” function being minimized. For polyhedral C, Theorem 2G.1 could be
brought in for further analysis of a local minimum in (10). Note that 0 ∈ S̄(0).

Theorem 2G.2 (parametric minimization over a convex set). Suppose in the pre-
ceding notation, with x̄ ∈ S(p̄), that

(a) ∇xg is strictly differentiable at (p̄, x̄);
(b) S̄ has a Lipschitz continuous single-valued localization s̄ around 0 for 0.

Then S has a Lipschitz continuous single-valued localization s around p̄ for x̄ with

lip(s; p̄) ≤ lip(s̄;0) · |∇2
xpg(p̄, x̄)|,

and s has a first-order approximation η at p̄ given by

(13) η(p) = x̄+ s̄
(
−∇

2
xpg(p̄, x̄)(p− p̄)

)
.
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On the other hand, (b) is necessary for S to have a Lipschitz continuous single-
valued localization around p̄ for x̄ when the n×d matrix ∇2

xpg(p̄, x̄) has rank n.
Under the additional assumption that C is polyhedral, condition (b) is equivalent

to the condition that, for the critical cone K = KC(x̄,−∇xg(p̄, x̄)), the mapping

v 7→ S̄0(v) =
{

w
∣∣∇2

xxg(p̄, x̄)w+NK(w) 3 v
}

is everywhere single-valued.

Moreover, a sufficient condition for this can be expressed in terms of the critical
subspaces K+

C (x̄, v̄) = KC(x̄, v̄)−KC(x̄, v̄) and K−C (x̄, v̄) = KC(x̄, v̄)∩ [−KC(x̄, v̄)] for
v̄ =−∇xg(p̄, x̄), namely

(14) 〈w,∇2
xxg(p̄, x̄)w〉> 0

{
for every nonzero w ∈ K+

C (x̄, v̄)
with ∇2

xxg(p̄, x̄)w⊥ K−C (x̄, v̄).

Furthermore, in this case the localization s is semidifferentiable at p̄ with semideriva-
tive given by

Ds(p̄)(q) = s̄(−∇
2
xpg(p̄, x̄)q).

Proof. We apply Theorem 2E.1 with f (p,x) = ∇xg(p,x). The mapping G in that
result coincides with ∇ḡ+NC, so that G−1 is S̄. Assumptions (a) and (b) cover the
corresponding assumptions in 2E.1, with σ(v) = x̄ + s̄(v), and then (13) follows
from 2E(4). In the polyhedral case we also have Theorems 2E.6 and 2E.8 at our
disposal, and this gives the rest.

Theorem 2G.3 (stability of a local minimum on a polyhedral convex set). Suppose
in the setting of the parameterized minimization problem in (6) and its stationary
point mapping S in (9) that C is polyhedral and ∇xg(p,x) is strictly differentiable
with respect to (p,x) at (p̄, x̄), where x̄ ∈ S(p̄). With respect to the critical subspace
K+

C (x̄, v̄) for v̄ =−∇xg(p̄, x̄), assume that

(15) 〈w,∇2
xxg(p̄, x̄)w〉> 0 for every nonzero w ∈ K+

C (x̄, v̄).

Then S has a localization s not only with the properties laid out in Theorem 2G.2,
but also with the property that, for every p in some neighborhood of p̄, the point
x = s(p) furnishes a strong local minimum in (6). Moreover, (15) is necessary for
the existence of a localization s with all these properties, when the n× d matrix
∇2

xpg(p̄, x̄) has rank n.

Proof. Obviously (15) implies (14), which ensures according to Theorem 2G.2 that
S has a Lipschitz continuous single-valued localization s around p̄ for x̄. Applying
2E.10(a), we see then that

KC(x,−∇xg(p,x)) ⊂ K+

C (x̄,−∇xg(p̄, x̄)) = K+

C (x̄, v̄)

when x = s(p) and p is near enough to p̄. Since the matrix ∇2
xxg(p,x) converges

to ∇2
xxg(p̄, x̄) as (p,x) tends to (p̄, x̄), it follows that 〈w,∇2

xxg(p,x)w〉 > 0 for all
nonzero w ∈ KC(x,−∇xg(p,x)) when x = s(p) and p is close enough to p̄. Since
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having x = s(p) corresponds to having the first-order condition in (7), we conclude
that from Theorem 2G.1 that x furnishes a strong local minimum in this case.

Arguing now toward the necessity of (15) under the rank condition on ∇2
xpg(p̄, x̄),

we suppose S has a Lipschitz continuous single-valued localization s around p̄ for
x̄ such that x = s(p) gives a local minimum when p is close enough to p̄. For any
x∈C near x̄ and v∈NC(x), the rank condition gives us a p such that v=−∇xg(p,x);
this follows e.g. from 1F.6. Then x = s(p) and, because we have a local minimum,
it follows that 〈w,∇2

xxg(p,x)w〉 ≥ 0 for every nonzero w ∈ KC(x,v). We know from
2E.10(b) that KC(x,v) = K+

C (x̄, v̄) for choices of x and v arbitrarily close to (x̄, v̄),
where v̄ =−∇xg(p̄, x̄). Through the continuous dependence of ∇2

xxg(p,x) on (p,x),
we therefore have

(16) 〈w,Aw〉 ≥ 0 for all w ∈ K+

C (x̄, v̄), where A = ∇
2
xxg(p̄, x̄) is symmetric.

For this reason, we can only have 〈w,Aw〉 = 0 if Aw ⊥ K+

C (x̄, v̄), i.e., 〈w′,Aw〉 = 0
for all w′ ∈ K+

C (x̄, v̄).
On the other hand, because the rank condition corresponds to the ample param-

eterization property, we know from Theorem 2E.8 that the existence of the single-
valued localization s requires for A and the critical cone K = KC(x̄, v̄) that the map-
ping (A+NK)

−1 be single-valued. This would be impossible if there were a nonzero
w such that Aw ⊥ K+

C (x̄, v̄), because we would have 〈w′,Aw〉 = 0 for all w′ ∈ K in
particular (since K ⊂ K+

C (x̄, v̄)), implying that −Aw ∈ NK(w). Then (A+NK)
−1(0)

would contain w along with 0, contrary to single-valuedness. Thus, the inequality in
(16) must be strict when w 6= 0.

Next we provide a complementary, global result for the special case of a tilted
strongly convex function.

Proposition 2G.4 (tilted minimization of strongly convex functions). Let g : IRn→
IR be continuously differentiable on an open set O, and let C ⊂ O be a nonempty,
closed, convex set on which g is strongly convex with constant µ > 0. Then for each
v ∈ IRn the problem

(17) minimize g(x)−〈v,x〉 over x ∈C

has a unique solution s(v), and the solution mapping s is a Lipschitz continuous
function on IRn (globally) with Lipschitz constant µ−1.

Proof. Let gv denote the function being minimized in (17). Like g, this function
is continuously differentiable and strongly convex on C with constant µ; we have
∇gv(x) =∇g(x)−v. According to Theorem 2A.7, the condition ∇gv(x)+NC(x)3 0,
or equivalently x ∈ (∇g+NC)

−1(v), is both necessary and sufficient for x to furnish
the minimum in (17). The strong convexity of g makes the mapping f =∇g strongly
monotone on C with constant µ; see 2A.7(a). The conclusion follows now by ap-
plying Theorem 2F.6 to this mapping f .
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When the function g in Proposition 2G.4 is twice continuously differentiable,
the strong monotonicity can be identified through 2A.5(b) with the inequality
〈∇2g(x)w,w〉 ≥ µ|w|2 holding for all x ∈C and w ∈C−C.

Exercise 2G.5. In the setting of Theorem 2G.2, condition (b) is fulfilled in particu-
lar if there exists µ > 0 such that

(18) 〈∇2
xxg(p̄, x̄)w,w〉 ≥ µ|w|2 for all w ∈C−C,

and then lip(s; p̄) ≤ µ−1. If C is polyhedral, the additional conclusion holds that,
for all p in some neighborhood of p̄, there is a strong local minimum in problem (6)
at the point x = s(p).

Guide. Apply Proposition 2G.4 to the function ḡ in the auxiliary minimization
problem (10). Get from this that s̄ coincides with S̄, which is single-valued and
Lipschitz continuous on IRn with Lipschitz constant µ−1. In the polyhedral case,
also apply Theorem 2G.3, arguing that (18) entails (15).

Observe that because C−C is a convex set containing 0, the condition in (18)
holds for all w ∈C−C if it holds for all w ∈C−C with |w| sufficiently small.

We turn now to minimization over sets which need not be convex but are specified
by a system of constraints. A first-order necessary condition for a minimum in that
case was developed in a very general manner in Theorem 2A.9. Here, we restrict
ourselves to the most commonly treated problem of nonlinear programming, where
the format is to

(19) minimize g0(x) over all x satisfying gi(x)
{
≤ 0 for i ∈ [1,s],
= 0 for i ∈ [s+1,m].

In order to bring second-order conditions for optimality into the picture, we assume
that the functions g0,g1, . . . ,gm are twice continuously differentiable on IRn.

The basic first-order condition in this case has been worked out in detail in Sec-
tion 2A as a consequence of Theorem 2A.9. It concerns the existence, relative to
x, of a multiplier vector y = (y1, . . . ,ym) fulfilling the Karush–Kuhn–Tucker condi-
tions:

(20) y ∈ IRs
+× IRm−s, gi(x)

{
≤ 0 for i ∈ [1,s] with yi = 0,
= 0 for all other i ∈ [1,m],

∇g0(x)+ y1∇g1(x)+ · · ·+ ym∇gm(x) = 0.

This existence is necessary for a local minimum at x as long as x satisfies the con-
straint qualification requiring that the same conditions, but with the term ∇g0(x)
suppressed, can’t be satisfied with y 6= 0. It is sufficient for a global minimum at x if
g0,g1, . . . ,gs are convex and gs+1, . . . ,gm are affine. However, we now wish to take a
second-order approach to local sufficiency, rather than rely on convexity for global
sufficiency.

The key for us will be the fact, coming from Theorem 2A.10, that (20) can be
identified in terms of the Lagrangian function
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(21) L(x,y) = g0(x)+ y1g1(x)+ · · ·+ ymgm(x)

with a certain variational inequality for a continuously differentiable function f :
IRn× IRm→ IRn× IRm and polyhedral convex cone E ⊂ IRn× IRm, namely

(22) f (x,y)+NE(x,y) 3 (0,0), where
{

f (x,y) = (∇xL(x,y),−∇yL(x,y))T,
E = IRn× [IRs

+× IRm−s].

Because our principal goal is to illustrate the application of the results in the preced-
ing sections, rather than push consequences for optimization theory to the limit, we
will only deal with this variational inequality under an assumption of linear inde-
pendence for the gradients of the active constraints. A constraint in (19) is inactive
at x if it is an inequality constraint with gi(x)< 0; otherwise it is active at x.

Theorem 2G.6 (second-order optimality in nonlinear programming). Let x̄ be a
point satisfying the constraints in (19). Let I(x̄) be the set of indices i of the ac-
tive constraints at x̄, and suppose that the gradients ∇gi(x̄) for i ∈ I(x̄) are linearly
independent. Let K consist of the vectors w ∈ IRn satisfying

(23) 〈∇gi(x̄),w〉
{
≤ 0 for i ∈ I(x̄) with i≤ s,
= 0 for all other i ∈ I(x̄) and also for i = 0.

(a) (necessary condition) If x̄ furnishes a local minimum in problem (19), then a
multiplier vector ȳ exists such that (x̄, ȳ) not only satisfies the variational inequality
(22) but also has

(24) 〈w,∇2
xxL(x̄, ȳ)w〉 ≥ 0 for all w ∈ K.

(b) (sufficient condition) If a multiplier vector ȳ exists such that (x̄, ȳ) satisfies
the conditions in (20), or equivalently (22), and if (24) holds with strict inequality
when w 6= 0, then x̄ furnishes a local minimum in (19). Indeed, it furnishes a strong
local minimum in the sense of there being an ε > 0 such that

(25) g0(x) ≥ g0(x̄)+ ε|x− x̄|2 for all x near x̄ satisfying the constraints.

Proof. The linear independence of the gradients of the active constraints guaran-
tees, among other things, that x̄ satisfies the constraint qualification under which
(22) is necessary for local optimality.

In the case of a local minimum, as in (a), we do therefore have the variatio-
nal inequality (22) fulfilled by x̄ and some vector ȳ; and of course (22) holds by
assumption in (b). From this point on, therefore, we can concentrate on just the
second-order parts of (a) and (b) in the framework of having x̄ and ȳ satisfying (20).
In particular then, we have

(26) −∇g0(x̄) = ȳ1∇g1(x̄)+ · · ·+ ȳm∇gm(x̄),
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where the multiplier vector ȳ is moreover uniquely determined by the linear inde-
pendence of the gradients of the active constraints and the stipulation in (20) that
inactive constraints get coefficient 0.

Actually, the inactive constraints play no role around x̄, so we can just as well
assume, for simplicity of exposition in our local analysis, that every constraint is
active at x̄: we have gi(x̄) = 0 for i = 1, . . . ,m. Then, on the level of first-order
conditions, we just have the combination of (20), which corresponds to ∇xL(x̄, ȳ) =
0, and the requirement that ȳi ≥ 0 for i = 1, . . . ,s. In this simplified context, let

(27) T = set of all w ∈ IRn satisfying 〈∇gi(x̄),w〉
{
≤ 0 for i = 1, . . . ,s,
= 0 for i = s+1, . . . ,m,

so that the cone K described by (23) can be expressed in the form

(28) K =
{

w ∈ T
∣∣〈∇g0(x̄),w〉= 0

}
.

The rest of our argument will rely heavily on the classical inverse function the-
orem, 1A.1. Our assumption that the vectors ∇gi(x̄) for i = 1, . . . ,m are linearly
independent in IRn entails of course that m≤ n. These vectors can be supplemented,
if necessary, by vectors ak for k = 1, . . . ,n−m so as to form a basis for IRn. Then, by
setting gm+k(x) = 〈ak,x− x̄〉, we get functions gi for i = m+1, . . . ,n such that for

g : IRn→ IRn with g(x) = (g1(x), . . . ,gm(x),gm+1(x), . . . ,gn(x))

we have g(x̄) = 0 and ∇g(x̄) nonsingular. We can view this as providing, at least
locally around x̄, a change of coordinates g(x) = u = (u1, . . . ,un), x = s(u) (for a
localization s of g−1 around 0 for x̄) in which x̄ corresponds to 0 and the constraints
in (19) correspond to linear constraints

ui ≤ 0 for i = 1, . . . ,s, ui = 0 for i = s+1, . . . ,m

(with no condition on ui for i = m+1, . . . ,n), which specify a polyhedral convex set
D in IRn. Problem (19) is thereby transformed in a local sense into minimizing over
this set D the twice continuously differentiable function f (u) = g0(s(u)), and we
are concerned with whether or not there is a local minimum at ū = 0. The necessary
and sufficient conditions in Theorem 2G.1 are applicable to this and entail having
− f (0) belong to ND(0). It will be useful to let ỹ stand for (ȳ,0, . . . ,0) ∈ IRn.

The inverse function theorem reveals that the Jacobian ∇s(0) is ∇g(x̄)−1. We
have ∇ f (0) = ∇g0(x̄)∇s(0) by the chain rule, and on the other hand −∇g0(x̄) =
ỹ∇g(x̄) by (26), and therefore ∇ f (0) =−ỹ. The vectors w belonging to the set T in
(27) correspond one-to-one with the vectors z ∈ D through ∇g(x̄)w = z, and under
this, through (28), the vectors w ∈ K correspond to the vectors z ∈ D such that
〈z, ỹ〉= 0, i.e., the vectors in the critical cone KD(0, ỹ) = KD(0,−∇ f (0)).

The second-order conditions in Theorem 2G.1, in the context of the transformed
version of problem (19), thus revolve around the nonnegativity or positivity of
〈z,∇2 f (0)z〉 for vectors z ∈ KD(0, ỹ). It will be useful that this is the same as the
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nonnegativity or positivity or 〈z,∇2h(0)z〉 for the function

h(u) = f (u)+ 〈ỹ,u〉= f (u)+ 〈ȳ,Pu〉= L(s(u), ȳ),

where P is the projection from (u1, . . . ,um,um+1, . . . ,un) to (u1, . . . ,um). Further-
more,

〈z,∇2h(0)z〉= ϕ
′′(0) for the function ϕ(t) = h(tz) = L(s(tz), ȳ).

Fix any nonzero z ∈ KD(0, ỹ) and the corresponding w ∈ K, given by w =
∇s(0)z = ∇g(x̄)−1z. Our task is to demonstrate that actually

(29) ϕ
′′(0) = 〈w,∇2

xxL(x̄, ȳ)w〉.

Let x(t) = s(tz), so that x(0) = x̄ and x′(0) = w. We have

ϕ(t) = L(x(t), ȳ),
ϕ ′(t) = 〈∇xL(x(t), ȳ),x′(t)〉,
ϕ ′′(t) = 〈w,∇2

xxL(x(t), ȳ),x′(t)〉+ 〈∇xL(x(t), ȳ),x′′(t)〉,

hence ϕ ′′(0) = 〈w,∇2
xxL(x̄, ȳ),w〉+ 〈∇xL(x̄, ȳ),x′′(0)〉. But ∇xL(x̄, ȳ) = 0 from the

first-order conditions. Thus, (29) holds, as claimed.
The final assertion of part (b) automatically carries over from the corresponding

assertion of part (b) of Theorem 2G.1 under the local change of coordinates that we
utilized.

Exercise 2G.7. In the context of Theorem 2G.6, let ȳ be a multiplier associated with
x̄ through the first-order condition (22). Let I0(x̄, ȳ) be the set of indices i∈ I(x̄) such
that i ≤ s and ȳi = 0. Then an equivalent description of the cone K in the second-
order conditions is that

w ∈ K ⇐⇒ 〈∇gi(x̄),w〉
{
≤ 0 for i ∈ I0(x̄, ȳ),
= 0 for i ∈ I(x̄)\I0(x̄, ȳ).

Guide. Utilize the fact that −∇g0(x̄) = ȳ1∇g1(x̄)+ · · ·+ ȳm∇gm(x̄) with ȳi ≥ 0 for
i = 1, . . . ,s.

The alternative description in 2G.7 lends insights in some situations, but it makes
K appear to depend on ȳ, whereas in reality it doesn’t.

Next we take up the study of a parameterized version of the nonlinear program-
ming problem in the form

(30) minimize g0(p,x) over all x satisfying gi(p,x)
{
≤ 0 for i ∈ [1,s],
= 0 for i ∈ [s+1,m],

where the functions g0,g1, . . . ,gm are twice continuously differentiable from IRd ×
IRn to IR. The Lagrangian function is now
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(31) L(p,x,y) = g0(p,x)+ y1g1(p,x)+ · · ·+ ymgm(p,x)

and the variational inequality capturing the associated first-order conditions is

(32) f (p,x,y)+NE(x,y) 3 (0,0),

where {
f (p,x,y) = (∇xL(p,x,y),−∇yL(p,x,y))T,
E = IRn× [IRs

+× IRm−s].

The pairs (x,y) satisfying this variational inequality are the Karush–Kuhn–Tucker
pairs for the problem specified by p in (30). The x components of such pairs might
or might not give a local minimum according to the circumstances in Theorem 2G.6
(or whether certain convexity assumptions are fulfilled), and indeed we are not im-
posing a linear independence condition on the constraint gradients in (30) of the
kind on which Theorem 2G.6 was based. But these x’s serve anyway as station-
ary points and we wish to learn more about their behavior under perturbations by
studying the Karush–Kuhn–Tucker mapping S : IRd → IRn× IRm defined by

(33) S(p) =
{
(x,y)

∣∣ f (p,x,y)+NE(x,y) 3 (0,0)
}
.

Once more, an auxiliary problem will be important with respect to a choice of p̄
and a pair (x̄, ȳ) ∈ S(p̄). To formulate it, we let

ḡ0(w) = L(p̄, x̄, ȳ)+ 〈∇xL(p̄, x̄, ȳ),w〉+ 1
2 〈w,∇2

xxL(p̄, x̄, ȳ)w〉,
ḡi(w) = gi(p̄, x̄)+ 〈∇xgi(p̄, x̄),w〉 for i = 1, . . . ,m,

and introduce the notation

(34)
I =

{
i ∈ [1,m]

∣∣gi(p̄, x̄) = 0
}
⊃ {s+1, . . . ,m},

I0 =
{

i ∈ [1,s]
∣∣gi(p̄, x̄) = 0 and ȳi = 0

}
⊂ I,

I1 =
{

i ∈ [1,s]
∣∣gi(p̄, x̄)< 0

}
.

The auxiliary problem, depending on a tilt parameter vector v but also now an addi-
tional parameter vector u = (u1, . . . ,um), is to

(35)

minimize ḡ0(w)−〈v,w〉 over all w satisfying

ḡi(w)+ui

{
= 0 for i ∈ I\I0,
≤ 0 for i ∈ I0,
free for i ∈ I1,

where “free” means unrestricted. (The functions ḡi for i ∈ I1 play no role in this
problem, but it will be more convenient to carry them through in this scheme than
to drop them.)

In comparison with the auxiliary problem introduced earlier in (10) with respect
to minimization over a set C, it’s apparent that a second-order expansion of L rather
than g0 has entered, but merely first-order expansions of the constraint functions
g1, . . . ,gm. In fact, only the quadratic part of the Lagrangian expansion matters,



2 Solution Mappings for Variational Problems 129

inasmuch as ∇xL(p̄, x̄, ȳ) = 0 by the first-order conditions. The Lagrangian for the
problem in (35) depends on the parameter pair (v,u) and involves a multiplier vector
z = (z1, . . . ,zm):

ḡ0(w)−〈v,w〉+ z1[ḡ1(w)+u1]+ · · ·+ zm[ḡm(w)+um] =: L̄(w,z)−〈v,w〉+ 〈z,u〉.

The corresponding first-order conditions are given by the variational inequality

(36)

f̄ (w,z)− (v,u)+NĒ(w,z) 3 (0,0), where

f̄ (w,z) = (∇wL̄(w,z),−∇zL̄(w,z)), Ē = IRn×W, with

z = (z1, . . . ,zm) ∈W ⇐⇒ zi

{
≥ 0 for i ∈ I0,
= 0 for i ∈ I1,

which translate into the requirements that

(37)
∇2

xxL(p̄, x̄, ȳ)w+ z1∇xg1(p̄, x̄)+ · · ·+ zm∇xgm(p̄, x̄)− v = 0,

with zi

{
≥ 0 for i ∈ I0 having ḡi(w)+ui = 0,
= 0 for i ∈ I0 having ḡi(w)+ui < 0 and for i ∈ I1.

We need to pay heed to the auxiliary solution mapping S̄ : IRn× IRn →→ IRn× IRm

defined by

(38) S̄(v,u) =
{
(w,z)

∣∣ f̄ (w,z)+NĒ(w,z) 3 (v,u)
}
=
{
(w,z)

∣∣ satisfying(37)
}
,

which has
(0,0) ∈ S̄(0,0).

The following subspaces will enter our analysis of the properties of the mapping S̄:

(39)
M+ =

{
w ∈ IRn

∣∣w⊥ ∇xgi(p̄, x̄) for all i ∈ I\I0
}
,

M− =
{

w ∈ IRn
∣∣w⊥ ∇xgi(p̄, x̄) for all i ∈ I

}
.

Theorem 2G.8 (implicit function theorem for stationary points). Let (x̄, ȳ) ∈ S(p̄)
for the mapping S in (33), constructed from functions gi that are twice continuously
differentiable. Assume for the auxiliary mapping S̄ in (38) that

(40)
{

S̄ has a Lipschitz continuous single-valued
localization s̄ around (0,0) for (0,0).

Then S has a Lipschitz continuous single-valued localization s around p̄ for (x̄, ȳ),
and this localization s is semidifferentiable at p̄ with semiderivative given by
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(41) Ds(p̄)(q) = s̄(−Bq), where B = ∇p f (p̄, x̄, ȳ) =


∇2

xpL(p̄, x̄, ȳ)
−∇pg1(p̄, x̄)

...
−∇pgm(p̄, x̄)

 .

Moreover the condition in (40) is necessary for the existence of a Lipschitz con-
tinuous single-valued localization of S around p̄ for (x̄, ȳ) when the (n+m)× d
matrix B has rank n+m. In particular, S̄ is sure to have the property in (40) when
the following conditions are both fulfilled:

(a) the gradients ∇xgi(p̄, x̄) for i ∈ I are linearly independent;
(b) 〈w,∇2

xxL(p̄, x̄, ȳ)w〉> 0 for every nonzero w ∈M+ with ∇2
xxL(p̄, x̄, ȳ)w⊥M−,

with M+ and M− as in (39).
On the other hand, (40) always entails at least (a).

Proof. This is obtained by applying 2E.1 with the additions in 2E.6 and 2E.8 to the
variational inequality (32). Since

∇yL(p,x,y) = g(p,x) for g(p,x) = (g1(p,x), . . . ,gm(p,x)),

the Jacobian in question is

(42) ∇(x,y) f (p̄, x̄, ȳ) =
(

∇2
xxL(p̄, x̄, ȳ) ∇x g(p̄, x̄)T

−∇x g(p̄, x̄) 0

)
.

In terms of polyhedral convex cone Y = IRs
+× IRm−s, the critical cone to the polyhe-

dral convex cone set E is

(43) KE(x̄, ȳ,− f (p̄, x̄, ȳ)) = IRn×W

for the polyhedral cone W in (36). By taking A to be the matrix in (42) and K to be
the cone in (43), the auxiliary mapping S̄ can be identified with (A+NK)

−1 in the
framework of Theorem 2E.8. (The w and u in that result have here turned into pairs
(w,z) and (v,u).)

This leads to all the conclusions except for establishing that (40) implies (a) and
working out the details of the sufficient condition provided by 2E.8. To verify that
(40) implies (a), consider any ε > 0 and let

vε =
m

∑
i=1

zε
i ∇xgi(p̄, x̄), zε

i =
{

ε for i ∈ I0,
0 otherwise.

Then, as seen from the conditions in (37), we have (0,zε) ∈ S̄(vε ,0). If (a) didn’t
hold, we would also have ∑

m
i=1 ζi∇xg(p̄, x̄) = 0 for some coefficient vector ζ 6= 0

with ζi = 0 when i ∈ I1. Then for every δ > 0 small enough that ε + δζi ≥ 0 for
all i ∈ I0, we would also have (0,zε + δζ ) ∈ S̄(vε ,0). Since ε and δ can be chosen
arbitrarily small, this would contradict the single-valuedness in (40). Thus, (a) is
necessary for (40).
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To come next to an understanding of what the sufficient condition in 2E.8 means
here, we observe in terms of Y = IRs

+× IRm−s that

K+
E (x̄, ȳ,− f (p̄, x̄, ȳ)) = IRn×K+

Y (ȳ,g(p̄, x̄)),
K−E (x̄, ȳ,− f (p̄, x̄, ȳ)) = IRn×K−Y (ȳ,g(p̄, x̄)),

where
z ∈ K+

Y (ȳ,g(p̄, x̄)) ⇐⇒ zi = 0 for i ∈ I1,
z ∈ K−Y (ȳ,g(p̄, x̄)) ⇐⇒ zi = 0 for i ∈ I0∪ I1.

In the shorthand notation

H = ∇
2
xxL(p̄, x̄, ȳ), K+

= K+

E (x̄, ȳ,− f (p̄, x̄, ȳ)), K− = K−E (x̄, ȳ,− f (p̄, x̄, ȳ)),

our concern is to have 〈(w,z),A(w,z)〉 > 0 for every (w,z) ∈ K+ with A(w,z) ⊥ K−

and (w,z) 6= (0,0). It’s clear from (42) that

〈(w,z),A(w,z)〉= 〈w,Hw〉,
(w,z) ∈ K+ ⇐⇒ zi = 0 for i ∈ I1,
A(w,z)⊥ K− ⇐⇒ Hw+∇xg(p̄, x̄)Tz = 0 and ∇xg(p̄, x̄)w⊥ K−Y .

Having ∇xg(p̄, x̄)w ⊥ K−Y corresponds to having w ⊥ ∇xgi(p̄, x̄) for all i ∈ I \ I0,
which means w∈M+. On the other hand, having Hw+∇xg(p̄, x̄)Tz= 0 corresponds
to having Hw = −(z1∇xg1(p̄, x̄)+ · · ·+ zm∇xgm(p̄, x̄)). The sufficient condition in
2E.8 boils down, therefore, to the requirement that

〈w,Hw〉> 0 when (w,z) 6= (0,0), w ∈M+
, Hw =−∑i∈I zi∇xgi(p̄, x̄).

In particular this requirement has to cover cases where w = 0 but z 6= 0. That’s
obviously equivalent to the linear independence in (a). Beyond that, we need only
observe that expressing Hw in the manner indicated corresponds simply to having
Hw⊥M−. Thus, the sufficient condition in Theorem 2E.8 turns out to be the com-
bination of (a) with (b).

Our final topic concerns the conditions under which the mapping S in (33) de-
scribes perturbations not only of stationarity, but also of local minima.

Theorem 2G.9 (implicit function theorem for local minima). Suppose in the setting
of the parameterized nonlinear programming problem (30) for twice continuously
differentiable functions gi and its Karush–Kuhn–Tucker mapping S in (33) that the
following conditions hold in the notation coming from (34):

(a) the gradients ∇xgi(p̄, x̄) for i ∈ I are linearly independent;
(b) 〈w,∇2

xxL(p̄, x̄, ȳ)w〉> 0 for every w 6= 0 in the subspace M+ in (39).
Then not only does S have a localization s with the properties laid out in Theorem
2G.8, but also, for every p in some neighborhood of p̄, the x component of s(p)
furnishes a strong local minimum in (30). Moreover, (a) and (b) are necessary for
this additional conclusion when n+m is the rank of the (n+m)×d matrix B in (41).
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Proof. Sufficiency. Condition (b) here is a stronger assumption than (b) of Theorem
2G.8, so we can be sure that (a) and (b) guarantee the existence of a localization
s possessing the properties in that result. Moreover (b) implies satisfaction of the
sufficient condition for a local minimum at x̄ in Theorem 2G.6, inasmuch as the cone
K in that theorem is obviously contained in the set of w such that 〈∇gi(p̄, x̄),w〉= 0
for all i ∈ I \ I0. We need to demonstrate, however, that this local minimum property
persists in passing from p̄ to nearby p.

To proceed with that, denote the two components of s(p) by x(p) and y(p), and
let I(p), I0(p) and I1(p) be the index sets which correspond to x(p) as I, I0 and
I1 do to x̄, so that I(p) consists of the indices i ∈ {1, . . . ,m} with gi(p,x(p)) = 0,
and I(p) \ I0(p) consists of the indices i ∈ I(p) having yi(p) > 0 for inequality
constraints, but I1(p) consists of the indices of the inequality constraints having
gi(p,x(p))< 0. Consider the following conditions, which reduce to (a) and (b) when
p = p̄:

(a(p)) the gradients ∇xgi(p,x(p)) for i ∈ I(p) are linearly independent;
(b(p)) 〈w,∇2

xxL(p,x(p),y(p))w〉> 0 for every w 6= 0 such that w⊥∇xgi(p,x(p))
for all i ∈ I(p)\ I0(p).

Since x(p) and y(p) tend toward x(p̄) = x̄ and y(p̄) = ȳ as p→ p̄, the fact that
yi(p) = 0 for i ∈ I1(p) and the continuity of the gi’s ensure that

I(p)⊂ I and I(p)\ I0(p)⊃ I \ I0 for p near enough to p̄.

Through this and the fact that ∇xgi(p,x(p)) tends toward ∇xgi(p̄, x̄) as p goes to p̄,
we see that the linear independence in (a) entails the linear independence in (a(p))
for p near enough to p̄. Indeed, not only (a(p)) but also (b(p)) must hold, in fact in
the stronger form that there exist ε > 0 and a neighborhood Q of p̄ for which

〈w,∇2
xxL(p,x(p),y(p))w〉> ε

when |w|= 1 and w⊥ ∇xgi(p,x(p)) for all i ∈ I(p)\ I0(p). Indeed, otherwise there
would be sequences of vectors pk → p̄ and wk → w violating this condition for
εk → 0, and this would lead to a contradiction of (b) in view of the continuous
dependence of the matrix ∇2

xxL(p,x(p),y(p)) on p.
Of course, with both (a(p)) and (b(p)) holding when p is in some neighborhood

of p̄, we can conclude through Theorem 2G.6, as we did for x̄, that x(p) furnishes a
strong local minimum for problem (30) for such p, since the cone

K(p) = set of w satisfying
{
〈∇xgi(p,x(p)),w〉 ≤ 0 for i ∈ I(p) with i≤ s,
〈∇xgi(p,x(p)),w〉= 0 for i = s+1, . . . ,m and i = 0

lies in the subspace formed by the vectors w with 〈∇xgi(p,x(p)),w〉 = 0 for all
i ∈ I(p)\ I0(p).

Necessity. Suppose that S has a Lipschitz continuous single-valued localization
s around p̄ for (x̄, ȳ). We already know from Theorem 2G.8 that, under the rank
condition in question, the auxiliary mapping S̄ in (38) must have such a localization
around (0,0) for (0,0), and that this requires the linear independence in (a). Under
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the further assumption now that x(p) gives a local minimum in problem (30) when
p is near enough to p̄, we wish to deduce that (b) must hold as well. Having a local
minimum at x(p) implies that the second-order necessary condition for optimality
in Theorem 2G.6 is satisfied with respect to the multiplier vector y(p):

(44) 〈w,∇2
xxL(p,x(p),y(p))w〉 ≥ 0 for all w ∈ K(p) when p is near to p̄.

We will now find a value of the parameter p close to p̄ such that (x(p),y(p)) = (x̄, ȳ)
and K(p) = M+. If I0 = /0 there is nothing to prove. Let I0 6= /0. The rank condi-
tion on the Jacobian B = ∇p f (p̄, x̄, ȳ) provides through Theorem 1F.6 (for k = 1)
the existence of p(v,u), depending continuously on some (v,u) in a neighborhood
of (0,−g(p̄, x̄)), such that f (p(v,u), x̄, ȳ) = (v,u), i.e., ∇xL(p(v,u), x̄, ȳ) = v and
−g(p(v,u), x̄) = u. For an arbitrarily small ε > 0, let the vector uε have uε

i = −ε

for i ∈ I0 but uε
i = 0 for all other i. Let pε = p(0,uε). Then ∇xL(pε , x̄, ȳ) = 0 with

gi(pε , x̄) = 0 for i ∈ I \ I0 but gi(pε , x̄) < 0 for i ∈ I0 as well as for i ∈ I1. Thus,
I(pε) = I \ I0, I0(pε) = /0, I1(pε) = I0 ∪ I1, and (x̄, ȳ) ∈ S(pε) and, moreover, (x̄, ȳ)
furnishes a local minimum in (30) for p = pε , moreover with K(pε) coming out to
be the subspace

M+
(pε) =

{
w
∣∣w⊥ ∇xgi(pε , x̄) for all i ∈ I \ I0

}
.

In consequence of (44) we therefore have

〈w,∇2
xxL(pε , x̄, ȳ)w〉 ≥ 0 for all w ∈M+

(pε),

whereas we are asking in (b) for this to hold with strict inequality for w 6= 0 in the
case of M+ = M+(p̄).

We know that pε → p̄ as ε→ 0. Owing to (a) and the continuity of the functions
gi and their derivatives, the gradients ∇xgi(pε , x̄) for i ∈ I must be linearly inde-
pendent when ε is sufficiently small. It follows from this that any w in M+ can be
approximated as ε → 0 by vectors wε belonging to the subspaces M+(pε). In the
limit therefore, we have at least that

(45) 〈w,∇2
xxL(p̄, x̄, ȳ)w〉 ≥ 0 for all w ∈M+

.

How are we to conclude strict inequality when w 6= 0? It’s important that the matrix
H = ∇2

xxL(p̄, x̄, ȳ) is symmetric. In line with the positive semidefiniteness in (45),
any w̄ ∈ M+ with 〈w̄,Hw̄〉 = 0 must have Hw̄ ⊥ M+. But then in particular, the
auxiliary solution mapping S̄ in (38) would have (tw̄,0) ∈ S̄(0,0) for all t ≥ 0, in
contradiction to the fact, coming from Theorem 2G.8, that S̄(0,0) contains only
(0,0) in the current circumstances.

Condition (a) in Theorem 2G.9 is commonly called the linear independence con-
straint qualification condition while condition (b) is the strong second order suffi-
cient condition.
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Commentary

The basic facts about convexity, polyhedral sets, and tangent and normal cones
given in Section 2A are taken mainly from Rockafellar [1970]. Robinson’s implicit
function theorem was stated and proved in Robinson [1980], where the author was
clearly motivated by the problem of how the solutions of the standard nonlinear
programming problem depend on parameters, and he pursued this goal in the same
paper.

At that time it was already known from the work of Fiacco and McCormick
[1968] that under the linear independence of the constraint gradients and the stan-
dard second-order sufficient condition, together with strict complementarity slack-
ness at the reference point (which means that there are no inequality constraints
satisfied as equalities that are associated with zero Lagrange multipliers), the solu-
tion mapping for the standard nonlinear programming problem has a smooth single-
valued localization around the reference point. The proof of this result was based on
the classical implicit function theorem, inasmuch as under strict complementarity
slackness the Karush–Kuhn–Tucker system turns into a system of equations locally.
Robinson looked at the case when the strict complementarity slackness is violated,
which may happen, as already noted in 2B, when the “stationary point trajectory”
hits the constraints. Based on his implicit function theorem, which actually reached
far beyond his immediate goal, Robinson proved, still in his paper from 1980, that
under a stronger form of the second-order sufficient condition, together with linear
independence of the constraint gradients, the solution mapping of the standard non-
linear programming problem has a Lipschitz continuous single-valued localization
around the reference point; see Theorem 2G.9 for an updated statement. In Chapter
3 we will look again at this result from much more general perspective.

This result was a stepping stone to the subsequent extensive development of
stability analysis in optimization, whose maturity came with the publication of
the books of Bank, Guddat, Klatte, Kummer and Tammer [1983], Levitin [1992],
Bonnans and Shapiro [2000], Klatte and Kummer [2002] and Facchinei and Pang
[2003].

Robinson’s breakthrough in the stability analysis of nonlinear programming was
in fact much needed for the emerging numerical analysis of variational problems
more generally. In his paper from 1980, Robinson noted the thesis of his Ph.D. stu-
dent Josephy [1979], who proved that the condition used in his implicit function
theorem yields local quadratic convergence of Newton’s method for solving varia-
tional inequalities, a method whose version for constrained optimization problems
is well known as the sequential quadratic programming (SQP) method.

Quite a few years after Robinson’s theorem was published, it was realized that
the result could be used as a tool in the analysis of a variety of variational problems,
and beyond. Alt [1990] applied it to optimal control, while in Dontchev and Hager
[1993], and further in Dontchev [1995b], the statement of Robinson’s theorem was
observed actually to hold for generalized equations of the form 2B(1) for an ar-
bitrary mapping F , not just a normal cone mapping. Variational inequalities thus
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serve as an example, not a limitation. Important applications, e.g. to convergence
analysis of algorithms and discrete approximations to infinite-dimensional variatio-
nal problems, came later. In the explosion of works in this area in the 80’s and 90’s
Robinson’s contribution, if not forgotten, was sometimes taken for granted. More
about this will come out in Chapter 6.

One may derive stability estimates for solutions of optimization problems with-
out relying on optimality conditions, but dealing directly with the objective function
and the constraints under, for instance, strong convexity. Earlier results of this kind
were obtained in Dontchev [1981], for a recent follow up, see Shvartsman [2012].

The presentation of the material in Section 2B mainly follows Dontchev and
Rockafellar [2009], while that in Section 2C comes from Dontchev and Rockafellar
[2001]. In Section 2D, we used some facts from the books of Facchinei and Pang
[2003] (in particular, 2D.5) and Scholtes [2013]5 (in particular, 2D.7). The result in
2D.2 is a specialization of Theorem 5.43 in the book Rockafellar and Wets [1998]
to the case of difference quotient functions. Reduction Lemma 2E.4 first appeared
as Proposition 4.4 in Robinson [1991]. Theorem 2E.6 is a special case of a result
in Dontchev and Rockafellar [1996]. For far reaching extensions of this result for
variational inequalities over perturbed polyhedral convex sets, see Lu and Robinson
[2008] and Robinson [2012].

Section 2F gives an introduction to the theory of monotone mappings which
for its application to optimization problems goes back to Rockafellar [1976a] and
[1976b]. Much more about this kind of monotonicity and its earlier history can be
found in Chapter 12 of the book of Rockafellar and Wets [1998]. Related results
are presented in Kassay and Kolumbán [1989], and Alt and Kolumbán [1993]. As
mentioned above, the stability analysis in 2G goes back to Robinson [1980] who
was the first to prove the sufficiency part of Theorem 2G.9. About the same time
Kojima [1980] introduced the concept of strong stability in nonlinear programming
which is closely related to strong regularity, and gave a characterization of this prop-
erty by using degree theory. Cornet and Laroque [1987], and later Jongen, Klatte
and Tammer [1990/91] combined Kojima’s approach with Clarke’s implicit func-
tion theorem. The presentation in 2G uses material from Dontchev and Rockafel-
lar [1996,1998], but some versions of these results could be extracted from earlier
works.

5 This book is a reprint of Scholtes’ habilitation thesis of 1994.





Chapter 3
Set-valued Analysis of Solution Mappings

In the concept of a solution mapping for a problem dependent on parameters,
whether formulated with equations or something broader like variational inequal-
ities, we have always had to face the possibility that solutions might not exist, or
might not be unique when they do exist. This goes all the way back to the setting of
the classical implicit function theorem. In letting S(p) denote the set of all x satisfy-
ing f (p,x) = 0, where f is a given function from IRd× IRn to IRm, we cannot expect
to be defining a function S from IRd to IRn, even when m = n. In general, we only
get a set-valued mapping S. However, this mapping S could have a single-valued
localization s with properties of continuity or differentiability. The study of such
localizations, as “subfunctions” within a set-valued mapping, has been our focus so
far, but now we open up to a wider view.

There are plenty of reasons, already in the classical context, to be interested in
localizations of solution mappings without insisting on single-valuedness. For in-
stance, in the case of S(p) =

{
x
∣∣ f (p,x) = 0

}
with f going from IRd × IRn to IRm

and m < n, it can be anticipated for a choice of p̄ and x̄ with x̄∈ S(p̄), under assump-
tions on ∇x f (p̄, x̄), that a graphical localization S0 of S exists around (p̄, x̄) such that
S0(p) is an (n−m)-dimensional manifold which varies with p. What generalizations
of the usual notions of continuity and differentiability might help in understanding,
and perhaps quantifying, this dependence on p?

Such challenges in dealing with the dependence of a set on the parameters which
enter its definition carry over to solution mappings of problems centered on con-
straint systems. Just as the vector equation f (p,x) = 0 for

f : IRd× IRn→ IRm with f (p,x) = ( f1(p,x), . . . , fm(p,x))

can be viewed as standing for a system of scalar equations

fi(p,x) = 0 for i = 1, . . . ,m,

we can contemplate vector representations of mixed systems of inequalities and
equations like

137
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(1) fi(p,x)
{
≤ 0 for i = 1, . . . ,s,
= 0 for i = s+1, . . . ,m,

which are important in optimization. Such a system takes the form

f (p,x)−K 3 0 for K = IRs
−×{0}m−s.

In fact this is an instance of a parameterized generalized equation:

(2) f (p,x)+F(x) 3 0 with F a constant mapping, F(x)≡−K.

In studying the behavior of the corresponding solution mapping S : IRd →→ IRn given
by

(3) S(p) =
{

x
∣∣x satisfies(2)

}
(covering (1) as a special case),

we are therefore still, very naturally, in the realm of the “extended implicit function
theory” we have been working to build up.

In (2), F is not a normal cone mapping NC, so we are not dealing with a varia-
tional inequality. The results in Chapter 2 for solution mappings to parameterized
generalized equations would anyway, in principle, be applicable, but in this frame-
work they miss the mark. The trouble is that those results focus on the prospects of
finding single-valued localizations of a solution mapping, especially ones that ex-
hibit Lipschitz continuity. For a solution mapping S as in (3), coming from a gener-
alized equation as in (2), single-valued localizations are unlikely to exist at all (apart
from the pure equation case with m = n) and aren’t even a topic of serious concern.
Rather, we are confronted with a “varying set” S(p) which cannot be reduced locally
to a “varying point.” That could be the case even if, in (2), F(x) is not a constant set
but a sort of continuously moving or deforming set. What we are looking for is not
so much a generalized implicit function theorem, but an implicit mapping theorem,
the distinction being that “mappings” truly embrace set-valuedness.

To understand the behavior of such a solution mapping S, whether qualitatively
or quantitatively, we have to turn to other concepts, beyond those in Chapter 2.
Our immediate task, in Sections 3A, 3B, 3C and 3D, is to introduce the notions
of Painlevé–Kuratowski convergence and Pompeiu–Hausdorff convergence for se-
quences of sets, and to utilize them in developing properties of continuity and Lip-
schitz continuity for set-valued mappings. In tandem with this, we gain important
insights into the solution mappings (3) associated with constraint systems as in (1)
and (2). We also obtain by-products concerning the behavior of various mappings
associated with problems of optimization.

In Section 3E, however, we open a broader investigation in which the Aubin
property, serving as a sort of localized counterpart to Lipschitz continuity for set-
valued mappings, is tied to the concept of metric regularity, which directly relates
to estimates of distances to solutions. The natural context for this is the study of
how properties of a set-valued mapping correspond to properties of its set-valued
inverse, or in other words, the paradigm of the inverse function theorem. We are
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able nevertheless to return in Section 3F to the paradigm of the implicit function
theorem, based on a stability property of metric regularity fully developed later in
Chapter 5. Powerful results, applicable to fully set-valued solution mappings (2)(3)
even when F is not just a constant mapping, are thereby obtained. Sections 3G
and 3I then take these ideas back to situations where single-valuedness is available
in a localization of a solution mapping, at least at the reference point, showing how
previous results such as those in 2B can thereby be amplified. Section 3H reveals that
a set-valued version of calmness does not similarly submit to the implicit function
theorem paradigm.



140 3 Set-valued Analysis of Solution Mappings

3A. Set Convergence

Various continuity properties of set-valued mappings will be essential for the devel-
opments in this chapter. To lay the foundation for them we must first introduce two
basic concepts: convergence of sets and distance between sets.

The set of all natural numbers k = 1,2, . . ., will be denoted by IN. The collection
of all subsets N of IN such that IN \N is finite will be denoted by N , whereas the
collection of all infinite N ⊂ IN will be denoted by N ]. This scheme is designed
for convenience in handling subsequences of a given sequence. For instance, if we
have a sequence {xk}∞

k=1 of points in IRn, the notation {xk}k∈N for either N ∈N
or N ∈ N ] designates a subsequence. In the first case it is a subsequence which
coincides with the full sequence beyond some k0, whereas in the second case it is a
general subsequence. Limits as k→ ∞ with k ∈ N will be indicated by limk∈N , or in
terms of arrows by N→, and so forth.

For a sequence {rk}∞
k=1 in IR, the limit as k→ ∞ may or may not exist—even

though we always include ∞ and −∞ as possible limit values in the obvious sense.
However, the upper limit, or “limsup,” and the lower limit, or “liminf,” do always
exist, as defined by

limsup
k→∞

rk = lim
k→∞

sup
m≥k

rm,

liminf
k→∞

rk = lim
k→∞

inf
m≥k

rm.

An alternative description of these values is that limsupk→∞ rk is the highest r for

which there exists N ∈N ] such that rk N→ r, whereas liminfk→∞ rk is the lowest such
r. The limit itself exists if and only if these upper and lower limits coincide. For
simplicity, we often just write limsupk, liminfk and limk, with the understanding
that this refers to k→ ∞.

In working with sequences of sets, a similar pattern is encountered in which
“outer” and “inner” limits always exist and give a “limit” when they agree.

Outer and inner limits. Consider a sequence {Ck}∞
k=1 of subsets of IRn.

(a) The outer limit of this sequence, denoted by limsupk Ck, is the set of all
x ∈ IRn for which

there exist N ∈N ] and xk ∈Ck for k ∈ N such that xk N→ x.

(b) The inner limit of this sequence, denoted by liminfk Ck, is the set of all x ∈
IRn for which

there exist N ∈N and xk ∈Ck for k ∈ N such that xk N→ x.

(c) When the inner and outer limits are the same set C, this set is defined to be
the limit of the sequence {Ck}∞

k=1:

C = lim
k

Ck = limsup
k

Ck = liminf
k

Ck.
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In this case Ck is said to converge to C in the sense of Painlevé–Kuratowski conver-
gence.

Note that although the outer and inner limit sets always exist by this definition,
they might be empty. When Ck 6= /0 for all k, these sets can be described equivalently
in terms of the sequences {xk}∞

k=1 that can be formed by selecting an xk ∈Ck for each
k: the set of all cluster points of such sequences is limsupk Ck, while the set of all
limits of such sequences is liminfk Ck. Obviously liminfk Ck ⊂ limsupk Ck. When
each Ck is a singleton, liminfk Ck can at most be another singleton, but limsupk Ck

might have multiple elements.

Examples.
1) The sequence of doubletons Ck = {0, 1

k} in IR has limk Ck = {0}. Indeed, every
sequence of elements xk ∈Ck converges to 0.

2) The sequence of balls IB(xk,ρk) converges to IB(x,ρ) when xk→ x and ρk→ ρ .
3) A sequence of sets Ck which alternates between two different closed sets D1

and D2, that is, Ck = D1 when k is odd and Ck = D2 when k is even, has D1 ∩D2
as its inner limit and D1∪D2 as its outer limit. Such a sequence is not convergent if
D1 6= D2.

Outer and inner limits can also be described with the help of neighborhoods:

(1a) limsup
k→∞

Ck =
{

x
∣∣∣ ∀ neighborhood V of x, ∃N ∈N ], ∀k ∈ N : Ck∩V 6= /0

}
,

(1b) liminf
k→∞

Ck =
{

x
∣∣∣ ∀ neighborhood V of x, ∃N ∈N , ∀k ∈ N : Ck ∩V 6= /0

}
.

Without loss of generality the neighborhoods in (1a,b) can be taken to be closed
balls; then we obtain the following more transparent definitions:

(2a) limsup
k→∞

Ck =
{

x
∣∣∀ε > 0, ∃N ∈N ] : x ∈Ck + εIB (k ∈ N)},

(2b) liminf
k→∞

Ck =
{

x
∣∣∀ε > 0, ∃N ∈N : x ∈Ck + εIB (k ∈ N)}.

Both the outer and inner limits of a sequence {Ck}k∈IN are closed sets. Indeed, if
x /∈ limsupk Ck, then, from (2a), there exists ε > 0 such that for every N ∈N ] we
have x /∈Ck+εIB, that is, IB(x,ε)∩Ck = /0, for some k ∈N. But then a neighborhood
of x can meet Ck for finitely many k only. Hence no points in this neighborhood can
be cluster points of sequences {xk} with xk ∈Ck for infinitely many k. This implies
that the complement of limsupk Ck is an open set and therefore that limsupk Ck is
closed. An analogous argument works for liminfk Ck (this could also be derived by
the following Proposition 3A.1).

Recall from Section 1D that the distance from a point x ∈ IRn to a subset C of IRn

is
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dC(x) = d(x,C) = inf
y∈C
|x− y|.

Recall Proposition 1D.4, according to which a set C is closed if and only if d(x,C) =
0 is equivalent to having x ∈C.

Proposition 3A.1 (distance function characterizations of limits). Outer and
inner limits of sequences of sets are described alternatively by the following
formulas:

(3a) limsup
k→∞

Ck =
{

x
∣∣∣ liminf

k→∞

d(x,Ck) = 0
}
,

(3b) liminf
k→∞

Ck =
{

x
∣∣∣ lim

k→∞
d(x,Ck) = 0

}
.

Proof. If x ∈ limsupk Ck then, by (2a), for any ε > 0 there exists N ∈ N ] such
that d(x,Ck) ≤ ε for all k ∈ N. But then, by the definition of the lower limit for
a sequence of real numbers, as recalled in the beginning of this section, we have
liminfk→∞ d(x,Ck) = 0. The left side of (3a) is therefore contained in the right side.
Conversely, if x is in the set on the right side of (3a), then there exists N ∈N ] and
xk ∈Ck for all k ∈ N such that xk N→ x; then, by definition, x must belong to the left
side of (3a).

If x is not in the set on the right side of (3b), then there exist ε > 0 and N ∈N ]

such that d(x,Ck) > ε for all k ∈ N. Then x /∈Ck + εIB for all k ∈ N and hence by
(2b) x is not in liminfk Ck. In a similar way, from (2b) we obtain that x /∈ liminfk Ck

only if limsupk d(x,Ck)> 0. This gives us (3b).

Observe that the distance to a set does not distinguish whether this set is closed
or not. Therefore, in the context of convergence, there is no difference whether the
sets in a sequence are closed or not. (But limits of all types are closed sets.)

More examples.
1) The limit of the sequence of intervals [k,∞) as k→∞ is the empty set, whereas

the limit of the sequence of intervals [1/k,∞) is [0,∞).
2) More generally for monotone sequences of subsets Ck ⊂ IRn, if Ck ⊃Ck+1 for

all k ∈ IN, then limk Ck = ∩k cl Ck, whereas if Ck ⊂ Ck+1 for all k, then limk Ck =
cl ∪kCk.

3) The constant sequence Ck = D, where D is the set of vectors in IRn whose
coordinates are rational numbers, converges not to D, which isn’t closed, but to the
closure of D, which is IRn. More generally, if Ck =C for all k, then limk Ck = cl C.

Theorem 3A.2 (characterization of Painlevé–Kuratowski convergence). For a se-
quence Ck of sets in IRn and a closed set C ⊂ IRn one has:

(a) C ⊂ liminfk Ck if and only if for every open set O⊂ IRn with C∩O 6= /0 there
exists N ∈N such that Ck ∩O 6= /0 for all k ∈ N;

(b) C ⊃ limsupk Ck if and only if for every compact set B ⊂ IRn with C∩B = /0
there exists N ∈N such that Ck ∩B = /0 for all k ∈ N;



3 Set-valued Analysis of Solution Mappings 143

(c) C ⊂ liminfk Ck if and only if for every ρ > 0 and ε > 0 there is an index set
N ∈N such that C∩ρIB⊂Ck + εIB for all k ∈ N;

(d) C ⊃ limsupk Ck if and only if for every ρ > 0 and ε > 0 there is an index set
N ∈N such that Ck ∩ρIB⊂C+ εIB for all k ∈ N;

(e) C ⊂ liminfk Ck if and only if limsupk d(x,Ck)≤ d(x,C) for every x ∈ IRn;
(f) C ⊃ limsupk Ck if and only if d(x,C)≤ liminfk d(x,Ck) for every x ∈ IRn.
Thus, from (c)(d) C = limk Ck if and only if for every ρ > 0 and ε > 0 there is an

index set N ∈N such that

Ck ∩ρIB⊂C+ εIB and C∩ρIB⊂Ck + εIB for all k ∈ N.

Also, from (e)(f), C = limk Ck if and only if limk d(x,Ck) = d(x,C) for every x∈ IRn.

Proof. (a): Necessity comes directly from (1b). To show sufficiency, assume that
there exists x ∈C \ liminfk Ck. But then, by (1b), there exists an open neighborhood
V of x such that for every N ∈ N there exists k ∈ N with V ∩Ck = /0 and also
V ∩C 6= /0. This is the negation of the condition on the right.

(b): Let C ⊃ limsupk Ck and let there exist a compact set B with C∩B = /0, such
that for every N ∈ N one has Ck ∩ B 6= /0 for some k ∈ N. But then there exist
N ∈ N ] and a convergent sequence xk ∈ Ck for k ∈ N whose limit is not in C,
a contradiction. Conversely, if there exists x ∈ limsupk Ck which is not in C then,
from (2a), a ball IBε(x) with sufficiently small radius ε does not meet C yet meets
Ck for infinitely many k; this contradicts the condition on the right.

Sufficiency in (c): Consider any point x ∈ C, and any ρ > |x|. For an arbitrary
ε > 0, there exists, by assumption, an index set N ∈N such that C∩ρIB⊂Ck +εIB
for all k ∈ N. Then x ∈ Ck + εIB for all k ∈ N. By (2b), this yields x ∈ liminfk Ck.
Hence, C ⊂ liminfk Ck.

Necessity of (c): It will be demonstrated that if the condition fails, there must be
a point x̄ ∈ C lying outside of liminfk Ck. To say that the condition fails is to say
that there exist ρ > 0 and ε > 0, such that, for each N ∈N , the inclusion C∩ρIB⊂
Ck +εIB is false for at least one k ∈ N. Then there is an index set N0 ∈N ] such that
this inclusion is false for all k ∈ N0; there are points xk ∈ [C∩ρIB]\ [Ck +εIB] for all
k ∈ N0. Such points form a bounded sequence in the closed set C with the property
that d(xk,Ck) ≥ ε . A subsequence {xk}k∈N1 , for an index set N1 ∈N ] within N0,
converges in that case to a point x̄∈C. Since d(xk,Ck)≤ d(x̄,Ck)+ |x̄−xk|, we must
have

d(x̄,Ck)≥ ε/2 for all k ∈ N1 large enough.

It is impossible then for x̄ to belong to liminfk Ck, because that requires d(x̄,Ck) to
converge to 0, cf. (3b).

Sufficiency in (d): Let x̄ ∈ limsupk Ck; then for some N0 ∈N ] there are points

xk ∈Ck such that xk N0→ x̄. Fix any ρ > |x̄|, so that xk ∈ ρIB for k ∈ N0 large enough.
By assumption, there exists for every ε > 0 an index set N ∈N such that Ck∩ρIB⊂
C+ εIB when k ∈ N. Then for large enough k ∈ N0∩N we have xk ∈C+ εIB, hence

d(xk,C) ≤ ε . Because d(x̄,C) ≤ d(xk,C)+ |xk− x̄| and xk N0→ x̄, it follows from the
arbitrary choice of ε that d(x̄,C) = 0, which means x̄ ∈C (since C is closed).
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Necessity in (d): Suppose to the contrary that one can find ρ > 0, ε > 0 and
N ∈N ] such that, for all k ∈N, there exists xk ∈ [Ck∩ρIB]\ [C+εIB]. The sequence
{xk}k∈N is then bounded, so it has a cluster point x̄ which, by definition, belongs
to limsupk Ck. On the other hand, since each xk lies outside of C + εIB, we have
d(xk,C)≥ ε and, in the limit, d(x̄,C)≥ ε . Hence x̄ /∈C, and therefore limsupk Ck is
not a subset of C.

(e): Sufficiency follows from (3b) by taking x ∈ C. To prove necessity, choose
x ∈ IRn and let y ∈C be a projection of x on C: |x−y|= d(x,C). By the definition of
liminf there exist N ∈N and yk ∈Ck, k ∈ N such that yk N→ y. For such yk we have
d(x,Ck)≤ |yk− x|, k ∈ N and passing to the limit with k→ ∞ we get the condition
on the right.

(f): Sufficiency follows from (3a) by taking x ∈ limsupk Ck. Choose x ∈ IRn. If
x ∈C there is nothing to prove. If not, note that for any nonnegative α the condition
d(x,C) > α is equivalent to C∩ IBα(x) = /0. But then from (b) there exists N ∈N
with Ck ∩ IBα(x) = /0 for k ∈ N, which is the same as d(x,Ck) > α for k ∈ N. This
implies the condition on the right.

Observe that in parts (c)(d) of 3A.2 we can replace the phrase “for every ρ” by
“there is some ρ0 ≥ 0 such that for every ρ ≥ ρ0”.

Set convergence can also be characterized in terms of concepts of distance be-
tween sets.

Excess and Pompeiu–Hausdorff distance. For sets C and D in IRn, the excess of
C beyond D is defined by

e(C,D) = sup
x∈C

d(x,D),

where the convention is used that

e( /0,D) =
{0 when D 6= /0,

∞ otherwise.

The Pompeiu–Hausdorff distance between C and D is the quantity

h(C,D) = max{e(C,D),e(D,C)}.

Equivalently, these quantities can be expressed by

e(C,D) = inf
{

τ ≥ 0
∣∣C ⊂ D+ τIB

}
and

h(C,D) = inf
{

τ ≥ 0
∣∣C ⊂ D+ τIB, D⊂C+ τIB

}
.

The excess and the Pompeiu–Hausdorff distance are illustrated in Fig. 3.1. They
are unaffected by whether C and D are closed or not, but in the case of closed sets the
infima in the alternative formulas are attained. Note that both e(C,D) and h(C,D)
can sometimes be ∞ when unbounded sets are involved. For that reason in particular,
the Pompeiu–Hausdorff distance does not furnish a metric on the space of nonempty
closed subsets of IRn, although it does on the space of nonempty closed subsets of a
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bounded set X ⊂ IRn. Also note that e(C, /0) = ∞ for any set C, including the empty
set.

C D

e(C,D)

h(C,D) = e(D,C)

Fig. 3.1 Illustration of the excess and Pompeiu–Hausdorff distance.

Proposition 3A.3 (characterization of Pompeiu–Hausdorff distance). For any non-
empty sets C and D in IRn, one has

(4) h(C,D) = sup
x∈IRn
|d(x,C)−d(x,D)|.

Proof. Since the distance to a set doesn’t distinguish whether the set is closed or
not, we may assume that C and D are nonempty closed sets.

According to 1D.4(c), for any x ∈ IRn we can pick u ∈ C such that d(x,u) =
d(x,C). For any v∈D, the triangle inequality tells us that d(x,v)≤ d(x,u)+d(u,v).
Taking the infimum on both sides with respect to v ∈ D, we see that d(x,D) ≤
d(x,u)+d(u,D), where d(u,D) ≤ e(C,D). Therefore, d(x,D)−d(x,C) ≤ e(C,D),
and by symmetry in exchanging the roles of C and D, also d(x,C)− d(x,D) ≤
e(D,C), so that

|d(x,C)−d(x,D)| ≤max{e(C,D),e(D,C)}= h(C,D).

Hence “≥” holds in (4).
On the other hand, since d(x,C) = 0 when x ∈C, we have

e(C,D) = sup
x∈C

d(x,D) = sup
x∈C
|d(x,D)−d(x,C)| ≤ sup

x∈IRn
|d(x,D)−d(x,C)|

and likewise e(D,C)≤ supx∈IRn |d(x,C)−d(x,D)|, so that
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max{e(C,D),e(D,C)} ≤ sup
x∈IRn
|d(x,C)−d(x,D)|.

This confirms that “≤” also holds in (4).

Pompeiu–Hausdorff convergence. A sequence of sets {Ck}∞
k=1 is said to con-

verge with respect to Pompeiu–Hausdorff distance to a set C when C is closed and
h(Ck,C)→ 0 as k→ ∞.

From the definition of the Pompeiu-Hausdorff distance it follows that when a
sequence Ck converges to C, then the set C must be nonempty and only finitely
many Ck can be empty. Note that this is not the case when Painlevé–Kuratowski
convergence is considered (see the first example after 3A.1). The following theorem
exhibits the main relationship between these two types of convergence.

Theorem 3A.4 (Pompeiu–Hausdorff versus Painlevé–Kuratowski). If a sequence
of closed sets {Ck}∞

k=1 converges to C with respect to Pompeiu–Hausdorff distance
then it also converges to C in the Painlevé–Kuratowski sense. The opposite implica-
tion holds if there is a bounded set X which contains C and every Ck.

Proof. By definition, Ck converges to C with respect to Pompeiu–Hausdorff dis-
tance if and only if, for every ε > 0, there exists N ∈N with

(5) Ck ⊂C+ εIB and C ⊂Ck + εIB for all k ∈ N.

Since (5) implies (2a,b), the Painlevé–Kuratowski convergence of Ck to C then fol-
lows from the convergence with respect to Pompeiu–Hausdorff distance.

Suppose now that Ck converges to C in the Painlevé–Kuratowski sense, with
C and every Ck included in a bounded set X . Then there exists ρ0 > 0 such that
Ck = Ck ∩ρIB and C = C∩ρIB for every ρ ≥ ρ0. We obtain that for every ρ > ρ0
and k ∈ IN,

Ck =Ck ∩ρIB⊂C+ εIB and C =C∩ρIB⊂Ck + εIB.

But then, for every ρ > 0 we have

Ck ∩ρIB⊂Ck ⊂C+ εIB and C∩ρIB⊂C ⊂Ck + εIB for k ∈ IN

and hence (5) holds and we have convergence of Ck to C with respect to Pompeiu–
Hausdorff distance.

Exercise 3A.5 (convergence equivalence under boundedness). For a sequence of
sets Ck in IRn and a nonempty closed set C, the following are equivalent:

(a) Ck converges to C in the Pompeiu–Hausdorff sense and C is bounded;
(b) Ck converges to C in the Painlevé–Kuratowski sense and there is a bounded

set X along with an index set N ∈N such that Ck ⊂ X for all k ∈ N.
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Theorem 3A.6 (conditions for Pompeiu–Hausdorff convergence). A sequence Ck

of sets in IRn is convergent with respect to Pompeiu–Hausdorff distance to a closed
set C ⊂ IRn if both of the following conditions hold:

(a) for every open set O ⊂ IRn with C ∩O 6= /0 there exists N ∈ N such that
Ck ∩O 6= /0 for all k ∈ N;

(b) for every open set O⊂ IRn with C ⊂O there exists N ∈N such that Ck ⊂O
for all k ∈ N.

Moreover, condition (a) is always necessary for Pompeiu–Hausdorff conver-
gence, while (b) is necessary when the set C is bounded.

Proof. Let (a)(b) hold and let the second inclusion in (5) be violated, that is, there
exist x ∈ C, a scalar ε > 0 and a sequence N ∈ N ] such that x /∈ Ck + εIB for
k ∈ N. Then an open neighborhood of x does not meet Ck for infinitely many k; this
contradicts condition (a). Furthermore, (b) implies that for any ε > 0 there exists
N ∈N such that Ck ⊂C+εIB for all k ∈ N, which is the first inclusion in (5). Then
Pompeiu–Hausdorff convergence follows from (5).

According to 3A.2(a), condition (a) is equivalent to C ⊂ liminfk Ck, and hence
it is necessary for Painlevé–Kuratowski convergence, and then also for Pompeiu–
Hausdorff convergence. To show necessity of (b), let C ⊂ O for some open set O⊂
IRn. For k ∈ IN let there exist points xk ∈C and yk in the complement of O such that
|xk− yk| → 0 as k→ ∞. Since C is compact, there exists N ∈N ] and x ∈ C such
that xk N→ x, hence yk N→ x as well. But then x must be also in the complement of
O, which is impossible. The contradiction so obtained shows there is an ε > 0 such
that C+ εIB⊂ O; then, from (5), for some N ⊂N we have Ck ⊂ O for k ∈ N.

Examples 3A.7 (unboundedness issues). As an illustration of the troubles that may
occur when we deal with unbounded sets, consider first the sequence of bounded
sets Ck ⊂ IR2 in which Ck is the segment having one end at the origin and the other
at the point (cos 1

k ,sin 1
k ); that is,

Ck =
{

x ∈ IR2
∣∣∣x1 = t cos

1
k
, x2 = t sin

1
k
, 0≤ t ≤ 1

}
.

Both the Painlevé–Kuratowski and Pompeiu–Hausdorff limits exist and are equal to
the segment having one end at the origin and the other at the point (1,0). Also, both
conditions (a) and (b) in 3A.6 are satisfied.

Let us now modify this example by taking as Ck, instead of a segment, the whole
unbounded ray with its end at the origin. That is,

Ck =
{

x ∈ IR2
∣∣∣x1 = t cos

1
k
, x2 = t sin

1
k
, t ≥ 0

}
.

The Painlevé–Kuratowski limit is the ray
{

x ∈ IR2
∣∣x1 ≥ 0,x2 = 0

}
, whereas the

Pompeiu–Hausdorff limit fails to exist. In this case condition (a) in 3A.6 holds,
whereas (b) is violated.

As another example demonstrating issues with unboundedness, consider the se-
quence of sets
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Ck =
{

x ∈ IR2
∣∣∣x1 > 0, x2 ≥

1
x1
− 1

k

}
,

which is obviously convergent with respect to Pompeiu–Hausdorff distance to the
set C =

{
x ∈ IR2

∣∣x1 > 0,x2 ≥ 1/x1
}

(choose k > 1/ε in (5)). On the other hand,
condition (b) in 3A.6 fails, since the open set O =

{
x∈ IR2

∣∣x1 > 0,x2 > 0
}

contains
C but does not contain Ck for any k.

3B. Continuity of Set-valued Mappings

Continuity properties of a set-valued mapping S : IRm →→ IRn can be defined on the
basis of Painlevé–Kuratowski set convergence. Alternatively they can be defined on
the basis of Pompeiu–Hausdorff set convergence, which is the same in a context of
boundedness but otherwise is more stringent and only suited to special situations, as
explained at the end of Section 3A. Following the pattern of inner and outer limits
used in introducing Painlevé–Kuratowski convergence, we let

limsup
y→ȳ

S(y) =
⋃

yk→ȳ

limsup
k→∞

S(yk)

=
{

x
∣∣∣∃yk→ ȳ, ∃xk→ x with xk ∈ S(yk)

}
and

liminf
y→ȳ

S(y) =
⋂

yk→ȳ

liminf
k→∞

S(yk)

=
{

x
∣∣∣∀yk→ ȳ, ∃N ∈N ,xk N→ x with xk ∈ S(yk)

}
.

In other words, the limsup is the set of all possible limits of sequences xk ∈ S(yk)
when yk→ ȳ, while the liminf is the set of points x for which there exists a sequence
xk ∈ S(yk) when yk→ ȳ such that xk→ x.

Semicontinuity and continuity. A set-valued mapping S : IRm→→ IRn is outer semi-
continuous (osc) at ȳ when

limsup
y→ȳ

S(y)⊂ S(ȳ)

and inner semicontinuous (isc) at ȳ when

liminf
y→ȳ

S(y)⊃ S(ȳ).

It is called Painlevé–Kuratowski continuous at ȳ when it is both osc and isc at ȳ, as
expressed by
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lim
y→ȳ

S(y) = S(ȳ).

On the other hand, S is called Pompeiu–Hausdorff continuous at ȳ when

S(ȳ) is closed and lim
y→ȳ

h(S(y),S(ȳ)) = 0.

These terms are invoked relative to a subset D in IRm when the properties hold
for limits taken with y→ ȳ in D (but not necessarily for limits y→ ȳ without this
restriction). Continuity is taken to refer to Painlevé–Kuratowski continuity, unless
otherwise specified.

For single-valued mappings both definitions of continuity reduce to the usual
definition of continuity of a function. Note that when S is isc at ȳ relative to D then
there must exist a neighborhood V of ȳ such that D∩V ⊂ dom S. When D = IRm,
this means ȳ ∈ int(dom S).

Exercise 3B.1 (limit relations as equations).
(a) Show that S is osc at ȳ if and only if actually limsupy→ȳ S(y) = S(ȳ).
(b) Show that, when S(ȳ) is closed, S is isc at ȳ if and only if liminfy→ȳ S(y) =

S(ȳ).

Although the closedness of S(ȳ) is automatic from this when S is continuous at
ȳ in the Painlevé–Kuratowski sense, it needs to be assumed directly for Pompeiu–
Hausdorff continuity because the distance concept utilized for that concept is unable
to distinguish whether sets are closed or not.

Recall that a set M is closed relative to a set D when any sequence yk ∈ M∩D
has its cluster points in M. A set M is open relative to D if the complement of M is
closed relative to D. Also, recall that a function f : IRn→ IR is lower semicontinuous
on a closed set D ⊂ IRn when the lower level set

{
x ∈ D

∣∣ f (x) ≤ α
}

is closed for
every α ∈ IR. We defined this property at the beginning of Chapter 1 for the case
of D = IRn and for functions with values in IR, and now are merely echoing that for
D⊂ IRn.

Theorem 3B.2 (characterization of semicontinuity). For S : IRm→→ IRn, a set D⊂ IRm

and ȳ ∈ dom S we have:
(a) S is osc at ȳ relative to D if and only if for every x /∈ S(ȳ) there are neighbor-

hoods U of x and V of ȳ such that D∩V ∩S−1(U) = /0;
(b) S is isc at ȳ relative to D if and only if for every x ∈ S(ȳ) and every neighbor-

hood U of x there exists a neighborhood V of ȳ such that D∩V ⊂ S−1(U);
(c) S is osc at every y ∈ dom S if and only if gph S is closed;
(d) S is osc relative to a set D⊂ IRm if and only if S−1(B) is closed relative to D

for every compact set B⊂ IRn;
(e) S is isc relative to a set D ⊂ IRm if and only if S−1(O) is open relative to D

for every open set O⊂ IRn;
(f) S is osc at ȳ relative to a set D ⊂ IRm if and only if the distance function

y 7→ d(x,S(y)) is lower semicontinuous at ȳ relative to D for every x ∈ IRn;
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(g) S is isc at ȳ relative to a set D ⊂ IRm if and only if the distance function
y 7→ d(x,S(y)) is upper semicontinuous at ȳ relative to D for every x ∈ IRn.

Thus, S is continuous relative to D at ȳ if and only if the distance function y 7→
d(x,S(y)) is continuous at ȳ relative to D for every x ∈ IRn.

Proof. Necessity in (a): Suppose that there exists x /∈ S(ȳ) such that for every neigh-
borhood U of x and every neighborhood V of ȳ we have S(y)∩U 6= /0 for some
y ∈ V ∩D. But then there exists a sequence yk → ȳ, yk ∈ D and xk ∈ S(yk) such
that xk → x. This implies that x ∈ limsupk S(yk), hence x ∈ S(ȳ) since S is osc, a
contradiction.

Sufficiency in (a): Let x /∈ S(ȳ). Then there exists ρ > 0 such that S(ȳ)∩ IBρ(x) =
/0; the condition in the second half of (a) then gives a neighborhood V of ȳ such that
for every N ∈N , every sequence yk N→ ȳ with yk ∈ D∩V has S(yk)∩ IBρ(x) = /0.
But in that case d(x,S(yk))> ρ/2 for all large k, which implies, by Proposition 3A.1
and the definition of limsup, that x /∈ limsupy→ȳ S(y). This means that S is osc at ȳ.

Necessity in (b): Suppose that there exists x ∈ S(ȳ) such that for some neighbor-
hood U of x and any neighborhood V of ȳ we have S(y)∩U = /0 for some y ∈V ∩D.
Then there is a sequence yk convergent to ȳ in D such that for every sequence xk→ x
one has xk /∈ S(yk). This means that x /∈ liminfy→ȳ S(y). But then S is not isc at ȳ.

Sufficiency in (b): If S is not isc at ȳ relative to D, then, according to 3A.2(a),
there exist an infinite sequence yk→ ȳ in D, a point x ∈ S(ȳ) and an open neighbor-
hood U of x such that S(yk)∩U = /0 for infinitely many k. But then there exists a
neighborhood V of ȳ such that D∩V is not in S−1(U) which is the opposite of (b).

(c): S has closed graph if and only if for any (y,x) /∈ gph S there exist open neigh-
borhoods V of y and U of x such that V ∩ S−1(U) = /0. From (a), this comes down
to S being osc at every y ∈ dom S.

(d): Every sequence in a compact set B has a convergent subsequence, and on
the other hand, a set consisting of a convergent sequence and its limit is a compact
set. Therefore the condition in the second part of (d) is equivalent to the condition
that if xk→ x̄, yk ∈ S−1(xk) and yk→ ȳ with yk ∈ D, one has ȳ ∈ S−1(x̄). But this is
precisely the condition for S to be osc relative to D.

(e): Failure of the condition in (e) means the existence of an open set O and a
sequence yk → ȳ in D such that ȳ ∈ S−1(O) but yk /∈ S−1(O); that is, S(ȳ)∩O 6= /0
yet S(yk)∩O = /0 for all k. This last property says that liminfk S(yk) 6⊃ S(ȳ), by
3A.2(a). Hence the condition in (e) fails precisely when S is not isc.

The equivalences in (f) and (g) follow from 3A.2(e) and 3A.2(f).

Theorem 3B.3 (characterization of Pompeiu–Hausdorff continuity). A set-valued
mapping S : IRm→→ IRn is Pompeiu–Hausdorff continuous at ȳ if S(ȳ) is closed and
both of the following conditions hold:

(a) for every open set O ⊂ IRn with S(ȳ)∩O 6= /0 there exists a neighborhood V
of ȳ such that S(y)∩O 6= /0 for all y ∈V ;

(b) for every open set O⊂ IRn with S(ȳ)⊂ O there exists a neighborhood V of ȳ
such that S(y)⊂ O for all y ∈V .
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Moreover, if S is Pompeiu–Hausdorff continuous at ȳ, then it is continuous at ȳ.
On the other hand, when S(ȳ) is nonempty and bounded, Pompeiu–Hausdorff con-
tinuity of S at ȳ reduces to continuity together with the existence of a neighborhood
V of ȳ such that S(V ) is bounded; in this case conditions (a) and (b) are not only
sufficient but also necessary for continuity of S at ȳ.

Observe that we can define inner semicontinuity of a mapping S at ȳ in the
Pompeiu–Hausdorff sense by limy→ȳ e(S(ȳ),S(y)) = 0, but this is simply equiva-
lent to inner semicontinuity in the Painlevé–Kuratowski sense (compare 3B.2(b) and
3B.3(b)). In contrast, if we define outer semicontinuity in the Pompeiu–Hausdorff
sense by limy→ȳ e(S(y),S(ȳ)) = 0, we get a generally much more restrictive concept
than outer semicontinuity in the Painlevé–Kuratowski sense.

We present next two applications of these concepts to mappings that play central
roles in optimization.

Example 3B.4 (solution mapping for a system of inequalities). Consider a mapping
defined implicitly by a parameterized system of inequalities, that is,

S : p 7→
{

x
∣∣ fi(p,x)≤ 0, i = 1, . . . ,m

}
for p ∈ IRd .

Assume that each fi is a continuous real-valued function on IRd× IRn. Then S is osc
at every point of its domain. If moreover each fi is convex in x for each p and p̄ is
such that there exists x̄ with fi(p̄, x̄) < 0 for each i = 1, . . . ,m, then S is continuous
at p̄.

Detail. The graph of S is the intersection of the sets
{
(p,x)

∣∣ fi(p,x) ≤ 0
}

, which
are closed by the continuity of fi. Then gph S is closed, and the osc property comes
from Theorem 3B.2(c). The isc part will follow from a much more general result
(Robinson-Ursescu theorem) which we present in Chapter 5.

Applications in optimization. Consider the following general problem of mini-
mization, involving a parameter p which ranges over a set P ⊂ IRd , a function
f0 : IRd× IRn→ IR, and a mapping Sfeas : P→→ IRn:

minimize f0(p,x) over all x ∈ IRn satisfying x ∈ Sfeas(p).

Here f0 is the objective function and Sfeas is the feasible set mapping (with Sfeas(p)
taken to be the empty set when p /∈ P). In particular, Sfeas could be specified by
constraints in the manner of Example 3B.4, but we now allow it to be more general.

Our attention is focused now on two other mappings in this situation: the optimal
value mapping acting from IRd to IR and defined by

Sval : p 7→ inf
x

{
f0(p,x)

∣∣x ∈ Sfeas(p)
}

when the inf is finite,

and the optimal set mapping acting from P to IRn and defined by

Sopt : p 7→
{

x ∈ Sfeas(p)
∣∣ f0(p,x) = Sval(p)

}
.
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Theorem 3B.5 (basic continuity properties of solution mappings in optimiza-
tion). In the preceding notation, let p̄ ∈ P be fixed with the feasible set Sfeas(p̄)
nonempty and bounded, and suppose that:

(a) the mapping Sfeas is Pompeiu–Hausdorff continuous at p̄ relative to P, or
equivalently, Sfeas is continuous at p̄ relative to P with Sfeas(Q∩ P) bounded for
some neighborhood Q of p̄,

(b) the function f0 is continuous relative to P×IRn at (p̄, x̄) for every x̄∈ Sfeas(p̄).
Then the optimal value mapping Sval is continuous at p̄ relative to P, whereas the
optimal set mapping Sopt is osc at p̄ relative to P.

Proof. The equivalence in assumption (a) comes from the final statement in The-
orem 3B.3. In particular (a) implies Sfeas(p̄) is closed, hence from boundedness
actually compact. Then too, since f0(p̄, ·) is continuous on Sfeas(p̄) by (b), the set
Sopt(p̄) is nonempty.

Let x̄ ∈ Sopt(p̄). From (a) we get for any sequence pk → p̄ in P the existence of
a sequence of points xk with xk ∈ Sfeas(pk) such that xk→ x̄ as k→ ∞. But then, for
every ε > 0 there exists N ∈N such that

Sval(pk)≤ f0(pk,xk)≤ f0(p̄, x̄)+ ε = Sval(p̄)+ ε for k ∈ N.

This gives us

(1) limsup
p→p̄

Sval(p)≤ Sval(p̄).

On the other hand, let us assume that

(2) liminf
p→p̄

Sval(p)< Sval(p̄).

Then there exist ε > 0 and sequences pk → p̄ in P and xk ∈ Sfeas(pk), k ∈ IN, such
that

(3) f0(pk,xk)< Sval(p̄)− ε for all k.

From (a) we see that d(xk,Sfeas(p̄))→ 0 as k→ ∞. This provides the existence of a
sequence of points x̄k ∈ Sfeas(p̄) such that |xk− x̄k| → 0 as k→ ∞. Because Sfeas(p̄)
is compact, there must be some x̄ ∈ Sfeas(p̄) along with an index set N ∈N ] such
that x̄k N→ x̄, in which case xk N→ x̄ as well. Then, from the continuity of f0 at (p̄, x̄),
we have f0(p̄, x̄) ≤ f0(pk,xk)+ ε for k ∈ N and sufficiently large, which, together
with (3), implies for such k that

Sval(p̄)≤ f0(p̄, x̄)≤ f0(pk,xk)+ ε < Sval(p̄).

The contradiction obtained proves that (2) is false. Thus,

Sval(p̄)≤ liminf
p→p̄

Sval(p),
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which, combined with (1), gives us the continuity of the optimal value mapping Sval
at p̄ relative to P.

To show that Sopt is osc at p̄ relative to P, we use the equivalent condition in
3B.2(a). Suppose there exists x /∈ Sopt(p̄) such that for every neighborhoods U of
x and Q of p̄ there exist u ∈ U and p ∈ Q∩P such that u ∈ Sopt(p). This is the
same as saying that there are sequences pk→ p̄ in P and uk→ x as k→ ∞ such that
uk ∈ Sopt(pk). Note that since uk ∈ Sfeas(pk) we have that x ∈ Sfeas(p̄). But then, as
we already proved,

f0(pk,uk) = Sval(pk)→ Sval(p̄) as k→ ∞.

By continuity of f0, the left side tends to f0(p̄,x) as k→ ∞, which means that x ∈
Sopt(p̄), a contradiction.

Example 3B.6 (minimization over a fixed set). Let X be a nonempty, compact sub-
set of IRn and let f0 be a continuous function from P×X to IR, where P is a nonempty
subset of IRd . For each p ∈ P, let

Sval(p) = min
x∈X

f0(p,x), Sopt(p) = argmin
x∈X

f0(p,x).

Then the function Sval : P→ IR is continuous relative to P, and the mapping Sopt :
P→→ IRn is osc relative to P.

Detail. This exploits the case of Theorem 3B.5 where Sfeas is the constant mapping
p 7→ X .

Example 3B.7 (continuity of the feasible set versus continuity of the optimal
value). Consider the minimization of f0(x1,x2) = ex1 + x2

2 on the set

Sfeas(p) =
{
(x1,x2) ∈ IR2

∣∣∣∣ − x1

(1+ x2
1)
− p≤ x2 ≤

x1

(1+ x2
1)

+ p
}
.

x
1

x
2

Fig. 3.2 The feasible set in Example 3B.7 for p = 0.1.
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For parameter value p = 0, the optimal value Sval(0) = 1 and occurs at Sopt(0) =
(0,0), but for p> 0, see Fig. 3.2, the asymptotics of the function x1/(1+x2

1) open up
a “phantom” portion of the feasible set along the negative x1-axis, and the optimal
value is 0. The feasible set nonetheless does depend continuously on p in [0,∞) in
the Painlevé–Kuratowski sense.

3C. Lipschitz Continuity of Set-valued Mappings

A quantitative notation of continuity for set-valued mappings can be formulated
with the help of the Pompeiu–Hausdorff distance between sets in the same way
that Lipschitz continuity is defined for functions. It has important uses, although it
suffers from shortcomings when the sets may be unbounded. Here we invoke the
terminology that a set-valued mapping S is closed-valued on a set D when S(y) is a
closed set for each y ∈ D.

Lipschitz continuity of set-valued mappings. A mapping S : IRm →→ IRn is said
to be Lipschitz continuous relative to a (nonempty) set D in IRm if D ⊂ dom S, S is
closed-valued on D, and there exists κ ≥ 0 (Lipschitz constant) such that

(1) h(S(y′),S(y))≤ κ|y′− y| for all y′,y ∈ D,

or equivalently, there exists κ ≥ 0 such that

(2) S(y′)⊂ S(y)+κ|y′− y|IB for all y′,y ∈ D.

When S is single-valued on D, we obtain from this definition the notion of Lip-
schitz continuity of a function introduced in Section 1D.

One could contemplate defining Lipschitz continuity of a set-valued mapping S
without requiring S to be closed-valued, relying in that case simply on (1) or (2).
That might be workable, although κ in (2) could then be slightly larger than the κ

in (1), but a fundamental objection arises. A mapping that is continuous necessarily
does have closed values, so we would be in the position of having a concept of
Lipschitz continuity which did not entail continuity. That is a paradox we prefer
to avoid. The issue is absent for single-valued mappings, since they are trivially
closed-valued.

When a mapping S : IRm →→ IRn is Lipschitz continuous on a closed set D then
clearly the set gph S∩ (D× IRn) is closed. Lipschitz continuity of a set-valued map-
ping can be characterized by a property which relates the distances to its value and
the value of the inverse mapping:

Proposition 3C.1 (distance characterization of Lipschitz continuity). Consider a
closed-valued mapping S : IRm→→ IRn and a nonempty subset D of dom S. Then S is
Lipschitz continuous relative to D with constant κ if and only if
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(3) d(x,S(y))≤ κd(y,S−1(x)∩D) for all x ∈ IRn and y ∈ D.

Proof. Let S be Lipschitz continuous relative to D with a constant κ and let
x ∈ IRn and y ∈ D. If S−1(x) ∩ D = /0, the inequality (3) holds automatically.
Let S−1(x) ∩D 6= /0 and choose ε > 0. Then there exists y′ ∈ S−1(x) ∩D with
|y′− y| ≤ d(y,S−1(x)∩D)+ ε . By (1),

d(x,S(y))≤ h(S(y′),S(y))≤ κ|y′− y| ≤ κd(y,S−1(x)∩D)+κε.

Since the left side of this inequality does not depend on ε , passing to zero with ε we
conclude that (3) holds with the κ of (1).

Conversely, let (3) hold, let y,y′ ∈ D⊂ dom S and let x ∈ S(y). Then

d(x,S(y′))≤ κd(y′,S−1(x)∩D)≤ κ|y− y′|,

since y ∈ S−1(x)∩D. Taking the supremum with respect to x ∈ S(y), we obtain
e(S(y),S(y′))≤ κ|y− y′| and, by symmetry, we get (1).

For the inverse mapping F = S−1 the property described in (3) can be written as

d(x,F−1(y))≤ κd(y,F(x)∩D) for all x ∈ IRn, y ∈ D,

and when gph F is closed this can be interpreted in the following manner. Whenever
we pick a y ∈ D and an x ∈ dom F , the distance from x to the set of solutions u of
the inclusion y ∈ F(u) is proportional to d(y,F(x)∩D), which measures the extent
to which x itself fails to solve this inclusion. In Section 3E we will introduce a local
version of this property which plays a major role in variational analysis and is known
as “metric regularity.”

The difficulty with the concept of Lipschitz continuity for set-valued map-
pings S with values S(y) that may be unbounded comes from the fact that usually
h(C1,C2) = ∞ when C1 or C2 is unbounded, the only exceptions being cases where
both C1 and C2 are unbounded and “the unboundedness points in the same direc-
tion.” For instance, when C1 and C2 are lines in IR2, one has h(C1,C2) < ∞ only
when these lines are parallel.

In the remainder of this section we consider a particular class of set-valued map-
pings, with significant applications in variational analysis, which are automatically
Lipschitz continuous even when their values are unbounded sets.

Polyhedral convex mappings. A mapping S : IRm →→ IRn is said to be polyhedral
convex if its graph is a polyhedral convex set.

Here it should be recalled from Section 2E that a set is polyhedral convex if it
can be expressed as the intersection of a finite collection of closed half-spaces and/or
hyperplanes.

Example 3C.2 (polyhedral convex mappings from linear constraint systems). A
solution mapping S of the form in Example 3B.4 is polyhedral convex when the fi
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there are all affine; furthermore, this continues to be true when some or all of the
constraints are equations instead of inequalities.

In the notational context of elements x ∈ S(y) for a mapping S : IRm→→ IRn, poly-
hedral convexity of S is equivalent to the existence of a positive integer r, matrices
D ∈ IRr×n, E ∈ IRr×m, and a vector q ∈ IRr such that

(4) S(y) =
{

x ∈ IRn ∣∣Dx+Ey≤ q
}

for all y ∈ IRm.

Note for instance that any mapping S whose graph is a linear subspace is a poly-
hedral convex mapping.

Theorem 3C.3 (Lipschitz continuity of polyhedral convex mappings). Any poly-
hedral convex mapping S : IRm→→ IRn is Lipschitz continuous relative to its domain.

We will prove this theorem by using a fundamental result due to A. J. Hoffman
regarding approximate solutions of systems of linear inequalities. For a vector a =
(a1,a2, . . . ,an) ∈ IRn, we use the vector notation that

a+ = (max{0,a1}, . . . ,max{0,an}).

Also, recall that the convex hull of a set C ⊂ IRn, which will be denoted by co C,
is the smallest convex set that includes C. (It can be identified as the intersection of
all convex sets that include C, but also can be described as consisting of all linear
combinations λ0x0 +λ1x1 + · · ·+λnxn with xi ∈C, λi ≥ 0, and λ0 +λ1 + · · ·+λn =
1; this is Carathéodory’s theorem.) The closed convex hull of C is the closure of
the convex hull of C and denoted cl co C; it is the smallest closed convex set that
contains C.

Lemma 3C.4 (Hoffman lemma). For the set-valued mapping

S : y 7→
{

x ∈ IRn ∣∣Ax≤ y
}

for y ∈ IRm,

where A is a nonzero m×n matrix, there exists a constant L such that

(5) d(x,S(y))≤ L|(Ax− y)+| for every y ∈ dom S and every x ∈ IRn.

Proof. For any y ∈ dom S the set S(y) is nonempty, convex and closed, hence every
point x /∈ S(y) has a unique (Euclidean) projection u = PS(y)(x) on S(y) (Proposi-
tion 1D.5):

(6) u ∈ S(y), |u− x|= d(x,S(y)).

As noted in Section 2A, the projection mapping satisfies

PS(y) = (I +NS(y))
−1,

where NS(y) is the normal cone mapping to the convex set S(y). In these terms, the
problem of projecting x on S(y) is equivalent to that of finding the unique u 6= x such
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that
x ∈ u+NS(y)(u).

The formula in 2E(8) gives us a representation of the normal cone to a polyhedral
convex set specified by affine inequalities, which here comes out as

NS(y)(u) =
{

v
∣∣∣v = ∑

m
i=1 λiai with λi ≥ 0, λi(〈ai,u〉− yi) = 0, i = 1, . . . ,m

}
,

where the ai’s are the rows of the matrix A regarded as vectors in IRn. Thus, the
projection u of x on S(y), as described by (6), can be obtained by finding a pair
(u,λ ) such that

(7)
{

x−u−∑
m
i=1 λiai = 0,

λi ≥ 0, λi(〈ai,u〉− yi) = 0, i = 1, . . . ,m.

While the projection u exists and is unique, this variational inequality might not
have a unique solution (u,λ ) because the λ component might not be unique. But
since u 6= x (through our assumption that x /∈ S(y)), we can conclude from the first
relation in (7) that for any solution (u,λ ) the vector λ = (λ1, . . . ,λm) is not the zero
vector. Consider the family J of subsets J of {1, . . . ,m} for which there are real
numbers λ1, . . . ,λm with λi > 0 for i ∈ J and λi = 0 for i /∈ J and such that (u,λ )
satisfies (7). Of course, if 〈ai,u〉− yi < 0 for some i, then λi = 0 according to the
second relation (complementarity) in (7), and then this i cannot be an element of
any J. That is,

(8) J ∈J and i ∈ J =⇒ 〈ai,u〉= yi and λi > 0.

Since the set of vectors λ such that (u,λ ) solves (7) does not contain the zero vector,
we have J 6= /0.

We will now prove that there is a nonempty index set J̄ ∈J for which there are
no numbers βi, i ∈ J̄ satisfying

(9) βi ≥ 0, i ∈ J̄, ∑
j∈J̄

βi > 0 and ∑
i∈J̄

βiai = 0.

On the contrary, suppose that for every J ∈J this is not the case, that is, (9) holds
with J̄ = J for some βi, i ∈ J. Let J′ be a set in J with a minimal number of
elements (J′ might be not unique). Note that the number of elements in any J′ is
greater than 1. Indeed, if there were just one element i′ in J′, then we would have
βi′ai′ = 0 and βi′ > 0, hence ai′ = 0, and then, since (7) holds for (u,λ ) such that
λi = βi, i = i′, λi = 0, i 6= i′, from the first equality in (7) we would get x = u which
contradicts the assumption that x /∈ S(y). Since J′ ∈J , there are λ ′i > 0, i ∈ J′ such
that

(10) x−u = ∑
i∈J′

λ
′
i ai.
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By assumption, there are also real numbers β ′i ≥ 0, i ∈ J′, such that

(11) ∑
i∈J′

β
′
i > 0 and ∑

i∈J′
β
′
i ai = 0.

Multiplying both sides of the equality in (11) by a positive scalar t and adding to
(10), we obtain

x−u = ∑
i∈J′

(λ ′i − tβ ′i )ai.

Let

t0 = min
i

{
λ ′i
β ′i

∣∣∣∣ i ∈ J′ with β
′
i > 0

}
.

Then for any k ∈ J′ for which this minimum is attained, we have

λ
′
i − t0β

′
i ≥ 0 for every i ∈ J′ \ k and x−u = ∑

i∈J′\k
(λ ′i − tβ ′i )ai.

Thus, the vector λ ∈ IRm with components λ ′i − t0β ′i when i ∈ J′ and λ ′i = 0 when
i /∈ J′ is such that (u,λ ) satisfies (7). Hence, we found a nonempty index set J′′ ∈J
having fewer elements than J′, which contradicts the choice of J′. The contradiction
obtained proves that there is a nonempty index set J̄ ∈J for which there are no
numbers βi, i ∈ J, satisfying (8). In particular, the zero vector in IRn is not in the
convex hull co{a j, j ∈ J̄}.

Let λ̄i > 0, i ∈ J̄, be the corresponding vector of multipliers such that, if we set
λ̄i = 0 for i /∈ J̄, we have that (u, λ̄ ) is a solution of (7). Since ∑ j∈J̄ λ̄iai 6= 0, because
otherwise (9) would hold for βi = λ̄i, we have

γ := ∑
i∈J̄

λ̄i > 0.

Because (7) holds with (u, λ̄ ), using (7) and (8) we have

d(0,co{a j, j ∈ J̄})|x−u| ≤
∣∣∣∑

i∈J̄

λ̄i

γ
ai

∣∣∣|x−u|= 1
γ
|x−u||x−u|

=
〈1

γ
(x−u),x−u

〉
=
〈1

γ

(
∑
i∈J̄

λ̄iai

)
,x−u

〉
= ∑

i∈J̄

λ̄i

γ
(〈ai,x〉−〈ai,u〉) = ∑

i∈J̄

λ̄i

γ
(〈ai,x〉− yi)

≤ max
i∈J̄
{(〈ai,x〉− yi)+}.

Hence, for some constant c independent of x and y we have

d(x,S(y)) = |x−u| ≤ c max
1≤i≤m

{(〈ai,x〉− yi)+}.
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This inequality remains valid (perhaps with a different constant c) after passing from
the max vector norm to the equivalent Euclidean norm. This proves (5).

Proof of Theorem 3C.3. Let y,y′ ∈ dom S and let x ∈ S(y). Since S is polyhedral,
from the representation (4) we have Dx+Ey−q≤ 0 and then

(12) Dx+Ey′−q = Dx+Ey−q−Ey+Ey′ ≤−Ey+Ey′.

Then from Lemma 3C.4 we obtain the existence of a constant L such that

d(x,S(y′))≤ L|(Dx+Ey′−q)+|,

and hence, by (12),

d(x,S(y′))≤ L|(E(y′− y))+| ≤ L|E(y− y′)|.

Since x is arbitrarily chosen in S(y), this leads to

e(S(y),S(y′))≤ κ|y− y′|

with κ = L|E|. The same must hold with the roles of y and y′ reversed, and in
consequence S is Lipschitz continuous on dom S.

Applications to solution mappings in linear programming. Consider the follow-
ing problem of linear programming in which y acts as a parameter:

(13) minimize 〈c,x〉 over all x ∈ IRn satisfying Ax≤ y.

Here c is a fixed vector in IRn, A is a fixed matrix in IRm×n. Define the solution
mappings associated with (13) as in Section 3B, that is, the feasible set mapping

(14) Sfeas : y 7→
{

x
∣∣Ax≤ y

}
,

the optimal value mapping

(15) Sval : y 7→ inf
x

{
〈c,x〉

∣∣Ax≤ y
}

when the inf is finite,

and the optimal set mapping by

(16) Sopt : y 7→
{

x ∈ Sfeas(y)
∣∣〈c,x〉= Sval(y)

}
.

It is known from the theory of linear programming that Sopt(y) 6= /0 when the infi-
mum in (15) is finite (and only then).

Exercise 3C.5 (Lipschitz continuity of mappings in linear programming). Establish
that the mappings in (14), (15) and (16) are Lipschitz continuous relative to their
domains, the domain in the case of (15) and (16) being the set D consisting of all y
for which the infimum in (15) is finite.
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Guide. Derive the Lipschitz continuity of Sfeas from Theorem 3C.3, out of the con-
nection with Example 3C.2. Let κ be a Lipschitz constant for Sfeas.

Next, for the case of Sval, consider any y,y′ ∈D and any x ∈ Sopt(y), which exists
because Sopt is nonempty when y ∈ D. In particular we have x ∈ Sfeas(y). From the
Lipschitz continuity of Sfeas, there exists x′ ∈ Sfeas(y′) such that |x− x′| ≤ κ|y− y′|.
Use this along with the fact that Sval(y′)≤ 〈c,x′〉 but Sval(y) = 〈c,x〉 to get a bound
on Sval(y′)−Sval(y) which confirms the Lipschitz continuity claimed for Sval.

For the case of Sopt, consider the set-valued mapping

G : (y, t) 7→
{

x ∈ IRn ∣∣Ax≤ y, 〈c,x〉 ≤ t
}

for (y, t) ∈ IRm× IR.

Confirm that this mapping is polyhedral convex and apply Theorem 3C.3 to it. Ob-
serve that Sopt(y) = G(y,Sval(y)) for y ∈ D and invoke the Lipschitz continuity of
Sval.

3D. Outer Lipschitz Continuity

In this section we define a “one-point” property of set-valued mappings by fixing
one of the points y and y′ in the definition of Lipschitz continuity at its reference
value ȳ. Then these points no longer play symmetric roles, so we use the excess
instead of the Pompeiu–Hausdorff distance.

Outer Lipschitz continuity. A mapping S : IRm→→ IRn is said to be outer Lipschitz
continuous at ȳ relative to a set D if ȳ ∈D⊂ dom S, S(ȳ) is a closed set, and there is
a constant κ ≥ 0 along with a neighborhood V of ȳ such that

(1) e(S(y),S(ȳ))≤ κ|y− ȳ| for all y ∈V ∩D,

or equivalently

(2) S(y)⊂ S(ȳ)+κ|y− ȳ|IB for all y ∈V ∩D.

If S is outer Lipschitz continuous at every point y ∈D relative to D with the same κ ,
then S is said to be outer Lipschitz continuous relative to D.

It is clear that any mapping which is Lipschitz continuous relative to a set D
with constant κ is also outer Lipschitz continuous relative to D with constant κ , but
the converse may not be true. Also, outer Lipschitz continuity at a point ȳ implies
outer semicontinuity at ȳ. For single-valued mappings, outer Lipschitz continuity
becomes the property of calmness which we considered in Section 1C. The ex-
amples in Section 1D show how very different this property is from the Lipschitz
continuity.
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The condition in the definition that the mapping is closed-valued at ȳ could be
dropped; but then the constant κ in (2) might be slightly larger than the one in
(1), and furthermore outer Lipschitz continuity might not entail outer semicontinu-
ity (where closed-valuedness is essential). Therefore, we hold back from such an
extension.

We present next a result which historically was the main motivation for intro-
ducing the property of outer Lipschitz continuity and which complements Theo-
rem 3C.3. It uses the following concept.

Polyhedral mappings. A set-valued mapping S : IRn→→ IRm will be called polyhe-
dral if gph S is the union of finitely many sets that are polyhedral convex in IRn×IRm.

Clearly, a polyhedral mapping has closed graph, since polyhedral convex sets are
closed, and hence is osc and in particular closed-valued everywhere. Any polyhedral
convex mapping as defined in 3C is obviously a polyhedral mapping, but the graph
then is comprised of only one “piece,” whereas now we are allowing a multiplicity
of such polyhedral convex “pieces,” which furthermore could overlap.

Theorem 3D.1 (outer Lipschitz continuity of polyhedral mappings). Any polyhe-
dral mapping S : IRm→→ IRn is outer Lipschitz continuous at every point of its domain.

Proof. Let gph S =
⋃k

i=1 Gi where the Gi’s are polyhedral convex sets in IRm× IRn.
For each i define the mapping

Si : y 7→
{

x
∣∣(y,x) ∈ Gi} for y ∈ IRm.

Then each Si is Lipschitz continuous on its domain, according to Theorem 3C.3. Let
ȳ ∈ dom S and let

J =
{

i
∣∣ there exists x ∈ IRn with (ȳ,x) ∈ Gi

}
.

Then ȳ ∈ dom Si for each i ∈J , and moreover,

(3) S(ȳ) =
⋃

i∈J
Si(ȳ).

For any i /∈J , since the sets {ȳ}× IRn and Gi are disjoint and polyhedral convex,
there is a neighborhood Vi of ȳ such that (Vi× IRn)

⋂
Gi = /0. Let V =

⋂
i/∈J Vi. Then

of course V is a neighborhood of ȳ and we have

(4) (V × IRn)
⋂

gph S ⊂
k⋃

i=1

Gi \
⋃

i/∈J
Gi ⊂

⋃
i∈J

Gi.

Let y∈V . If S(y) = /0, then the relation (1) holds trivially. Let x be any point in S(y).
Then from (4),

(y,x) ∈ (V × IRn)
⋂

gph S⊂
⋃

j∈J
Gi,
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hence for some i ∈J we have (y,x) ∈ Gi, that is, x ∈ Si(y). Since each Si is Lip-
schitz continuous and ȳ ∈ dom Si, with constant κi, say, we obtain by using (3) that

d(x,S(ȳ))≤maxi d(x,Si(ȳ))≤maxi e(Si(y),Si(ȳ))≤maxi κi|y− ȳ|.

Since x is an arbitrary point in S(y), we conclude that S is outer Lipschitz continuous
at ȳ with constant κ := maxi κi.

Exercise 3D.2 (polyhedrality of solution mappings to linear variational inequali-
ties). Given an n× n matrix A and a polyhedral convex set C in IRn, show that the
solution mapping of the linear variational inequality

y 7→ S(y) =
{

x
∣∣y ∈ Ax+NC(x)

}
for y ∈ IRn

is polyhedral, and therefore it is outer Lipschitz continuous relative to its domain.

Guide. Any polyhedral convex set C is representable (in a non-unique manner) by
a system of affine inequalities:

C =
{

x
∣∣〈ai,x〉 ≤ αi for i = 1,2, . . . ,m

}
.

We know from Section 2E that the normal cone to C at the point x ∈C is the set

NC(x) =
{

u
∣∣∣u = ∑

m
i=1 yiai, yi ≥ 0 for i ∈ I(x), yi = 0 for i /∈ I(x)

}
,

where I(x) =
{

i
∣∣〈ai,x〉 = αi

}
is the active index set for x ∈ C. The graph of the

normal cone mapping NC is not convex, unless C is a translate of a subspace, but it
is the union, with respect to all possible subsets J of {1, . . . ,m}, of the polyhedral
convex sets{

(x,u)
∣∣∣u = ∑

m
i=1 yiai, 〈ai,x〉= αi, yi ≥ 0 if i ∈ J, 〈ai,x〉< αi, yi = 0 if i /∈ J

}
.

It remains to observe that the graph of the sum A+NC is also the union of polyhedral
convex sets.

Outer Lipschitz continuity becomes automatically Lipschitz continuity when the
mapping is inner semicontinuous, a property we introduced in the preceding section.

Theorem 3D.3 (isc criterion for Lipschitz continuity). Consider a set-valued map-
ping S : IRm →→ IRn and a convex set D ⊂ dom S such that S(y) is closed for every
y∈D. Then S is Lipschitz continuous relative to D with constant κ if and only if S is
both inner semicontinuous (isc) relative to D and outer Lipschitz continuous relative
to D with constant κ .

Proof. Let S be inner semicontinuous and outer Lipschitz continuous with constant
κ , both relative to D. Choose y,y′ ∈D and let yt = (1− t)y+ ty′. The assumed outer
Lipschitz continuity together with the closedness of the values of S implies that for
each t ∈ [0,1] there exists a positive rt such that
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S(u)⊂ S(yt)+κ|u− yt |IB for all u ∈ D∩ IBrt (yt).

Let

(5) τ = sup
{

t ∈ [0,1]
∣∣S(ys)⊂ S(y)+κ|ys− y|IB for each s ∈ [0, t]

}
.

We will show that the supremum in (5) is attained at τ = 1.
First, note that τ > 0 because r0 > 0. Since S(y) is closed, the set S(y) +

κ|yτ − y|IB is closed too, thus its complement, denoted O, is open. Suppose that
yτ ∈ S−1(O); then, applying Theorem 3B.2(e) to the isc mapping S, we obtain that
there exists σ ∈ [0,τ) such that yσ ∈ S−1(O) as well. But this is impossible since
from σ < τ we have

S(yσ )⊂ S(y)+κ|yσ − y|IB⊂ S(y)+κ|yτ − y|IB.

Hence, yτ /∈ S−1(O), that is, S(yτ)∩O = /0 and therefore S(yτ) is a subset of S(y)+
κ|yτ − y|IB. This implies that the supremum in (5) is attained.

Let us next prove that τ = 1. If τ < 1 there must exist η ∈ (τ,1) with |yη −yτ |<
rτ such that

(6) S(yη) 6⊂ S(y)+κ|yη − y|IB.

But then, from the definition of rτ ,

S(yη)⊂ S(yτ)+κ|yη−yτ |IB⊂ S(y)+κ(|yη−yτ |+ |yτ−y|)IB = S(y)+κ|yη−y|IB,

where the final equality holds because yτ is a point in the segment [y,yη ]. This
contradicts (6), hence τ = 1. Putting τ = 1 into (5) results in S(y′)⊂ S(y)+κ|y′−y|.
By the symmetry of y and y′, we obtain that S is Lipschitz continuous relative to D.

Conversely, if S is Lipschitz continuous relative to D, then S is of course outer
Lipschitz continuous. Let now y ∈D and let O be an open set such that y ∈ S−1(O).
Then there is x ∈ S(y) and ε > 0 such that x ∈ S(y)∩O and x+ εIB ⊂ O. Let 0 <
ρ < ε/κ and pick a point y′ ∈ D∩ IBρ(y). Then

x ∈ S(y)⊂ S(y′)+κ|y− y′|IB⊂ S(y′)+ εIB.

Hence there exists x′ ∈ S(y′) with |x′− x| ≤ ε and thus x′ ∈ S(y′)∩O, that is y′ ∈
S−1(O). This means that S−1(O) is open relative to D, and from Theorem 3B.2(e)
we conclude that S is isc relative to D.

We obtain from Theorems 3D.1 and 3D.3 some further insights.

Corollary 3D.4 (Lipschitz continuity of polyhedral mappings). Let S : IRm →→ IRn

be polyhedral and let D ⊂ dom S be convex. Then S is isc relative to D if and only
if S is actually Lipschitz continuous relative to D. Thus, for a polyhedral mapping,
continuity relative to its domain implies Lipschitz continuity.
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Proof. This is immediate from 3D.3 in the light of 3D.1 and the fact that polyhedral
mappings are osc and in particular closed-valued everywhere.

Corollary 3D.5 (single-valued polyhedral mappings). Let S : IRm→→ IRn be polyhe-
dral and let D ⊂ dom S be convex. If S is not multivalued on D, then S must be a
Lipschitz continuous function on D.

Proof. It is sufficient to show that S is isc relative to D. Let y ∈D and O be an open
set such that y ∈ S−1(O); then x := S(y) ∈ O. Since S is outer Lipschitz at y, there
exists a neighborhood U of y such that if y′ ∈ U ∩D then S(y′) ∈ x+ κ|y′− y|IB.
Taking U smaller if necessary so that x′ := S(y′) ∈ x+κ|y′− y|IB ⊂ O for y′ ∈U ,
we obtain that for every y′ ∈U ∩D one has y′ ∈ S−1(x′)⊂ S−1(O). But then S−1(O)
must be open relative to D and, from Theorem 3B.2(e), S is isc relative to D.

In the proof of 2E.6 we used the fact that if a function f : IRn→ IRm with dom f =
IRn has its graph composed by finitely many polyhedral convex sets, then it must be
Lipschitz continuous. Now this is a particular case of the preceding result.

Corollary 3D.6 (single-valued solution mappings). If the solution mapping S of
the linear variational inequality in Exercise 3D.2 is single-valued everywhere in IRn,
then it must be Lipschitz continuous globally.

Exercise 3D.7 (distance characterization of outer Lipschitz continuity). Prove that
a mapping S : IRm →→ IRn is outer Lipschitz continuous at ȳ relative to a set D with
constant κ > 0 and neighborhood V if and only if S(ȳ) is closed and

d(x,S(ȳ))≤ κd(ȳ,S−1(x)∩D∩V ) for all x ∈ IRn.

Guide. Mimic the proof of 3C.1.

In parallel with outer Lipschitz continuity we can introduce inner Lipschitz con-
tinuity of a set-valued mapping S : IRm →→ IRn relative to a set D ⊂ IRm at ȳ when
ȳ ∈D⊂ dom S, S(ȳ) is a closed set and there exist a constant κ ≥ 0 and a neighbor-
hood V of ȳ such that

S(ȳ)⊂ S(y)+κ|y− ȳ|IB for all y ∈V ∩D.

Inner Lipschitz continuity might be of interest on its own, but no significant appli-
cation of this property in variational analysis has come to light, as yet. Even very
simple polyhedral (nonconvex) mappings don’t have this property (e.g., consider the
mapping from IR to IR, which graph is the union of the axes, and choose the origin
as reference point) as opposed to the outer Lipschitz continuity which holds for ev-
ery polyhedral mapping. In addition, a local version of this property does not obey
the general implicit function theorem paradigm, as we will show in Section 3H. We
therefore drop inner Lipschitz continuity from further consideration.
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3E. Aubin Property, Metric Regularity and Linear Openness

A way to localize the concept of Lipschitz continuity of a set-valued mapping is
to focus on a neighborhood of a reference point of the graph of the mapping and
to use the Pompeiu–Hausdorff distance to a truncation of the mapping with such a
neighborhood. More instrumental turns out to be to take the excess and truncate just
one part of it. To do that we need the following concept.

Locally closed sets. A set C is said to be locally closed at x ∈ C if there exists a
neighborhood U of x such that the intersection C∩U is closed.

Local closedness of a set C at x ∈C can be equivalently defined as the existence
of a scalar a > 0 such that the set C∩ IBa(x) is closed.

Aubin property. A mapping S : IRm →→ IRn is said to have the Aubin property at
ȳ ∈ IRm for x̄ ∈ IRn if x̄ ∈ S(ȳ), the graph of S is locally closed at (ȳ, x̄), and there is
a constant κ ≥ 0 together with neighborhoods U of x̄ and V of ȳ such that

(1) e(S(y′)∩U,S(y))≤ κ|y′− y| for all y′,y ∈V,

or equivalently, there exist κ , U and V , as described, such that

(2) S(y′)∩U ⊂ S(y)+κ|y′− y|IB for all y′,y ∈V.

The infimum of κ over all such combinations of κ , U and V is called the Lipschitz
modulus of S at ȳ for x̄ and denoted by lip(S; ȳ | x̄). The absence of this property is
signaled by lip(S; ȳ | x̄) = ∞.

It is not claimed that (1) and (2) are themselves equivalent, although that is true
when S(y) is closed for every y∈V . Nonetheless, the infimum furnishing lip(S; ȳ | x̄)
is the same whichever formulation is adopted. When S is single-valued on a neigh-
borhood of ȳ, then the Lipschitz modulus lip(S; ȳ |S(ȳ)) equals the usual Lipschitz
modulus lip(S; ȳ) for functions.

In contrast to Lipschitz continuity, the Aubin property is tied to a particular point
in the graph of the mapping. As an example, consider the set-valued mapping S :
IR→→ IR defined as

S(y) =
{
{0,1+√y} for y≥ 0,
0 for y < 0.

At 0, the value S(0) consists of two points, 0 and 1. This mapping has the Aubin
property at 0 for 0 but not at 0 for 1. Also, S is not Lipschitz continuous relative to
any interval containing 0.

If S(y) were replaced in (1) and (2) by S(y)∩U , with U and V small enough
to ensure this intersection is closed when y ∈ V , we would be looking at truncated
Lipschitz continuity. This is stronger in general than the Aubin property, but the two
are equivalent when S is convex-valued, as will be seen in 3E.3.

Observe that when a set-valued mapping S has the Aubin property at ȳ for x̄, then,
for every point (y,x) ∈ gph S which is sufficiently close to (ȳ, x̄), it has the Aubin
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property at y for x as well. It is also important to note that the Aubin property of S
at ȳ for x̄ implicitly requires ȳ be an element of int dom S; this is exhibited in the
following proposition.

Proposition 3E.1 (local nonemptiness). If S : IRm→→ IRn has the Aubin property at
ȳ for x̄, then for every neighborhood U of x̄ there exists a neighborhood V of ȳ such
that S(y)∩U 6= /0 for all y ∈V .

Proof. The inclusion (2) for y′ = ȳ yields

x̄ ∈ S(y)+κ|y− ȳ|IB for every y ∈V,

which is the same as

(x̄+κ|y− ȳ|IB)∩S(y) 6= /0 for every y ∈V.

That is, S(y) intersects every neighborhood of x̄ when y is sufficiently close to ȳ.

The property displayed in Proposition 3E.1 is a local version of the inner semi-
continuity. Further, if S is Lipschitz continuous relative to an open set D, then S has
the Aubin property at any y ∈ D∩ int dom S for any x ∈ S(y). In particular, the in-
verse A−1 of a linear mapping A has the Aubin property at any point provided that
rge A = dom A−1 has nonempty interior, that is, A is surjective. The converse is also
true, since the inverse A−1 of a surjective linear mapping A is Lipschitz continuous
on the whole space, by Theorem 3C.3, and hence A−1 has the Aubin property at any
point.

Proposition 3E.2 (single-valued localization from Aubin property). A set-valued
mapping S : IRm→→ IRn has a Lipschitz continuous single-valued localization around
ȳ for x̄ with constant κ if and only if it has a localization at ȳ for x̄ that is not
multivalued and has the Aubin property at ȳ for x̄ with constant κ .

Proof. Let s be a localization that is not multivalued and has the Aubin property
at ȳ for x̄. From Proposition 3E.1 we have ȳ ∈ int dom S, so s is a single-valued
localization of S around ȳ for x̄. Let a and b be positive constants such that y 7→
s(y) := S(y)∩ IBa(x̄) is a function defined on IBb(ȳ) and let b′ > 0 satisfy b′ < b and
8κb′ < a. Then for y,y′ ∈ IBb′(ȳ) we have

d(s(y),S(y′)) = d(S(y)∩ IBa(x̄),S(y′))
≤ κ|y− y′| ≤ κ|y− ȳ|+κ|y′− ȳ| ≤ 2κb′ < a/4.

Hence, there exists x′ ∈ S(y′) such that |x′−s(y)| ≤ d(s(y),S(y′))+a/4< a/2. Since
|s(y)− x̄|= d(x̄,S(y)) and

|x′− x̄| ≤ |x′− s(y)|+ |s(y)− x̄|< a/2+d(x̄,S(y))≤ a/2+κ|y− ȳ|< a,

we obtain d(s(y),S(y′)∩ IBa(x̄)) = d(s(y),S(y′)) and therefore
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κ|y− y′| ≥ d(S(y)∩ IBa(x̄),S(y′))

= d(s(y),S(y′)) = d(s(y),S(y′)∩ IBa(x̄)) = |s(y)− s(y′)|.

Thus, s is a Lipschitz continuous single-valued localization of S around ȳ for x̄ with
constant κ .

Proposition 3E.2 is actually a special case of the following, more general result
in which convexity enters, inasmuch as singletons are convex sets in particular.

Theorem 3E.3 (truncated Lipschitz continuity under convex-valuedness). A set-
valued mapping S : IRm →→ IRn, whose graph is locally closed at (ȳ, x̄) and whose
values are convex sets, has the Aubin property at ȳ for x̄ with constant κ > 0 if and
only if it has a Lipschitz continuous graphical localization (not necessarily single-
valued) around ȳ for x̄, or in other words, there are neighborhoods U of x̄ and V of ȳ
such that the truncated mapping y 7→ S(y)∩U is Lipschitz continuous on V .

Proof. The “if” part holds even without the convexity assumption. Indeed, if y 7→
S(y)∩U is Lipschitz continuous on V and moreover we have

S(y′)∩U ⊂ S(y)∩U +κ|y′− y|IB⊂ S(y)+κ|y′− y|IB for all y′,y ∈V.

that is, S has the desired Aubin property. For the “only if” part, suppose now that S
has the Aubin property at ȳ for x̄ with constant κ > 0, and let a > 0 and b > 0 be
such that

(3) S(y′)∩ IBa(x̄)⊂ S(y)+κ|y′− y|IB for all y′,y ∈ IBb(ȳ),

and the set S(y)∩ IBa(x̄) is closed for all y ∈ IBb(ȳ). Adjust a and b so that, by 3E.1,

(4) S(y)∩ IBa/2(x̄) 6= /0 for all y ∈ IBb(x̄) and 4κb < a.

Pick y,y′ ∈ IBb(ȳ) and let x′ ∈ S(y′)∩ IBa(x̄). Then from (3) there exists x∈ S(y) such
that

(5) |x− x′| ≤ κ|y− y′|.

If x ∈ IBa(x̄), there is nothing more to prove, so assume that r := |x− x̄|> a. By (4),
we can choose a point x̃ ∈ S(y)∩ IBa/2(x̄). Since S(y) is convex, there exists a point
z ∈ S(y) on the segment [x, x̃] such that |z− x̄| = a and then z ∈ S(y)∩ IBa(x̄). We
will now show that

(6) |z− x′| ≤ 5κ|y− y′|,

which yields that the mapping y 7→ S(y)∩ IBa(x̄) is Lipschitz continuous on IBb(ȳ)
with constant 5κ .

By construction, there exists t ∈ (0,1) such that z = (1− t)x+ tx̃. Then

a = |z− x̄|= |(1− t)(x− x̄)+ t(x̃− x̄)| ≤ (1− t)r+ t|x̃− x̄|
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and in consequence t(r−|x̃− x̄|)≤ r−a. Since x̃ ∈ IBa/2(x̄), we get

t ≤ r−a
r−a/2

.

Using the triangle inequality |x̃− x| ≤ |x− x̄|+ |x̃− x̄| ≤ r+a/2, we obtain

(7) |z− x|= t|x̃− x| ≤ r−a
r−a/2

(r+a/2).

Also, in view of (4) and (5), we have that

(8) r = |x− x̄| ≤ |x′− x|+ |x′− x̄| ≤ κ|y− y′|+a≤ κ2b+a≤ 3a
2
.

From (7), (8) and the inequality r > a we obtain

(9) |z− x| ≤ (r−a)
r+a/2
r−a/2

≤ (r−a)
3a/2+a/2

a−a/2
= 4(r−a).

Note that d := r−a is exactly the distance from x to the ball IBa(x̄), hence d≤ |x−x′|
because x′ ∈ IBa(x̄). Combining this with (9) and taking into account (5), we arrive
at

|z− x′| ≤ |z− x|+ |x− x′| ≤ 4d + |x′− x| ≤ 5|x− x′| ≤ 5κ|y− y′|.
But this is (6), and we are done.

Example 3E.4 (convexifying the values). Convexifying the values may change sig-
nificantly the Lipschitz properties of a mapping. As a simple example consider the
solution mapping Σ of the equation x2 = p (see Fig. 1.1 in the introduction to Chap-
ter 1) and the mapping

p 7→ S(p) = Σ(p)∪{1}∪{−1} for p ∈ IR.

The mapping S is not Lipschitz continuous on any interval [0,a], a > 0, while p 7→
co S(p) is Lipschitz continuous on IR.

The Aubin property could alternatively be defined with one variable “free,” as
shown in the next proposition.

Proposition 3E.5 (alternative description of Aubin property). A mapping S : IRm→→ IRn

has the Aubin property at ȳ for x̄ with constant κ > 0 if and only if x̄ ∈ S(ȳ), gph S
is locally closed at (ȳ, x̄), and there exist neighborhoods U of x̄ and V of ȳ such that

(10) e(S(y′)∩U,S(y))≤ κ|y′− y| for all y′ ∈ IRm and y ∈V.

Proof. Clearly, (10) implies (1). Assume (1) with corresponding U and V and
choose positive a and b such that IBa(x̄) ⊂U and IBb(ȳ) ⊂ V . Let 0 < a′ < a and
0 < b′ < b be such that
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(11) 2κb′+a′ ≤ κb.

For any y ∈ IBb′(ȳ) we have from (1) that

d(x̄,S(y))≤ κ|y− ȳ| ≤ κb′,

hence

(12) e(IBa′(x̄),S(y))≤ κb′+a′.

Take any y′ ∈ IRm. If y′ ∈ IBb(ȳ) the inequality in (10) comes from (1) and there is
nothing more to prove. Assume |y′− ȳ| > b. Then |y− y′| > b− b′ and from (11),
κb′+a′ ≤ κ(b−b′)≤ κ|y− y′|. Using this in (12) we obtain

e(IBa′(x̄),S(y))≤ κ|y′− y|

and since S(y′)∩ IBa′(x̄) is obviously a subset of IBa′(x̄), we come again to (10).

The Aubin property of a mapping is characterized by Lipschitz continuity of the
distance function associated with it.

Theorem 3E.6 (distance function characterization of Aubin property). For a map-
ping S : IRm→→ IRn with (ȳ, x̄) ∈ gph S and gph S locally closed at (ȳ, x̄), let s(y,x) =
d(x,S(y)). Then S has the Aubin property at ȳ for x̄ if and only if the function s is
Lipschitz continuous with respect to y uniformly in x around (ȳ, x̄), in which case
one has

(13) lip(S; ȳ | x̄) = l̂ip y(s;(ȳ, x̄)).

Proof. Let κ > lip(S; ȳ | x̄). Then, from 3E.1, there exist positive constants a and b
such that

(14) /0 6= S(y)∩ IBa(x̄)⊂ S(y′)+κ|y− y′|IB for all y,y′ ∈ IBb(ȳ).

Without loss of generality, let a/(4κ) ≤ b. Let y ∈ IBa/(4κ)(ȳ) and x ∈ IBa/4(x̄) and
let x̃ be a projection of x on cl S(y). Using 1D.4(b) and (14) with y = ȳ we have

|x− x̃| = d(x,S(y))≤ |x− x̄|+d(x̄,S(y))

≤ |x− x̄|+ e(S(ȳ)∩ IBa(x̄),S(y))≤
a
4
+κ|y− ȳ| ≤ a

4
+κ

a
4κ

= a/2.

Hence
|x̄− x̃| ≤ |x̄− x|+ |x− x̃| ≤ a

4
+

a
2
=

3a
4

< a.

This gives us that

(15) |x− x̃|= d(x,S(y)) = d(x,S(y)∩ IBa(x̄)).

Now, let y′ ∈ IBa/(4κ)(ȳ). The inclusion in (14) yields
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(16) d
(
x,S(y′)+κ|y− y′|IB

)
≤ d(x,S(y)∩ IBa(x̄)).

Using the fact that for any set C and for any r ≥ 0 one has

d(x,C)− r ≤ d(x,C+ rIB),

from (15) and (16) we obtain

d(x,S(y′))−κ|y− y′| ≤ d(x,S(y)∩ IBa(x̄)) = d(x,S(y)).

By the symmetry of y and y′, we conclude that l̂ip y(s;(ȳ, x̄)) ≤ κ . Since κ can be
arbitrarily close to lip(S; ȳ | x̄), it follows that

(17) l̂ip y(s;(ȳ, x̄)) ≤ lip(S; ȳ | x̄).

Conversely, let κ > l̂ip y(s;(ȳ, x̄)). Then there exist neighborhoods U and V of
x̄ and ȳ, respectively, such that s(·,x) is Lipschitz continuous relative to V with a
constant κ for any given x ∈U . Let y,y′ ∈ V . Since V ⊂ dom s(·,x) for any x ∈U
we have that S(y′)∩U 6= /0. Pick any x ∈ S(y′)∩U ; then s(y′,x) = 0 and, by the
assumed Lipschitz continuity of s(·,x), we get

d(x,S(y)) = s(y,x)≤ s(y′,x)+κ|y− y′|= κ|y− y′|.

Taking supremum with respect to x ∈ S(y′)∩U on the left, we obtain that S has
the Aubin property at ȳ for x̄ with constant κ . Since κ can be arbitrarily close to
l̂ip y(s;(ȳ, x̄)), we get

l̂ip y(s;(ȳ, x̄)) ≥ lip(S; ȳ | x̄).
This, combined with (17), gives us (13).

The Aubin property of a mapping is closely tied with a property of its inverse,
called metric regularity. The concept of metric regularity goes back to the classical
Banach open mapping principle. We will devote most of Chapter 5 to studying the
metric regularity of set-valued mappings acting in infinite-dimensional spaces.

Metric regularity. A mapping F : IRn →→ IRm is said to be metrically regular at x̄
for ȳ when ȳ ∈ F(x̄), the graph of F is locally closed at (x̄, ȳ), and there is a constant
κ ≥ 0 together with neighborhoods U of x̄ and V of ȳ such that

(18) d(x,F−1(y))≤ κd(y,F(x)) for all (x,y) ∈U×V.

The infimum of κ over all such combinations of κ , U and V is called the regula-
rity modulus for F at x̄ for ȳ and denoted by reg(F ; x̄ | ȳ). The absence of metric
regularity is signaled by reg(F ; x̄ | ȳ) = ∞.

Metric regularity is a valuable concept in its own right, especially for numerical
purposes. For a general set-valued mapping F and a vector y, it gives an estimate
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for how far a point x is from being a solution to the generalized equation F(x) 3 y
in terms of the “residual” d(y,F(x)).

To be specific, let x̄ be a solution of the inclusion ȳ ∈ F(x), let F be metrically
regular at x̄ for ȳ, and let xa and ya be approximations to x̄ and ȳ, respectively. Then
from (18), the distance from xa to the set of solutions of the inclusion ya ∈ F(x)
is bounded by the constant κ times the residual d(ya,F(xa)). In applications, the
residual is typically easy to compute or estimate, whereas finding a solution might
be considerably more difficult. Metric regularity says that there exists a solution to
the inclusion ya ∈ F(x) at distance from xa proportional to the residual. In particular,
if we know the rate of convergence of the residual to zero, then we will obtain the
rate of convergence of approximate solutions to an exact one.

Proposition 3C.1 for a mapping S, when applied to F = S−1, F−1 = S, ties the
Lipschitz continuity of F−1 relative to a set D to a condition resembling (18), but
with F(x) replaced by F(x)∩D on the right, and with U ×V replaced by IRn×D.
We demonstrate now that metric regularity of F in the sense of (18) corresponds to
the Aubin property of F−1 for the points in question.

Theorem 3E.7 (equivalence of metric regularity and the inverse Aubin property). A
set-valued mapping F : IRn →→ IRm is metrically regular at x̄ for ȳ if and only if its
inverse F−1 : IRm→→ IRn has the Aubin property at ȳ for x̄, in which case

(19) lip(F−1; ȳ | x̄) = reg(F ; x̄ | ȳ).

Proof. Clearly, the local closedness of the graph of F at (x̄, ȳ) is equivalent to the
local closedness of the graph of F−1 at (ȳ, x̄). Let κ > reg(F ; x̄ | ȳ); then there are
positive constants a and b such that (18) holds with U = IBa(x̄), V = IBb(ȳ) and with
this κ . Without loss of generality, assume b < a/κ . We will prove next that

(20) e(F−1(y)∩U,F−1(y′))≤ κ|y− y′| for all y,y′ ∈V.

with U = IBa(x̄) and V = IBb(ȳ). Choose y,y′ ∈ IBb(ȳ). If F−1(y)∩ IBa(x̄) = /0, then
d(x̄,F−1(y))≥ a. But then the inequality (18) with x = x̄ yields

a≤ d(x̄,F−1(y))≤ κd(y,F(x̄))≤ κ|y− ȳ| ≤ κb < a,

a contradiction. Hence there exists x ∈ F−1(y)∩ IBa(x̄), and for any such x we have
from (18) that

(21) d(x,F−1(y′))≤ κd(y′,F(x))≤ κ|y− y′|.

Taking the supremum with respect to x ∈ F−1(y)∩ IBa(x̄) we obtain (20) with U =
IBa(x̄) and V = IBb(ȳ), and therefore

(22) reg(F ; x̄ | ȳ) ≥ lip(F−1; ȳ | x̄).

Conversely, suppose there are neighborhoods U of x̄ and V of ȳ along with a
constant κ > 0 such that (20) is satisfied. Take U and V smaller if necessary so that,
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according to Proposition 3E.5, we have

(23) e(F−1(y)∩U,F−1(y′))≤ κ|y− y′| for all y ∈ IRm and y′ ∈V.

Let x ∈U and y ∈ V . If F(x) 6= /0, then for any y ∈ F(x) we have x ∈ F−1(y)∩U .
From (23), we obtain

d(x,F−1(y′))≤ e(F−1(y)∩U,F−1(y′))≤ κ|y− y′|.

This holds for every y∈ F(x), hence, by taking the infimum with respect to y∈ F(x)
in the last expression we get

d(x,F−1(y′))≤ κd(y′,F(x)).

(If F(x) = /0, then because of the convention d(y, /0) = ∞, this inequality holds auto-
matically.) Hence, F is metrically regular at x̄ for ȳ with a constant κ . Then we have
κ ≥ reg(F ; x̄ | ȳ) and hence reg(F ; x̄ | ȳ) ≤ lip(F−1; ȳ | x̄). This inequality together
with (22) results in (19).

Observe that metric regularity of F at x̄ for ȳ does not require that x̄ ∈ int dom F .
Indeed, if x̄ is an isolated point of dom F then the right side in (18) is ∞ for all x∈U ,
x 6= x̄, and then (18) holds automatically. On the other hand, for x = x̄ the right side
of (18) is always finite (since by assumption x̄ ∈ dom F), and then F−1(y) 6= /0 for
y ∈V . This also follows from 3E.1 via 3E.7.

Exercise 3E.8 (equivalent formulation). Prove that a mapping F , with (x̄, ȳ) ∈
gph F at which the graph of F is locally closed, is metrically regular at x̄ for ȳ
with constant κ > 0 if and only if there are neighborhoods U of x̄ and V of ȳ such
that

(24) d(x,F−1(y))≤ κd(y,F(x)) for all x∈U having F(x)∩V 6= /0 and all y∈V.

Guide. First, note that (18) implies (24). Let (24) hold with constant κ > 0 and
neighborhoods IBa(x̄) and IBb(ȳ) having b < a/κ . Choose y,y′ ∈ IBb(ȳ). As in the
proof of 3E.7 show first that F−1(y)∩ IBa(x̄) 6= /0 by noting that F(x̄)∩ IBb(ȳ) 6= /0
and hence the inequality in (24) holds for x̄ and y. Then for every x∈F−1(y)∩IBa(x̄)
we have that y∈ F(x)∩ IBb(ȳ), that is, F(x)∩ IBb(ȳ) 6= /0. Thus, the inequality in (24)
holds with y′ and any x ∈ F−1(y)∩ IBa(x̄), which leads to (21) and hence to (20), in
the same way as in the proof of 3E.7. The rest follows from the equivalence of (18)
and (20) established in 3E.7.

There is a third property, which we introduced for functions in Section 1F, and
which is closely related to both metric regularity and the Aubin property.

Openness. A mapping F : IRn→→ IRm is said to be open at x̄ for ȳ if ȳ ∈ F(x̄) and for
every neighborhood U of x̄, F(U) is a neighborhood of ȳ.

From the equivalence of metric regularity of F at x̄ for ȳ and the Aubin property
of F−1 at ȳ for x̄, and Proposition 3E.1, we obtain that if a mapping F is metrically
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regular at x̄ for ȳ, then F is open at x̄ for ȳ. Metric regularity is actually equivalent
to the following stronger version of the openness property:

Linear openness. A mapping F : IRn →→ IRm is said to be linearly open at x̄ for
ȳ when ȳ ∈ F(x̄), the graph of F is locally closed at (x̄, ȳ), and there is a constant
κ > 0 together with neighborhoods U of x̄ and V of ȳ such that

(25) F(x+κr int IB) ⊃
[
F(x)+ r int IB

]
∩V for all x ∈U and all r > 0.

Linear openness is a particular case of openness which is obtained from (25) for
x = x̄. Linear openness postulates openness around the reference point with balls
having proportional radii.

Theorem 3E.9 (equivalence of linear openness and metric regularity). A set-valued
mapping F : IRn→→ IRm is linearly open at x̄ for ȳ if and only if F is metrically regular
at x̄ for ȳ. In this case the infimum of κ for which (25) holds is equal to reg(F ; x̄ | ȳ).
Proof. Both properties require local closedness of the graph at the reference point.
Let (25) hold with neighborhoods U of x̄ and V of ȳ and a constant κ > 0. Choose
y ∈ V and x′ ∈U . Let y′ ∈ F(x′) (if there is no such y′ there is nothing to prove).
Since y = y′ + |y− y′|w for some w ∈ IB, denoting r = |y− y′|, for every ε > 0
we have y ∈ (F(x′)+ r(1+ ε) int IB)∩V . From (25), there exists x ∈ F−1(y) with
|x−x′| ≤ κ(1+ε)r = κ(1+ε)|y′−y|. Then d(x′,F−1(y))≤ κ(1+ε)|y′−y|. Taking
infimum with respect to y′ ∈ F(x′) on the right and passing to zero with ε (since the
left side does not depend on ε), we obtain that F is metrically regular at x̄ for ȳ with
constant κ .

For the converse, let F be metrically regular at x̄ for ȳ with a constant κ > 0.
We use the characterization of the Aubin property given in Proposition 3E.5. Let
x ∈U , r > 0, and let y′ ∈ (F(x)+ r int IB)∩V . Then there exists y ∈ F(x) such that
|y−y′|< r. If y= y′ then y′ ∈F(x)⊂F(x+κrint IB), which yields (25) with constant
κ . Let y 6= y′ and let ε > 0 be so small that (κ +ε)|y−y′|< κr. From (10) we obtain
d(x,F−1(y′))≤ κ|y− y′|< (κ + ε)|y− y′|. Then there exists x′ ∈ F−1(y′) such that
|x− x′| ≤ (κ + ε)|y− y′|. But then

y′ ∈ F(x′)⊂ F(x+(κ + ε)|y− y′|IB)⊂ F(x+κrint IB),

which again yields (25) with constant κ .

In the classical setting, of course, the equation f (p,x) = 0 is solved for x in
terms of p, and the goal is to determine when this reduces to x being a function of p
through a localization, moreover one with some kind of property of differentiability,
or at least Lipschitz continuity. Relinquishing single-valuedness entirely, we can
look at “solving” the relation

(26) G(p,x) 3 0 for a mapping G : IRd× IRn→→ IRm,

or in other words studying the solution mapping S : IRd →→ IRn defined by
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(27) S(p) =
{

x
∣∣G(p,x) 3 0

}
.

Fixing a pair (p̄, x̄) such that x̄ ∈ S(p̄), we can raise questions about local behavior
of S as might be deduced from assumptions on G. Note that gph S will be locally
closed at (p̄, x̄) when gph G is locally closed at ((p̄, x̄),0).

We will concentrate here on the extent to which S can be guaranteed to have the
Aubin property at p̄ for x̄. This turns out to be true when G has the Aubin property
with respect to p and a weakened metric regularity property with respect to x, but
we have to formulate exactly what we need about this in a local sense.

Partial Aubin property. The mapping G : IRd× IRn→→ IRm is said to have the par-
tial Aubin property with respect to p uniformly in x at (p̄, x̄) for ȳ if ȳ ∈ G(p̄, x̄),
gph G is locally closed at ((p̄, x̄), ȳ), and there is a constant κ ≥ 0 together with
neighborhoods Q for p̄, U of x̄ and V of ȳ such that

(28) e(G(p,x)∩V,G(p′,x))≤ κ|p− p′| for all p, p′ ∈ Q and x ∈U,

or equivalently, there exist κ , Q, U and V , as described, such that

G(p,x)∩V ⊂ G(p′,x)+κ|p− p′|IB for all p, p′ ∈ Q and x ∈U.

The infimum of κ over all such combinations of κ , Q, U and V is called the partial
Lipschitz modulus of G with respect to p uniformly in x at (p̄, x̄) for ȳ and denoted
by l̂ip p(G; p̄, x̄ | ȳ). The absence of this property is signaled by l̂ip p(G; p̄, x̄ | ȳ) = ∞.

The basic result we are able now to state about the solution mapping in (27) could
be viewed as an “implicit function” complement to the “inverse function” result in
Theorem 3E.7, rather than as a result in the pattern of the implicit function theorem
(which features approximations of one kind or another).

Theorem 3E.10 (Aubin property of general solution mappings). In (26), let G :
IRd× IRn→→ IRm, with G(p̄, x̄) 3 0, have the partial Aubin property with respect to p
uniformly in x at (p̄, x̄) for 0 with constant κ . Furthermore, in the notation (27), let
G enjoy the existence of a constant λ such that

(29) d(x,S(p))≤ λ d(0,G(p,x)) for all (p,x) close to (p̄, x̄).

Then the solution mapping S in (27) has the Aubin property at p̄ for x̄ with constant
λκ .

Proof. As mentioned earlier, gph S will be locally closed at (p̄, x̄) when gph G is
locally closed at ((p̄, x̄),0). Take p, p′ ∈ Q and x ∈ S(p)∩U so that (28) holds for a
neighborhood V of 0. From (29) and then (28) we have

d(x,S(p′))≤ λ d(0,G(p′,x))≤ λ e(G(p,x)∩V,G(p′,x))≤ λκ|p− p′|.

Taking the supremum of the left side with respect to x ∈ S(p)∩U , we obtain that S
has the Aubin property with constant λκ .
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Example 3E.11. Theorem 3E.10 cannot be extended to a two-way characterization
parallel to Theorem 3E.7. Indeed, consider the “saddle” function of two real vari-
ables f (p,x) = x2− p2. In this case f does not satisfy (29) at the origin of IR2, yet
the solution mapping S(p) =

{
x
∣∣ f (p,x) = 0

}
= {−p, p} has the Aubin property at

0 for 0.
At the end of this section we will take a closer look at the following question. If

a mapping F is simultaneous metrically regular and has the Aubin property, both at
x̄ for ȳ for some (x̄, ȳ)∈ gph F , then what is the relation, if any, between reg(F ; x̄ | ȳ)
and lip(F ; x̄ | ȳ)? Having in mind 3E.7, it is the same as asking what is the relation
between reg(F ; x̄ | ȳ) and reg(F−1; ȳ | x̄) or between lip(F ; x̄ | ȳ) and lip(F−1; ȳ | x̄).
When we exclude the trivial case when (x̄, ȳ)∈ int gph F , in which case both moduli
would be zero, an answer to this question is stated in the following exercise.

Exercise 3E.12. Consider a mapping F : IRn →→ IRm with closed graph and a point
(x̄, ȳ) ∈ gph F \ int gph F . Then

reg(F ; x̄ | ȳ)·lip(F ; x̄ | ȳ)≥ 1,

including the limit cases when either of these moduli is 0 and then the other is ∞

under the convention 0 ·∞ = ∞.

Guide. Let κ > reg(F ; x̄ | ȳ) and γ > lip(F ; x̄ | ȳ). Then there are neighborhoods U
of x̄ and V of ȳ corresponding to metric regularity and the Aubin property of F with
constants κ and γ , respectively. Let (x,y) ∈ U ×V be such that d(x,F−1(y)) > 0
(why does such a point exist?). Then there exists x′ ∈ F−1(y) such that 0 < |x−x′|=
d(x,F−1(y)). We have

|x− x′|= d(x,F−1(y))≤ κd(y,F(x))≤ κe(F(x′)∩V,F(x))≤ κγ|x− x′|.

Hence, κγ ≥ 1.

For a solution mapping S = F−1 of an inclusion F(x) 3 y with a parameter y, the
quantity lip(S; ȳ | x̄) measures how “stable” solutions near x̄ are under changes of the
parameter near ȳ. In this context, the smaller this modulus is, the “better” stability we
have. In view of 3E.12, better stability means larger values of the regularity modulus
reg(S; ȳ | x̄). In the limit case, when S is a constant function near ȳ, that is, when the
solution is not sensitive at all with respect to small changes of the parameter y near
ȳ, then lip(S; ȳ |S(ȳ)) = 0 while the metric regularity modulus of S there is infinity.
In Section 6A we will see that the “larger” the regularity modulus of a mapping is,
the “easier” it is to perturb the mapping so that it looses its metric regularity.
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3F. Implicit Mapping Theorems with Metric Regularity

In the paradigm of the implicit function theorem, as applied to a generalized equa-
tion f (p,x)+F(x)3 0 with solutions x ∈ S(p), the focus is on some p̄ and x̄ ∈ S(p̄),
and on some kind of approximation of the mapping x 7→ f (p̄,x)+F(x). Assump-
tions about this approximation lead to conclusions about the solution mapping S
relative to p̄ and x̄. Stability properties of the approximation are the key to progress
in this direction. Our aim now is to study such stability with respect to metric re-
gularity and to show that this leads to implicit function theorem type results which
apply to set-valued solution mappings S beyond any framework of single-valued
localization.

We start this section with a particular case of a fundamental result in variational
analysis and beyond, stated next as Theorem 3F.1, which goes back to works by
Lyusternik and Graves. We will devote most of Chapter 5 to the full theory behind
this result—in an infinite-dimensional setting.

Theorem 3F.1 (inverse mapping theorem with metric regularity). Consider a map-
ping F : IRn →→ IRm, a point (x̄, ȳ) ∈ gph F , and a function g : IRn → IRm with
x̄ ∈ int dom g. Let κ and µ be nonnegative constants such that

κµ < 1, reg(F ; x̄ | ȳ)≤ κ and lip(g; x̄)≤ µ.

Then

(1) reg(g+F ; x̄ |g(x̄)+ ȳ)≤ κ

1−κµ
.

Although formally there is no inversion of a mapping in Theorem 3F.1, if this
result is stated equivalently in terms of the Aubin property of the inverse mapping
F−1, it fits then into the pattern of the inverse function theorem paradigm. It can also
be viewed as a result concerning stability of metric regularity under perturbations
by functions with small Lipschitz constants. We can actually deduce the classical
inverse function theorem 1A.1 from 3F.1. Indeed, let f : IRn → IRn be a smooth
function around x̄ and let ∇ f (x̄) be nonsingular. Then F = D f (x̄) is metrically re-
gular everywhere and from 3F.1 for the function g(x) = f (x)−D f (x̄)(x− x̄) with
lip(g; x̄) = 0 we obtain that g+F = f is metrically regular at x̄ for f (x̄). But then f
must be open (cf. 3E.9). Establishing this fact is the main part of all proofs of 1A.1
presented so far.

We will postpone proving Theorem 3F.1 to Chapter 5, where we will do it for a
mapping F acting from a complete metric space to a linear metric space. In this sec-
tion we focus on some consequences of this result and its implicit function version.
Several corollaries of 3F.1 will lead the way.

Corollary 3F.2 (detailed estimates). Consider a mapping F : IRn→→ IRm and any pair
(x̄, ȳ)∈ gph F . If reg(F ; x̄ | ȳ)> 0, then for every g : IRn→ IRm such that reg(F ; x̄ | ȳ) ·
lip(g; x̄)< 1, one has
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(2) reg(g+F ; x̄ |g(x̄)+ ȳ) ≤ (reg(F ; x̄ | ȳ)−1− lip(g; x̄))−1.

If reg(F ; x̄ | ȳ) = 0, then reg(g + F ; x̄ |g(x̄) + ȳ) = 0 for any g : IRn → IRm with
lip(g; x̄)< ∞. If reg(F ; x̄ | ȳ) = ∞, then reg(g+F ; x̄ |g(x̄)+ ȳ) = ∞ for any g : IRn→
IRm with lip(g; x̄) = 0.

Proof. If reg(F ; x̄ | ȳ) < ∞, then by choosing κ and µ appropriately and pass-
ing to limits in (1) we obtain the claimed inequality (2) also for the case where
reg(F ; x̄ | ȳ) = 0. Let reg(F ; x̄ | ȳ) = ∞, and suppose that reg(g+F ; x̄ |g(x̄)+ ȳ)< κ

for some κ and a function g with lip(g; x̄) = 0. Since the graph of g+F is locally
closed at (x̄,g(x̄) + ȳ) and g is continuous around x̄, we get that gph F is locally
closed at (x̄, ȳ) (prove it!). Applying Theorem 3F.1 to the mapping g+F with per-
turbation −g, and noting that lip(−g; x̄) = 0, we obtain reg(F ; x̄ | ȳ) ≤ κ , which
constitutes a contradiction.

When the perturbation g has zero Lipschitz modulus at the reference point, we
obtain another interesting fact.

Corollary 3F.3 (perturbations with Lipschitz modulus 0). Consider a mapping F :
IRn→→ IRm and a point (x̄, ȳ) ∈ gph F . Then for every g : IRn→ IRm with lip(g; x̄) = 0
one has

reg(g+F ; x̄ |g(x̄)+ ȳ) = reg(F ; x̄ | ȳ).
Proof. The cases with reg(F ; x̄ | ȳ) = 0 or reg(F ; x̄ | ȳ) = ∞ are already covered by
Corollary 3F.2. If 0 < reg(F ; x̄ | ȳ)< ∞, we get from (2) that

reg(g+F ; x̄ |g(x̄)+ ȳ) ≤ reg(F ; x̄ | ȳ).

By exchanging the roles of F and g+F , we also get

reg(F ; x̄ | ȳ) ≤ reg(g+F ; x̄ |g(x̄)+ ȳ),

and in that way arrive at the claimed equality.

An elaboration of Corollary 3F.3 employs first-order approximations of a func-
tion as were introduced in Section 1E.

Corollary 3F.4 (utilization of strict first-order approximations). Consider a map-
ping F : IRn→→ IRm and a point (x̄, ȳ) ∈ gph F . Let f : IRn→ IRm be continuous in a
neighborhood of x̄. Then, for every h : IRn→ IRm which is a strict first-order approx-
imation to f at x̄, one has

reg( f +F ; x̄ | f (x̄)+ ȳ) = reg(h+F ; x̄ |h(x̄)+ ȳ).

In particular, when the strict first-order approximation is represented by the lin-
earization coming from strict differentiability, we get something even stronger.

Corollary 3F.5 (utilization of strict differentiability). Consider M = f +F for a
function f : IRn→ IRm and a mapping F : IRn→→ IRm, and let ȳ ∈M(x̄). Suppose that
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f is strictly differentiable at x̄. Then, for the linearization

M0(x) = f (x̄)+∇ f (x̄)(x− x̄)+F(x)

one has
reg(M; x̄ | ȳ) = reg(M0; x̄ | ȳ).

In the case when m = n and the mapping F is the normal cone mapping to a
polyhedral convex set, we can likewise employ a “first-order approximation” of F .
When f is linear the corresponding result parallels 2E.6.

Corollary 3F.6 (affine-polyhedral variational inequalities). For an n× n matrix A
and a polyhedral convex set C ⊂ IRn, consider the variational inequality

Ax+NC(x) 3 y.

Let x̄ be a solution for ȳ, let v̄ = ȳ−Ax̄, so that v̄ ∈ NC(x̄), and let K = KC(x̄, v̄) be
the critical cone to C at x̄ for v̄. Then, for the mappings

G(x) = Ax+NC(x) with G(x̄) 3 ȳ,
G0(w) = Aw+NK(w) with G0(0) 3 0,

we have
reg(G; x̄ | ȳ) = reg(G0;0 |0).

Proof. From reduction lemma 2E.4, for (w,u) in a neighborhood of (0,0), we have
that v̄+u ∈ NC(x̄+w) if and only if u ∈ NK(w). Then, for (w,v) in a neighborhood
of (0,0), we obtain ȳ+v∈G(x̄+w) if and only if v∈G0(w). Thus, metric regularity
of A+NC at x̄ for ȳ with a constant κ implies metric regularity of A+NK at 0 for 0
with the same constant κ , and conversely.

Combining 3F.5 and 3F.6 we obtain the following corollary:

Corollary 3F.7 (strict differentiability and polyhedral convexity). Consider H =
f +NC for a function f : IRn→ IRn and a polyhedral convex set C⊂ IRn, let ȳ ∈H(x̄)
and let f be strictly differentiable at x̄. For v̄ = ȳ− f (x̄), let K = KC(x̄, v̄) be the
critical cone to the set C at x̄ for v̄. Then, for H0(x) = ∇ f (x̄)x+NK(x) one has

reg(H; x̄ | ȳ) = reg(H0;0 |0).

We are ready now to take up once more the study of a generalized equation
having the form

(3) f (p,x)+F(x) 3 0

for f : IRd × IRn → IRm and F : IRn →→ IRm, and its solution mapping S : IRd → IRn

defined by

(4) S(p) =
{

x
∣∣ f (p,x)+F(x) 3 0

}
.
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This time, however, we are not looking for single-valued localizations of S but aim-
ing at a better understanding of situations in which S may not have any such local-
ization, as in the example of parameterized constraint systems. Recall from Chapter
1 that, for f : IRd× IRn→ IRm and a point (p̄, x̄) ∈ int dom f , a function h : IRn→ IRm

is said to be a strict estimator of f with respect to x uniformly in p at (p̄, x̄) with
constant µ if h(x̄) = f (x̄, p̄) and

l̂ip x(e;(p̄, x̄))≤ µ < ∞ for e(p,x) = f (p,x)−h(x).

Theorem 3F.8 (implicit mapping theorem with metric regularity). For the general-
ized equation (3) and its solution mapping S in (4), and a pair (p̄, x̄) with x̄ ∈ S(p̄),
let h : IRn→ IRm be a strict estimator of f with respect to x uniformly in p at (p̄, x̄)
with constant µ , let h+F be metrically regular at x̄ for 0 with reg(h+F ; x̄ |0)≤ κ .
Assume

(5) κµ < 1 and l̂ip p( f ;(p̄, x̄))≤ λ < ∞.

Then S has the Aubin property at p̄ for x̄, and moreover

(6) lip(S; p̄ | x̄) ≤ κλ

1−κµ
.

This theorem will be established in an infinite-dimensional setting in Theo-
rem 5E.5 in Chapter 5, so we will not prove it separately here. An immediate conse-
quence is obtained by specializing the function h in Theorem 3F.8 to a linearization
of f with respect to x. We add to this the effect of ample parameterization, in parallel
to the case of single-valued localization in Theorem 2C.2.

Theorem 3F.9 (using strict differentiability and ample parameterization). For the
generalized equation (3) and its solution mapping S in (4), and a pair (p̄, x̄) with
x̄ ∈ S(p̄), suppose that f is strictly differentiable at (p̄, x̄). If the mapping

h+F for h(x) = f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄)

is metrically regular at x̄ for 0, then S has the Aubin property at p̄ for x̄ with

(7) lip(S; p̄ | x̄) ≤ reg(h+F ; x̄ |0) · |∇p f (p̄, x̄)|.

Furthermore, when f satisfies the ample parameterization condition

(8) rank ∇p f (p̄, x̄) = m,

then the converse implication holds as well: the mapping h+F is metrically regular
at x̄ for 0 provided that S has the Aubin property at p̄ for x̄.
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Proof of 3F.9, initial part. In these circumstances with this choice of h, the condi-
tions in (5) are satisfied because, for e = f −h,

l̂ip x(e;(p̄, x̄)) = 0 and l̂ip p( f ;(p̄, x̄)) = |∇p f (p̄, x̄)|.

Thus, (7) follows from (6) with µ = 0. In the remainder of the proof, regarding
ample parameterization, we will make use of the following fact.

Proposition 3F.10 (Aubin property in composition). For a mapping M : IRd →→ IRn

and a function ψ : IRn× IRm→ IRd consider the composite mapping N : IRm→→ IRn of
the form

y 7→ N(y) =
{

x
∣∣x ∈M(ψ(x,y))

}
for y ∈ IRm.

Let ψ satisfy

(9) l̂ip x(ψ;(x̄,0)) = 0 and l̂ip y(ψ;(x̄,0)) < ∞,

and, for p̄ = ψ(x̄,0), let (p̄, x̄) ∈ gph M. Under these conditions, if M has the Aubin
property at p̄ for x̄, then N has the Aubin property at 0 for x̄.

Proof. Let the mapping M have the Aubin property at p̄ for x̄ with neighborhoods
Q of p̄ and U of x̄ and constant κ > lip(M; p̄ | x̄). Choose λ > 0 with λ < 1/κ and
let γ > l̂ip y(ψ;(x̄,0)). By (9) there exist positive constants a and b such that for
any y ∈ IBa(0) the function ψ(·,y) is Lipschitz continuous on IBb(x̄) with Lipschitz
constant λ and for every x ∈ IBb(x̄) the function ψ(x, ·) is Lipschitz continuous on
IBa(0) with Lipschitz constant γ . Pick a positive constant c and make a and b smaller
if necessary so that:

(a) IBc(p̄)⊂ Q and IBb(x̄)⊂U ,
(b) the set gph M∩ (IBc(p̄)× IBb(x̄)) is closed, and
(c) the following inequalities are satisfied:

(10)
4κγa

1−κλ
≤ b and γa+λb≤ c.

Let y′,y ∈ IBa(0) and let x′ ∈ N(y′)∩ IBb/2(x̄). Then x′ ∈ M(ψ(x′,y′))∩ IBb/2(x̄).
Further, we have

|ψ(x′,y′)− p̄| ≤ |ψ(x′,y′)−ψ(x′,0)|+ |ψ(x′,0)−ψ(x̄,0)| ≤ γa+λb/2≤ c

and the same for ψ(x′,y). From the Aubin property of M we obtain the existence of
x1 ∈M(ψ(x′,y)) such that

|x1− x′| ≤ κ|ψ(x′,y′)−ψ(x′,y)| ≤ κγ|y′− y|.

Thus, through the first inequality in (10),

|x1− x̄| ≤ |x1− x′|+ |x′− x̄| ≤ κγ|y′− y|+ |x′− x̄| ≤ κγ(2a)+
b
2
≤ b,
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and consequently

|ψ(x1,y)− p̄|= |ψ(x1,y)−ψ(x̄,0)| ≤ λb+ γa≤ c,

utilizing the second inequality in (10). Hence again, from the Aubin property of M
applied to x1 ∈M(ψ(x′,y))∩ IBb(x̄), there exists x2 ∈M(ψ(x1,y)) such that

|x2− x1| ≤ κ|ψ(x1,y)−ψ(x′,y)| ≤ κλ |x1− x′| ≤ (κλ )κγ|y′− y|.

Employing induction, assume that we have a sequence {x j} with

x j ∈M(ψ(x j−1,y)) and |x j− x j−1| ≤ (κλ ) j−1
κγ|y′− y| for j = 1, . . . ,k.

Setting x0 = x′, we get

|xk− x̄| ≤ |x0− x̄|+
k

∑
j=1
|x j− x j−1|

≤ b
2
+

k−1

∑
j=0

(κλ ) j
κγ|y′− y| ≤ b

2
+

2aκγ

1−κλ
≤ b,

where we use the first inequality in (10). Hence |ψ(xk,y)− p̄| ≤ λb+ γa≤ c. Then
there exists xk+1 ∈M(ψ(xk,y)) such that

|xk+1− xk| ≤ κ|ψ(xk,y)−ψ(xk−1,y)| ≤ κλ |xk− xk−1| ≤ (κλ )k
κγ|y′− y|,

and the induction step is complete.
The sequence {xk} is Cauchy, hence convergent to some x∈ IBb(x̄)⊂U . From the

local closedness of gph M and the continuity of ψ we deduce that x ∈M(ψ(x,y)),
hence x ∈ N(y). Furthermore, using the estimate

|xk− x0| ≤
k

∑
j=1
|x j− x j−1| ≤

k−1

∑
j=0

(κλ ) j
κγ|y′− y| ≤ κγ

1−κλ
|y′− y|

and passing to the limit with respect to k→ ∞, we obtain that

|x− x′| ≤ κγ

1−κλ
|y′− y|.

Thus, for any κ ′ ≥ (κγ)/(1−κλ ) the mapping N has the Aubin property at 0 for x̄
with constant κ ′.

Proof of 3F.9, final part. Under the ample parameterization condition (8), Lemma
2C.1 guarantees the existence of neighborhoods U of x̄, V of 0, and Q of p̄, as well
as a local selection ψ : U×V → Q around (x̄,0) for p̄ of the mapping

(x,y) 7→
{

p
∣∣y+ f (p,x) = h(x)

}
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for h(x) = f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄) which satisfies the conditions in (9). Hence,

y+ f (ψ(x,y),x) = h(x) and ψ(x,y) ∈ Q for x ∈U,y ∈V.

Fix y∈V . If x∈ (h+F)−1(y)∩U and p=ψ(x,y), then p∈Q and y+ f (p,x)= h(x),
hence x∈ S(p)∩U . Conversely, if x∈ S(ψ(x,y))∩U , then clearly x∈ (h+F)−1(y)∩
U . Thus,

(11) (h+F)−1(y)∩U =
{

x
∣∣x ∈ S(ψ(x,y))∩U

}
.

Since the Aubin property of S at p̄ for x̄ is a local property of the graph of S relative
to the point (p̄, x̄), it holds if and only if the same holds for the truncated mapping
SU : p 7→ S(p)∩U (see Exercise 3F.11). That equivalence is valid for (h+F)−1 as
well. Thus, if the mapping SU has the Aubin property at p̄ for x̄, from Proposition
3F.10 in the context of (11), we obtain that (h+F)−1 has the Aubin property at 0
for x̄, hence, by 3E.7, h+F is metrically regular at x̄ for 0 as desired.

Exercise 3F.11. Let S : IRm→→ IRn have the Aubin property at ȳ for x̄ with constant
κ . Show that for any neighborhood U of x̄ the mapping SU : y 7→ S(y)∩U also has
the Aubin property at ȳ for x̄ with constant κ .

Guide. Choose sufficiently small a> 0 and b> 0 such that IBa(x̄)⊂U and 4κb≤ a.
Then for every y,y′ ∈ IBb(ȳ) and every x ∈ S(y)∩ IBa/2(x̄) there exists x′ ∈ S(y′) with
|x′− x| ≤ κ|y′− y| ≤ 2κb≤ a/2. Then both x and x′ are from U .

Let us now look at the case of 3F.9 in which F is a constant mapping, F(x)≡ K,
which was featured at the beginning of this chapter as a motivation for investigating
real set-valuedness in solution mappings. Solving f (p,x)+F(x) 3 0 for a given p
then means finding an x such that − f (p,x) ∈ K. For particular choices of K this
amounts to solving some mixed system of equations and inequalities, for example.

Example 3F.12 (application to general constraint systems). For f : IRd× IRn→ IRm

and a closed set K ⊂ IRm, let

S(p) =
{

x
∣∣0 ∈ f (p,x)+K

}
.

Fix p̄ and x̄∈ S(p̄). Suppose that f is continuously differentiable on a neighborhood
of (p̄, x̄), and consider the solution mapping for an associated linearized system:

S̄(y) =
{

x
∣∣y ∈ f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄)+K

}
.

If S̄ has the Aubin property at 0 for x̄, then S has the Aubin property at p̄ for x̄. The
converse implication holds under the ample parameterization condition (8).

The key to applying this result, of course, is being able to ascertain when the
linearized system does have the Aubin property in question. In the important case of
K = IRs

+×{0}m−s, a necessary and sufficient condition will emerge in the so-called
Mangasarian–Fromovitz constraint qualification. This will be seen in Section 4D.
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Example 3F.13 (application to polyhedral variational inequalities). For f : IRd ×
IRn→ IRn and a convex polyhedral set C ⊂ IRn, let

S(p) =
{

x
∣∣ f (p,x)+NC(x) 3 0

}
.

Fix p̄ and x̄ ∈ S(p̄) and for v̄ = − f (p̄, x̄) let K = KC(x̄, v̄) be the associated critical
cone to C. Suppose that f is continuously differentiable on a neighborhood of (p̄, x̄),
and consider the solution mapping for an associated reduced system:

S̄(y) =
{

x
∣∣∇x f (p̄, x̄)x+NK(x) 3 y

}
.

If S̄ has the Aubin property at 0 for 0, then S has the Aubin property at p̄ for x̄. The
converse implication holds under the ample parameterization condition (8).

If a mapping F : IRn →→ IRm has the Aubin property at x̄ for ȳ, and a function
f : IRn→ IRm satisfies lip( f ; x̄)< ∞, then the mapping f +F has the Aubin property
at x̄ for f (x̄)+ ȳ as well. This is a particular case of the following observation which
utilizes ample parameterization.

Theorem 3F.14 (Aubin property of the inverse to the solution mapping). Consider
a mapping F : IRn →→ IRm with (x̄, ȳ) ∈ gph F and a function f : IRd × IRn → IRm

having ȳ = − f (p̄, x̄) and which is strictly differentiable at (p̄, x̄) and satisfies the
ample parameterization condition (8). Then the mapping

x 7→ P(x) = {p | 0 ∈ f (p,x)+F(x)}

has the Aubin property at x̄ for p̄ if and only if F has the Aubin property at x̄ for ȳ.

Proof. First, from 3F.9 it follows that under the ample parameterization condition
(8) the mapping

(x,y) 7→Ω(x,y) =
{

p
∣∣y+ f (p,x) = 0

}
has the Aubin property at (x̄, ȳ) for p̄. Let F have the Aubin property at x̄ for ȳ with
neighborhoods U of x̄ of V for ȳ and constant κ > 0. Choose a neighborhood Q of
p̄ and adjust U and V accordingly so that Ω has the Aubin property with constant
λ and neighborhoods U ×V and Q. Let b > 0 be such that IBb(ȳ)⊂V , then choose
a> 0 and adjust Q such that IBa(x̄)⊂U , a≤ b/(4κ) and also− f (p,x)∈ IBb/2(ȳ) for
x∈ IBa(x̄) and p∈Q. Let x,x′ ∈ IBa(x̄) and p∈P(x)∩Q. Then y=− f (p,x)∈F(x)∩
V and by the Aubin property of F there exists y′ ∈F(x′) such that |y−y′| ≤ κ|x−x′|.
But then |y′− ȳ| ≤ κ(2a)+b/2≤ b. Thus y′ ∈V and hence, by the Aubin property
of Ω , there exists p′ satisfying y′+ f (p′,x′) = 0 and

|p′− p| ≤ λ (|y′− y|+ |x′− x|)≤ λ (κ +1)|x′− x|.

Noting that p′ ∈ P(x′) we get that P has the Aubin property at x̄ for p̄.
Conversely, let P have the Aubin property at x̄ for p̄ with associated constant κ

and neighborhoods U and Q of x̄ and p̄, respectively. Let f be Lipschitz continuous
on Q×U with constant µ . We already know that the mapping Ω has the Aubin
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property at (x̄, ȳ) for p̄; let λ be the associated constant and U×V and Q the neigh-
borhoods of (x̄, ȳ) and of p̄, respectively. Choose c > 0 such that IBc(p̄)⊂ Q and let
a > 0 satisfy

IBa(x̄)⊂U, IBa(ȳ)⊂V and amax{κ,λ} ≤ c/4.

Let x,x′ ∈ IBa(x̄) and y ∈ F(x) ∩ IBa(ȳ). Since Ω has the Aubin property and
p̄ ∈ Ω(x̄, ȳ)∩ IBc(p̄), there exists p ∈ Ω(x,y) such that |p− p̄| ≤ λ (2a) ≤ c/2.
This means that p ∈ P(x)∩ IBc/2(p̄) and from the Aubin property of P there ex-
ists p′ ∈ P(x′) so that |p′− p| ≤ κ|x′− x|. Thus, |p′− p̄| ≤ κ(2a)+ c/2 ≤ c. Let
y′ = − f (p′,x′). Then y′ ∈ F(x′) because p′ ∈ P(x′) and the Lipschitz continuity of
f gives us

|y− y′|= | f (p,x)− f (p′,x′)| ≤ µ(|p− p′|+ |x− x′|)≤ µ(κ +1)|x− x′|.

Hence, F has the Aubin property at x̄ for ȳ.

In none of the directions of the statement of 3F.14 we can replace the Aubin
property by metric regularity. Indeed, the function f (p,x) = x+ p satisfies the as-
sumptions, but if we add to it the zero mapping F ≡ 0, which is not metrically
regular (anywhere), we get the mapping P(x) =−x which is metrically regular (ev-
erywhere). Taking the same f and F(x) =−x contradicts the other direction.

3G. Strong Metric Regularity

Although our chief goal in this chapter has been the treatment of solution mappings
for which Lipschitz continuous single-valued localizations need not exist or even
be a topic of interest, the concepts and results we have built up can shed new light
on our earlier work with such localizations through their connection with metric
regularity.

Proposition 3G.1 (single-valued localizations and metric regularity). For a map-
ping F : IRn→→ IRm and a pair (x̄, ȳ) ∈ gph F , the following properties are equivalent:

(a) F−1 has a Lipschitz continuous single-valued localization s around ȳ for x̄;
(b) F is metrically regular at x̄ for ȳ and F−1 has a localization at ȳ for x̄ that is

nowhere multivalued.
Indeed, in the circumstances of (b) the localization s in (a) has lip(s; ȳ) =

reg(F ; x̄ | ȳ).
Proof. According to 3E.2 as applied to S = F−1, condition (a) is equivalent to F−1

having the Aubin property at ȳ for x̄ and a localization around ȳ for x̄ that is nowhere
multivalued. When F−1 has the Aubin property at ȳ for x̄, by 3E.1 the domain of
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F−1 contains a neighborhood of ȳ, hence any localization of F−1 at ȳ for x̄ is actually
a localization around ȳ for x̄. On the other hand, we know from 3E.7 that F−1 has
the Aubin property at ȳ for x̄ if and only if F is metrically regular at x̄ for ȳ. That
result also relates the constants κ in the two properties and yields for us the final
statement.

Proposition 3G.2 (stability of single-valuedness under perturbation). Let ν and λ

be positive constants such that νλ < 1. Consider a mapping F : IRn→→ IRm and a pair
(x̄, ȳ) ∈ gph F , such that F−1 has a Lipschitz continuous single-valued localization
s around ȳ for x̄ with lip(s; ȳ)< λ . Consider also a function g : IRn→ IRm with x̄ ∈
int dom g and such that lip(g; x̄)< ν . Then the mapping (g+F)−1 has a localization
around g(x̄)+ ȳ for x̄ which is nowhere multivalued.

Proof. Our hypothesis says that there are neighborhoods U of x̄ and V of ȳ such
that for any y ∈V the set F−1(y)∩U consists of exactly one point, s(y), and that the
function s : y 7→ F−1(y)∩U is Lipschitz continuous on V with Lipschitz constant
λ . Let 0 < ν < λ−1 and choose a function g : IRn→ IRm and a neighborhood U ′ of
x̄ on which g is Lipschitz continuous with constant ν . We can find neighborhoods
U0 = IBτ(x̄)⊂U ∩U ′ and V0 = IBε(g(x̄)+ ȳ)⊂ (g(x̄)+V ) such that

(1) x ∈U0, y ∈V0 =⇒ y−g(x) ∈V.

Consider now the graphical localization of V 3 y 7→ (g+F)−1(y)∩U0. It will be
demonstrated that the set (g+F)−1(y)∩U0 can have at most one element, and that
will finish the proof.

Suppose to the contrary that y ∈V0 and x,x′ ∈U0, x 6= x′, are such that both x and
x′ belong to (g+F)−1(y). Clearly x ∈ (g+F)−1(y)∩U0 if and only if x ∈U0 and
y ∈ g(x)+F(x), or equivalently y− g(x) ∈ F(x). The latter, in turn, is the same as
having x ∈ F−1(y−g(x))∩U0 ⊂ F−1(y−g(x))∩U = s(y−g(x)), where y−g(x) ∈
V by (1). Then

0 < |x− x′|= |s(y−g(x))− s(y−g(x′))| ≤ λ |g(x)−g(x′)| ≤ λν |x− x′|< |x− x′|,

which is absurd.

The observation in 3G.1 leads to a definition.

Strong metric regularity. A mapping F : IRn →→ IRm with (x̄, ȳ) ∈ gph F whose
inverse F−1 has a Lipschitz continuous single-valued localization around ȳ for x̄
will be called strongly metrically regular at x̄ for ȳ.

For a linear mapping represented by an m×n matrix A, strong metric regularity
comes out as the nonsingularity of A and thus requires that m = n. Moreover, for
any single-valued function f : IRn→ IRm, strong metric regularity requires m = n by
Theorem 1F.1 on the invariance of domain. This property can be seen therefore as
corresponding closely to the one in the classical implicit function theorem, except
for its focus on Lipschitz continuity instead of continuous differentiability. It was
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the central property in fact, if not in name, in Robinson’s implicit function theorem
2B.1.

The terminology of strong metric regularity offers a way of gaining new per-
spectives on earlier results by translating them into the language of metric regu-
larity. Indeed, strong metric regularity is just metric regularity plus the existence
of a single-valued localization of the inverse. According to Theorem 3F.1, metric
regularity of a mapping F is stable under addition of a function g with a “small”
Lipschitz constant, and so too is local single-valuedness, according to 3G.2. Thus,
strong metric regularity must be stable under perturbation in the same way as met-
ric regularity. The corresponding result is a version of the inverse function result in
2B.10 corresponding to the extended form of Robinson’s implicit function theorem
in 2B.5.

Theorem 3G.3 (inverse function theorem with strong metric regularity). Let κ and
µ be nonnegative constants such that κµ < 1. Consider a mapping F : IRn →→ IRm

and any (x̄, ȳ) ∈ gph F such that F is strongly metrically regular at x̄ for ȳ with
reg(F ; x̄ | ȳ) ≤ κ and a function g : IRn→ IRm with x̄ ∈ int dom g and lip(g; x̄) ≤ µ .
Then the mapping g+F is strongly metrically regular at x̄ for g(x̄)+ ȳ. Moreover,

reg
(

g+F ; x̄
∣∣g(x̄)+ ȳ

)
≤ κ

1−κµ
.

Proof. Our hypothesis that F is strongly metrically regular at x̄ for ȳ implies that a
graphical localization of F−1 around (ȳ, x̄) is single-valued near ȳ. Further, by fixing
λ > κ such that λ µ < 1 and using Proposition 3G.1, we can get neighborhoods U
of x̄ and V of ȳ such that for every y ∈V the set F−1(y)∩U consists of exactly one
point, which we may denote by s(y) and know that the function s : y 7→F−1(y)∩U is
Lipschitz continuous on V with Lipschitz constant λ . Let µ < ν < λ−1 and choose
a neighborhood U ′ ⊂U of x̄ on which g is Lipschitz continuous with constant ν .
Applying Proposition 3G.2 we obtain that the mapping (g+F)−1 has a localization
around g(x̄)+ ȳ for x̄ which is nowhere multivalued. On the other hand, we know
from Theorem 3F.1 that for such g the mapping g+F is metrically regular at g(x̄)+ ȳ
for x̄. Applying Proposition 3G.1 once more, we complete the proof.

In much the same way we can state in terms of strong metric regularity an implicit
function result paralleling Theorem 2B.7.

Theorem 3G.4 (implicit function theorem with strong metric regularity). For the
generalized equation f (p,x)+F(x) 3 0 with f : IRd × IRn→ IRm and F : IRn→→ IRm

and its solution mapping

S : p 7→
{

x
∣∣ f (p,x)+F(x) 3 0

}
,

consider a pair (p̄, x̄) with x̄ ∈ S(p̄). Let h : IRn → IRm be a strict estimator of f
with respect to x uniformly in p at (p̄, x̄) with constant µ and let h+F be strongly
metrically regular at x̄ for 0 with reg(h+F ; x̄ |0)≤ κ . Suppose that
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κµ < 1 and l̂ip p( f ;(p̄, x̄))≤ λ < ∞.

Then S has a Lipschitz continuous single-valued localization s around p̄ for x̄, more-
over with

lip(s; p̄) ≤ κλ

1−κµ
.

Many corollaries of this theorem could be stated in a mode similar to that in
Section 3F, but the territory has already been covered essentially in Chapter 2. We
will get back to this result in Section 5F.

In some situations, metric regularity automatically entails strong metric regula-
rity. That is the case, for instance, for a linear mapping from IRn to itself represented
by an n× n matrix A. Such a mapping is metrically regular if and only if it is sur-
jective, which means that A has full rank, but then A is nonsingular, so that we
have strong metric regularity. More generally, for any mapping which describes the
Karush-Kuhn-Tucker optimality system in a nonlinear programming problem, met-
ric regularity implies strong metric regularity. We will prove this fact in Section
4H.

We will describe now another class of mappings for which metric regularity and
strong metric regularity come out to be the same thing. This class depends on a
localized, set-valued form of the monotonicity concept which appeared in sections
1H and 2F.

Locally monotone mappings. A mapping F : IRn→→ IRn is said to be locally mono-
tone at x̄ for ȳ if (x̄, ȳ) ∈ gph F and for some neighborhood W of (x̄, ȳ), one has

〈y′− y,x′− x〉 ≥ 0 whenever (x′,y′),(x,y) ∈ gph F ∩W.

Theorem 3G.5 (strong metric regularity of locally monotone mappings). If a map-
ping F : IRn→→ IRn that is locally monotone at x̄ for ȳ is metrically regular at x̄ for ȳ,
then it must be strongly metrically regular at x̄ for ȳ.

Proof. According to 3G.1, all we need to show is that a mapping F which is locally
monotone and metrically regular at x̄ for ȳ must have a localization around ȳ for x̄
which is nowhere multivalued. Suppose to the contrary that every graphical local-
ization of F−1 at ȳ for x̄ is multivalued. Then there are infinite sequences yk→ ȳ and
xk,zk ∈ F−1(yk), xk → x̄, zk → x̄ such that xk 6= zk for all k. Let bk = |zk− xk| > 0
and hk = (zk− xk)/bk. Then we have

(2) 〈zk,hk〉= bk + 〈xk,hk〉 for all k = 1,2, . . . .

Since the metric regularity of F implies through 3E.7 the Aubin property of F−1 at
ȳ for x̄, there exist κ > 0 and a > 0 such that

F−1(y)∩ IBa(x̄)⊂ F−1(y′)+κ|y− y′|IB for all y,y′ ∈ IBa(ȳ).

Choose a sequence of positive numbers τk satisfying
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(3) τk ↘ 0 and τk < bk/(2κ).

Then for k large, we have yk,yk +τkhk ∈ IBa(ȳ) and xk ∈ F−1(yk)∩ IBa(x̄), and hence
there exists uk ∈ F−1(yk + τkhk) satisfying

(4) |uk− xk| ≤ κτk.

By the local monotonicity of F at (x̄, ȳ) we have

〈uk− zk,yk + τkhk− yk〉 ≥ 0.

This, combined with (2), yields

(5) 〈uk,hk〉 ≥ 〈zk,hk〉= bk + 〈xk,hk〉.

We get from (3), (4) and (5) that

bk + 〈xk,hk〉 ≤ 〈uk,hk〉 ≤ 〈xk,hk〉+κτk < 〈xk,hk〉+(bk/2),

which is impossible. Therefore, F−1 must indeed have a localization around ȳ for x̄
which is not multivalued.

Observe that strong metric regularity of a mapping F at x̄ for ȳ automatically
implies that gph F is locally closed at (x̄, ȳ). The following proposition shows that
this remains true when the mapping F is perturbed by a Lipschitz function.

Proposition 3G.6 (local graph closedness from strong metric regularity). Let f :
IRn→ IRn be a function which is Lipschitz continuous around x̄, let F : IRn→→ IRn be
a set-valued mapping, and suppose that f +F is strongly metrically regular at x̄ for
ȳ. Then gph F is locally closed at (x̄, ȳ− f (x̄)).

Proof. The assumption that f +F is strongly metrically regular at x̄ for ȳ means
that there exist positive α and β such that the mapping IBβ (ȳ) 3 y 7→ s(y) := ( f +
F)−1(y)∩ IBα(x̄) is a Lipschitz continuous function. Let a > 0 and b > 0 be such
that f is Lipschitz continuous in IBa(x̄) with constant l, and moreover b+ la ≤ β

and a ≤ α. Then dom s ⊃ IBb+la(ȳ). Let (xk,zk) ∈ gph F ∩ (IBa(x̄)× IBb(ȳ− f (x̄))
converge to (x,z) as k→ ∞. Then we have

|zk + f (xk)− ȳ| ≤ |zk− (ȳ− f (x̄))|+ | f (xk)− f (x̄)| ≤ b+ la.

Then zk + f (xk) ∈ IBb+la(ȳ) and also (xk,zk + f (xk)) ∈ gph( f + F); hence, xk =
s(zk+ f (xk)). Passing to the limit with k→∞ we get x= s(z+ f (x))= ( f +F)−1(z+
f (x))∩ IBa(x̄), that is, z+ f (x) ∈ f (x)+F(x), hence (x,z) ∈ gph F . Thus, gph F is
locally closed at (x̄, ȳ− f (x̄)).
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3H. Calmness and Metric Subregularity

A “one-point” variant of the Aubin property can be defined for set-valued mappings
in the same way as calmness of functions, and this leads to another natural topic of
investigation.

Calmness. A mapping S : IRm→→ IRn is said be calm at ȳ for x̄ if (ȳ, x̄) ∈ gph S, and
there is a constant κ ≥ 0 along with neighborhoods U of x̄ and V of ȳ such that

(1) e(S(y)∩U,S(ȳ)) ≤ κ|y− ȳ| for all y ∈V.

Equivalently, the property in (1) can be also written as

(2) S(y)∩U ⊂ S(ȳ)+κ|y− ȳ|IB for all y ∈V

although perhaps with larger constant κ . The infimum of κ over all such combina-
tions of κ , U and V is called the calmness modulus of S at ȳ for x̄ and denoted by
clm(S; ȳ | x̄). The absence of this property is signaled by clm(S; ȳ | x̄) = ∞.

As in the case of the Lipschitz modulus lip(S; ȳ | x̄) in 3E, it is not claimed that
(1) and (2) are themselves equivalent; anyway, the infimum furnishing clm(S; ȳ | x̄)
is the same with respect to (2) as with respect to (1).

In the case when S is not multivalued, the definition of calmness reduces to that of
a function given in Section 1C relative to a neighborhood V of ȳ; clm(S; ȳ |S(ȳ)) =
clm(S; ȳ). Indeed, for any y ∈V \dom S the inequality (1) holds automatically.

Clearly, for closed-valued mappings outer Lipschitz continuity implies calmness.
In particular, we get the following fact from Theorem 3D.1.

Proposition 3H.1 (calmness of polyhedral mappings). Any mapping S : IRm→→ IRn

whose graph is the union of finitely many polyhedral convex sets is calm with the
same constant κ at any ȳ for any x̄ whenever (ȳ, x̄) ∈ gph S.

In particular, any linear mapping is calm at any point of its graph, and this is also
true for its inverse. For comparison, the inverse of a linear mapping has the Aubin
property at some point if and only if the mapping is surjective.

Exercise 3H.2 (local outer Lipschitz continuity under truncation). Show that a
mapping S : IRm→→ IRn with (ȳ, x̄)∈ gph S and with S(ȳ) closed and convex is calm at
ȳ for x̄ if and only if there is a neighborhood U of x̄ such that the truncated mapping
y 7→ S(y)∩U is outer Lipschitz continuous at ȳ.

Guide. Mimic the proof of 3E.3 with y = ȳ.

Is there a “one-point” variant of the metric regularity which would characterize
calmness of the inverse, in the way metric regularity characterizes the Aubin prop-
erty of the inverse? Yes, as we explore next.
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Metric subregularity. A mapping F : IRn→→ IRm is called metrically subregular at
x̄ for ȳ if (x̄, ȳ) ∈ gph F and there exists κ ≥ 0 along with neighborhoods U of x̄ and
V of ȳ such that

(3) d(x,F−1(ȳ)) ≤ κd(ȳ,F(x)∩V ) for all x ∈U.

The infimum of all κ for which this holds is the modulus of metric subregula-
rity, denoted by subreg(F ; x̄ | ȳ). The absence of metric subregularity is signaled
by subreg(F ; x̄ | ȳ) = ∞.

The main difference between metric subregularity and metric regularity is that
the data input ȳ is now fixed and not perturbed to a nearby y. Since d(ȳ,F(x)) ≤
d(ȳ,F(x)∩V ), it is clear that subregularity is a weaker condition than metric regu-
larity, and

subreg(F ; x̄ | ȳ) ≤ reg(F ; x̄ | ȳ).
The following result reveals the equivalence of metric subregularity of a mapping

with calmness of its inverse:

Theorem 3H.3 (characterization by calmness of the inverse). For a mapping F :
IRn→→ IRm, let F(x̄) 3 ȳ. Then F is metrically subregular at x̄ for ȳ if and only if its
inverse F−1 : IRm→→ IRn is calm at ȳ for x̄, in which case

clm(F−1; ȳ | x̄) = subreg(F ; x̄ | ȳ).

Proof. Assume first that there exist a constant κ > 0 and neighborhoods U of x̄ and
V of ȳ such that

(4) F−1(y)∩U ⊂ F−1(ȳ)+κ|y− ȳ|IB for all y ∈V.

Let x ∈U . If F(x)∩V = /0, then the right side of (3) is ∞ and we are done. If not,
having x ∈U and y ∈ F(x)∩V is the same as having x ∈ F−1(y)∩U and y ∈V . For
such x and y, the inclusion in (4) requires the ball x+κ|y− ȳ|IB to have nonempty
intersection with F−1(ȳ). Then d(x,F−1(ȳ)) ≤ κ|y− ȳ|. Thus, for any x ∈ U , we
must have d(x,F−1(ȳ)) ≤ infy

{
κ|y− ȳ|

∣∣y ∈ F(x)∩V
}

, which is (3). This shows
that (4) implies (3) and that

inf
{

κ
∣∣U,V, κ satisfying (4)

}
≥ inf

{
κ
∣∣U,V, κ satisfying (3)

}
,

the latter being by definition subreg(F ; x̄ | ȳ).
For the opposite direction, we have to demonstrate that if subreg(F ; x̄ | ȳ)< κ <

∞, then (4) holds for some choice of neighborhoods U and V . Consider any κ ′ with
subreg(F ; x̄ | ȳ)< κ ′ < κ . For this κ ′, there exist U and V such that d(x,F−1(ȳ))≤
κ ′d(ȳ,F(x)∩V ) for all x ∈U . Then we have d(x,F−1(ȳ)) ≤ κ ′|y− ȳ| when x ∈U
and y∈ F(x)∩V , or equivalently y∈V and x∈ F−1(y)∩U . Fix y∈V . If y = ȳ there
is nothing to prove; let y 6= ȳ. If x ∈ F−1(y)∩U , then d(x,F−1(ȳ)) ≤ κ ′|y− ȳ| <
κ|y− ȳ|. Then there must be a point of x′ ∈ F−1(ȳ) having |x′−x| ≤ κ|y− ȳ|. Hence
we have (4), as required, and the proof if complete.
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As we will see next, there is no need at all to mention a neighborhood V of ȳ in
the description of calmness and subregularity in (2) and (3).

Exercise 3H.4 (equivalent formulations). For a mapping F : IRn→→ IRm and a point
(x̄, ȳ) ∈ gph F metric subregularity of F at x̄ for ȳ with constant κ > 0 is equivalent
simply to the existence of a neighborhood U of x̄ such that

(5) d(x,F−1(ȳ)) ≤ κd(ȳ,F(x)) for all x ∈U,

whereas the calmness of F−1 at ȳ for x̄ with constant κ > 0 can be identified with
the existence of a neighborhood U of x̄ such that

(6) F−1(y)∩U ⊂ F−1(ȳ)+κ|y− ȳ|IB for all y ∈ IRm.

Guide. Assume that (3) holds with κ > 0 and associated neighborhoods U and V .
We can choose within V a neighborhood of the form V ′ = IBε(ȳ) for some ε > 0.
Let U ′ := U ∩ (x̄+ εκIB) and pick x ∈U ′. If F(x)∩V ′ 6= /0 then d(ȳ,F(x)∩V ′) =
d(ȳ,F(x)) and (3) becomes (5) for this x. Otherwise, F(x)∩V ′ = /0 and then

d(ȳ,F(x))≥ ε ≥ 1
κ
|x− x̄| ≥ 1

κ
d(x,F−1(ȳ)),

which is (5).
Similarly, (6) entails the calmness in (4), so attention can be concentrated on

showing that we can pass from (4) to (6) under an adjustment in the size of U . We
already know from 3H.3 that the calmness condition in (4) leads to the metric sub-
regularity in (3), and further, from the argument just given, that such subregularity
yields the condition in (5). But that condition can be plugged into the argument in
the proof of 3H.3, by taking V = IRm, to get the corresponding calmness property
with V = IRm but with U replaced by a smaller neighborhood of x̄.

Although we could take (5) as a redefinition of metric subregularity, we prefer
to retain the neighborhood V in (3) in order to underscore the parallel with metric
regularity; similarly for calmness.

Does metric subregularity enjoy stability properties under perturbation resem-
bling those of metric regularity and strong metric regularity? In other words, does
metric subregularity obey the general paradigm of the implicit function theorem, as
developed in chapters 1 and 2? The answer to this question turns out to be no even
for simple functions. Indeed, the function f (x) = x2 is clearly not metrically subre-
gular at 0 for 0, but its derivative D f (0), which is the zero mapping, is metrically
subregular.

More generally, every linear mapping A : IRn→ IRm is metrically subregular, and
hence the derivative mapping of any smooth function is metrically subregular. But of
course, not every smooth function is subregular. For this reason, there cannot be an
implicit mapping theorem in the vein of 3F.8 in which metric regularity is replaced
by metric subregularity, even for the classical case of an equation with smooth f
and no set-valued F.
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An illuminating but more intricate counterexample of instability of metric sub-
regularity of set-valued mappings is as follows. In IR× IR, let gph F be the set of
all (x,y) such that x ≥ 0, y ≥ 0 and yx = 0. Then F−1(0) = [0,∞) ⊃ F−1(y) for all
y, so F is metrically subregular at x̄ = 0 for ȳ = 0, even “globally” with κ = 0. By
Theorem 3H.3, subreg(F ;0 |0) = 0.

Consider, however the function f (x) = −x2 for which f (0) = 0 and ∇ f (0) =
0. The perturbed mapping f + F has ( f + F)−1 single-valued everywhere: ( f +
F)−1(y) = 0 when y≥ 0, and ( f +F)−1(y) =

√
|y| when y≤ 0. This mapping is not

calm at 0 for 0. Then, from Theorem 3H.3 again, f +F is not metrically subregular;
we have subreg( f +F ;0 |0) = ∞.

To conclude this section, we point out some other properties which are, in a
sense, derived from metric regularity but, like subregularity, lack such kind of sta-
bility. One of these properties is the openness which we introduced in Section 1F:
a function f : IRn→ IRm is said to be open at x̄ ∈ dom f when for every a > 0 there
exists b > 0 such that f (x̄+ a int IB) ⊃ f (x̄)+ b int IB. It turns out that this prop-
erty likewise fails to be preserved when f is perturbed to f + g by a function g
with lip(g; x̄) = 0. As an example, consider the zero function f ≡ 0 acting from IR
to IR which is not open at the origin, and its perturbation f + g with g = x3 hav-
ing lip(g;0) = |g′(0)| = 0, which is open at the origin. A “metric regularity vari-
ant” of the openness property, equally failing to be preserved under small Lipschitz
continuous perturbations, as shown by this same example, is the requirement that
(x̄, ȳ) ∈ gph F and d(x̄,F−1(y))≤ κ|y− ȳ| for y close to ȳ.

If we consider calmness as a local version of the outer Lipschitz continuity, then it
might seem to be worthwhile to define a local version of inner Lipschitz continuity,
introduced in Section 3D. For a mapping S : IRm→→ IRn with (ȳ, x̄)∈ gph S, this would
refer to the existence of neighborhoods U of x̄ and V of ȳ such that

(7) S(ȳ)∩U ⊂ S(y)+κ|y− ȳ|IB for all y ∈V.

We will not give a name to this property here, or a name to the associated property
of the inverse of a mapping satisfying (7). We will only demonstrate, by an example,
that the property of the inverse associated to (7), similar to metric subregularity, is
not stable under perturbation, in the sense we have been exploring, and hence does
not support the implicit function theorem paradigm.

Consider the mapping S : IR →→ IR whose values are the set of three points
{−√y,0,

√
y} for all y≥ 0 and the empty set for y < 0. This mapping has the prop-

erty in (7) at ȳ = 0 for x̄ = 0. Now consider the inverse S−1 and add to it the function
g(x) = −x2, which has zero derivative at x̄ = 0. The sum S−1 + g is the mapping
whose value at x = 0 is the interval [0,∞) but is just zero for x 6= 0. The inverse
(S−1 + g)−1 has (−∞,∞) as its value for y = 0, but 0 for y > 0 and the empty set
for y < 0. Clearly, this inverse does not have the property displayed in (7) at ȳ = 0
for x̄ = 0. It should be noted that for special cases of mappings with particular per-
turbations one might still obtain stability of metric subregularity, or the property
associated to (7), but we shall not go into this further.
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3I. Strong Metric Subregularity

The handicap of serious instability of calmness and metric subregularity can be
obviated by passing to strengthened forms of these properties.

Isolated calmness. A mapping S : IRm→→ IRn is said to have the isolated calmness
property if it is calm at ȳ for x̄ and, in addition, S has a graphical localization at ȳ
for x̄ that is single-valued at ȳ itself (with value x̄). Specifically, this refers to the
existence of a constant κ ≥ 0 and neighborhoods U of x̄ and V of ȳ such that

(1) |x− x̄| ≤ κ|y− ȳ| when x ∈ S(y)∩U and y ∈V.

Observe that in this definition S(ȳ)∩U is a singleton, namely the point x̄, so x̄ is
an isolated point in S(ȳ), hence the terminology. Isolated calmness can equivalently
be defined as the existence of a (possibly slightly larger) constant κ and neighbor-
hoods U of x̄ and V of ȳ such that

(2) S(y)∩U ⊂ x̄+κ|y− ȳ|IB when y ∈V.

For a linear mapping A : IRn → IRn, isolated calmness holds at every point,
whereas isolated calmness of A−1 holds at some point of dom A−1 if and only if
A is nonsingular. More generally we have the following fact through Theorem 3D.1
for polyhedral mappings, as defined there.

Proposition 3I.1 (isolated calmness of polyhedral mappings). A polyhedral map-
ping S : IRm→→ IRn has the isolated calmness property at ȳ for x̄ if and only if x̄ is an
isolated point of S(ȳ).

Once again we can ask whether there is a property of a mapping that corresponds
to isolated calmness of its inverse. Such a property exists and, parallel to strong
metric regularity in 3G.1, can be deduced from an equivalence relation.

Proposition 3I.2 (isolated calmness and metric subregularity). For a mapping F :
IRn→→ IRm and a pair (x̄, ȳ) ∈ gph F , the following properties are equivalent:

(a) F−1 has the isolated calmness property at ȳ for x̄;
(b) F is metrically subregular at x̄ for ȳ and F−1 has no localization at ȳ for x̄

that is multivalued at ȳ.

Proof. According to 3H.3 condition (a) implies that F is metrically subregular at
x̄ for ȳ; furthermore, the definition of isolated calmness yields that F−1 has no lo-
calization at ȳ for x̄ that is multivalued at ȳ. Hence (a) implies (b). The proof of the
converse implication is symmetric.

In order to unify the terminology, we name the new property as follows.

Strong metric subregularity. A mapping F : IRn→→ IRm is said to be strongly met-
rically subregular at x̄ for ȳ if (x̄, ȳ)∈ gph F and there is a constant κ ≥ 0 along with
neighborhoods U of x̄ and V of ȳ such that
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(3) |x− x̄| ≤ κd(ȳ,F(x)∩V ) for all x ∈U.

Clearly, the infimum of κ for which (3) holds is equal to subreg(F ; x̄ | ȳ).
Note however that, in general, the condition subreg(F ; x̄ | ȳ) < ∞ is not a char-

acterization of strong metric subregularity, but becomes such a criterion under the
isolatedness assumption. As an example, observe that, for a linear mapping A is al-
ways metrically subregular at 0 for 0, but it is strongly metrically subregular at 0
for 0 if and only if ker A consists of just 0, which corresponds to A being injective.
The equivalence of strong metric subregularity and isolated calmness of the inverse
is shown next:

Theorem 3I.3 (characterization by isolated calmness of the inverse). A mapping
F : IRn →→ IRm is strongly metrically subregular at x̄ for ȳ if and only if its inverse
F−1 has the isolated calmness property at ȳ for x̄.

Specifically, for any κ > subreg(F ; x̄ | ȳ) there exist neighborhoods U of x̄ and V
of ȳ such that

(4) F−1(y)∩U ⊂ x̄+κ|y− ȳ|IB when y ∈V.

Moreover, the infimum of all κ such that the inclusion (4) holds for some neighbor-
hoods U and V actually equals subreg(F ; x̄ | ȳ).
Proof. Assume first that F is strongly subregular at x̄ for ȳ. Let κ > subreg(F ; x̄ | ȳ).
Then there are neighborhoods U for x̄ and V for ȳ such that (3) holds with the
indicated κ . Consider any y ∈ V . If F−1(y)∩U = /0, then (4) holds trivially. If not,
let x ∈ F−1(y)∩U . This entails y ∈ F(x)∩V , hence d(ȳ,F(x)∩V ) ≤ |y− ȳ| and
consequently |x− x̄| ≤ κ|y− ȳ| by (3). Thus, x ∈ x̄+ κ|y− ȳ|IB, and we conclude
that (4) holds. Also, we see that subreg(F ; x̄ | ȳ) is not less than the infimum of all κ

such that (4) holds for some choice of U and V .
For the converse, suppose (4) holds for some κ and neighborhoods U and V .

Consider any x ∈U . If F(x)∩V = /0 the right side of (3) is ∞ and there is nothing
more to prove. If not, for an arbitrary y ∈ F(x)∩V we have x ∈ F−1(y)∩U , and
therefore x ∈ x̄+κ|y− ȳ|IB by (4), which means |x− x̄| ≤ κ|y− ȳ|. This being true
for all y ∈ F(x)∩V , we must have |x− x̄| ≤ κd(ȳ,F(x)∩V ). Thus, (3) holds, and
in particular we have κ ≥ subreg(F ; x̄ | ȳ). Therefore, the infimum of κ in (4) equals
subreg(F ; x̄ | ȳ).

Observe also, through 3H.4, that the neighborhood V in (2) and (3) can be chosen
to be the entire space IRm, by adjusting the size of U ; that is, strong metric subregu-
larity as in (3) with constant κ is equivalent to the existence of a neighborhood U ′

of x̄ such that

(5) |x− x̄| ≤ κd(ȳ,F(x)) for all x ∈U ′.

Accordingly, the associated isolated calmness of the inverse is equivalent to the
existence of a neighborhood U ′ of x̄ such that

(6) F−1(y)∩U ′ ⊂ x̄+κ|y− ȳ|IB when y ∈ IRm.
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Exercise 3I.4. Provide direct proofs of the equivalence of (3) and (5), and (4) and
(6), respectively.

Guide. Use the argument in the proof of 3H.4.

Similarly to the distance function characterization in Theorem 3E.6 for the Aubin
property, the isolated calmness property is characterized by uniform calmness of the
distance function associated with the inverse mapping:

Theorem 3I.5 (distance function characterization of strong metric subregularity).
For a mapping F : IRn→→ IRm and a point (x̄, ȳ) ∈ gph F , suppose that x̄ is an isolated
point in F−1(ȳ) and moreover

(7) x̄ ∈ liminf
y→ȳ

F−1(y).

Consider the function s(y,x) = d(x,F−1(y)). Then the mapping F is strongly met-
rically subregular at x̄ for ȳ if and only if s is calm with respect to y uniformly in x
at (ȳ, x̄), in which case

ĉlm y(s;(ȳ, x̄)) = subreg(F ; x̄ | ȳ).

Proof. Let F be strongly metrically subregular at x̄ for ȳ and let κ > subreg(F ; x̄ | ȳ).
Let (5) and (6) hold with U ′ = IBa(x̄) and also F−1(ȳ)∩ IBa(x̄) = x̄. Let b > 0 be
such that, according to (7), F−1(y)∩ IBa(x̄) 6= /0 for all y ∈ IBb(ȳ). Make b smaller
if necessary so that b≤ a/(10κ). Choose y ∈ IBb(ȳ) and x ∈ IBa/4(x̄); then from (6)
we have

(8) d(x̄,F−1(y)∩ IBa(x̄))≤ κ|y− ȳ|.

Since all points in F−1(ȳ) except x̄ are at distance from x more than a/4 we obtain

(9) d(x,F−1(ȳ)) = |x− x̄|.

Utilizing (8), we get

(10)
d(x,F−1(y))≤ |x− x̄|+d(x̄,F−1(y))

≤ |x− x̄|+d(x̄,F−1(y)∩ IBa(x̄))≤ |x− x̄|+κ|y− ȳ|.

Then, taking (9) into account, we have

(11) s(y,x)− s(ȳ,x) = d(x,F−1(y))−d(x,F−1(ȳ))≤ κ|y− ȳ|.

Let x̃ be a projection of x on cl F−1(y). Using (10), we obtain

|x− x̃|= d(x,F−1(y))≤ |x− x̄|+κ|y− ȳ| ≤ a/4+κb≤ a/4+κa/(10κ)< a/2,

and consequently

|x̄− x̃| ≤ |x̄− x|+ |x− x̃| ≤ a/4+a/2 = 3a/4 < a.
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Therefore,

(12) d(x,F−1(y)∩ IBa(x̄)) = d(x,F−1(y)).

According to (6),

d(x, x̄+κ|y− ȳ|IB)≤ d(x,F−1(y)∩ IBa(x̄))

and then, by (12),

(13) |x− x̄|−κ|y− ȳ| ≤ d(x,F−1(y)∩ IBa(x̄)) = d(x,F−1(y)).

Plugging (9) into (13), we conclude that

(14) s(ȳ,x)− s(y,x) = d(x,F−1(ȳ))−d(x,F−1(y))≤ κ|y− ȳ|.

Since x and y were arbitrarily chosen in dom s and close to x̄ and ȳ, respectively, we
obtain by combining (11) and (14) that ĉlm y(s;(ȳ, x̄))≤ κ , hence

(15) ĉlm y(s;(ȳ, x̄)) ≤ subreg(F ; x̄ | ȳ).

To show the converse inequality, let κ > ĉlm y(s;(ȳ, x̄)); then there exists a > 0
such that s(·,x) is calm on IBa(ȳ) with constant κ uniformly in x∈ IBa(x̄). Adjust a so
that F−1(ȳ)∩ IBa(x̄) = x̄. Pick any x ∈ IBa/3(x̄). If F(x) = /0, (5) holds automatically.
If not, choose any y ∈ IRm such that (x,y) ∈ gph F . Since s(y,x) = 0, we have

|x− x̄|= d(x,F−1(ȳ)) = s(ȳ,x)≤ s(y,x)+κ|y− ȳ|= κ|y− ȳ|.

Since y is arbitrarily chosen in F(x), this gives us (5). This means that F is strongly
subregular at x̄ for ȳ with constant κ and hence

ĉlm y(s;(ȳ, x̄)) ≥ subreg(F ; x̄ | ȳ).

Combining this with (15) brings the proof to a finish.

Exercise 3I.6 (counterexample). Show that the mapping F : IR→→ IR given by

F(x) =

{x if 0≤ x < 1,
IR if x≥ 1,
/0 if x < 0

does not satisfy condition (7) and has subreg(F ;0 |0) = 1 while ĉlm y(s;(0,0)) =∞.

We look next at perturbations of F by single-valued mappings g in the pattern
that was followed for the other regularity properties considered in the preceding
sections.
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Theorem 3I.7 (inverse mapping theorem for strong metric subregularity). Consider
a mapping F : IRn→→ IRm and a point (x̄, ȳ)∈ gph F such that F is strongly metrically
subregular at x̄ for ȳ. Consider also a function g : IRn→ IRm with x̄ ∈ dom g. Let κ

and µ be nonnegative constants such that

κµ < 1, subreg(F ; x̄ | ȳ)≤ κ and clm(g; x̄)≤ µ.

Then
subreg(g+F ; x̄ |g(x̄)+ ȳ)≤ κ

1−κµ
.

Proof. Choose κ and µ as in the statement of the theorem and let λ > κ , ν > µ be
such that λν < 1. Pick g : IRn→ IRm with clm(g; x̄)< ν . Without loss of generality,
let g(x̄) = 0; then there exists a > 0 such that

(16) |g(x)| ≤ ν |x− x̄| when x ∈ IBa(x̄).

Since subreg(F ; x̄ | ȳ)< λ , we can arrange, by taking a smaller if necessary, that

(17) |x− x̄| ≤ λ |y− ȳ| when (x,y) ∈ gph F ∩ (IBa(x̄)× IBa(ȳ)).

Let ν ′ = max{1,ν} and consider any

(18) z ∈ IBa/2(ȳ) with x ∈ (g+F)−1(z)∩ IBa/2ν ′(x̄).

These relations entail z ∈ g(x)+F(x), hence z = y+g(x) for some y ∈ F(x). From
(16) and since x ∈ IBa/(2ν ′)(x̄), we have |g(x)| ≤ νa/(2ν ′)≤ a/2 (inasmuch as ν ′ ≥
ν). Using the equality y− ȳ = z−g(x)− ȳ we get |y− ȳ| ≤ |z− ȳ|+ |g(x)| ≤ (a/2)+
(a/2) = a. However, because (x,y) ∈ gph F ∩ (IBa(x̄)× IBa(ȳ)), through (17),

|x− x̄| ≤ λ |(z−g(x))− ȳ| ≤ λ |z− ȳ|+λ |g(x)| ≤ λ |z− ȳ|+λν |x− x̄|,

hence |x− x̄| ≤ λ/(1−λν)|z− ȳ|. Since x and z are chosen as in (18) and λ and ν

could be arbitrarily close to κ and µ , respectively, the proof is complete.

Corollaries that parallel those for metric regularity given in Section 3F can im-
mediately be derived.

Corollary 3I.8 (detailed estimate). Consider a mapping F : IRn →→ IRm which is
strongly metrically subregular at x̄ for ȳ and a function g : IRn→ IRm such that

subreg(F ; x̄ | ȳ)> 0 and subreg(F ; x̄ | ȳ) · clm(g; x̄)< 1.

Then the mapping g+F is strongly metrically subregular at x̄ for g(x̄)+ ȳ, and one
has

subreg(g+F ; x̄ |g(x̄)+ ȳ) ≤
(

subreg(F ; x̄ | ȳ)−1− clm(g; x̄)
)−1

.

This result implies in particular that the property of strong metric subregularity is
preserved under perturbations with zero calmness moduli. The only difference with
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the corresponding results for metric regularity in Section 3F is that now a larger
class of perturbation is allowed with first-order approximations replacing the strict
first-order approximations.

Corollary 3I.9 (utilizing first-order approximations). Consider F : IRn →→ IRm, a
point (x̄, ȳ) ∈ gph F and two functions f : IRn → IRm and g : IRn → IRm with
x̄ ∈ int dom f ∩ int dom g which are first-order approximations to each other at x̄.
Then the mapping f +F is strongly metrically subregular at x̄ for f (x̄)+ ȳ if and
only if g+F is strongly metrically subregular at x̄ for g(x̄)+ ȳ, in which case

subreg( f +F ; x̄ | f (x̄)+ ȳ) = subreg(g+F ; x̄ |g(x̄)+ ȳ).

This corollary takes a more concrete form when the first-order approximation is
represented by a linearization:

Corollary 3I.10 (linearization). Let M = f + F for mappings f : IRn → IRm and
F : IRn→→ IRm, and let ȳ ∈M(x̄). Suppose f is differentiable at x̄, and let

M0 = h+F for h(x) = f (x̄)+∇ f (x̄)(x− x̄).

Then M is strongly metrically subregular at x̄ for ȳ if and only if M0 has this property.
Moreover subreg(M; x̄ | ȳ) = subreg(M0; x̄ | ȳ).

Through 3I.1, the result in Corollary 3I.10 could equally well be stated in terms of
the isolated calmness property of M−1 in relation to that of M−1

0 . We can specialize
that result in the following way.

Corollary 3I.11 (linearization with polyhedrality). Let M : IRn→→ IRm with ȳ∈M(x̄)
be of the form M = f +F for f : IRn→ IRm and F : IRn→→ IRm such that f is differen-
tiable at x̄ and F is polyhedral. Let M0(x) = f (x̄)+∇ f (x̄)(x− x̄)+F(x). Then M−1

has the isolated calmness property at ȳ for x̄ if and only if x̄ is an isolated point of
M−1

0 (ȳ).

Proof. This applies 3I.1 in the framework of the isolated calmness restatement of
3I.10 in terms of the inverses.

Applying Corollary 3I.10 to the case where F is the zero mapping, we obtain yet
another inverse function theorem in the classical setting:

Corollary 3I.12 (an inverse function result). Let f : IRn→ IRm be differentiable at
x̄ and such that ker ∇ f (x̄) = {0}. Then there exist κ > 0 and a neighborhood U of
x̄ such that

|x− x̄| ≤ κ| f (x)− f (x̄)| for every x ∈U.

Proof. This comes from (5).

Next, we state and prove an implicit function theorem for strong metric subregu-
larity:
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Theorem 3I.13 (implicit mapping theorem with strong metric subregularity). For
the generalized equation f (p,x)+F(x) 3 0 and its solution mapping

S : p 7→
{

x
∣∣ f (p,x)+F(x) 3 0

}
,

consider a pair (p̄, x̄) with x̄ ∈ S(p̄). Let h : IRn → IRm be an estimator of f with
respect to x at (p̄, x̄) with constant µ and let h+F be strongly metrically subregular
at x̄ for 0 with subreg(h+F ; x̄ |0)≤ κ . Suppose that

(19) κµ < 1 and ĉlm p( f ;(p̄, x̄))≤ λ < ∞.

Then S has the isolated calmness property at p̄ for x̄, moreover with

clm(S; p̄ | x̄) ≤ κλ

1−κµ
.

Proof. The proof goes along the lines of the proof of Theorem 3I.7 with different
choice of constants. Let κ, µ and λ be as required and let δ > κ and ν > µ be such
that δν < 1. Let γ > λ . By the assumptions for the mapping h+F and the functions
f and h, there exist positive scalars a and r such that

(20) |x− x̄| ≤ δ |y| for all x ∈ (h+F)−1(y)∩ IBa(x̄) and y ∈ IBνa+γr(0),

(21) | f (p,x)− f (p̄,x)| ≤ γ|p− p̄| for all p ∈ IBr(p̄) and x ∈ IBa(x̄),

and also, for e = f −h,

(22) |e(p,x)− e(p, x̄)| ≤ ν |x− x̄| for all x ∈ IBa(x̄) and p ∈ IBr(p̄).

Let x ∈ S(p)∩ IBa(x̄) for some p ∈ IBr(p̄). Then, since h(x̄) = f (p̄, x̄), we obtain
from (21) and (22) that

(23)
|e(p,x)| ≤ |e(p,x)− e(p, x̄)|+ | f (p, x̄)− f (p̄, x̄)|

≤ ν |x− x̄|+ γ|p− p̄| ≤ νa+ γr.

Observe that x ∈ (h+F)−1(− f (p,x)+h(x))∩ IBa(x̄), and then from (20) and (23)
we have

|x− x̄| ≤ δ |− f (p,x)+h(x)| ≤ δν |x− x̄|+δγ|p− p̄|.
In consequence,

|x− x̄| ≤ δγ

1−δν
|p− p̄|.

Since δ is arbitrarily close to κ , ν is arbitrarily close to µ and γ is arbitrarily close
to λ , we arrive at the desired result.

In the theorem we state next, we can get away with a property of f at (p̄, x̄)
which is weaker than local continuous differentiability, namely a kind of uniform
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differentiability. We say that f (p,x) is differentiable in x uniformly with respect to
p at (p̄, x̄) if f is differentiable with respect to (p,x) at (p̄, x̄) and for every ε > 0
there is a (p,x)-neighborhood of (p̄, x̄) in which

| f (p,x)− f (p, x̄)−∇x f (p̄, x̄)(x− x̄)| ≤ ε|x− x̄|.

Symmetrically, we define what it means for f (p,x) to be differentiable in p uni-
formly with respect to x at (p̄, x̄). Note that the combination of these two properties
is implied by, yet weaker than, the continuous differentiability of f at (p̄, x̄). For
instance, the two uniformity properties hold when f (p,x) = f1(p)+ f2(x) and we
simply have f1 differentiable at p̄ and f2 differentiable at x̄.

Theorem 3I.14 (utilizing differentiability and ample parameterization). For the
generalized equation in Theorem 3I.13 and its solution mapping S, and a pair (p̄, x̄)
with x̄ ∈ S(p̄), suppose that f is differentiable in x uniformly with respect to p at
(p̄, x̄), and at the same time differentiable in p uniformly with respect to x at (p̄, x̄).
If the mapping

h+F for h(x) = f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄)

is strongly metrically subregular at x̄ for 0, then S has the isolated calmness property
at p̄ for x̄ with

(24) clm(S; p̄ | x̄) ≤ subreg(h+F ; x̄ |0) · |∇p f (p̄, x̄)|.

Furthermore, when f is continuously differentiable on a neighborhood of (p̄, x̄) and
satisfies the ample parameterization condition

rank ∇p f (p̄, x̄) = m,

then the converse implication holds as well: the mapping h+F is strongly metrically
subregular at x̄ for 0 provided that S has the isolated calmness property at p̄ for x̄.

Proof. With this choice of h, the assumption (19) of 3I.13 holds and then (24) fol-
lows from the conclusion of this theorem. To handle the ample parameterization we
employ Lemma 2C.1 by repeating the argument in the proof of 3F.10, simply re-
placing the composition rule there with the one in the following proposition.

Proposition 3I.15 (isolated calmness in composition). For a mapping M : IRd→→ IRn

and a function ψ : IRn× IRm→ IRd consider the composite mapping N : IRm→→ IRn of
the form

y 7→ N(y) =
{

x
∣∣x ∈M(ψ(x,y))

}
for y ∈ IRm.

Let ψ satisfy

(25) ĉlm x(ψ;(x̄,0)) = 0 and ĉlm y(ψ;(x̄,0)) < ∞,
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and let (ψ(x̄,0), x̄) ∈ gph M. If M has the isolated calmness property at ψ(x̄,0) for
x̄, then N has the isolated calmness property at 0 for x̄.

Proof. Let M have the isolated calmness property with neighborhoods IBb(x̄), IBc(p̄)
and constant κ > clm(M; p̄ | x̄), where p̄ = ψ(x̄,0). Choose λ ∈ (0,1/κ) and a > 0
such that for any y ∈ IBa(0) the function ψ(·,y) is calm on IBb(x̄) with calmness
constant λ . Pick γ > ĉlm y(ψ;(x̄,0)) and make a and b smaller if necessary so that
the function ψ(x, ·) is calm on IBa(0) with constant γ and also

(26) λb+ γa≤ c.

Let y ∈ IBa(0) and x ∈ N(y)∩ IBb(x̄). Then x ∈ M(ψ(x,y))∩ IBb(x̄). Using the as-
sumed calmness properties (25) of ψ and utilizing (26) we see that

|ψ(x,y)− p̄|= |ψ(x,y)−ψ(x̄,0)| ≤ λb+ γa≤ c.

From the isolated calmness of M we then have

|x− x̄| ≤ κ|ψ(x,y)−ψ(x̄,0)| ≤ κλ |x− x̄|+κγ|y|,

hence
|x− x̄| ≤ κγ

1−κλ
|y|.

This establishes that the mapping N has the isolated calmness property at 0 for x̄
with constant κγ/(1−κλ ).

Example 3I.16 (complementarity problem). For f : IRd × IRn → IRn, consider the
complementarity problem of finding for given p an x such that

(27) x≥ 0, f (p,x)≥ 0, x⊥ f (p,x).

This corresponds to solving f (p,x)+NIRn
+
(x) 3 0, as seen in 2A. Let x̄ be a solution

for p̄, and suppose that f is continuously differentiable in a neighborhood of (p̄, x̄).
Consider now the linearized problem

(28) x≥ 0, Ax+ y≥ 0, x⊥ Ax+ y, with A = ∇x f (p̄, x̄),

where y is a parameter in a neighborhood of ȳ = f (p̄, x̄)−Ax̄. Then, from 3I.14 we
obtain that if the solution mapping of (28) has the isolated calmness property at ȳ
for x̄, then the solution mapping of (27) has the isolated calmness property at p̄ for
x̄. Under the ample parameterization condition, rank ∇p f (p̄, x̄) = n, the converse
implication holds as well.
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Commentary

The inner and outer limits of sequences of sets were introduced by Painlevé in his
lecture notes as early as 1902, but the idea could be traced back to Peano accord-
ing to Dolecki and Greco [2011]. These limits were later popularized by Hausdorff
[1927] and Kuratowski [1933]. The definition of excess was first given by Pompeiu
[1905], who also defined the distance between sets C and D as e(C,D)+ e(D,C).
Hausdorff [1927] gave the definition we use here. These two definitions are equiva-
lent in the sense that they induce the same convergence of sets. The reader can find
much more about set-convergence and continuity properties of set-valued mappings
together with extended historical commentary in Rockafellar and Wets [1998], for
more advanced treatment see Beer [1993]. This includes the reason why we prefer
“inner and outer” in contrast to the more common terms “lower and upper,” so as to
avoid certain conflicts in definition that unfortunately pervade the literature.

Theorem 3B.4 is a particular case of a result sometimes referred to as the Berge
theorem; see Section 8.1 in Dontchev and Zolezzi [1993] for a general statement.
Theorem 3C.3 comes from Walkup and Wets [1969], while the Hoffman lemma,
3C.4, is due to Hoffman [1952].

The concept of outer Lipschitz continuity was introduced by Robinson [1979,
1981] under the name “upper Lipschitz continuity” and adjusted to “outer Lipschitz
continuity” later in Robinson [2007]. Theorem 3D.1 is due to Robinson [1981] while
3D.3 is a version, given in Robinson [2007], of a result due to Wu Li [1994].

The Aubin property of set-valued mappings was introduced by J.-P. Aubin
[1984], who called it “pseudo-Lipschitz continuity”; it was renamed after Aubin
in Dontchev and Rockafellar [1996]. In the literature one can also find it termed
“Aubin continuity,” but we do not use that here since the Aubin property does not
imply continuity. Theorem 3E.3 is from Bessis, Ledyaev and Vinter [2001]. The
name “metric regularity” was coined by J. M. Borwein [1986a], but the origins of
this concept go back to the Banach open mapping theorem and even earlier. Theo-
rem 3E.5 is from Rockafellar [1985]. Theorem 3E.10 comes from Ledyaev and Zhu
[1999]. For historical remarks regarding inverse and implicit mapping theorems with
metric regularity, see the commentary to Chapter 5 where more references are given.

As we mentioned earlier in Chapter 2, the term “strong regularity” comes from
Robinson [1980], who used it in the framework of variational inequalities. Theo-
rem 3F.5 is a particular case of a more general result due to Kenderov [1975]; see
also Levy and Poliquin [1997]. Theorem 3F.14 is a simplified version of a result in
Aragón Artacho and Mordukhovich [2010].

Calmness and metric subregularity, as well as isolated calmness and metric sub-
regularity, have been considered in various contexts and under various names in
the literature; here we follow the terminology of Dontchev and Rockafellar [2004].
Isolated calmness was formally introduced in Dontchev [1995a], where its stability
(Theorem 3I.7) was first proved. The equivalent property of strong metric subregu-
larity was considered earlier, without giving it a name, by Rockafellar [1989]; see
also the commentary to Chapter 4.



Chapter 4
Metric Regularity Through Generalized
Derivatives

In the wide-ranging generalizations we have been developing of the inverse function
theorem and implicit function theorem, we have followed the idea that conclusions
about a solution mapping, concerning the Aubin property, say, or the existence of a
single-valued localization, can be drawn by confirming that some auxiliary solution
mapping, obtained from a kind of approximation, has the property in question. In the
classical framework, we can appeal to a condition like the invertibility of a Jacobian
matrix and thus tie in with standard calculus. Now we are far away in another world
where even a concept of differentiability seems to be lacking. However, substitutes
for classical differentiability can very well be introduced and put to work. In this
chapter we show the way to that and explain numerous consequences.

First, graphical differentiation of a set-valued mapping is defined through the va-
riational geometry of the mapping’s graph. A characterization of the Aubin property
is derived and applied to the case of a solution mapping. Another criterion for metric
regularity is derived utilizing coderivatives. Strong metric regularity is characterized
next through a strict graphical derivative. Finally, the graphical derivative is used
again to characterize strong metric subregularity. Applications are made to parame-
terized constraint systems and special features of solution mappings for variational
inequalities, with emphasis on variational inequalities over polyhedral convex sets.
Finally, it is shown that for the Karush-Kuhn-Tucker system metric regularity and
strong metric regularity are equivalent properties.

203
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4A. Graphical Differentiation

The concept of the tangent cone TC(x) to a set C in IRn at a point x∈C was introduced
in 2A, but it was only utilized there in the case of C being closed and convex. In 2E,
the geometry of tangent cones to polyhedral convex sets received special attention
and led to significant insights in the study of variational inequalities. Now, tangent
cones to possibly nonconvex sets will come strongly onto the stage as well, serving
as a tool for a kind of generalized differentiation. The definition of the tangent cone
is the same as before.

Tangent cones. A vector v ∈ IRn is said to be tangent to a set C ⊂ IRn at a point
x ∈C if

1
τk (x

k− x)→ v for some xk→ x, xk ∈C, τ
k↘0.

The set of all such vectors v is called the tangent cone to C at x and is denoted TC(x).
The tangent cone mapping is defined as

TC : x 7→
{

TC(x) for x ∈C,
/0 otherwise.

A description equivalent to this definition is that v ∈ TC(x) if and only if there are
sequences vk→ v and τk↘0 with x+τkvk ∈C, or equivalently, if there are sequences
xk ∈C, xk→ x and τk↘0 such that vk := (xk− x)/τk→ v as k→ ∞.

Note that TC(x) is indeed a cone: it contains v = 0 (as seen from taking xk ≡ x),
and contains along with any vector v all positive multiples of v. The definition can
also be recast in the notation of set convergence:

(1) TC(x) = limsup
τ↘0

τ
−1(C− x).

Described as an outer limit in this way, it is clear in particular that TC(x) is always
a closed set. When C is a “smooth manifold” in IRn, TC(x) is the usual tangent
subspace, but in general, of course, TC(x) need not even be convex. The tangent
cone mapping TC has dom TC = C but gph TC is not necessarily a closed subset of
IRn× IRn even when C is closed.

As noted in 2A.4, when the set C is convex, the tangent cone TC(x) is also convex
for every x ∈C. In this case the limsup in (1) can be replaced by lim, as shown in
the following proposition.

Proposition 4A.1 (tangent cones to convex sets). For a convex set C ⊂ IRn and a
point x ∈C,

(2) TC(x) = lim
τ↘0

τ
−1(C− x).

Proof. Consider the set
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KC(x) =
{

v
∣∣∃τ > 0 with x+ τv ∈C

}
.

Let v ∈ TC(x). Then there exist sequences τk↘0 and xk ∈C, xk→ x, such that vk :=
(xk− x)/τk → v. Hence vk ∈ KC(x) for all k and therefore v ∈ cl KC(x). Thus, we
obtain

(3) TC(x)⊂ cl KC(x).

Now let v ∈ KC(x). Then v = (x̃− x)/τ for some τ > 0 and x̃ ∈C. Take an arbitrary
sequence τk↘0 as k→ ∞. Since C is convex, we have

x+ τ
kv = (1− τk

τ
)x+

τk

τ
x̃ ∈C for all k.

But then v ∈ (C− x)/τk for all k and hence v ∈ liminfk(C− x)/τk. Since τk was
arbitrarily chosen, we conclude that

KC(x)⊂ liminf
τ↘0

τ
−1(C− x)⊂ limsup

τ↘0
τ
−1(C− x) = TC(x).

This combined with (3) gives us (2).

We should note that, in order to have the equality (2), the set C does not need to
be convex. Generally, sets C for which (2) is satisfied are called geometrically deriv-
able. Proposition 4A.1 simply says that all convex sets are geometrically derivable.

Starting in elementary calculus, students are taught to view differentiation in
terms of tangents to the graph of a function. This can be formulated in the notation
of tangent cones as follows. Let f : IRn→ IRm be a function which is differentiable
at x with derivative mapping D f (x) : IRn→ IRm. Then

(u,v) ∈ gph D f (x) ⇐⇒ (u,v) ∈ Tgph f (x, f (x)).

In other words, the derivative is completely represented geometrically by the tangent
cone to the set gph f at the point (x, f (x)). In fact, differentiability is more or less
equivalent to having Tgph f (x, f (x)) turn out to be the graph of a linear mapping.

By adopting such a geometric characterization as a definition, while not insisting
on linearity, we can introduce derivatives for an arbitrary set-valued mapping F :
IRn→→ IRm. However, because F(x) may have more than one element y, it is essential
for the derivative mapping to depend not just on x but also on a choice of y ∈ F(x).

Graphical derivative. For a mapping F : IRn→→ IRm and a pair (x,y) with y∈ F(x),
the graphical derivative of F at x for y is the mapping DF(x |y) : IRn→→ IRm whose
graph is the tangent cone Tgph F(x,y) to gph F at (x,y):

v ∈ DF(x |y)(u) ⇐⇒ (u,v) ∈ Tgph F(x,y).

Thus, v ∈DF(x |y)(u) if and only if there exist sequences uk→ u, vk→ v and τk↘0
such that y+ τkvk ∈ F(x+ τkuk) for all k.
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On this level, derivative mappings may no longer even be single-valued. But
because their graphs are cones, they do always belong to the following class of
mappings, at least.

Positively homogeneous mappings. A mapping H : IRn→→ IRm is called positively
homogeneous when gph H is a cone, which is equivalent to H satisfying

0 ∈ H(0) and H(λx) = λH(x) for λ > 0.

Clearly, the inverse of a positively homogeneous mapping is another positively
homogeneous mapping. Linear mappings are positively homogeneous as a special
case, their graphs being not just cones but linear subspaces.

Since the graphical differentiation comes from an operation on graphs, and the
graph of a mapping F can be converted to the graph of its inverse F−1 just by
interchanging variables, we immediately have the rule that

D(F−1)(y |x) = DF(x |y)−1.

Another useful relation is available for sums.

Proposition 4A.2 (sum rule). For a function f : IRn→ IRm which is differentiable at
x, a set-valued mapping F : IRn→→ IRm and any y ∈ F(x), one has

D( f +F)(x | f (x)+ y) = D f (x)+DF(x |y).

Proof. If v ∈ D( f +F)(x | f (x)+ y)(u) there exist sequences τk↘0 and uk→ u and
vk→ v such that

f (x)+ y− f (x+ τ
kuk)+ τ

kvk ∈ F(x+ τ
kuk) for every k.

By using the definition of the derivative for f we get

y+ τ
k(−D f (x)u+ vk)+o(τk) ∈ F(x+ τ

kuk).

Hence, by the definition of the graphical derivative, v ∈ D f (x)u+DF(x |y)(u).
Conversely, if v−D f (x)u ∈ DF(x |y)(u) then there exist sequences τk↘0, and

uk → u and wk → v−D f (x)u such that y+ τkwk ∈ F(x+ τkuk). Again, by the dif-
ferentiability of f ,

y+ f (x)+ τ
kvk +o(τk) ∈ ( f +F)(x+ τ

kuk) for vk = wk +D f (x)uk,

which yields v ∈ D( f +F)(x | f (x)+ y)(u).

Example 4A.3 (graphical derivative for a constraint system). Consider a general
constraint system of the form

(4) f (x)−D 3 y,
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for a function f : IRn→ IRm, a set D ⊂ IRm and a parameter vector y, and let x̄ be a
solution of (4) for ȳ at which f is differentiable. Then for the mapping

G : x 7→ f (x)−D, with ȳ ∈ G(x̄),

one has

(5) DG(x̄ | ȳ)(u) = D f (x̄)u−TD( f (x̄)− ȳ).

Detail. This applies the sum rule to the case of a constant mapping F ≡ −D,
for which the definition of the graphical derivative gives DF(x |z) = T−D(z) =
−TD(−z).

In the special but important case of Example 4A.3 in which D = IRs
−×{0}m−s

with f = ( f1, . . . , fm), the constraint system (4) with respect to y = (y1, . . . ,ym) takes
the form

fi(x)
{
≤ yi for i = 1, . . . ,s,
= yi for i = s+1, . . . ,m.

The graphical derivative formula (5) says then that a vector v = (v1, . . . ,vm) is in
DG(x |y)(u) if and only if

∇ fi(x)u
{
≤ vi for i ∈ [1,s] with fi(x) = yi,
= vi for i = s+1, . . . ,m.

Example 4A.4 (graphical derivative for a variational inequality). For a function
f : IRn → IRn and a convex set C ⊂ IRn that is polyhedral, consider the variational
inequality

(6) f (x)+NC(x) 3 y

in which y is a parameter. Let x be a solution of (6) at which f is differentiable. Let
v = y− f (x) ∈ NC(x) and let KC(x,v) be the corresponding critical cone, this being
the polyhedral convex cone TC(x)∩ [v]⊥. Then for the mapping

G : x 7→ f (x)+NC(x), with y ∈ G(x),

one has

(7) DG(x |y)(u) = D f (x)u+NKC(x,v)(u).

Detail. From the sum rule in 4A.2 we have DG(x |y)(u) = D f (x)u+DNC(x |v)(u).
According to Lemma 2E.4 (the reduction lemma for normal cone mappings to poly-
hedral convex sets), for every (x,v) ∈ gph NC there exists a neighborhood O of the
origin in IRn× IRn such that for (x′,v′) ∈ O one has

v+ v′ ∈ NC(x+ x′) ⇐⇒ v′ ∈ NKC(x,v)(x
′).
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This reveals in particular that the tangent cone to gph NC at (x,v) is just gph NKC(x,v),
or in other words, that DNC(x |v) is the normal cone mapping NKC(x,v). Thus we have
(7).

Because graphical derivative mappings are positively homogeneous, general
properties of positively homogeneous mappings can be applied to them. Norm con-
cepts are available in particular for capturing quantitative characteristics.

Outer and inner norms. For any positively homogeneous mapping H : IRn→→ IRm,
the outer norm and the inner norm are defined, respectively, by

(8) |H|+ = sup
|x|≤1

sup
y∈H(x)

|y| and |H|− = sup
|x|≤1

inf
y∈H(x)

|y|

with the convention infy∈ /0 |y|= ∞ and supy∈ /0 |y|=−∞.

When H is a linear mapping, both |H|+ and |H|− reduce to the operator (matrix)
norm |H| associated with the Euclidean norm. However, it must be noted that neither
|H|+ nor |H|− satisfies the conditions in the definition of a true “norm,” inasmuch as
set-valued mappings do not even form a vector space.

The inner and outer norms have simple interpretations when H = A−1 for a linear
mapping A : IRn → IRm. Let the m× n matrix for this linear mapping be denoted
likewise by A, for simplicity. If m < n, we have A surjective (the associated matrix
being of rank m) if and only if |A−1|− is finite, this expression being the norm of the
right inverse of A: |A−1|− = |AT(AAT)−1|. Then |A−1|+ = ∞. On the other hand, if
m > n, we have |A−1|+ < ∞ if and only if A is injective (the associated matrix has
rank n), and then |A−1|+ = |(ATA)−1AT| but |A−1|− = ∞. For m = n, of course, both
norms agree with the usual matrix norm |A−1|, and the finiteness of this quantity is
equivalent to nonsingularity of A.

Proposition 4A.5 (domains of positively homogeneous mappings). For a positively
homogeneous mapping H : IRn→→ IRm,

(9) dom H = IRn =⇒ |H|+ ≥ |H|−.

Moreover,

(10) |H|− < ∞ =⇒ dom H = IRn;

thus, if |H−1|− < ∞ then H must be surjective.

Proof. The implications (9) and (10) are immediate from the definition (8) and its
conventions concerning the empty set.

In cases where dom H is not all of IRn, it is possible for the inequality in (9) to fail.
As an illustration, this occurs for the positively homogeneous mapping H : IR→→ IR
defined by

H(x) =
{

0 for x≥ 0,
/0 for x < 0,
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for which |H|+ = 0 while |H|− = ∞.

Proposition 4A.6 (norm characterizations). The inner norm of a positively homo-
geneous mapping H : IRn→→ IRm satisfies

(11) |H|− = inf
{

κ > 0
∣∣∣H(x)∩κIB 6= /0 for all x ∈ IB

}
.

In parallel, the outer norm satisfies

(12) |H|+ = inf
{

κ ∈ (0,∞)
∣∣∣y ∈ H(x) ⇒ |y| ≤ κ|x|

}
= sup
|y|=1

1
d(0,H−1(y))

.

If H has closed graph, then furthermore

(13) |H|+ < ∞ ⇐⇒ H(0) = {0}.

If H has closed and convex graph, then the implication (10) becomes equivalence:

(14) |H|− < ∞ ⇐⇒ dom H = IRn

and in that case |H−1|− < ∞ if and only if H is surjective.

Proof. We get (11) and the first part of (12) simply by rewriting the formulas in
terms of IB =

{
x
∣∣ |x| ≤ 1

}
and utilizing the positive homogeneity. The infimum so

obtained in (12) is unchanged when y is restricted to have |y| = 1, and in this way
it can be identified with the infimum of all κ ∈ (0,∞) such that κ ≥ 1/|x| whenever
x ∈H−1(y) and |y|= 1. (It is correct in this to interpret 1/|x|= ∞ when x = 0.) This
shows that the middle expression in (12) agrees with the final one.

Moving on to (13), we observe that when |H|+ < ∞ the middle expression in (12)
implies that if (0,y)∈ gph H then y must be 0. To prove the converse implication we
will need the assumption that gph H is closed. Suppose that H(0) = {0}. If |H|+ =
∞, there has to be a sequence of points (xk,yk)∈ gph H such that 0< |yk|→∞ but xk
is bounded. Consider then the sequence of pairs (wk,uk) in which wk = xk/|yk| and
uk = yk/|yk|. We have wk→ 0, while uk has a cluster point ū with |ū|= 1. Moreover,
(wk,uk) ∈ gph H by the positive homogeneity and hence, through the closedness of
gph H, we must have H(0) 3 ū. This contradicts our assumption that H(0) = {0}
and terminates the proof of (13). The equivalence (14) follows from (9) and a general
result (Robinson–Ursescu theorem) which we will prove in Section 5B.

Corollary 4A.7 (norms of linear-constraint-type mappings). Suppose

H(x) = Ax−K

for a linear mapping A : IRn → IRm and a closed convex cone K ⊂ IRm. Then H is
positively homogeneous with closed and convex graph. Moreover

(15) |H−1|− = sup
|y|≤1

d(0,A−1(y+K))



210 4 Metric Regularity Through Generalized Derivatives

and

(16) |H−1|− < ∞ ⇐⇒ rge A−K = IRm.

On the other hand,

(17) |H−1|+ = sup
|x|=1

1
d(Ax,K)

and

(18) |H−1|+ < ∞ ⇐⇒
[

Ax−K 3 0 =⇒ x = 0
]
.

Proof. Formula (15) follows from the definition (8) while (16) comes from (14)
applied to this case. Formula (17) follows from (12) while (18) is the specification
of (13).

We will come back to the general theory of positively homogeneous mappings
and their norms in Section 5A. In the meantime there will be applications to the case
of derivative mappings.

Some properties of the graphical derivatives of convex-valued mappings under
Lipschitz continuity are displayed in the following exercise.

Exercise 4A.8. Consider a mapping F : IRn →→ IRm that is convex-valued and Lip-
schitz continuous in its domain and let (x,y) ∈ gph F . Prove that in this case
DF(x |y) is convex-valued and

(19) DF(x |y)(u) = lim
τ↘0

τ
−1(F(x+ τu)− y),

and in particular,

(20) DF(x |y)(0) = TF(x)(y).

Guide. Observe that, by definition

DF(x |y)(u) = limsup
τ↘0,u′→u

τ
−1(F(x+ τu′)− y).

Since F is Lipschitz continuous, this equality reduces to

(21) DF(x |y)(u) = limsup
τ↘0

τ
−1(F(x+ τu)− y).

Then use the convexity of the values of F as in the proof of Proposition 4A.1 to
show that limsup in (21) can be replaced by lim and use this to obtain convexity
of DF(x |y)(u) from the convexity of F(x+ τu). Lastly, to show (20) apply 4A.1 to
(19) in the case u = 0.
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Exercise 4A.9. For a positively homogeneous mapping H : IRn→→ IRm, show that

|H|− = 0 ⇐⇒ cl H(x) 3 0 for all x ∈ IRn,

|H|+ = 0 ⇐⇒ rge H = {0}.
Guide. Apply the norm characterizations in (11) and (12).

4B. Graphical Derivative Criterion for Metric Regularity

Conditions will next be developed which characterize metric regularity and the
Aubin property in terms of graphical derivatives. From these conditions, new forms
of implicit mapping theorems will be obtained. First, we state a fundamental fact.

Theorem 4B.1 (graphical derivative criterion for metric regularity). For a mapping
F : IRn →→ IRm and a point (x̄, ȳ) ∈ gph F at which the gph F is locally closed, one
has

(1) reg(F ; x̄ | ȳ) = limsup
(x,y)→(x̄,ȳ)
(x,y)∈gph F

|DF(x |y)−1|−.

Thus, F is metrically regular at x̄ for ȳ if and only if the right side of (1) is finite.

The proof of Theorem 4B.1 will be furnished later in this section. Note that in the
case when m≤ n and F is a function f which is differentiable on a neighborhood of
x̄, the representation of the regularity modulus in (1) says that f is metrically regular
precisely when the Jacobians ∇ f (x) for x near x̄ are of full rank and the inner norms
of their inverses ∇ f (x)−1 are uniformly bounded. This holds automatically when f
is continuously differentiable around x̄ with ∇ f (x̄) of full rank, in which case we get
not only metric regularity but also existence of a continuously differentiable local
selection of f−1, as in 1F.6. When m = n this becomes nonsingularity and we come
to the classical inverse function theorem.

Also to be kept in mind here is the connection between metric regularity and the
Aubin property in 3E.7. This allows Theorem 4B.1 to be formulated equivalently as
a statement about the Aubin property.

Theorem 4B.2 (graphical derivative criterion for the Aubin property). For a map-
ping S : IRm →→ IRn and a point (ȳ, x̄) ∈ gph S at which gph S is locally closed, one
has

(2) lip(S; ȳ | x̄) = limsup
(y,x)→(ȳ,x̄)
(y,x)∈gph S

|DS(y |x)|−.
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Thus, S has the Aubin property at ȳ for x̄ if and only if the right side of (2) is finite.

Solution mappings of much greater generality can also be handled with these
ideas. For this, we return to the framework introduced briefly at the end of Section
3E and delve into it much further. We consider the parameterized relation

(3) G(p,x) 3 0 for a mapping G : IRd× IRn→→ IRm

and its solution mapping S : IRd →→ IRn defined by

(4) S(p) =
{

x
∣∣G(p,x) 3 0

}
.

In Theorem 3E.10, a result was presented in which a partial Aubin property of G
with respect to p, combined with other assumptions, led to a conclusion that S has
the Aubin property. We are looking now toward finding derivative criteria for these
Aubin properties, so as to obtain a different type of statement about the “implicit
mapping” S.

The following theorem will be our stepping stone to progress and will have many
other interesting consequences as well. It makes use of the partial graphical deriva-
tive of G(p,x) with respect to x, which is defined as the graphical derivative of
the mapping x 7→ G(p,x) with p fixed and denoted by DxG(p,x |y). Of course,
DpG(p,x |y) has a similar meaning.

Theorem 4B.3 (solution mapping estimate). For the inclusion (3) and its solution
mapping S in (4), let x̄ ∈ S(p̄), so that (p̄, x̄,0) ∈ gph G. Suppose that gph G is
locally closed at (p̄, x̄,0) and that the distance mapping p 7→ d(0,G(p, x̄)) is upper
semicontinuous at p̄. Then for every c ∈ (0,∞) satisfying

(5) limsup
(p,x,y)→(p̄,x̄,0)
(p,x,y)∈gph G

|DxG(p,x |y)−1|− < c

there are neighborhoods V of p̄ and U of x̄ such that

(6) d(x,S(p))≤ cd(0,G(p,x)) for x ∈U and p ∈V.

Proof. Let c satisfy (5). Then there exists η > 0 such that

(7)

{
for every (p,x,y) ∈ gph G with |p− p̄|+max{|x− x̄|,c|y|} ≤ 2η ,

and for every v ∈ IRm, there exists u ∈ DxG(p,x |y)−1(v) with |u| ≤ c|v|.

We can always choose η smaller so that the intersection

(8) gph G
⋂ {

(p,x,y)
∣∣ |p− p̄|+max{|x− x̄|,c|y|} ≤ 2η

}
is closed.

The next part of the proof is developed as a lemma.

Lemma 4B.4 (intermediate estimate). For c and η as above, let ε > 0 and s > 0 be
such that
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(9) cε < 1 and s < εη

and let (p,ω,ν) ∈ gph G satisfy

(10) |p− p̄|+max{|ω− x̄|,c|ν |} ≤ η .

Then for every y′ ∈ IBs(ν) there exists x̂ with y′ ∈ G(p, x̂) such that

(11) |x̂−ω| ≤ 1
ε
|y′−ν |.

In the proof of the lemma we apply a fundamental result in variational analysis,
which is stated next:

Theorem 4B.5 (Ekeland variational principle). Let (X ,ρ) be a complete metric
space and let f : X → (−∞,∞] be a lower semicontinuous function on X which is
bounded from below. Let ū ∈ dom f . Then for every δ > 0 there exists uδ such that

f (uδ )+δρ(uδ , ū)≤ f (ū),

and
f (uδ )< f (u)+δρ(u,uδ ) for every u ∈ X , u 6= uδ .

Proof of Lemma 4B.4. On the product space Z := IRn× IRm we introduce the norm

‖(x,y)‖ := max{|x|,c|y|},

which is equivalent to the Euclidean norm. Pick ε , s and (p,ω,ν) ∈ gph G as re-
quired in (9) and (10) and let y′ ∈ IBs(ν). By (8) the set

Ep :=
{
(x,y)

∣∣(p,x,y) ∈ gph G, |p− p̄|+‖(x,y)− (x̄,0)‖ ≤ 2η} ⊂ IRn× IRm

is closed, hence, equipped with the metric induced by the norm in question, it is a
complete metric space. The function Vp : Ep→ IR defined by

(12) Vp : (x,y) 7→ |y′− y| for (x,y) ∈ Ep

is continuous on its domain Ep. Also, (ω,ν)∈ dom Vp. We apply Ekeland’s variatio-
nal principle 4B.5 to Vp with ū = (ω,ν) and the indicated ε to obtain the existence
of (x̂, ŷ) ∈ Ep such that

(13) Vp(x̂, ŷ)+ ε‖(ω,ν)− (x̂, ŷ)‖ ≤Vp(ω,ν)

and

(14) Vp(x̂, ŷ)≤Vp(x,y)+ ε‖(x,y)− (x̂, ŷ)‖ for every (x,y) ∈ Ep.

With Vp as in (12), the inequalities (13) and (14) come down to
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(15) |y′− ŷ|+ ε‖(ω,ν)− (x̂, ŷ)‖ ≤ |y′−ν |

and

(16) |y′− ŷ| ≤ |y′− y|+ ε‖(x,y)− (x̂, ŷ)‖ for every (x,y) ∈ Ep.

Through (15) we obtain in particular that

(17) ‖(ω,ν)− (x̂, ŷ)‖ ≤ 1
ε
|y′−ν |.

Since y′ ∈ IBs(ν), we then have

‖(ω,ν)− (x̂, ŷ)‖ ≤ s
ε

and consequently, from the choice of (p,ω,ν) in (10) and s in (9),

(18)
|p− p̄|+‖(x̂, ŷ)− (x̄,0)‖

≤ |p− p̄|+‖(ω,ν)− (x̄,0)‖+‖(ω,ν)− (x̂, ŷ)‖ ≤ η +
s
ε
< 2η .

Thus, (p, x̂, ŷ) satisfies the condition in (7), so there exists u ∈ IRn for which

(19) y′− ŷ ∈ DxG(p, x̂ | ŷ)(u) and |u| ≤ c|y′− ŷ|.

By the definition of the partial graphical derivative, there exist sequences τk↘0,
uk→ u, and vk→ y′− ŷ such that

ŷ+ τ
kvk ∈ G(p, x̂+ τ

kuk) for all k.

Also, from (18) we know that, for sufficiently large k,

|p− p̄|+‖(x̂+ τ
kuk, ŷ+ τ

kvk)− (x̄,0)‖ ≤ 2η ,

implying (x̂+τkuk, ŷ+τkvk)∈ Ep. If we now plug the point (x̂+τkuk, ŷ+τkvk) into
(16) in place of (x,y), we get

|y′− ŷ| ≤ |y′− (ŷ+ τ
kvk)|+ ε‖(x̂+ τ

kuk, ŷ+ τ
kvk)− (x̂, ŷ)‖.

This gives us

|y′− ŷ| ≤ (1− τ
k)|y′− ŷ|+ τ

k|vk− (y′− ŷ)|+ ετ
k‖(uk,vk)‖,

that is,
|y′− ŷ| ≤ |vk− (y′− ŷ)|+ ε‖(uk,vk)‖.

Passing to the limit with k→ ∞ leads to |y′− ŷ| ≤ ε‖(u,y′− ŷ)‖ and then, taking
into account the second relation in (19), we conclude that |y′− ŷ| ≤ εc|y′− ŷ|. Since
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εc < 1 by (9), the only possibility here is that y′ = ŷ. But then y′ ∈ G(p, x̂) and (17)
yields (11). This proves the lemma.

We continue now with the proof of Theorem 4B.3. Let τ = η/(4c). Since the
function p→ d(0,G(p, x̄)) is upper semicontinuous at p̄, there exists a positive δ ≤
cτ such that d(0,G(p, x̄)) ≤ τ/2 for all p with |p− p̄| < δ . Set V := IBδ (p̄), U :=
IBcτ(x̄) and pick any p ∈ V and x ∈ U . We can find y such that y ∈ G(p, x̄) with
|y| ≤ d(0,G(p, x̄))+ τ/3 < τ . Note that

(20) |p− p̄|+‖(x̄,y)− (x̄,0)‖= |p− p̄|+ c|y| ≤ δ + cτ ≤ η .

Choose ε > 0 such that 1/2 < εc < 1 and let s = εη/2. Then s > τ . We apply
Lemma 4B.4 with the indicated ε and s, and with (p,ω,ν) = (p, x̄,y) which, as seen
in (20), satisfies (10), and with y′ = 0, since 0 ∈ IBs(y). Thus, there exists x̂ such that
0 ∈G(p, x̂), that is, x̂ ∈ S(p), and also, from (11), |x̂− x̄| ≤ |y|/ε . Therefore, in view
of the choice of y, we have x̂ ∈ IBτ/ε(x̄). We now consider two cases.

CASE 1. d(0,G(p,x)) ≥ 2τ . We just proved that there exists x̂ ∈ S(p) with x̂ ∈
IBτ/ε(x̄); then

(21)
d(x,S(p))≤ d(x̄,S(p))+ |x− x̄|

≤ |x̄− x̂|+ |x− x̄| ≤ τ

ε
+ cτ ≤ 2τ

ε
≤ 1

ε
d(0,G(p,x)).

CASE 2. d(0,G(p,x))< 2τ . In this case, for every y with |y| ≤ 2τ we have

|p− p̄|+max{|x− x̄|,c|y|} ≤ δ +max{cτ,2cτ} ≤ 3cτ ≤ η

and then, by (8), the nonempty set G(p,x)∩2τIB is closed. Hence, there exists ỹ ∈
G(p,x) such that |ỹ|= d(0,G(p,x))< 2τ and therefore

c|ỹ|< 2cτ =
η

2
.

We conclude that the point (p,x, ỹ) ∈ gph G satisfies

|p− p̄|+max{|x− x̄|,c|ỹ|} ≤ δ +max{cτ,η/2} ≤ η .

Thus, the assumptions of Lemma 4B.4 hold for (p,ω,ν) = (p,x, ỹ), s = 2τ , and
y′ = 0. Hence there exists x̃ ∈ S(p) such that

|x̃− x| ≤ 1
ε
|ỹ|.

Then, by the choice of ỹ,

d(x,S(p))≤ |x− x̃| ≤ 1
ε
|ỹ|= 1

ε
d(0,G(p,x)).
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Hence, by (21), for both cases 1 and 2, and therefore for any p in V and x ∈U , we
have

d(x,S(p))≤ 1
ε

d(0,G(p,x)).

Since U and V do not depend on ε , and 1/ε can be arbitrarily close to c, this gives
us (6).

With this result in hand, we can confirm the criterion for metric regularity pre-
sented at the beginning of this section.

Proof of Theorem 4B.1. For short, let dDF denote the right side of (1). We will
start by showing that reg(F ; x̄ | ȳ) ≤ dDF . If dDF = ∞ there is nothing to prove.
Let dDF < c < ∞. Applying Theorem 4B.3 to G(p,x) = F(x)− p and this c, let-
ting y take the place of p, we have S(y) = F−1(y) and d(0,G(y,x)) = d(y,F(x)).
Condition (6) becomes the definition of metric regularity of F at x̄ for ȳ = p̄, and
therefore reg(F ; x̄ | ȳ) ≤ c. Since c can be arbitrarily close to dDF we conclude that
reg(F ; x̄ | ȳ)≤ dDF .

We turn now to demonstrating the opposite inequality,

(22) reg(F ; x̄ | ȳ)≥ dDF .

If reg(F ; x̄ | ȳ) = ∞ we are done. Suppose therefore that F is metrically regular at x̄
for ȳ with respect to a constant κ and neighborhoods U for x̄ and V for ȳ. Then

(23) d(x′,F−1(y))≤ κ|y− y′| whenever (x′,y′) ∈ gph F, x′ ∈U, y ∈V.

We know from 3E.1 that V can be chosen so small that F−1(y)∩U 6= /0 for every
y ∈ V . Pick any y′ ∈ V and x′ ∈ F−1(y′)∩U , and let v ∈ IB. Take a sequence τk↘0
such that yk := y′+ τkv ∈ V for all k. By (23) and the local closedness of gph F at
(x̄, ȳ) there exists xk ∈ F−1(y′+ τkv) such that

|x′− xk|= d(x′,F−1(yk))≤ κ|yk− y′|= κτ
k|v|.

For uk := (xk− x′)/τk we obtain

(24) |uk| ≤ κ|v|.

Thus, uk is bounded, so uki → u for a subsequence ki → ∞. Since (xki ,y′+ τkiv) ∈
gph F , we obtain (u,v) ∈ Tgph F(x′,y′). Hence, by the definition of the graphical
derivative, we have u ∈ DF−1(y′ |x′)(v) = DF(x′ |y′)−1(v). The bound (24) guaran-
tees that

|DF(x |y)−1|− ≤ κ.

Since (y,x) ∈ gph S is arbitrarily chosen near (x̄, ȳ), and κ is independent of this
choice, we conclude that (22) holds and hence we have (1).

We apply Theorem 4B.3 now to obtain for the implicit mapping result in Theo-
rem 3E.10 an elaboration in which graphical derivatives provide estimates. Recall
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here the definition of l̂ip p(G; p̄, x̄ | ȳ), the modulus of the partial Aubin property in-
troduced just before 3E.10.

Theorem 4B.6 (implicit mapping theorem with graphical derivatives). For the gen-
eral inclusion (3) and its solution mapping S in (4), let x̄ ∈ S(p̄), so that (p̄, x̄,0) ∈
gph G. Suppose that the distance d(0,G(p, x̄)) depends upper semicontinuously on
p at p̄. Assume further that G has the partial Aubin property with respect to p uni-
formly in x at (p̄, x̄), and that

(25) limsup
(p,x,y)→(p̄,x̄,0)
(p,x,y)∈gph G

|DxG(p,x |y)−1|− ≤ λ < ∞.

Then S has the Aubin property at p̄ for x̄ with

(26) lip(S; p̄ | x̄) ≤ λ l̂ip p(G; p̄, x̄ |0).

Proof. This just combines Theorem 3E.10 with the estimate now available from
Theorem 4B.3.

Note from Proposition 4A.5 that finiteness in condition (25) necessitates, in par-
ticular, having the range of DxG(p,x |y) be all of IRm when (p,x,y) is sufficiently
close to (p̄, x̄,0) in gph G.

Next we specialize Theorem 4B.6 to the generalized equations we studied in
detail in Chapters 2 and 3, or in other words, to a solution mapping of the type

(27) S(p) =
{

x
∣∣ f (p,x)+F(x) 3 0

}
,

where f : IRd × IRn → IRm and F : IRn →→ IRm. In the next two corollaries we take a
closer look at the Aubin property of the solution mapping (27).

Corollary 4B.7 (derivative criterion for generalized equations). For the solution
mapping S in (27), and a pair (p̄, x̄) with x̄ ∈ S(p̄), suppose that f is continuous
around (p̄, x̄), F has locally closed graph at x̄ for− f (p̄, x̄) and also l̂ip p( f ;(p̄, x̄))<
∞. Then the mapping G(p,x) := f (p,x)+F(x) has the partial Aubin property with
respect to p uniformly in x at (p̄, x̄) for 0 with

(28) l̂ip p(G; p̄, x̄ |0)≤ l̂ip p( f ;(p̄, x̄)).

In addition, if f is differentiable in a neighborhood of (p̄, x̄), gph F is locally closed
at (x̄,− f (p̄, x̄)) and

(29) limsup
(p,x,y)→(p̄,x̄,0)
y∈ f (p,x)+F(x)

|(Dx f (p,x)+DF(x |y− f (p,x)))−1|− ≤ λ < ∞,

then S has the Aubin property at p̄ for x̄ with

(30) lip(S; p̄ | x̄) ≤ λ l̂ip p( f ; p̄ | x̄).
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Proof. By definition, the mapping G has (p̄, x̄,0) ∈ gph G. Let µ > l̂ip p( f ;(p̄, x̄))
and let Q and U be neighborhoods of p̄ and x̄ such that f is Lipschitz continuous
with respect to p ∈ Q uniformly in x ∈U with Lipschitz constant µ . Let p, p′ ∈ Q,
x ∈U and y ∈ G(p,x); then y− f (p,x) ∈ F(x) and we have

d(y,G(p′,x)) = d(y− f (p′,x),F(x))≤ | f (p,x)− f (p′,x)| ≤ µ|p− p′|.

Thus,
e(G(p,x),G(p′,x))≤ µ|p′− p|

and hence G has the partial Aubin (actually, Lipschitz) property with respect to
p uniformly in x at (p̄, x̄) with modulus satisfying (28). The assumptions that
f is differentiable near (p̄, x̄) and gph F is locally closed at (x̄,− f (p̄, x̄)) yield
that gph G is locally closed at (p̄, x̄,0) as well. Further, observe that the function
p 7→ d(0,G(p, x̄)) = d(− f (p, x̄),F(x̄)) is Lipschitz continuous near p̄ and therefore
upper semicontinuous at p̄. Then we can apply Theorem 4B.6 where, by using the
sum rule 4A.2, the condition (25) comes down to (29) while (26) yields (30).

From Section 3F we know that when the function f is continuously differen-
tiable, the Aubin property of the solution mapping in (27) can be obtained by pass-
ing to the linearized generalized equation, in which case we can also utilize the
ample parameterization condition. Specifically, we have the following result:

Corollary 4B.8 (derivative criterion with differentiability and ample parameteriza-
tion). For the solution mapping S in (27), and a pair (p̄, x̄) with x̄ ∈ S(p̄), suppose
that f is continuously differentiable on a neighborhood of (p̄, x̄) and that gph F is
locally closed at (x̄,− f (p̄, x̄)). If

(31) limsup
(x,y)→(x̄,− f (p̄,x̄))

y∈Dx f (p̄,x̄)(x−x̄)+F(x)

|(∇x f (p̄, x̄)+DF(x |y−Dx f (p̄, x̄)(x− x̄)))−1|− ≤ λ < ∞,

then S has the Aubin property at p̄ for x̄, moreover with

(32) lip(S; p̄ | x̄) ≤ λ |∇p f (p̄, x̄)|.

Furthermore, when f satisfies the ample parameterization condition

(33) rank ∇p f (p̄, x̄) = m,

then the converse implication holds as well; that is, S has the Aubin property at p̄
for x̄ if and only if condition (31) is satisfied.

Proof. According to Theorem 3F.9, the mapping S has the Aubin property at p̄ for
x̄ provided that the linearized mapping

(34) h+F for h(x) = f (p̄, x̄)+Dx f (p̄, x̄)(x− x̄)

is metrically regular at x̄ for 0, and the converse implication holds under the ample
parameterization condition (33). Further, according to the derivative criterion for



4 Metric Regularity Through Generalized Derivatives 219

metric regularity 4B.1, metric regularity of the mapping h+F in (34) is equivalent
to condition (31) and its regularity modulus is bounded by λ . Then the estimate (32)
follows from formula 3F(7) in the statement of 3F.9.

The purpose of the next exercise is to understand what condition (29) means in
the setting of the classical implicit function theorem.

Exercise 4B.9 (application to classical implicit functions). For a function f : IRd×
IRn→ IRm, consider the solution mapping

S : p 7→
{

x
∣∣ f (p,x) = 0

}
and a pair (p̄, x̄) with x̄ ∈ S(p̄). Suppose that f is differentiable in a neighborhood
of (p̄, x̄) with Jacobians satisfying

limsup
(p,x)→(p̄,x̄)

|∇x f (p,x)−1|− < λ and limsup
(p,x)→(p̄,x̄)

|∇p f (p,x)|< κ.

Show that then S has the Aubin property at p̄ for x̄ with constant λκ .

When f is continuously differentiable we can apply Corollary 4B.8, and the
assumptions in 4B.9 can in that case be captured by conditions on the Jacobian
∇ f (p̄, x̄). Then 4B.8 goes a long way toward the classical implicit function theo-
rem, 1A.1. But Steps 2 and 3 of Proof I of that theorem would afterward need to
be carried out to reach the conclusion that S has a single-valued localization that is
smooth around p̄.

Applications of Theorem 4B.6 and its corollaries to constraint systems and va-
riational inequalities will be worked out in Section 4F.

We end this section with yet another proof of the classical inverse function theo-
rem 1A.1. This time it is based on the Ekeland principle given in 4B.5.

Proof of Theorem 1A.1. Without loss of generality, let x̄ = 0, f (x̄) = 0. Let A =
∇ f (0) and let δ = |A−1|−1. Choose a > 0 such that

(35) | f (x)− f (x′)−A(x− x′)| ≤ δ

2
|x− x′| for all x,x′ ∈ aIB,

and let b = aδ/2. We now redo Step 1 in Proof I that the localization s of f−1 with
respect to the neighborhoods bIB and aIB is nonempty-valued. The other two steps
remain the same as in Proof I.

Fix y∈ bIB and consider the function | f (x)−y|with domain containing the closed
ball aIB, which we view as a complete metric space equipped with the Euclidean
metric. This function is continuous and bounded below, hence, by Ekeland principle
4B.5 with the indicated δ and ū = 0 there exists xδ ∈ aIB such that

(36) |y− f (xδ )|< |y− f (x)|+ δ

2
|x− xδ | for all x ∈ aIB, x 6= xδ .
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Let us assume that y 6= f (xδ ). Then x̃ := A−1(y− f (xδ ))+xδ 6= xδ . Moreover, from
(35) with x = xδ and x′ = 0 and the choice of δ and b we get

|x̃| ≤ |A−1|(|y|+ |− f (xδ )+Axδ |)≤ |A−1|
(

b+
aδ

2

)
= |A−1|aδ = a.

Hence we can set x = x̃ in (36), obtaining

(37) |y− f (xδ )|< |y− f (x̃)|+ δ

2
|x̃− xδ |.

Using (35), we have

(38)
|y− f (x̃)| = | f (A−1(y− f (xδ ))+ xδ )− y|

= | f (A−1(y− f (xδ ))+ xδ )− f (xδ )−A(A−1(y− f (xδ )))|
≤ δ

2 |A−1(y− f (xδ ))|

and also

(39) |x̃− xδ |= |A−1(y− f (xδ ))|.

Plugging (38) and (39) into (37), we arrive at

|y− f (xδ )|<
(

δ

2
+

δ

2

)
|A−1(y− f (xδ ))| ≤ δ |A−1||y− f (xδ )|= |y− f (xδ )|

which furnishes a contradiction. Thus, our assumption that y 6= f (xδ ) is voided, and
we have xδ ∈ f−1(y)∩ (aIB). This means that s is nonempty-valued, and the proof
is complete.

4C. Coderivative Criterion for Metric Regularity

Normal cones NC(x) have already been prominent, of course, in our work with opti-
mality conditions and variational inequalities, starting in Section 2A, but only in the
case of convex sets. To arrive at coderivatives for a mapping F : IRn→→ IRm, we wish
to make use of normal cones to gph F at points (x,y), but to keep the door open to
significant applications we need to deal with graph sets that are not convex. The first
task, therefore, is generalizing NC(x) to the case of nonconvex C.

General normal cones. For a set C ⊂ IRn and a point x ∈ C at which C is locally
closed, a vector v is said to be a regular normal at x to C if 〈v,x′− x〉 ≤ o(|x′− x|)
for x′ ∈C. The set of all such vectors v is called the regular normal cone to C at x
and is denoted by N̂C(x). A vector v is said to be a general normal to C at x if there
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are sequences {xk} and {vk} with xk ∈C, such that

xk→ x and vk→ v with vk ∈ N̂C(xk).

The set of all such vectors v is called the general normal cone to C at x and is
denoted by NC(x). For x /∈C, NC(x) is the empty set.

Very often, the limit process in the definition of the general normal cone NC(x)
is superfluous: no additional vectors v are produced in that manner, and one merely
has NC(x) = N̂C(x). This circumstance is termed the Clarke regularity of C at x.
When C is convex, for instance, it is Clarke regular at every one of its points x, and
the generalized normal cone NC(x) agrees with the normal cone defined earlier, in
2A. Anyway, NC(x) is always a closed cone.

Coderivative. For a mapping F : IRn→→ IRm and a pair (x,y)∈ gph F at which gph F
is locally closed, the coderivative of F at x for y is the mapping D∗F(x |y) : IRm→→ IRn

defined by
w ∈ D∗F(x |y)(z) ⇐⇒ (w,−z) ∈ Ngph F(x,y).

Obviously this is a “dual” sort of notion, but where does it fit in with classi-
cal differentiation? The answer can be seen by specializing to the case where F is
single-valued, thus reducing to a function f : IRn → IRm. Suppose f is strictly dif-
ferentiable at x; then for y = f (x), the graphical derivative D f (x |y) is of course the
linear mapping D f (x) from IRn to IRm with matrix ∇ f (x). In contrast, the coderiva-
tive D∗ f (x |y) comes out as the adjoint linear mapping D f (x)∗ from IRm to IRn with
matrix ∇ f (x)T.

Exercise 4C.1 (sum rule for coderivatives). For a function f : IRn → IRm which is
strictly differentiable at x̄ and a mapping F : IRn→→ IRm with ȳ ∈ F(x̄), prove that

D∗( f +F)(x̄ | f (x̄)+ ȳ)(u) = D f (x̄)∗u+D∗F(x̄ | ȳ)(u) for all u ∈ IRm.

An important fact about coderivatives in our context is the following characteri-
zation of metric regularity.

Theorem 4C.2 (coderivative criterion for metric regularity). For a mapping F :
IRn→→ IRm and a pair (x̄, ȳ) ∈ gph F at which gph F is locally closed, one has

(1) reg(F ; x̄ | ȳ) = |D∗F(x̄ | ȳ)−1|+.

Thus, F is metrically regular at x̄ for ȳ if and only if the right side of (1) is finite,
which is equivalent to

D∗F(x̄ | ȳ)(u) 3 0 =⇒ u = 0.

If F is single-valued, that is, a function f : IRn → IRm which is strictly differen-
tiable at x̄, then the coderivative criterion means that the adjoint to the derivative
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mapping D f (x̄) is injective, that is, ker ∇ f (x̄)T = {0}. This is equivalent to surjec-
tivity of D f (x̄) which, as we know from 3F or 4B, is equivalent to metric regularity
of f at x̄ for f (x̄).

We will present a proof of Theorem 4C.2 based on the following more general
result:

Theorem 4C.3 (basic equality). Let F : IRn→→ IRm be a set-valued map, let ȳ ∈ F(x̄)
and assume that gph F is locally closed at (x̄, ȳ). Then

(2) limsup
(x,y)→(x̄,ȳ),
(x,y)∈gph F

|DF(x |y)−1|− = |D∗F(x̄ | ȳ)−1|+.

In the proof of Theorem 4C.3 we employ the following lemma:

Lemma 4C.4 (intersection with tangent cone). Let C be a convex and compact set
in IRd , K ⊂ IRd be a closed set and x̄ ∈ K. Then C∩TK(x) 6= /0 for all x ∈ K near x̄ if
and only if C∩ clcoTK(x) 6= /0 for all x ∈ K near x̄.

Proof. Clearly, C∩TK(x) 6= /0 implies C∩ clcoTK(x) 6= /0. Assume that there exists
an open neighborhood U of x̄ such that C∩ clcoTK(x) 6= /0 for all x ∈ K ∩U . Let
ε > 0 be such that IBε(x̄) ⊂U . Take any x ∈ IBε/3(x̄) and let v be a projection of x
on K. Then |v− x| ≤ |x̄− x| ≤ ε/3 and hence

|v− x̄| ≤ |v− x|+ |x− x̄| ≤ ε/3+ ε/3 < ε.

Thus, there exists an open neighborhood W of x̄ such that any metric projection of
a point x ∈W on K belongs to K∩U .

Fix x ∈ K∩W . For all t ≥ 0 define ϕ(t) := min{|u− v| | u ∈ x+ tC,v ∈ K}. The
function ϕ is Lipschitz continuous. Indeed, for every ti≥ 0, i= 1,2 there exist ci ∈C
and ki ∈ K such that ϕ(ti) = |x+ tici− ki|, i = 1,2. Then

ϕ(t1)−ϕ(t2) = |x+ t1c1− k1|− |x+ t2c2− k2|
≤ |x+ t1c2− k2|− |x+ t2c2− k2| ≤ |c2||t1− t2|.

Hence ϕ is absolutely continuous, that is, its derivative ϕ ′ exists almost everywhere
and ϕ(s) = ϕ(t)+

∫ s
t ϕ ′(τ)dτ for all s≥ t ≥ 0. We will prove next that

(3) ϕ(t) = 0 for all sufficiently small t > 0.

If this holds, then for every small t > 0 there exists vt ∈ C such that x+ tvt ∈ K.
Consider sequences tk↘0 and vtk ∈ C such that vtk converges to some v. Then v ∈
TK(x)∩C and since x ∈ K∩W is arbitrary, we arrive at the claim of the lemma.

To prove (3), let γ > 0 be such that x+ [0,γ]C ⊂W . Assume that there exists
t0 ∈ (0,γ] such that ϕ(t0) > 0. Define t̄ = max{t | ϕ(t) = 0 and 0 ≤ t < t0}. Let
t ∈ (t̄, t0) be such that ϕ ′(t) exists. Then for some vt ∈C and xt ∈ K we have ϕ(t) =
|x + tvt − xt | > 0. Since xt is a projection of x + tvt on K, by the observation in
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the beginning of the proof we have xt ∈ K ∩U . By assumption, there exists wt ∈
clcoTK(xt) such that wt ∈C. Then, for any h > 0 sufficiently small,

x+ tvt +hwt = x+(t +h)
(

t
t +h

vt +
h

t +h
wt

)
∈ x+(t +h)C ⊂W

because the set C is assumed convex. Thus

ϕ(t +h)−ϕ(t)≤ |x+ tvt +hwt − xt |− |x+ tvt − xt |.

Dividing both sides of this inequality by h > 0 and passing to the limit when h↘0,
we get

ϕ
′(t)≤

〈
x+ tvt − xt

|x+ tvt − xt |
,wt

〉
.

Recall that xt is a projection of x+ tvt on K and also the elementary fact1 that in
this case x+ tvt−xt ∈ N̂K(xt). Since wt ∈ clcoTK(xt), we obtain from the inequality
above that ϕ ′(t) ≤ 0. Having in mind that t is any point of differentiability of ϕ in
(t̄, t0), we get ϕ(t0)≤ ϕ(t̄) = 0. This contradicts the choice of t0 according to which
ϕ(t0)> 0. Hence (3) holds and the lemma is proved.

Proof of Theorem 4C.3. Since the graphical derivative and the coderivative are
defined only locally around (x̄, ȳ), we can assume without loss of generality that the
graph of the mapping F is closed. We will show first that

(4) limsup
(x,y)→(x̄,ȳ),
(x,y)∈gph F

|DF(x |y)−1|− ≥ |D∗F(x̄ | ȳ)−1|+.

If the left side of (4) equals ∞ there is nothing to prove. Suppose that a constant c
satisfies

limsup
(x,y)→(x̄,ȳ),
(x,y)∈gph F

|DF(x |y)−1|− < c.

From the properties of the outer norm, see (11) in 4A.6, there exists δ > 0 such
that for all (x,y) ∈ gph F ∩ (IBδ (x̄)× IBδ (ȳ)) and for every v ∈ IB there exists u ∈
DF(x |y)−1(v) such that |u|< c. Also, note that

(u,v) ∈ Tgph F(x,y)⊂ clcoTgph F(x,y) = T ∗∗gph F(x,y).

Fix (x,y) ∈ gph F ∩ (IBδ (x̄)× IBδ (ȳ)) and let v ∈ IB ⊂ IRm. Then there exists u
with (u,v)∈ T ∗∗gph F(x,y) such that u= cw for some w∈ IB. Let (p,q)∈ N̂gph F(x,y) =
T ∗gph F(x,y). From the inequality 〈u, p〉+ 〈v,q〉 ≤ 0 we get

cmin
w∈IB
〈w, p〉+ 〈v,q〉 ≤ 0 which yields − c|p|+ 〈v,q〉 ≤ 0.

Since v is arbitrarily chosen in IB, we conclude that

1 See Example 6.16 in the book Rockafellar and Wets [1998].
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(5) |q| ≤ c|p| whenever (p,q) ∈ N̂gph F(x,y).

Now, let (−p,q) ∈ Ngph F(x̄, ȳ); then there exist sequences (xk,yk) ∈ gph F,
(xk,yk)→ (x̄, ȳ) and (−pk,qk) ∈ N̂gph F(xk,yk) such that (−pk,qk)→ (−p,q). But
then, from (5), |qk| ≤ c|pk| and in the limit |q| ≤ c|p|. Thus, |q| ≤ c|p| when-
ever (−p,q) ∈ Ngph F(x̄, ȳ) and therefore we have |q| ≤ c|p| whenever (q,−p) ∈
Ngph F−1(ȳ, x̄). By the definition of the coderivative,

|q| ≤ c|p| whenever q ∈ D∗F(x̄ | ȳ)−1(p).

This, together with the property of the outer norm given in 4A.6(12), implies that
c≥ |D∗F(x̄ | ȳ)−1|+ and we obtain (4) since c is arbitrary.

For the converse inequality, it is enough to consider the case when there is a
constant c such that

(6) |D∗F(x̄ | ȳ)−1|+ < c.

We first show there exists δ > 0 such that for (x,y) ∈ gph F ∩ (IBδ (x̄)× IBδ (ȳ)) we
have that

(7) (0,v) ∈ N̂gph F(x,y) =⇒ v = 0.

On the contrary, assume that there exist sequences (xk,yk) ∈ gph F with (xk,yk)→
(x̄, ȳ) and vk ∈ IRm with |vk| = 1 such that (0,vk) ∈ N̂gph F(xk,yk) for all k. Then
there is v 6= 0 such that (0,v) ∈ Ngph F(x̄, ȳ), that is, −v ∈ D∗F(x̄ | ȳ)−1(0). Taking
into account 4A.6(12), this contradicts (6).

We will now prove a statement more general than (7); namely, there exists δ > 0
such that for every (x,y) ∈ gph F ∩ (IBδ (x̄)× IBδ (ȳ)) we have

(8) (v,−u) ∈ N̂gph F−1(y,x) =⇒ |v| ≤ c|u|.

On the contrary, assume that there exists a sequence (yk,xk)→ (ȳ, x̄) such that for
each k we can find (vk,−uk) ∈ N̂gph F−1(yk,xk) satisfying |vk| > c|uk|. If uk = 0
for some k, then from (7) we get vk = 0, a contradiction. Thus, without loss of
generality we assume that |uk| = 1. Let vk be unbounded and let w be a cluster
point of 1

|vk|vk; then |w|= 1. Since ( 1
|vk|vk,− 1

|vk|uk) ∈ N̂gph F−1(yk,xk), passing to the
limit we get (w,0) ∈ Ngph F−1(ȳ, x̄) which contradicts (6) because of (12) in 4A.6.
Further, if vk is bounded, then (vk,uk)→ (v,u) for a subsequence, where |u| = 1,
(v,−u) ∈ Ngph F−1(ȳ, x̄), and |v| ≥ c. This again contradicts (6). Thus, (8) holds for
all (y,x) ∈ gph F−1 close to (ȳ, x̄).

Let δ > 0 be such that (8) is satisfied for (x,y) ∈ gph F ∩ (IBδ (x̄)× IBδ (ȳ)). Pick
such (x,y). We will show that

(9) (cIB×{w})∩T ∗∗gph F(x,y) 6= /0 for every w ∈ IB.
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On the contrary, assume that there exists w∈ IB such that (cIB×{w})∩T ∗∗gph F(x,y) =
/0. Then, by the theorem on separation of convex sets (see Theorem 5C.12 for a
general statement), there exists a nonzero (p,q) ∈ T ∗gph F(x,y) = N̂gph F(x,y) such
that

min
u∈IB
〈p,cu〉+ 〈q,w〉> 0.

Indeed, it is sufficient to choose a hyperplane through the origin that separates
the sets (cIB×{w}) and T ∗∗gph F(x,y); then take the normal (p,q) pointing toward
the half-space containing (cIB× {w}). If p = 0, then q 6= 0 and then (q,0) ∈
N̂gph F−1(y,x) in contradiction with (8). Hence, p 6= 0. Without loss of generality,
let |p|= 1. Then (q, p) ∈ N̂gph F−1(y,x) and

(10) 〈q,w〉> max
u∈IB
〈p,cu〉= c|p|= c.

By (8), |q| ≤ c and since w ∈ IB, this contradicts (10). Thus, (9) is satisfied.
By Lemma 4C.4, for all (x,y) ∈ gph F sufficiently close to (x̄, ȳ), we have that

(9) holds when the set T ∗∗gph F(x,y) = clcoTgph F(x,y) is replaced with Tgph F(x,y).
This means that for every w ∈ IB there exists u ∈ DF(x |y)−1(w) such that |u| ≤ c.
But then c ≥ |DF(x |y)−1|− for all (x,y) ∈ gph F sufficiently close to (x̄, ȳ). This
combined with the arbitrariness of c in (6) implies the inequality opposite to (4) and
hence the proof of the theorem if complete.

Exercise 4C.5 (coderivative criterion for generalized equations). For the solution
mapping S(p) =

{
x
∣∣ f (p,x) + F(x) 3 0

}
and a pair (p̄, x̄) with x̄ ∈ S(p̄), sup-

pose that f is differentiable in a neighborhood of (p̄, x̄), gph F is locally closed
at (x̄,− f (p̄, x̄)), and

|(D∗x f (p̄, x̄)+D∗F(x̄ | − f (p̄, x̄)))−1|+ ≤ λ < ∞.

Then S has the Aubin property at p̄ for x̄ with

lip(S; p̄ | x̄) ≤ λ l̂ip p( f ;(p̄, x̄)).

We conclude the present section with a variant of the graphical derivative for-
mula for the modulus of metric regularity, which will be put to use in the numerical
variational analysis of Chapter 6.

Convexified graphical derivative. For a mapping F : IRn →→ IRm and a pair (x,y)
with y ∈ F(x), the convexified graphical derivative of F at x for y is the mapping
D̃F(x |y) : IRn →→ IRm whose graph is the closed convex hull of the tangent cone
Tgph F(x,y) to gph F at (x,y):

v ∈ D̃F(x |y)(u) ⇐⇒ (u,v) ∈ cl co Tgph F(x,y).
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Theorem 4C.6 (alternative characterization of regularity modulus). For a mapping
F : IRn →→ IRm and a point (x̄, ȳ) ∈ gph F at which the graph of F is locally closed,
one has

reg(F ; x̄ | ȳ) = limsup
(x,y)→(x̄,ȳ)
(x,y)∈gph F

|D̃F(x |y)−1|−.

Proof. Since D̃F(x |y)−1(v)⊃ DF(x |y)−1(v) we obtain

|D̃F(x |y)−1|− ≤ |DF(x |y)−1|−.

Thus, from (1),
limsup
(x,y)→(x̄,ȳ)
(x,y)∈gph F

|D̃F(x |y)−1|− ≤ |D∗F(x̄ | ȳ)−1|+.

The converse inequality follows from the first part of the proof of Theorem 4C.3, by
limiting the argument to the convexified graphical derivative.

Exercise 4C.7 (sum rule for convexified derivatives). For a function f : IRn→ IRm

which is differentiable at x and a mapping F : IRn→→ IRm, prove that

D̃( f +F)(x | f (x)+ y)(u) = D f (x)(u)+ D̃F(x |y)(u).

Guide. Let v ∈ D̃( f + F)(x | f (x) + y)(u). By Carathéodory’s theorem on con-
vex hull representation of cones, there are sequences {uk

i }, {vk
i } and {λ k

i } for
i = 0,1, . . . ,n+m and k = 1,2, . . . with λ k

i ≥ 0, ∑
n+m
i=0 λ k

i = 1, such that vk
i ∈ D( f +

F)(x | f (x)+y)(uk
i ) for all i and k and ∑

n+m
i=0 λ k

i (u
k
i ,v

k
i )→ (u,v) as k→∞. From 4A.2,

get vk
i ∈D f (x)uk

i +DF(x |y)(uk
i ) for all i and k. Hence ∑

n+m
i=0 λ k

i (u
k
i ,v

k
i −D f (x)uk

i )∈
cl co gph DF(x |y). Then pass to the limit.

Exercise 4C.8 (convexified derivative criterion for generalized equations). State
and prove a result parallel to 4B.7 with the graphical derivative replaced by the
convexified graphical derivative.

4D. Strict Derivative Criterion for Strong Metric Regularity

In order to characterize the strong metric regularity by “differentiation” we need to
appeal to another type of derivative of a set-valued mapping.

Strict graphical derivative for a set-valued mapping. For a mapping F : IRn→→ IRm

the strict graphical derivative mapping D∗F(x̄ | ȳ) at x̄ for ȳ, where ȳ ∈ F(x̄), is de-
fined as a mapping whose graph is the collection of vectors (u,v) for which there ex-
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ist sequences (xk,yk)∈ gph F , (xk,yk)→ (x̄, ȳ), as well as τk↘0 and (uk,vk)→ (u,v)
such that (xk + τkuk,yk + τkvk) ∈ gph F.

We are now ready to state a prove a criterion for strong metric regularity based
on the strict graphical derivative.

Theorem 4D.1 (strict derivative criterion for strong metric regularity). Consider a
set-valued mapping F : IRn →→ IRm and (x̄, ȳ) ∈ gph F . If F is strongly metrically
regular at x̄ for ȳ, then

(1) |D∗F(x̄ | ȳ)−1|+ < ∞.

On the other hand, if the graph of F is locally closed at (x̄, ȳ) and

(2) x̄ ∈ liminf
y→ȳ

F−1(y),

then condition (1) is also sufficient for strong metric regularity of F at x̄ for ȳ. In
this case the quantity on the left side of (1) equals reg(F ; x̄ | ȳ).
Proof. Proposition 3G.1 says that a mapping F is strongly metrically regular at x̄ for
ȳ if and only if it is metrically regular there and F−1 has a localization around ȳ for
x̄ which is nowhere multivalued. Furthermore, in this case for every c > reg(F ; x̄ | ȳ)
there exists a neighborhood V of ȳ such that F−1 has a localization around ȳ for x̄
which is a Lipschitz continuous function on V with constant c.

Let F be strongly metrically regular at x̄ for ȳ, let c > reg(F ; x̄ | ȳ) and let U
and V be open neighborhoods of x̄ and ȳ, respectively, such that the localization
V 3 y 7→ ϕ(y) := F−1(y)∩U is a Lipschitz continuous function on V with a Lip-
schitz constant c. We will show first that for every v ∈ IRm the set D∗F(x̄ | ȳ)−1(v)
is nonempty. Let v ∈ IRm. Since dom ϕ ⊃ V , we can choose sequences τk↘0 and
uk such that x̄ + τkuk = ϕ(ȳ + τkv) for large k. Then, from the Lipschitz con-
tinuity of ϕ with Lipschitz constant c we conclude that |uk| ≤ c|v|, hence uk

has a cluster point u which, by definition, is from D∗F(x̄ | ȳ)−1(v). Now choose
any v ∈ IRm and u ∈ D∗F(x̄ | ȳ)−1(v); then there exist sequences (xk,yk) ∈ gph F ,
(xk,yk)→ (x̄, ȳ), τk↘0, uk→ u and vk→ v such that yk + τkvk ∈V , xk = ϕ(yk) and
xk + τkuk = ϕ(yk + τkvk) for k sufficiently large. But then, again from the Lipschitz
continuity of ϕ with Lipschitz constant c, we obtain that |uk| ≤ c|vk|. Passing to the
limit we conclude that |u| ≤ c|v| which implies that |D∗F(x̄ | ȳ)−1|+ ≤ c. Hence (1)
is satisfied; moreover, the quantity on the left side of (1) is less than or equal to
reg(F ; x̄ | ȳ).

To prove the second statement, we first show that F−1 has a single-valued
bounded localization, that is there exist a bounded neighborhood U of x̄ and a neigh-
borhood V of ȳ such that V 3 y 7→ F−1(y)∩U is single valued. On the contrary,
assume that for any bounded neighborhood U of x̄ and any neighborhood V of ȳ
the intersection gph F−1 ∩ (V ×U) is the graph of a multivalued mapping. This
means that there exist sequences εk↘0, xk → x̄, x′k → x̄, xk 6= x′k for all k such that
F(xk)∩F(x′k)∩ IBεk(ȳ) 6= /0 for all k. Let tk = |xk − x′k| and let uk = (xk − x′k)/tk.
Then tk↘0 and |uk|= 1 for all k. Hence {uk} has a cluster point u 6= 0. Consider any
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yk ∈ F(xk)∩F(x′k)∩ IBεk(ȳ). Then, yk + tk0 ∈ F(x′k + tkuk) for all k. By the defini-
tion of the strict graphical derivative, 0 ∈ D∗F(x̄ | ȳ)(u). Hence |D∗F(x̄ | ȳ)−1|+ = ∞,
which contradicts (1). Thus, there exist neighborhoods U of x̄ and V of ȳ such that
ϕ(y) := F−1(y)∩U is at most single-valued on V and U is bounded. By assumption
(2), there exists a neighborhood V ′ ⊂V of ȳ such that F−1(y)∩U 6= /0 for any y∈V ′,
hence V ′ ⊂ dom ϕ . Further, since gph F is locally closed at (x̄, ȳ) and ϕ is bounded,
there exists an open neighborhood V ′′ ⊂V ′ of ȳ such that ϕ is a continuous function
on V ′′.

From the definition of the strict graphical derivative we obtain that the set-valued
mapping (x,y) 7→ D∗F(x |y) has closed graph. We claim that condition (1) implies
that

(3) limsup
(x,y)→(x̄,ȳ),
(x,y)∈gph F

|D∗F(x |y)−1|+ < ∞.

On the contrary, assume that there exist sequences (xk,yk) ∈ gph F converging to
(x̄, ȳ), vk ∈ IB and uk ∈ D∗F(xk |yk)

−1(vk) such that |uk|> k|vk|.
Case 1: There exists a subsequence vki = 0 for all ki. Since gph D∗F(xki |yki)

−1 is a
cone, we may assume that |uki |= 1. Let u be a cluster point of {uki}. Then, passing
to the limit we get 0 6= u ∈ D∗F(x̄ | ȳ)−1(0) which, combined with formula (12) in
4A.6, contradicts (1).

Case 2: For all large k, vk 6= 0. Since gph D∗F(xk |yk)
−1 is a cone, we may assume

that |vk|= 1. Then limk→∞ |uk|= ∞. Define

wk :=
1
|uk|

uk ∈ D∗F(xk |yk)
−1
(

1
|uk|

vk

)
and let w be a cluster point of wk. Then, passing to the limit we obtain 0 6= w ∈
D∗F(x̄ | ȳ)−1(0) which, combined with 4A(12), again contradicts (1).

Hence (3) is satisfied. Therefore, there exists an open neighborhood Ṽ ⊂ V ′′ of
ȳ such that |D∗F(ϕ(y) |y)−1|+ < ∞ for all y ∈ Ṽ . We will now prove that for ev-
ery (x,y) ∈ gph F near (x̄, ȳ) and every v ∈ IRm we have that DF(x |y)−1(v) 6= /0.
Fix (x,y) ∈ gph F ∩ (U × Ṽ ) and v ∈ IRm, and let tk↘0; then there exist uk ∈ IRn

such that x + tkuk = F−1(y + tkv) ∩U = ϕ(y + tkv) for all large k and we also
have that tkuk → 0 by the continuity of ϕ . Assume that |uk| → ∞ for some sub-
sequence (which is denoted in the same way without loss of generality). Set
τk = tk|uk| and wk = 1

|uk|u
k. Then τk↘0 and, for a further subsequence, wk → w

for some w with |w| = 1. Since (y+ τk 1
|uk|v,x+ τkwk) ∈ gph F−1 we obtain that

w ∈ DF(x |y)−1(0) ⊂ D∗F(x |y)−1(0) for some w 6= 0. Thus |D∗F(x |y)−1|+ = ∞

contradicting the choice of Ṽ . Hence the sequence {uk} cannot be unbounded
and since y + tkv ∈ F(x + tkuk) for all k, any cluster point u of {uk} satisfies
u ∈ DF(x |y)−1(v). Hence DF(x |y)−1 is nonempty-valued. From this, 4A.5, and
the inclusion DF(x |y)−1(v)⊂ D∗F(x |y)−1(v) we obtain
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(4) |DF(x |y)−1|− ≤ |D∗F(x |y)−1|+.

Putting together (3) and (4), and utilizing the derivative criterion for metric re-
gularity in 4B.1, we obtain that F is metrically regular at x̄ for ȳ with reg(F ; x̄ | ȳ)
bounded by the quantity on the left side of (3). But since F−1 has a single-valued
localization at ȳ for x̄ we conclude that F is strongly metrically regular at x̄ for ȳ.
Moreover, reg(F ; x̄ | ȳ) equals |D∗F(x̄ | ȳ)−1|+. The proof is complete.

The following corollary is an application of the strict derivative criterion to the
solution mapping of a generalized equation,

(5) S(p) =
{

x
∣∣ f (p,x)+F(x) 3 0

}
,

where f : IRd× IRn→ IRm and F : IRn→→ IRm.

Corollary 4D.2 (strict derivative rule). For the solution mapping S in (5), and a
pair (p̄, x̄) with x̄∈ S(p̄), suppose that f is continuously differentiable around (p̄, x̄),
gph F is locally closed at (x̄,− f (p̄, x̄)), x̄ ∈ liminfp→ p̄ S(p), and

(6) |(Dx f (p̄, x̄)+D∗F(x̄ | − f (p̄, x̄)))−1|+ ≤ λ < ∞.

Then S has a Lipschitz continuous single-valued localization s around p̄ for x̄ with

(7) lip(s; p̄) ≤ λ l̂ip p( f ;(p̄, x̄)).

Furthermore, when f satisfies the ample parameterization condition

(8) rank ∇p f (p̄, x̄) = m,

then the converse implication holds as well; that is, S has Lipschitz continuous
single-valued localization s around p̄ for x̄ if and only if (6) is satisfied.

Proof. By 2B.9 the mapping S has a Lipschitz single-valued localization around p̄
for x̄ provided that the mapping

x 7→ Dx f (p̄, x̄)(x− x̄)+F(x)

is strongly metrically regular at x̄ for − f (p̄, x̄), and the converse implication holds
under (8). From 4D.1, the latter is equivalent to (6) by noting that

D∗(Dx f (p̄, x̄)+F)(x̄ | − f (p̄, x̄)) = Dx f (p̄, x̄)+D∗F(x̄ | − f (p̄, x̄)).

Then (7) follows from (6) and 2B(15).

Although the characterization of strong metric regularity in 4D.1 looks relative
simple, the price to be paid still lies ahead: we have to be able to calculate the strict
derivative in every case of interest. This task could be quite hard for set-valued
mappings. A better hold on the existence of single-valued Lipschitz continuous lo-
calizations can be gained if we limit our attention to (single-valued) functions.
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We first introduce an alternative concept of differentiation of functions, Clarke’s
generalized Jacobian. It relies on a theorem by Rademacher, according to which a
function f : IRn→ IRm that is Lipschitz continuous on an open set O is differentiable
almost everywhere in O, hence at a set of points that is dense in O. If κ is a Lipschitz
constant, then from the definition of Jacobian ∇ f (x) we have |∇ f (x)| ≤ κ at those
points of differentiability. Recall that a set C ⊂ IRn is said to be dense in the closed
set D when cl C = D, or equivalently, when, for every x ∈ D, any neighborhood U
of x contains elements of C. One of the simplest examples of a dense set is the set
of rational numbers relative to the set of real numbers.

Consider now any function f : IRn → IRm and any point x̄ ∈ int dom f where
lip( f ; x̄) < ∞. For any κ > lip( f ; x̄) we have f Lipschitz continuous with constant
κ in some neighborhood U of x̄, and hence, from Rademacher’s theorem, there is
a dense set of points x in U where f is differentiable with |∇ f (x)| ≤ κ . Hence
there exist sequences xk → x̄ such that f is differentiable at xk, in which case the
corresponding sequence of norms |∇ f (xk)| is bounded by the Lipschitz constant κ

and hence has at least one cluster point. This leads to the following definition.

Clarke generalized Jacobian. For f : IRn → IRm and any x̄ ∈ int dom f where
lip( f ; x̄) < ∞, denote by ∇̄ f (x̄) the set consisting of all matrices A ∈ IRm×n for
which there is a sequence of points xk → x̄ such that f is differentiable at xk and
∇ f (xk)→ A. The Clarke generalized Jacobian of f at x̄, denoted ∂̄ f (x̄), is the con-
vex hull of this set: ∂̄ f (x̄) = co ∇̄ f (x̄).

Note that ∇̄ f (x̄) is a nonempty, closed, bounded subset of IRm×n. This ensures
that the convex set ∂̄ f (x̄) is nonempty, closed, and bounded as well. Furthermore,
the mapping x 7→ ∂̄ f (x) has closed graph and is outer semicontinuous, meaning that,
given x̄ ∈ int dom f , for every ε > 0 there exists δ > 0 such that, for all x ∈ IBδ (x̄),

∂̄ f (x)⊂ ∂̄ f (x̄)+ εIBm×n,

where IBm×n is the set consisting of all m×n matrices whose norm is less or equal
to one (the unit ball in the space of m× n matrices). Strict differentiability of f
at x̄ is known to be characterized by having ∇̄ f (x̄) consist of a single matrix A (or
equivalently by having ∂̄ f (x̄) consist of a single matrix A), in which case A=∇ f (x̄).
We will use in this section a mean value theorem for the generalized Jacobian2

according to which, if f is Lipschitz continuous in an open convex set containing
the points x and x′, then one has

f (x)− f (x′) = A(x− x′) for some A ∈ co
⋃

t∈[0,1]
∂̄ f (tx+(1− t)x′).

The inverse function theorem which we state next says roughly that a Lipschitz
continuous function can be inverted locally around a point x̄ when all elements of
the generalized Jacobian at x̄ are nonsingular. Compared with the classical inverse

2 This is Theorem 2.6.5 in Clarke [1983].
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function theorem, the main difference is that the single-valued graphical localization
so obtained can only be claimed to be Lipschitz continuous.

Theorem 4D.3 (Clarke inverse function theorem). Consider f : IRn → IRn and a
point x̄ ∈ int dom f where lip( f ; x̄) < ∞. Let ȳ = f (x̄). If all of the matrices in the
generalized Jacobian ∂̄ f (x̄) are nonsingular, then f−1 has a Lipschitz continuous
single-valued localization around ȳ for x̄.

For illustration, we provide elementary examples. The function f : IR→ IR given
by

f (x) =
{

x+ x3 for x < 0,
2x− x3 for x≥ 0

has generalized Jacobian ∂̄ f (0) = [1,2], which does not contain 0. According to
Theorem 2H.1, f−1 has a Lipschitz continuous single-valued localization around 0
for 0.

In contrast, the function f : IR→ IR given by f (x) = |x| has ∂̄ f (0) = [−1,1],
which does contain 0. Although the theorem makes no claims about this case, there
is no graphical localization of f−1 around 0 for 0 that is single-valued.

We will deduce Clarke’s theorem from the following more general result con-
cerning mappings of the form f +F that describe generalized equations:

Theorem 4D.4 (inverse function theorem for nonsmooth generalized equations).
Consider a function f : IRn → IRn, a set-valued mapping F : IRn →→ IRn and a point
(x̄, ȳ)∈ IRn× IRn such that x̄∈ int dom f , lip( f ; x̄)<∞ and ȳ∈ f (x̄)+F(x̄). Suppose
that for every A ∈ ∂̄ f (x̄) the inverse G−1

A of the mapping GA given by

GA : x 7→ f (x̄)+A(x− x̄)+F(x)

has a Lipschitz continuous single-valued localization around ȳ for x̄. Then the map-
ping ( f +F)−1 has a Lipschitz continuous single-valued localization around ȳ for x̄
as well.

When F is the zero mapping, from 4D.4 we obtain Clarke’s theorem 4D.3. If f
is strictly differentiable at x̄, 4D.4 reduces to the inverse function version of 2B.10.
We supply Theorem 4D.4 with a proof in Section 6F, where, after a preliminary
analysis, we employ an iteration resembling Newton’s method, in analogy to Proof
I of Theorem 1A.1.

Clarke’s theorem is a particular case of an inverse function theorem due to Kum-
mer, which relies on the strict graphical derivative. For a function, the definition of
strict graphical derivative can be restated as follows:

Strict graphical derivative for a function. For a function f : IRn → IRm and any
point x̄ ∈ dom f , the strict graphical derivative at x̄ is the set-valued mapping
D∗ f (x̄) : IRn→→ IRm defined by
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D∗ f (x̄)(u)=
{

w
∣∣∣w = lim

k→∞

f (xk + τkuk)− f (xk)

τk for some (xk,uk)→ (x̄,u),τk↘0
}
.

When lip( f ; x̄) < ∞, the set D∗ f (x̄)(u) is nonempty, closed and bounded in IRm

for each u ∈ IRn. Then too, the definition of D∗ f (x̄)(u) can be simplified by taking
uk ≡ u. In this Lipschitzian setting the strict graphical derivative can be expressed
in terms of the generalized Jacobian. Specifically, it can be shown that D∗ f (x̄)(u) ={

Au
∣∣A ∈ ∂̄ f (x̄)

}
for all u if m = 1, but that fails for higher dimensions. In general,

it is known3 that for a function f : IRn→ IRm with lip( f ; x̄)< ∞, one has

(9) ∂̄ f (x̄)(u)⊃ D∗ f (x̄)(u) for all u ∈ IRn.

Note that f is strictly graphically differentiable at x̄ if and only if D∗ f (x̄) is a
linear mapping, with the matrix for that mapping then being ∇ f (x̄). Anyway, the
strict derivatives can be used without having to assume even that lip( f ; x̄)< ∞.

The computation of the strict graphical derivatives will be illustrated now in a
special case of nonsmoothness which has a basic role in various situations.

Example 4D.5. Consider the function

θ
+ : x 7→ x+ := max{x,0}, x ∈ IR.

Directly from the definition, we have, for any real u, that

D∗θ+(x̄)(u) =

{u for x̄ > 0,{
λu
∣∣λ ∈ [0,1]

}
for x̄ = 0,

0 for x̄ < 0

and is the same as ∂̄ θ+(x̄)(u). Similarly, the function

θ
− : x 7→ x− := min{x,0}, x ∈ IR

satisfies
θ
−(x) = x−θ

+(x).

Then, just by applying the definition, we get

v ∈ D∗θ+(x̄)(u) ⇐⇒ (u− v) ∈ D∗θ−(x̄)(u) for every real u.

We will now present an inverse function theorem, due to Kummer, which fur-
nishes a complete characterization of the existence of a Lipschitz continuous local-
ization of the inverse, and thus sharpens the theorem of Clarke 4D.3.

Theorem 4D.6 (Kummer inverse function theorem). Let f : IRn → IRn be contin-
uous around x̄, with f (x̄) = ȳ. Then f−1 has a Lipschitz continuous single-valued
localization around ȳ for x̄ if and only if

3 Cf. Klatte and Kummer [2002], Section 6.3.
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(10) 0 ∈ D∗ f (x̄)(u) =⇒ u = 0.

Proof. Recall Theorem 1F.2, which says that for a function f : IRn → IRn that is
continuous around x̄, the inverse f−1 has a Lipschitz continuous localization around
f (x̄) for x̄ if and only if, in some neighborhood U of x̄, there is a constant c > 0 such
that

(11) c|x′− x| ≤ | f (x′)− f (x)| for all x′,x ∈U.

We will show first that (10) implies (11), from which the sufficiency of the condi-
tion will follow. With the aim of reaching a contradiction, let us assume there are
sequences ck↘0, xk→ x̄ and x̃k→ x̄, xk 6= x̃k such that

| f (xk)− f (x̃k)|< ck|xk− x̃k|.

Then the sequence of points

uk :=
x̃k− xk

|xk− x̃k|
satisfies |uk|= 1 for all k, hence a subsequence uki of it is convergent to some u 6= 0.
Restricting ourselves to such a subsequence, we obtain for tki = |xki − x̃ki | that

lim
ki→∞

f (xki + tkiuki)− f (xki)

tki
= 0.

By definition, the limit on the left side belongs to D∗ f (x̄)(u), yet u 6= 0, which is
contrary to (10). Hence (10) does imply (11).

For the converse, we argue that if (10) were violated, there would be sequences
τk↘0, xk→ x̄, and uk→ u with u 6= 0, for which

(12) lim
k→∞

f (xk + τkuk)− f (xk)

τk = 0.

On the other hand, under (11) however, one has

| f (xk + τkuk)− f (xk)|
τk ≥ c|uk|,

which combined with (12) and the assumption that uk is away from 0 leads to an
absurdity for large k. Thus (11) guarantees that (10) holds.

The property recorded in (9) indicates clearly that Clarke’s inverse function the-
orem follows from that of Kummer. In the last section 4I of this chapter we apply
Kummer’s theorem to the nonlinear programming problem we studied in 2G.
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4E. Derivative Criterion for Strong Metric Subregularity

Strong metric subregularity of a mapping F : IRn→→ IRm at x̄ for ȳ, where ȳ ∈ F(x̄),
was defined in Section 3I to mean the existence of a constant κ along with neigh-
borhoods U of x̄ and V of ȳ such that

(1) |x− x̄| ≤ κd(ȳ,F(x)∩V ) for all x ∈U.

This property is equivalent to the combination of two other properties: that F is
metrically subregular at x̄ for ȳ, and x̄ is an isolated point of F−1(ȳ). The associated
modulus, the infimum of all κ > 0 for which this holds for some U and V , is thus
the same as the modulus of subregularity, subreg(F ; x̄ | ȳ).

It was shown in 3I.2 that F is strongly metrically subregular at x̄ for ȳ if and
only if F−1 has the isolated calmness property at ȳ for x̄. As an illustration, a linear
mapping A is strongly metrically subregular at x̄ for ȳ = Ax̄ if and only if A−1(ȳ)
consists only of x̄, i.e., A is injective. More generally, a mapping F that is polyhedral,
as defined in 3D, is strongly metrically subregular at x̄ for ȳ if and only if x̄ is an
isolated point of F−1(ȳ); this follows from 3I.1.

What makes the strong metric subregularity attractive, along the same lines as
metric regularity and strong metric regularity, is its stability with respect to approx-
imation as established in 3I.7. In particular, a function f : IRn→ IRm which is differ-
entiable at x̄ is strongly metrically subregular at x̄ for f (x̄) if and only if its Jacobian
∇ f (x̄) has rank n, so that ∇ f (x̄)u = 0 implies u = 0. According to 4A.6, this is also
characterized by |D f (x̄)−1|+ < ∞. It turns out that such an outer norm characteri-
zation can be provided also for set-valued mappings by letting graphical derivatives
take over the role of ordinary derivatives.

Theorem 4E.1 (graphical derivative criterion for strong metric subregularity). A
mapping F : IRn →→ IRm whose graph is locally closed at (x̄, ȳ) ∈ gph F is strongly
metrically subregular at x̄ for ȳ if and only if

(2) DF(x̄ | ȳ)−1(0) = {0},

this being equivalent to

(3) |DF(x̄ | ȳ)−1|+ < ∞,

and in that case

(4) subreg(F ; x̄ | ȳ) = |DF(x̄ | ȳ)−1|+.

Proof. The equivalence between (2) and (3) comes from 4A.6. To get the equiv-
alence of these conditions with strong metric regularity, suppose first that κ >
subreg(F ; x̄ | ȳ) so that F is strongly metrically subregular at x̄ for ȳ and (1) holds for
some neighborhoods U and V . By definition, having v ∈ DF(x̄ | ȳ)(u) refers to the
existence of sequences uk→ u, vk→ v and τk↘0 such that ȳ+ τkvk ∈ F(x̄+ τkuk).
Then x̄+ τkuk ∈U and ȳ+ τkvk ∈V eventually, so that (1) yields |(x̄+ τkuk)− x̄| ≤
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κ|(ȳ + τkvk)− ȳ|, which is the same as |uk| ≤ κ|vk|. In the limit, this implies
|u| ≤ κ|v|. But then, by 4A.6, |DF(x̄ | ȳ)−1|+ ≤ κ and hence

(5) subreg(F ; x̄ | ȳ)≥ |DF(x̄ | ȳ)−1|+.

In the other direction, (3) implies the existence of a κ > 0 such that

sup
v∈IB

sup
u∈DF(x̄ | ȳ)−1(v)

|u|< κ.

This in turn implies that |x− x̄| ≤ κ|y− ȳ| for all (x,y) ∈ gph F close to (x̄, ȳ). That
description fits with (1). Further, κ can be chosen arbitrarily close to |DF(x̄ | ȳ)−1|+,
and therefore |DF(x̄ | ȳ)−1|+ ≥ subreg(F ; x̄ | ȳ). This, combined with (5), finishes the
argument.

Corollary 4E.2 (graphical derivative criterion for isolated calmness). For a map-
ping S : IRm →→ IRn and a point (ȳ, x̄) ∈ gph S at which gph S is locally closed. one
has

clm(S; ȳ | x̄) = |DS(ȳ | x̄)|+.
Theorem 4E.1 immediately gives us the linearization result in Corollary 3I.11 by

using the sum rule in 4A.2. Implicit function theorems could be developed for the
isolated calmness of solution mappings to general inclusions G(p,x) 3 0 in parallel
to the results in 4B, but we shall not do this here. In the following corollary we
utilize Theorem 3I.14 and the ample parameterization condition.

Corollary 4E.3 (derivative rule for isolated calmness of solution mappings). For
the solution mapping of the generalized equation,

S(p) =
{

x
∣∣ f (p,x)+F(x) 3 0

}
with f : IRd × IRn → IRm and F : IRn →→ IRm and a pair (p̄, x̄) satisfying x̄ ∈ S(p̄),
suppose that f is differentiable with respect to x uniformly in p at (p̄, x̄) and also
differentiable with respect to p uniformly in x at (p̄, x̄). Also, suppose that gph F is
locally closed at (x̄,− f (p̄, x̄)). If

(6) |(Dx f (p̄, x̄)+DF(x̄ | − f (p̄, x̄)))−1|+ ≤ λ < ∞,

then S has the isolated calmness property at p̄ for x̄, moreover with

clm(S; p̄ | x̄) ≤ λ |∇p f (p̄, x̄)|.

Furthermore, when f is continuously differentiable in a neighborhood of (p̄, x̄) and
satisfies the ample parameterization condition

rank ∇p f (p̄, x̄) = m,
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then the converse implication holds as well; that is, S has isolated calmness property
at p̄ for x̄ if and only if (6) is satisfied.

The following simple example in terms of graphical derivatives illustrates further
the distinction between metric regularity and strong metric subregularity.

Example 4E.4 (strong metric subregularity without metric regularity). Let F :
IR→→ IR be defined by

F(x) =

 [
√

1− (x−1)2,∞) for 0≤ x≤ 1,
[
√

1− (x+1)2,∞) for −1≤ x≤ 0,
/0 elsewhere,

as shown in Figure 4.1. Then

DF(0 |0)(u) =
{
[0,∞) for u = 0,
/0 for u 6= 0,

and therefore
|DF(0 |0)−1|+ = 0, |DF(0 |0)−1|− = ∞.

This fits with F being strongly metrically subregular, but not metrically regular at 0
for 0.

−1 0 1

x

F

Fig. 4.1 Graph of the mapping in Example 4E.4.
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4F. Applications to Parameterized Constraint Systems

Next we look at what the graphical derivative results given in Section 4B have to
say about a constraint system

(1) f (p,x)−D 3 0, or equivalently f (p,x) ∈ D,

and its solution mapping

(2) S : p 7→
{

x
∣∣ f (p,x) ∈ D

}
for a function f : IRd× IRn→ IRm and a set D⊂ IRm.

Theorem 4F.1 (implicit mapping theorem for a constraint system). Let x̄∈ S(p̄) for
solution mapping S of the constraint system (1) and suppose that f is continuously
differentiable in a neighborhood of (p̄, x̄) and that the set D is closed. If

(3) limsup
(p,x,y)→(p̄,x̄,0)

f (p,x)−y∈D

sup
|v|≤1

d
(

0,Dx f (p,x)−1(v+TD( f (p,x)− y))
)
≤ λ < ∞,

then S has the Aubin property at p̄ for x̄, with

(4) lip(S; p̄, x̄) ≤ λ l̂ip p( f ;(p̄, x̄)).

Proof. The assumed closedness of D and continuous differentiability of f around
(p̄, x̄) allow us to apply Corollary 4B.8 to the case of F(x)≡−D. Further, according
to 4A.3 we have

DxG(p,x |y) = Dx f (p,x)−TD( f (p,x)− y).

Next, we use the definition of inner norm in 4A(8) to write 4B(29) as (3) and apply
4B.7 to obtain that S has the Aubin property at p̄ for x̄. The estimate (4) follows
immediately from 4B(30).

A much sharper result can be obtained when f is continuously differentiable and
the set D in the system (1) is polyhedral convex.

Theorem 4F.2 (constraint systems with polyhedral convexity). Let x̄ ∈ S(p̄) for the
solution mapping S of the constraint system (1) in the case of a polyhedral convex
set D. Suppose that f is continuously differentiable in a neighborhood of (p̄, x̄).
Then for S to have the Aubin property at x̄ for p̄, it is sufficient that

(5) rge ∇x f (p̄, x̄)−TD( f (p̄, x̄)) = IRm,

in which case the corresponding modulus satisfies lip(S; p̄ | x̄) ≤ λ |∇p f (p̄, x̄)| for

(6) λ = sup
|v|≤1

d
(

0,∇x f (p̄, x̄)−1(v+TD( f (p̄, x̄)))
)
.
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Moreover (5) is necessary for S to have the Aubin property at p̄ for x̄ under the
ample parameterization condition

(7) rank ∇p f (p̄, x̄) = m.

Proof. We invoke Theorem 4F.1 but make special use of the fact that D is polyhe-
dral. That property implies that TD(w) ⊃ TD(w̄) for all w sufficiently near to w̄, as
seen in 2E.3; we apply this to w = f (p,x)− y and w̄ = f (p̄, x̄) in the formulas (3)
and (4) of 4F.1. The distances in question are greatest when the cone is as small as
possible; this, combined with the continuous differentiability of f , allows us to drop
the limit in (3). Further, from the equivalence relation 4A(16) in Corollary 4A.7, we
obtain that the finiteness of λ in (6) is equivalent to (5).

For the necessity, we bring in a further argument which makes use of the ample
parameterization condition (7). According to Theorem 3F.9, under (7) the Aubin
property of S at p̄ for x̄ implies metric regularity of the linearized mapping h−D
for h(x) = f (p̄, x̄)+Dx f (p̄, x̄)(x− x̄). The derivative criterion for metric regularity
4B.1 tells us then that

(8)
limsup (x,y)→(x̄,0)

f (p̄,x̄)+Dx f (p̄,x̄)(x−x̄)−y∈D
sup|v|≤1 d

(
0,

∇x f (p̄, x̄)−1(v+TD( f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄)− y))
)
< ∞.

Taking x = x̄ and y = 0 instead of limsup in (8) gives us the expression for λ in
(6) and may only decrease the left side of this inequality. We already know that the
finiteness of λ in (6) yields (5), and so we are done.

Example 4F.3 (application to systems of inequalities and equalities). For D =
IRs
− × {0}m−s, the solution mapping S(p) in (2) consists, in terms of f (p,x) =

( f1(p,x), . . . , fm(p,x)) of all solutions x to

fi(p,x)
{
≤ 0 for i ∈ [1,s],
= 0 for i ∈ [s+1,m].

Let x̄ solve this for p̄ and let each fi be continuously differentiable around (p̄, x̄).
Then a sufficient condition for S to have the Aubin property for p̄ for x̄ is the
Mangasarian–Fromovitz condition:

(9) ∃ w ∈ IRn with
{

∇x fi(p̄, x̄)w < 0 for i ∈ [1,s] with fi(p̄, x̄) = 0,
∇x fi(p̄, x̄)w = 0 for i ∈ [s+1,m],

and

(10) the vectors ∇x fi(p̄, x̄) for i ∈ [s+1,m] are linearly independent.

Moreover, the combination of (9) and (10) is also necessary for S to have the Aubin
property under the ample parameterization condition (7). In particular, when f is
independent of p and then 0∈ f (x̄)−D, the Mangasarian–Fromovitz condition (9)–
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(10) is a necessary and sufficient condition for metric regularity of the mapping
f −D at x̄ for 0.

Detail. According to 4F.2, it is enough to show that (5) is equivalent to the com-
bination of (9) and (10) in the case of D = IRs

−×{0}m−s. Observe that the tangent
cone to the set D at f (p̄, x̄) has the following form:

(11) v ∈ TD( f (p̄, x̄)) ⇐⇒ vi

{
≤ 0 for i ∈ [1,s] with fi(p̄, x̄) = 0,
= 0 for i ∈ [s+1,m].

Let (5) hold. Then, using (11), we obtain that the matrix with rows the vectors
∇x fs+1(p̄, x̄), . . . ,∇x fm(p̄, x̄) must be of full rank, hence (10) holds. If (9) is violated,
then for every w ∈ IRn either ∇x fi(p̄, x̄)w≥ 0 for some i ∈ [1,s] with fi(p̄, x̄) = 0, or
∇x fi(p̄, x̄)w 6= 0 for some i ∈ [s+1,m], which contradicts (5) in an obvious way.

The combination of (9) and (10) implies that for every y ∈ IRm there exist w,v ∈
IRn and z ∈ IRm with zi ≤ 0 for i ∈ [1,s] with fi(p̄, x̄) = 0 such that{

∇x fi(p̄, x̄)w− zi = yi for i ∈ [1,s] with fi(p̄, x̄) = 0,
∇x fi(p̄, x̄)(w+ v) = yi for i ∈ [s+1,m].

But then (5) follows directly from the form (11) of the tangent cone.
If f is independent of p, by 3E.7 the metric regularity of − f +D is equivalent

to the Aubin property of the inverse (− f +D)−1, which is the same as the solution
mapping

S(p) =
{

x
∣∣ p+ f (x) ∈ D

}
for which the ample parameterization condition (7) holds automatically. Then, from
4F.2, for x̄ ∈ S(p̄), the Aubin property of S at p̄ for x̄ and hence metric regularity of
f −D at x̄ for p̄ is equivalent to (5) and therefore to (9)–(10).

Exercise 4F.4. Consider the constraint system in 4F.3 with f (p,x)= g(x)− p, p̄= 0
and g continuously differentiable near x̄. Show that the existence of a Lipschitz con-
tinuous local selection of the solution mapping S at 0 for x̄ implies the Mangasarian–
Fromovitz condition. In other words, the existence of a Lipschitz continuous local
selection of S at 0 for x̄ implies metric regularity of the mapping g−D at x̄ for 0.

Guide. Utilizing 2B.12, from the existence of a local selection of S at 0 for x̄ we
obtain that the inverse F−1

0 of the linearization F0(x) := g(x̄)+Dg(x̄)(x− x̄)−D
has a Lipschitz continuous local selection at 0 for x̄. Then, in particular, for every
v ∈ IRm there exists w ∈ IRn such that{

∇gi(x̄)w≤ vi for i ∈ [1,s] with gi(x̄) = 0,
∇gi(x̄)w = vi for i ∈ [s+1,m].

This is the same as (5).

We will present next an application of the coderivative criterion for metric regu-
larity to the constraint system (1).
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Theorem 4F.5 (coderivative criterion for constraint systems). Let x̄ ∈ S(p̄) for the
solution mapping S of the constraint system (1) and suppose that f is continuously
differentiable in a neighborhood of (p̄, x̄) and the set D is closed. Then for S to have
the Aubin property at x̄ for p̄, it is sufficient that

(12) y ∈ ND( f (p̄, x̄)) and ∇x f (p̄, x̄)Ty = 0 =⇒ y = 0.

in which case the corresponding Lipschitz modulus satisfies

lip(S; p̄ | x̄) ≤ λ |∇p f (p̄, x̄)|

for

(13) λ = sup
|y|≤1

y∈ND( f (p̄,x̄))

|∇x f (p̄, x̄)Ty|−1.

Moreover (13) is necessary for S to have the Aubin property at p̄ for x̄ under the
ample parameterization condition (7).

Proof. The solution mapping S has the Aubin property at x̄ for 0 if and only if the
linearized mapping

L : x 7→ f (p̄, x̄)+∇x f (p̄, x̄)(x− x̄)−D

is metrically regular at x̄ for 0. The general normal cone to the graph of L has the
form4

Ngph L(x̄,0) = {(v,−y) | y ∈ ND( f (p̄, x̄)), v = ∇x f (p̄, x̄)Ty}.
It remains to use Theorem 4C.2 and the definition of the outer norm.

A result parallel to 4F.2 can be formulated also for isolated calmness instead of
the Aubin property.

Proposition 4F.6 (isolated calmness of constraint systems). In the setting of The-
orem 4F.1, for S to have the isolated calmness property at p̄ for x̄ it is sufficient
that

Dx f (p̄, x̄)u ∈ TD( f (p̄, x̄)) =⇒ u = 0.

Moreover, this condition is necessary for S to have the isolated calmness property at
p̄ for x̄ under the ample parameterization condition (8).

Proof. This is a special case of Corollary 4F.3 in which we utilize 4A.2.

We note that the isolated calmness property offers little of interest in the case of
solution mappings for constraint systems beyond equations, inasmuch as it necessi-
tates x̄ being an isolated point of the solution set S(p̄); this restricts significantly the
class of constraint systems for which such a property may occur. In the following

4 This is 9.44 in Rockafellar and Wets [1998].
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section we will consider mappings associated with variational inequalities for which
the isolated calmness is a more natural property.

4G. Isolated Calmness for Variational Inequalities

Now we take up once more the topic of variational inequalities, to which serious at-
tention was already devoted in Chapter 2. This revolves around a generalized equa-
tion of the form

(1) f (p,x)+NC(x) 3 0, or − f (p,x) ∈ NC(x),

for a function f : IRd× IRn→ IRn and the normal cone mapping NC associated with a
nonempty, closed, convex set C⊂ IRn, and the solution mapping S : IRd→→ IRn defined
by

(2) S(p) =
{

x
∣∣ f (p,x)+NC(x) 3 0

}
.

Especially strong results were obtained in 2E for the case in which C is a polyhedral
convex set, and that will also persist here. Of special importance in that setting is
the critical cone associated with C at a point x with respect to a vector v ∈ NC(x),
defined by

(3) KC(x,v) = TC(x)∩ [v]⊥,

which is always polyhedral convex as well. Recall here that for any vector v ∈ IRn

we denote [v] =
{

τv
∣∣τ ∈ IR

}
; then [v] is a subspace of dimension 1 if v 6= 0 and 0

if v = 0. Accordingly, [v]⊥ is a hyperplane through the origin if v 6= 0 and the whole
IRn when v = 0.

In this section we examine the isolated calmness property, which is inverse to
strong metric subregularity by 3I.3.

Theorem 4G.1 (isolated calmness for variational inequalities). For the variational
inequality (1) and its solution mapping (2) under the assumption that the convex
set C is polyhedral, let x̄ ∈ S(p̄) and suppose that f is continuously differentiable
around (p̄, x̄). Let A = ∇x f (p̄, x̄) and let K = KC(x̄, v̄) be the corresponding critical
cone in (3) for v̄ =− f (p̄, x̄). If

(4) (A+NK)
−1(0) = {0},

then the solution mapping S has the isolated calmness property at p̄ for x̄ with

clm(S; p̄ | x̄) ≤ |(A+NK)
−1|+ · |∇p f (p̄, x̄)|.
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Moreover, under the ample parameterization condition rank ∇p f (p̄, x̄) = n, the
property in (4) is not just sufficient but also necessary for S to have the isolated
calmness property at p̄ for x̄.

Proof. Utilizing the specific form of the graphical derivative established in 4A.4
and the equivalence relation 4A(13) in 4A.6, we see that (4) is equivalent to the
condition 4E(7) in Corollary 4E.3. Everything then follows from the claim of that
corollary.

Exercise 4G.2 (alternative cone condition). In terms of the cone K∗ that is polar to
K, show that the condition in (4) is equivalent to

(5) w ∈ K, −Aw ∈ K∗, w⊥ Aw =⇒ w = 0.

Guide. Make use of 2A.3.

In the important case when C = IRn
+, the variational inequality (1) turns into the

complementarity relation

(6) x≥ 0, f (p,x)≥ 0, x⊥ f (p,x).

This will serve to illustrate the result in Theorem 4G.1. Using the notation intro-
duced in Section 2E for the analysis of a complementarity problem, we associate
with the reference point (x̄, v̄) ∈ gph NIRn

+
the index sets J1, J2 and J3 in {1, . . . ,n}

given by

J1 =
{

j
∣∣ x̄ j > 0, v̄ j = 0

}
, J2 =

{
j
∣∣ x̄ j = 0, v̄ j = 0

}
, J3 =

{
j
∣∣ x̄ j = 0, v̄ j < 0

}
.

Then, by 2E.5, the critical cone K = KC(x̄, v̄) = TIRn
+
(x̄)∩ [ f (p̄, x̄)]⊥ is described by

(7) w ∈ K ⇐⇒


w j free for i ∈ J1,
w j ≥ 0 for i ∈ J2,
w j = 0 for i ∈ J3.

Example 4G.3 (isolated calmness for complementarity problems). In the case of
C = IRn

+ in which the variational inequality (1) reduces to the complementarity rela-
tion (6) and the critical cone K is given by (7), the condition (4) in Theorem 4G.1
reduces through (5) to having the following hold for the entries ai j of the matrix A.
If w j for j ∈ J1∪ J2 are real numbers satisfying

w j ≥ 0 for j ∈ J2 and ∑
j∈J1∪J2

ai jw j

{
= 0 for i ∈ J1 and for i ∈ J2 with wi > 0,
≥ 0 for i ∈ J2 with wi = 0,

then w j = 0 for all j ∈ J1∪ J2.
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In the particular case when J1 = J3 = /0, the matrices satisfying the condition in
4G.3 are called R0-matrices5.

As another application of Theorem 4G.1, consider the tilted minimization prob-
lem from Section 2G:

(8) minimize g(x)−〈v,x〉 over x ∈C,

where C is a nonempty polyhedral convex subset of IRn, v ∈ IRn is a parameter, and
the function g : IRn → IR is twice continuously differentiable everywhere. We first
give a brief summary of the optimality conditions from 2G.

If x is a local optimal solution of (8) for v then x satisfies the basic first-order
necessary optimality condition

(9) ∇g(x)+NC(x) 3 v.

Any solution x of (9) is a stationary point for problem (8), denoted S(v), and the
associated stationary point mapping is v 7→ S(v) = (Dg+NC)

−1(v). The set of local
minimizers of (8) for v is a subset of S(v). If the function g is convex, every station-
ary point is not only local but also a global minimizer. For the variational inequality
(9), the critical cone to C associated with a solution x for v has the form

KC(x,v−∇g(x)) = TC(x)∩ [v−∇g(x)]⊥.

If x furnishes a local minimum of (8) for v, then, according to 2G.1(a), x must satisfy
the second-order necessary condition

(10) 〈u,∇2g(x)u〉 ≥ 0 for all u ∈ KC(x,v−∇g(x)).

In addition, from 2G.1(b), when x ∈ S(v) satisfies the second-order sufficient condi-
tion

(11) 〈u,∇2g(x)u〉> 0 for all nonzero u ∈ KC(x,v−∇g(x)),

then x is a local optimal solution of (8) for v. Having x to satisfy (9) and (11) is
equivalent to the existence of ε > 0 and δ > 0 such that

(12) g(y)−〈v,y〉 ≥ g(x)−〈v,x〉+ ε|y− x|2 for all y ∈C with |y− x| ≤ δ ,

meaning by definition that x furnishes a strong local minimum in (8).
We know from 2G.3 that the stationary point mapping S has a Lipschitz localiza-

tion s around v for x with the property that s(u) furnishes a strong local minimum
for u near v if and only if the following stronger form of the second-order sufficient
optimality condition holds:

〈w,∇2g(x̄)w〉> 0 for all nonzero w ∈ K+

C (x,v),

5 For a detailed description of the classes of matrices appearing in the theory of linear complemen-
tarity problems, see the book Cottle, Pang and Stone [1992].
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where K+

C (x,v) = KC(x,v−∇g(x))−KC(x,v−∇g(x)) is the critical subspace asso-
ciated with x and v. We now complement this result with a necessary and sufficient
condition for isolated calmness of S combined with local optimality at the reference
point.

Theorem 4G.4 (role of second-order sufficiency). Consider the stationary point
mapping S for problem (8), that is, the solution mapping for (9), and let x̄ ∈ S(v̄).
Then the following are equivalent:

(a) the second-order sufficient condition (11) holds at x̄ for v̄;
(b) the point x̄ is a local minimizer of (8) for v̄ and the mapping S has the isolated

calmness property at v̄ for x̄.
Moreover, in either case, x̄ is actually a strong local minimizer of (7) for v̄.

Proof. Let A := ∇2g(x̄). According to Theorem 4G.1 complemented with 4G.2, the
mapping S has the isolated calmness property at v̄ for x̄ if and only if

(13) u ∈ K, −Au ∈ K∗, u⊥ Au =⇒ u = 0,

where K = KC(x̄, v̄−∇g(x̄)). Let (a) hold. Then of course x̄ is a local optimal solu-
tion as described. If (b) doesn’t hold, there must exist some u 6= 0 satisfying the con-
ditions in the left side of (13), and that would contradict the inequality 〈u,Au〉 > 0
in (11).

Conversely, assume that (b) is satisfied. Then the second-order necessary condi-
tion (10) must hold; this can be written as

u ∈ K =⇒ −Au ∈ K∗.

The isolated calmness property of S at v̄ for x̄ is identified with (13), which in turn
eliminates the possibility of there being a nonzero u ∈ K such that the inequality
in (10) fails to be strict. Thus, the necessary condition (10) turns into the sufficient
condition (11). We already know that (11) implies (12), so the proof is complete.

4H. Variational Inequalities over Polyhedral Convex Sets

In this section we investigate applications of graphical derivatives and coderivatives
to characterize (strong) metric regularity of the following mapping:

(1) x 7→ f (x)+NC(x)⊂ IRn for x ∈ IRn,

where f : IRn→ IRn is a function and NC is the normal cone mapping associated with
a polyhedral convex set C⊂ IRn. Thus, the inclusion 0 ∈ ( f +NC)(x) is the standard
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variational inequality which we introduced in Section 2A. Central in this section is
the following theorem:

Theorem 4H.1 (characterization of (strong) metric regularity). For the mapping in
(1) under the assumption that the convex set C is polyhedral, let x̄ ∈ ( f +NC)

−1(0)
and suppose that f is continuously differentiable near x̄. Let

(2) A = Dx f (x̄) and K =
{

w ∈ TC(x̄)
∣∣w⊥ f (x̄)

}
,

that is, K is the critical cone to the set C at x̄ for − f (x̄). Then the mapping f +NC is
metrically regular at x̄ for 0 if and only if the mapping A+NK is metrically regular
at 0 for 0, in which case

(3) reg( f +NC; x̄ |0) = reg(A+NK ;0 |0).

Furthermore, metric regularity of A+NK at 0 for 0 implies, and hence is equivalent
to, strong metric regularity of this mapping at 0 for 0, which is actually equivalent
to the property that

(4) (A+NK)
−1 is everywhere single-valued,

in which case (A+NK)
−1 is a function which is Lipschitz continuous globally with

Lipschitz modulus equal to reg(A+NK ;0 |0). Thus, metric regularity of f +NC at x̄
for 0 is equivalent to strong metric regularity of f +NC at x̄ for 0.

The statement involving (3) comes from the combination of 3F.7, while the one
regarding (4) is from 2E.8. The most important part of this theorem that, for the
mapping f +NC with a smooth f and a polyhedral convex set C, metric regularity
is equivalent to strong metric regularity, will not be proved here in full generality.
To prove this fact we need tools that go beyond the scope of this book, see the
commentary to this chapter. We will however give a proof of this equivalence for
a particular but important case, namely, for the mapping appearing in the Karush-
Kuhn-Tucker (KTT) optimality condition in nonlinear programming. This will be
done in Section 4I. First, we focus on characterizing metric regularity of (1) by
applying the derivative and coderivative criteria in Theorems 4B.1 and 4C.2 to A+
NK . Before that can be done, however, we put some effort into a better understanding
of the normal cone mapping NK .

Faces and critical superfaces of a cone. For a polyhedral convex cone K, a closed
face is a set F of the form

F = K∩ [v]⊥ for some v ∈ K∗.

A superface is a set Q of the form F1−F2 coming from two closed faces F1 and F2.
A superface Q will be called critical if it arises from closed faces F1 and F2 such
that F1 ⊃ F2.

The collection of all faces of K will be denoted by FK and the collection of all
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superfaces of K will be denoted by QK . The collection of all critical superfaces will
be critQK .

Since K is polyhedral, we obtain from the Minkowski-Weyl theorem 2E.2 and
its surroundings that FK is a finite collection of polyhedral convex cones. This
collection contains K itself and the zero cone, in particular. The same holds for
the collections QK and critQK . The importance of critical superfaces is due to the
following fact.

Lemma 4H.2 (critical superface lemma). Let C be a convex polyhedral set, let v ∈
NC(x) and let K = KC(x,v) be the critical cone for C at x for v, that is,

K = TC(x)∩ [v]⊥.

Then there exists a neighborhood O of (x,v) such that for every choice of (x′,v′) ∈
gph NC ∩O the corresponding critical cone KC(x′,v′) has the form

KC(x′,v′) = F1−F2

for some faces F1, F2 in FK with F2 ⊂ F1. In particular, KC(x′,v′) ⊂ K −K for
every (x′,v′) ∈ gph NC ∩O. Conversely, for every two faces F1,F2 in FK with F2 ⊂
F1 and every neighborhood O of (x,v) there exists (x′,v′) ∈ gph NC ∩O such that
KC(x′,v′) = F1−F2.

In other words, the collection critQK of all critical superfaces Q of the cone K =
KC(x,v) is identical to the collection of all critical cones KC(x′,v′) of K associated
with pairs (x′,v′) in a small enough neighborhood of (x,v).

Proof. Because C is polyhedral, all vectors of the form x′′ = x′−x with x′ ∈C close
to x are the vectors x′′ ∈ TC(x) having sufficiently small norm. Also, for such x′′,

(5) TC(x′) = TC(x)+ [x′′]⊃ TC(x)

and

(6) NC(x′) = NC(x)∩ [x′′]⊥ ⊂ NC(x).

Now, let (x′,v′) ∈ gph NC be close to (x,v) and let x′′ = x′− x. Then from (5) we
have

KC(x′,v′) = TC(x′)∩ [v′]⊥ =

(
TC(x)+ [x′′]

)
∩ [v′]⊥.

Further, from (6) it follows that v′ ⊥ x′′ and then we obtain

(7) KC(x′,v′) = TC(x)∩ [v′]⊥+[x′′] = KC(x,v′)+ [x′′].

We will next show that KC(x,v′)⊂K for v′ sufficiently close to v. If this were not
so, there would be a sequence vk→ v and another sequence wk ∈ KC(x,vk) such that
wk /∈ K for all k. Each set KC(x,vk) is a face of TC(x), but since TC(x) is polyhedral,
the set of its faces is finite, hence for some face F of TC(x) we have KC(x,vk) = F
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for infinitely many k. Note that the set gph KC(x, ·) is closed, hence for any w ∈ F ,
since (vk,w) is in this graph, the limit (v,w) belongs to it as well. But then w ∈ K
and since w ∈ F is arbitrarily chosen, we have F ⊂ K. Thus the sequence wk ∈ K
for infinitely many k, which is a contradiction. Hence KC(x,v′)⊂ K.

Let (x′,v′) ∈ gph NC be close to (x,v). Relation (7) tells us that KC(x′,v′) =
KC(x,v′)+ [x′′] for x′′ = x′− x. Let F1 = TC(x)∩ [v′]⊥, this being a face of TC(x).
The critical cone K = KC(x,v) = TC(x)∩ [v]⊥ is itself a face of TC(x), and any face
of TC(x) within K is also a face of K. Then F1 is a face of the polyhedral cone K.
Let F2 be the face of F1 having x′′ in its relative interior. Then F2 is also a face of K
and therefore KC(x′,v′) = F1−F2, furnishing the desired representation.

Conversely, let F1 be a face of K. Then there exists v′ ∈ K∗ = NK(0) such that
F1 = K ∩ [v′]⊥. The size of v′ does not matter; hence we may assume that v+ v′ ∈
NC(x) by the Reduction lemma 2E.4. By repeating the above argument we have
F1 = TC(x)∩ [v′′]⊥ for v′′ := v+v′. Now let F2 be a face of F1. Let x′ be in the relative
interior of F2. In particular, x′ ∈ TC(x), so by taking the norm of x′ sufficiently small
we can arrange that the point x′′ = x+ x′ lies in C. We have x′ ⊥ v′ and, as in (7),

F1−F2 =TC(x)∩[v′′]⊥+[x′] =
(

TC(x)+[x′]
)
∩[v′′]⊥=TC(x′′)∩[v′′]⊥=KC(x′′,v′′).

This gives us the form required.

Our next step is to specify the derivative criterion for metric regularity in 4B.1
for the reduced mapping A+NK .

Theorem 4H.3 (regularity modulus from derivative criterion). For A+NK with A
and K as in (2), we have

(8) reg(A+NK ;0 |0) = max
Q∈critQK

|(A+NQ)
−1|−.

Thus, A+NK is metrically regular at 0 for 0 if and only if |(A+NQ)
−1|− < ∞ for

every critical superface Q of K.

Proof. From Theorem 4B.1, combined with Example 4A.4, we have that

reg(A+NK ;0 |0) = limsup
(x,y)→(0,0)

(x,y)∈gph(A+NK )

|(A+NTK(x)∩[y−Ax]⊥)
−1|−.

Lemma 4H.2 with (x,v) = (0,0) gives us the desired representation NTK(x)∩[y−Ax]⊥ =

NF1−F2 for (x,y) near zero and hence (8).

Example 4H.4 (critical superfaces for complementarity problems). Consider the
complementarity problem

f (p,x)+NIRn
+
(x) 3 0,

with a solution x̄ for p̄. Let K and A be as in (2) (with C = IRn
+) and consider the

index sets
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J1 =
{

j
∣∣ x̄ j > 0, v̄ j = 0

}
, J2 =

{
j
∣∣ x̄ j = 0, v̄ j = 0

}
, J3 =

{
j
∣∣ x̄ j = 0, v̄ j < 0

}
for v̄ =− f (p̄, x̄). Then the critical superfaces Q of K have the following description.
There is a partition of {1, . . . ,n} into index sets J′1, J′2, J′3 with

J1 ⊂ J′1 ⊂ J1∪ J2, J3 ⊂ J′3 ⊂ J2∪ J3,

such that

(9) x′ ∈ Q ⇐⇒


x′i free for i ∈ J′1,
x′i ≥ 0 for i ∈ J′2,
x′i = 0 for i ∈ J′3.

Detail. Each face F of K has the form K∩ [v′]⊥ for some vector v′ ∈K∗. The vectors
v′ in question are those with v′i = 0 for i ∈ J1,

v′i ≤ 0 for i ∈ J2,
v′i free for i ∈ J3.

The closed faces F of K correspond one-to-one therefore with the subsets of J2: the
face F corresponding to an index set JF

2 consists of the vectors x′ such thatx′i free for i ∈ J1,
x′i ≥ 0 for i ∈ J2 \ JF

2 ,
x′i = 0 for i ∈ J3∪ JF

2 .

If such faces F1 and F2 have JF1
2 ⊂ JF2

2 , so that F1 ⊃ F2, then F1−F2 is given by (9)
with J′1 = J1∪ [J2 \ JF2

2 ], J′2 = JF2
2 \ JF1

2 , J′3 = J3∪ JF1
2 .

Theorem 4H.5 (critical superface criterion from graphical derivative criterion). For
a continuously differentiable function f : IRn → IRn and a polyhedral convex set
C⊂ IRn, let f (x̄)+NC(x̄) 3 0 and let K be the critical cone to C at x̄ for− f (x̄). Then
the mapping f +NC is metrically regular at x̄ for 0 if and only if, for all critical
superfaces Q of K, i.e., Q ∈ critQK , the following condition holds with A = ∇ f (x̄):

∀v ∈ IRn ∃u ∈ Q such that (v−Au) ∈ Q∗ and (v−Au)⊥ u.

Proof. From 3F.7, metric regularity of f +NC at x̄ for 0 is equivalent to metric re-
gularity of A+NK at 0 for 0. Then it is enough to apply 4H.3 together with 4A.7(16)
and using the fact that w ∈ NQ(u) whenever u ∈ Q, w ∈ Q∗, and u⊥ w.

Exercise 4H.6 (variational inequality over a subspace). Show that when the critical
cone K in 4H.5 is a subspace of IRn of dimension m ≤ n, then the matrix BABT is
nonsingular, where B is the matrix whose columns form an orthonormal basis in K.
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To illuminate the structure of the superfaces and their polars that underlies the
criterion in Theorem 4H.5, we record some additional properties. In polarity they
make use of the following concept.

Complementary faces. A closed face F of a polyhedral cone K ⊂ IRn and a closed
face F ′ of the polar cone K∗ are complementary to each other when

F ⊥ F ′ and dim F +dim F ′ = n.

The unique face F ′ of K∗ complementary to F is in fact (F−F)⊥∩K∗, and then
in turn F is given by (F ′−F ′)⊥∩K, because K = (K∗)∗. In the definition of a face
F , as having a representation F = K ∩ [v]⊥ with v ∈ K∗, the vectors v that fill this
role are the ones in the relative interior of F ′. Likewise, the vectors w in the relative
interior of F are the vectors w ∈ K such that F ′ = K∗∩ [w]⊥.

Proposition 4H.7 (superface properties). Let K be a polyhedral cone in IRn with
polar K∗.

(a) In the expression Q = F1−F2 for a superface in terms of closed faces F1
and F2 of K, both F1 and F2 are uniquely determined by Q, namely F1 = Q∩K and
F2 = (−Q)∩K. In particular, a superface is a subspace if and only if it is of the form
F−F for some face F of K.

(b) The superfaces Q of K correspond one-to-one with the superfaces Q# in
terms of Q = F1 − F2 and Q# = F ′2 − F ′1 for the faces F ′1 and F ′2 complementary
to F1 and F2. In this correspondence, Q is a critical superface of K if and only if Q#

is a critical superface of K∗.
(c) For a critical superface Q = F1−F2 of K, the polar cone Q∗ is Q# for the

corresponding critical superface Q# of K∗ as described in (b).

Proof. For (a) with Q = F1−F2, consider any nonzero v in the relative interior of
the face F ′1 complementary to F1, so as to get

F1 =
{

w1 ∈ K
∣∣〈v,w1〉 ≥ 0

}
=
{

w1 ∈ K
∣∣〈v,w1〉= 0

}
= K∩ [v]⊥,

while having

〈v,w2〉 ≤ 0 for all w2 ∈ F2, with 〈v,w2〉< 0 unless w2 ∈ F1∩F2.

Let w=w1−w2 with w1 ∈F1 and w2 ∈F2. Then 〈v,w〉−〈v,w2〉> 0 unless w2 ∈F1∩
F2. Consequently w /∈ K except perhaps if w1 ∈ F1∩F2, or in other words Q∩K =
(F1−F1∩F2)∩K. Since F1−F1∩F2⊂ [v]⊥, this comes out as Q∩K =K∩ [v]⊥=F1.
The other claim, that (−Q)∩K = F2, follow then by symmetry in reversing the roles
of F1 and F2.

Continuing to (b) with the complementary faces F ′1 and F ′2, we see that these
are uniquely determined by Q, and the same is true then of Q#. It follows too by
symmetry that Q can be recovered uniquely from Q# along with F1 and F2. In this
correspondence, having F1 ⊃ F2 corresponds to having F ′2 ⊃ F ′1, so criticality is
preserved. Indeed, this comes from the facts in the definition of complementarity,
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namely that for i = 1,2, we have Fi = K ∩ (Fi−Fi) and F ′i = K∗ ∩ (F ′i −F ′i ) with
F ′i −F ′i = (Fi−Fi)

⊥ and Fi−Fi = (F ′i −F ′i )
⊥. Since F1 ⊃ F2, we have F1−F1 ⊃

F2−F2 and therefore F ′2 ⊃ F ′1 in particular.
To justify (c) for a critical superface Q = F1−F2, we observe next that

(10) F∗i = [K∩ (Fi−Fi)]
∗ = K∗+(Fi−Fi)

⊥ = K∗+(F ′i −F ′i ) = K∗−F ′i .

Also, F1−F2 = F1 +(F2−F2), so that

(11) (F1−F2)
∗ = F∗1 ∩ (F2−F2)

⊥ = (K∗−F ′1)∩ (F ′2−F ′2)

by (10). Because F ′1 ⊂ F ′2, any element y− z with y ∈ K∗ and z ∈ F ′1 that belongs to
the final set in (11) must have y∈ F ′2−F ′2. Hence (K∗−F ′1)∩(F ′2−F ′2) = K∗∩(F ′2−
F ′2)−F ′1 = F ′2−F ′1, and we get (F1−F2)

∗ = F ′2−F ′1 as claimed. Through symmetry,
we likewise have (F ′2−F ′1)

∗ = F1−F2.

We will now apply the coderivative criterion for metric regularity in 4C.2 to the
mapping in (1). According to Theorem 4H.1, for that purpose we have to compute
the coderivative of the mapping in A+NK . The first step to do that is easy and we
will give it as an exercise.

Exercise 4H.8 (reduced coderivative formula). Show that, for a linear mapping A :
IRn→ IRn and a closed convex cone K ⊂ IRn one has

D∗(A+NK)(x̄ | ȳ) = A∗+D∗NK(x̄ | ȳ−Ax̄).

Guide. Apply the definition of the general normal cone in Section 4C.

Thus, everything hinges on determining the coderivative D∗NK(0 |0) of the map-
ping NK at the point (0,0)∈G= gph NK . By definition, the graph of the coderivative
mapping consists of all pairs (w,−z) such that (w,z)∈NG(0,0) where NG is the gen-
eral normal cone to the nonconvex set G. In these terms, for A and K as in (2), the
coderivative criterion becomes

(12) (u,ATu) ∈ NG(0,0) =⇒ u = 0.

Everything depends then on determining NG(0,0).
We will next appeal to the known fact6 that NG(0,0) is the limsup of polar cones

TG(x,v)∗ at (x,v) ∈ G as (x,v)→ (0,0). Because G is the union of finitely many
polyhedral convex sets in IR2n (due to K being polyhedral), only finitely many cones
can be manifested as TG(x,v) at points (x,v) ∈G near (0,0). Thus, for a sufficiently
small neighborhood O of the origin in IR2n we have that

(13) NG(0,0) =
⋃

(x,v)∈O∩G

TG(x,v)∗.

6 See Proposition 6.5 in Rockafellar and Wets [1998].
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It follows from reduction lemma 2E.4 that TG(x,v) = gph NK(x,v), where K(x,v) ={
x′ ∈ TK(x)

∣∣x′ ⊥ v
}

. Therefore,

TG(x,v) =
{
(x′,v′)

∣∣x′ ∈ K(x,v), v′ ∈ K(x,v)∗,x′ ⊥ v′
}
,

and we have

TG(x,v)∗ =
{
(r,u)

∣∣〈(r,u),(x′,v′)〉≤ 0 for all (x′,v′) ∈ TG(x,v)
}

=
{
(r,u)

∣∣〈r,x′〉+ 〈u,v′〉 ≤ 0 for all
x′ ∈ K(x,v), v′ ∈ K(x,v)∗ with x′ ⊥ v′

}
.

It is evident from this (first in considering v′ = 0, then in considering x′ = 0) that
actually

(14) TG(x,v)∗ = K(x,v)∗×K(x,v).

Hence NG(0,0) is the union of all product sets K̂∗× K̂ associated with cones K̂ such
that K̂ = K(x,v) for some (x,v) ∈ G near enough to (0,0).

It remains to observe that the form of the critical cones K̂ =K(x,v) at points (x,v)
close to (0,0) is already derived in Lemma 4H.2, namely, for every choice of (x,v)∈
gph K near (0,0) (this last requirement is actually not needed) the corresponding
critical cone K̂ = K(x,v) is a critical superface of K. To see this, all one has to do
is to replace C by K and (x,v) by (0,0) in the proof of 4H.2. Summarizing, from
(12), (13) and (14), and the coderivative criterion in 4C.2, we come to the following
result:

Theorem 4H.9 (critical superface criterion from coderivative criterion). For the
mapping A+NK we have

reg(A+NK ;0 |0) = max
Q∈critQK

sup
u∈Q
|u|=1

1
d(ATu,Q∗)

.

Thus, A + NK is metrically regular at 0 for 0 if and only if for every superface
Q ∈ critQK ,

u ∈ Q and ATu ∈ Q∗ =⇒ u = 0.

To conclude this section we look at the strong regularity in Theorem 4H.1 in
terms of the strict derivative criterion in Theorem 4D.1 and provide an elaboration
that utilizes the results we have developed about the facial structure of polyhedral
cones. For A and K as in Theorem 4H.1, the strict derivative criterion for A+NK to
be strongly metrically regular at 0 for 0 comes down to having

(15) 0 ∈ D∗(A+NK)(0|0)(w) =⇒ w = 0.

Note that the assumption 4D(2) may not hold in the case considered, and then (15)
is only a necessary condition for strong metric regularity. Since D∗(A+NK) = A+
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D∗NK , (15) can be written equivalently as

(w,−Aw) ∈ gph D∗NK(0|0) =⇒ w = 0.

Understanding gph D∗NK(0|0) then becomes the issue, and this is where more can
now be said. The additional information revolves around the superfaces Q of K
forming the collection QK .

Proposition 4H.10 (strict graphical derivative structure in polyhedral convexity). For
a polyhedral cone K, one has

gph D∗NK(0|0) = gph NK−gph NK =
⋃{

Q× [−Q#]
∣∣Q ∈QK

}
where Q# is the superface of K∗ that is dual to Q in the sense of 4H.7(b).

Proof. Let G = gph D∗NK(0|0). By definition, G consists of all pairs (w,z) obtain-
able as

(w,z) = lim
k

1
tk
[(wk

1,z
k
1)− (wk

2,z
k
2)] with (wk

i ,z
k
i ) ∈ gph NK , (wk

i ,z
k
i )→ (0,0), tk↘0.

Since gph NK is a closed cone (in fact the union of finitely many polyhedral convex
cones), both tk and the limits in k are superfluous: we simply have G = gph NK −
gph NK .

In general, we know that (w,z) ∈ gph NK if and only if w ∈ K, z ∈ K∗, and w⊥ z.
This signals that complementary faces of K and K∗ can be brought in. The pairs in
question belong to F×F ′ for some closed face F of K and its complement F ′. Thus,

gph NK =
⋃{

F×F ′
∣∣ for complementary face pairs (F,F ′)

}
.

This furnishes a representation of gph NK as the union of a finite collection of n-
dimensional polyhedral convex cones with disjoint relative interiors. It follows then
that

G =
⋃{

(F1−F2)× (F ′1−F ′2)
∣∣ for complementary face pairs (Fi,F ′i ), i = 1,2

}
.

It remains only to recall that F1−F2 is a superface Q ∈ QK that corresponds to
Q# = F ′2−F ′1 as a superface of K∗.

Corollary 4H.11 (strict derivative criterion, elaborated). The strict derivative crite-
rion (15) is equivalent to the following. For each superface Q of K and the corre-
sponding dual superface Q# of K∗, one has w ∈ Q and Aw ∈ Q# only for w = 0.
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4I. Strong Metric Regularity of the KKT Mapping

In this section we apply first Kummer’s theorem 4D.6 to the Karush-Kuhn-
Tucker (KKT) system associated with the following nonlinear programming prob-
lem with inequality constraints and special canonical perturbations:

(1) minimize g0(x)−〈v,x〉 over all x satisfying gi(x)≤ ui for i ∈ [1,m],

where the functions gi : IRn→ IR, i= 0,1, . . . ,m are twice continuously differentiable
and v ∈ IRn, u = (u1, . . . ,um)

T ∈ IRm are parameters. According to the basic first-
order optimality conditions established in Section 2A, if x is a solution to (1) and
and the constraint qualification condition 2A(13) holds, then there exists a multiplier
vector y = (y1, . . . ,ym) such that the pair (x,y) satisfies the so-called Karush–Kuhn–
Tucker conditions 2A(24), which are in the form of the variational inequality

(2)
(
−v+∇g0(x)+ y∇g(x)

−u+g(x)

)
∈ NE(x,y) for E = IRn× IRm

+ .

We wish to apply Kummer’s theorem to characterize the strong metric regularity of
the mapping

(3) G : (x,y) 7→
(

∇g0(x)+ y∇g(x)
−g(x)

)
+NE(x,y),

in terms of which (2) becomes the inclusion

G(x,y) 3
(

v
u

)
.

Choose a reference value (v̄, ū) of the parameters and let (x̄, ȳ) solve (2) for (v̄, ū),
that is, (v̄, ū) ∈ G(x̄, ȳ). By definition, G is strongly metrically regular at (x̄, ȳ) for
(v̄, ū) exactly when G−1 has a Lipschitz continuous localization around (v̄, ū) for
(x̄, ȳ).

To apply Kummer’s theorem 4D.6, we first convert the variational inequality (2)
into an equation involving the function H : IRn+m→ IRn+m defined as follows:

(4) H(x,y) =


∇g0(x)+∑

m
i=1 y+

i ∇gi(x)
−g1(x)+ y−1

...
−gm(x)+ y−m

 .

Let ((x,y),(v,u))∈ gph H; then for zi = y+
i , i= 1, . . . ,m, we have that ((x,z),(v,u))∈

gph G. Indeed, for each i = 1, . . . ,m, if yi ≤ 0, then ui + gi(x) = y−i ≤ 0 and
(ui + gi(x))y+

i = 0; otherwise ui + gi(x) = y−i = 0. Conversely, if ((x,z),(v,u)) ∈
gph G, then for
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(5) yi =

{
zi if zi > 0,
ui +gi(x) if zi = 0,

we obtain (x,y) ∈ H−1(v,u). In particular, if H−1 has a Lipschitz continuous local-
ization around (v̄, ū) for (x̄, ȳ) then G−1 has the same property at (v̄, ū) for (x̄, z̄)
where z̄i = ȳ+

i , and if G−1 has a Lipschitz continuous localization around (v̄, ū) for
(x̄, z̄) then H−1 has the same property at (v̄, ū) for (x̄, ȳ), where ȳ satisfies (5).

Next, we need to determine the strict derivative of H. There is no trouble in
differentiating the expressions−gi(x)+y−i , inasmuch as we already know from 4D.5
the strict derivative of y−. A little bit more involved is the determination of the strict
derivative of ϕi(x,y) := ∇gi(x)y+

i for i = 1, . . . ,m. Adding and subtracting the same
expressions, passing to the limit as in the definition, and using 4D.5, we obtain

z ∈ D∗ϕi(x̄, ȳ)(u,v) ⇐⇒ z = ȳ+
i ∇

2gi(x̄)u+λivi∇gi(x̄), i = 1, . . . ,m,

where the coefficients λi for i = 1, . . . ,m satisfy

(6) λi

{= 1 for ȳi > 0,
∈ [0,1] for ȳi = 0,
= 0 for ȳi < 0.

Right from the definition, the form thereby obtained for the strict graphical deriva-
tive of the function H in (4) at (x̄, ȳ) is as follows:

(ξ ,η) ∈ D∗H(x̄, ȳ)(u,v) ⇐⇒
{

ξ = Au+∑
m
i=1 λivi∇gi(x̄),

ηi =−∇gi(x̄)u+(1−λi)vi for i = 1, . . . ,m,

where the λi’s are as in (6), and

A = ∇
2g0(x̄)+∑ ȳ+

i ∇
2gi(x̄).

Denoting by Λ the m×m diagonal matrix with elements λi on the diagonal, by
Im the m×m identity matrix, and setting

B =

∇g1(x̄)
...

∇gm(x̄)

 ,

we obtain that

(7) M(Λ) ∈ D∗H(x̄, ȳ) ⇐⇒ M(Λ) =

(
A BTΛ

−B Im−Λ

)
.

This formula can be simplified by re-ordering the functions gi according to the sign
of ȳi. We first introduce some notation. Let I = {1, . . . ,m} and, without loss of gen-
erality, suppose that{

i ∈ I
∣∣ ȳi > 0

}
= {1, . . . ,k} and

{
i ∈ I

∣∣ ȳi = 0
}
= {k+1, . . . , l}.



4 Metric Regularity Through Generalized Derivatives 255

Let

B+ =

∇g1(x̄)
...

∇gk(x̄)

 and B0 =

∇gk+1(x̄)
...

∇gl(x̄)

 ,

let Λ0 be the (l− k)× (l− k) diagonal matrix with diagonal elements λi ∈ [0,1], let
I0 be the identity matrix for IRl−k, and let Im−l be the identity matrix for IRm−l . Then,
since λi = 1 for i = 1, . . . ,k and λi = 0 for i = l +1, . . . ,m, the matrix M(Λ) in (7)
takes the form

M(Λ0) =


A BT

+ BT
0 Λ0 0

0 0 0
−B 0 I0−Λ0 0

0 0 Im−l

 .

Each column of M(Λ0) depends on at most one λi, hence there are numbers

ak+1,bk+1, . . . ,al ,bl

such that
detM(Λ0) = (ak+1 +λk+1bk+1) · · ·(al +λlbl).

Therefore, detM(Λ0) 6= 0 for all λi ∈ [0,1], i = k+1, . . . , l, if and only if the follow-
ing condition holds:

ai 6= 0, ai +bi 6= 0 and [sign ai = sign(ai +bi) or sign bi 6= sign(ai +bi)],
for i = k+1, . . . , l.

Here we invoke the convention that

sign a =

{1 for a > 0,
0 for a = 0,
−1 for a < 0.

One can immediately note that it is not possible to have simultaneously sign bi 6=
sign(ai +bi) and sign ai 6= sign(ai +bi) for some i. Therefore, it suffices to have

(8) ai 6= 0, ai +bi 6= 0, sign ai = sign(ai +bi) for all i = k+1, . . . , l.

Now, let J be a subset of {k+1, . . . , l} and for i = k+1, . . . , l, and let

λ
J
i =

{1 for i ∈ J,
0 otherwise.

Let Λ J be the diagonal matrix composed by these λ J
i , and let B0(J) = Λ JB0. Then

we can write

M(J) := M(Λ J) =


A BT

+ B0(J)T 0
0 0 0

−B 0 IJ
0 0

0 0 Il

 ,
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where IJ
0 is the diagonal matrix having 0 as (i−k)-th element if i∈ J and 1 otherwise.

Clearly, all the matrices M(J) are obtained from M(Λ0) by taking each λi either 0
or 1. The condition (8) can be then written equivalently as

(9) detM(J) 6= 0 and sign detM(J) is the same for all J.

Let the matrix B(J) have as rows the row vectors ∇gi(x̄) for i∈ J. Reordering the
last m− k columns and rows of M(J), if necessary, we obtain

M(J) =
(

A BT
+ B(J)T 0

−B 0 0 I

)
,

where I is now the identity for IR{k+1,...,m}\J . The particular form of the matrix M(J)
implies that M(J) fulfills (9) if and only if (9) holds for just a part of it, namely for
the matrix

(10) N(J) :=

 A BT
+ B(J)T

−B+ 0 0
−B(J) 0 0

 .

By applying Kummer’s theorem, we arrive finally at the following result.

Theorem 4I.1 (characterization of KKT strong metric regularity). The solution
mapping of the KKT variational inequality (2) has a Lipschitz continuous single-
valued localization around (v̄, ū) for (x̄, ȳ) if and only if, for the matrix N(J) in (10),
det N(J) has the same nonzero sign for all J ⊂

{
i ∈ I

∣∣ ȳi = 0
}

.

We will prove next that for the KKT mapping, metric regularity and strong met-
ric regularity are equivalent properties. To make things different, we consider a
slightly more general problem than (1), which is not explicitly parameterized but
now involves both equality and inequality constraints:

(11) minimize g0(x) over all x satisfying gi(x)
{
= 0 for i ∈ [1,r],
≤ 0 for i ∈ [r+1,m]

with twice continuously differentiable functions gi : IRn → IR, i = 0,1, . . . ,m. The
associated KKT optimality system has the form

(12) f (x,y)+NĒ(x,y) 3 (0,0),

where

(13) f (x,y) =


∇g0(x)+∑

m
i=1 ∇gi(x)yi

−g1(x)
...

−gm(x)


and
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(14) Ē = IRn× [IRr× IRm−r
+ ].

Theorem 2A.8 tells us that, under the constraint qualification condition 2A(18), for
every local minimum x of (11) there exists a Lagrange multiplier y, with yi ≥ 0
for i = r+ 1, . . . ,m, such that (x,y) is a solution of (12). We will now establish an
important fact for the mapping on the left side of (12).

Theorem 4I.2 (KKT metric regularity implies strong metric regularity). Consider
the mapping F : IRn+m→→ IRn+m defined as

(15) F : z 7→ f (z)+NĒ(z)

with f as in (13) for z = (x,y) and Ē as in (14), and let z̄ = (x̄, ȳ) solve (12), that is,
F(z̄) 3 0. If F is metrically regular at z̄ for 0, then F is strongly metrically regular
there.

We already showed in Theorem 3G.5 that this kind of equivalence holds for lo-
cally monotone mappings, but here F need not be monotone even locally, although
it is a special kind of mapping in another way.

The claimed equivalence is readily apparent in a simple case of (15) when F is
an affine mapping, which corresponds to problem (17) with no constraints and with
g0 being a quadratic function, g0(x) = 1

2 〈x,Ax〉+ 〈b,x〉 for an n×n matrix A and a
vector b∈ IRn. Then F(x,y) = Ax+b and metric regularity of F (at any point) means
that A has full rank. But then A must be nonsingular, so F is in fact strongly regular.

The general argument for F = f + NĒ is lengthy and proceeds through a se-
ries of reductions. First, since our analysis is local, we can assume without loss of
generality that all inequality constraints are active at x̄. Indeed, if for some index
i ∈ [r+1,m] we have gi(x̄)< 0, then ȳi = 0. For q ∈ IRn+m consider the solution set
of the inclusion F(z) 3 q. Then for any q near zero and all x near x̄ we will have
gi(x)< qi, and hence any Lagrange multiplier y associated with such an x must have
yi = 0; thus, for q close to zero the solution set of F(z) 3 q will not change if we
drop the constraint with index i. Further, if there exists an index i such that ȳi > 0,
then we can always rearrange the constraints so that ȳi > 0 for i ∈ [r + 1,s] for
some r < s≤m. Under these simplifying assumptions the critical cone K = KĒ(z̄, v̄)
to the set Ē in (14) at z̄ = (x̄, ȳ) for v̄ = − f (z̄) is the product IRn × IRs × IRm−s

+ .
(Show that this form of the critical cone can be also derived by utilizing Exam-
ple 2E.5.) The normal cone mapping NK to the critical cone K has then the form
NK = {0}n×{0}s×Nm−s

+ .
We next recall that metric regularity of F is equivalent to metric regularity of the

mapping
L : z 7→ ∇ f (z̄)z+NĒ(z) for z = (x,y) ∈ IRn+m

at 0 for 0 and the same equivalence holds for strong metric regularity. This reduction
to a simpler situation has already been highlighted several times in this book, e.g. in
2E.8 for strong metric regularity and 3F.9 for metric regularity. Thus, to achieve our
goal of confirming the claimed equivalence between metric regularity and strong
regularity for F , it is enough to focus on the mapping L which, in terms of the
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functions gi in (11), has the form

(16) L =

(
A BT

−B 0

)
+NĒ ,

where

A = ∇
2g0(x̄)+

m

∑
i=1

∇
2gi(x̄)ȳi and B =

∇xg1(x̄)
...

∇gm(x̄)

 .

Taking into account the specific form of NĒ , the inclusion (v,w) ∈ L(x,y) becomes

(17)

v = Ax+BTy,
(w+Bx)i = 0 for i ∈ [1,s],
(w+Bx)i ≤ 0, yi ≥ 0, yi(w+Bx)i = 0 for i ∈ [s+1,m].

In further preparation for proving Theorem 4I.2, next we state and prove three
lemmas. From now on any kind of regularity is at 0 for 0, unless specified otherwise.

Lemma 4I.3 (KKT metric regularity implies strong metric subregularity). If the
mapping L in (16) is metrically regular, then it is strongly subregular.

Proof. Suppose that L is metrically regular. Then the critical superface criterion
displayed in 4H.5 with critical superfaces given in 4H.4 takes the following form:
for every partition J′1, J′2, J′3 of {s+1, . . . ,m} and for every (v,w) ∈ IRn× IRm there
exists (x,y) ∈ IRn× IRm satisfying

(18)


v = Ax+BTy,
(w+Bx)i = 0 for i ∈ [1,s],
(w+Bx)i = 0 for i ∈ J′1,
(w+Bx)i ≤ 0, yi ≥ 0, yi(w+Bx)i = 0 for i ∈ J′2,
yi = 0 for i ∈ J′3.

In particular, denoting by B0 the submatrix of B composed by the first s rows of B,
for any index set J⊂{s+1, . . . ,m}, including the empty set, if B(J) is the submatrix
of B whose rows have indices in J, then the condition involving (18) implies that

(19) the matrix N(J) =

 A BT
0 BT(J)

−B0 0 0
−B(J) 0 0

 is nonsingular.

Indeed, to reach such a conclusion it is enough to take J = J′1 and J′2 = /0 in (18). By
4E.1, the mapping L in (16) is strongly subregular if and only if

(20) the only solution of (18) with (v,w) = 0 is (x,y) = 0.

Now, suppose that L is not strongly subregular. Then, by (20), for some index set J⊂
{s+1, . . . ,m}, possibly the empty set, there exists a nonzero vector (x,y)∈ IRn× IRm
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satisfying (18) for v = 0,w = 0. Note that this y has y j = 0 for j ∈ {s+1, . . . ,m}\J.
But then the nonzero vector z = (x,y) with y having components in {1, . . . ,s}× J
solves N(J)z = 0 where the matrix N(J) is defined in (19). Hence, N(J) is singular,
and then the condition involving (18) is violated; thus, the mapping L is not metri-
cally regular. This contradiction means that L must be strongly subregular.

The next two lemmas present general facts that are separate from the specific cir-
cumstances of nonlinear programming problem (11) considered. The second lemma
is a simple consequence of Brouwer’s invariance of domain theorem 1F.1:

Lemma 4I.4 (single-valued localization from continuous local selection). Let f :
IRn → IRn be continuous and let there exist an open neighborhood V of ȳ := f (x̄)
and a continuous function h : V → IRn such that h(y) ∈ f−1(y) for y ∈V . Then f−1

has a single-valued graphical localization around ȳ for x̄.

Proof. Since f is a function, we have f−1(y)∩ f−1(y′) = /0 for every y,y′ ∈ V ,
y 6= y′. But then h is one-to-one and hence h−1 is a function defined in U := h(V ).
Note that x = h(h−1(x))∈ f−1(h−1(x)) implies f (x) = h−1(x) for all x ∈U . Since h
is a function, we have that h−1(x) 6= h−1(x′) for all x,x′ ∈U, x 6= x′. Thus, f is one-
to-one on U , implying that the set f−1(y)∩U consists of one point, h(y). Hence,
by Theorem 1F.1 applied to h, U is an open neighborhood of x̄. Therefore, h is a
single-valued graphical localization of f−1 around ȳ for x̄.

Lemma 4I.5 (properties of optimal solutions). Let ϕ : IRn → IR be a continuous
function and let Q : IRd→→ IRn have the Aubin property at p̄ for x̄. Then any graphical
localization around p̄ for x̄ of the solution mapping Sopt of the problem

minimize ϕ(x) subject to x ∈ Q(p)

is either multi-valued or a continuous function on a neighborhood of p̄.

Proof. Suppose that Sopt has a single-valued localization x̂(p) = Sopt(p)∩U for all
p ∈ V for some neighborhoods U of x̄ and V of p̄ and, without loss of generality,
that Q has the Aubin property at p̄ for x̄ with the same neighborhoods U and V . Let
p ∈ V and V 3 pk → p as k→ ∞. Since x̂(p) ∈ Q(p)∩U and x̂(pk) ∈ Q(pk)∩U ,
there exist xk ∈ Q(pk) and x′k ∈ Q(p) such that xk→ x̂(p) and also |x′k− x̂(pk)| → 0
as k→ ∞. From optimality,

ϕ(xk)≥ ϕ(x̂(pk)) and ϕ(x′k)≥ ϕ(x̂(p)).

These two inequalities, combined with the continuity of ϕ , give us

ϕ(x̂(pk))→ ϕ(x̂(p)) as k→ ∞.

Hence any limit of a sequence of minimizers x̂(pk) is a minimizer for p, which
implies that x̂ is continuous at p.
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We are now ready to complete the proof of 4I.2.

Proof of Theorem 4I.2 (final part). We already know from the argument displayed
after the statement of the theorem that metric regularity of the mapping F in (15) at
z̄ = (x̄, ȳ) for 0 is equivalent to the metric regularity of the mapping L in (16) at 0 for
0, and the same holds for the strong metric regularity. Our next step is to associate
with the mapping L the function

(21) (x,y) 7→ R(x,y) =



Ax+∑
s
i=1 biyi +∑

m
i=s+1 biy+

i
−〈b1,x〉+ y1

...
−〈bs,x〉+ ys
−〈bs+1,x〉+ y−s+1

...
−〈bm,x〉+ y−m


,

from IRn× IRm to itself, where bi are the rows of the matrix B and where we let
y+ = max{0,y} and y− = y− y+.

In the beginning of this section, we showed that the strong metric regularity of
the mapping H in (4) is equivalent to the same property for the mapping G in (3).
The same argument works for the mappings R and L Indeed, for a given (v,u) ∈
IRn× IRm, let (x,y) ∈ R−1(v,u). Then for zi = y+

i , i = s+ 1, . . . ,q, we have (x,z) ∈
L−1(v,u). Indeed, for each i = s+1, . . . ,m, if yi ≤ 0, then ui + 〈bi,x〉= y−i ≤ 0 and
(ui + 〈bi,x〉)y+

i = 0; otherwise ui + 〈bi,x〉= y−i = 0. Conversely, if (x,z) ∈ L−1(v,u)
then for

(22) yi =

{
zi if zi > 0,
ui + 〈bi,x〉 if zi = 0,

we obtain (x,y) ∈ R−1(v,u). Thus, in order to achieve our goal for the mapping L,
we can focus on the same question for the equivalence between metric regularity
and strong metric regularity for the function R in (21).

Suppose that R is metrically regular but not strongly metrically regular. Then,
from 4I.3 and the equivalence between regularity properties of L and R, R is strongly
subregular. Consequently, its inverse R−1 has both the Aubin property and the iso-
lated calmness property, both at 0 for 0. In particular, since R is positively homoge-
neous and has closed graph, for each w sufficiently close to 0, R−1(w) is a compact
set contained in an arbitrarily small ball around 0. Let a > 0. For every w ∈ aIB the
problem

(23) minimize ym subject to (x,y) ∈ R−1(w)

has a solution (x(w),y(w)) which, from the property of R−1 mentioned just above
(22), has a nonempty-valued graphical localization around 0 for 0. According to
Lemma 4I.5, this localization is either a continuous function or a multi-valued map-
ping. If it is a continuous function, Lemma 4I.3 implies that R−1 has a continuous
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single-valued localization around 0 for 0. But then, since R−1 has the Aubin property
at that point, we conclude that R must be strongly metrically regular, which contra-
dicts the assumption made. Hence, any graphical localization of the solution map-
ping of (22) is multi-valued. Thus, there exists a sequence zk = (vk,uk)→ 0 and two
sequences (xk,yk)→ 0 and (ξ k,ηk)→ 0, whose k-terms are both in R−1(zk), such
that the m-components of yk and ηk are the same, yk

m = ηk
m, but (xk,yk) 6= (ξ k,ηk)

for all k. Remove from yk the final component yk
m and denote the remaining vector

by yk
−m. Do the same for ηk. Then (xk,yk

−m) and (ξ k,ηk
−m) are both solutions of

vk−bmyk
m = Axk +

s

∑
i=1

biyi +
m−1

∑
i=s+1

biy+
i

uk
1 = −〈b1,x〉+ y1

...
uk

s = −〈bs,x〉+ ys

uk
s+1 = −〈bs+1,x〉+ y−s+1

...
uk

m−1 = −〈bm−1,x〉+ y−m−1 .

This relation concerns the reduced mapping R−m with m−1 vectors bi, and accord-
ingly a vector y of dimension m−1:

R−m(x,y) =



Ax+∑
s
i=1 biyi +∑

m−1
i=s+1 biy+

i
−〈b1,x〉+ y1

...
−〈bs,x〉+ ys
−〈bs+1,x〉+ y−s+1

...
−〈bm−1,x〉+ y−m−1


.

We obtain that the mapping R−m cannot be strongly metrically regular because for
the same value zk = (vk−bmyk

m,u
k
−m) of the parameter arbitrarily close to 0, we have

two solutions (xk,yk
−m) and (ξ k,ηk

−m). On the other hand, R−m is metrically regular
as a submapping of R; this follows e.g. from the characterization in (18) for metric
regularity of the mapping L, which is equivalent to the metric regularity of R−m if
we choose J′3 in (18) always to include the index m.

Thus, our assumption for the mapping R leads to a submapping R−m, of one less
variable y associated with the “inequality” part of L, for which the same assump-
tion is satisfied. By proceeding further with “deleting inequalities” we will end up
with no inequalities at all, and then the mapping L becomes just the linear mapping
represented by the square matrix
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A BT

0
−B0 0

)
.

But this linear mapping cannot be simultaneously metrically regular and not strongly
metrically regular, because a square matrix of full rank is automatically nonsingu-
lar. Hence, our assumption that the mapping R is metrically regular and not strongly
regular is void.
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Commentary

Graphical derivatives of set-valued mappings were introduced by Aubin [1981]; for
more, see Aubin and Frankowska [1990]. The material in Section 4B is mainly
from Dontchev, Quincampoix and Zlateva [2006], where results of Aubin and
Frankowska [1987, 1990] were used.

The statement 4B.5 of the Ekeland principle is from Ekeland [1990]. A detailed
presentation of this principle along with various forms and extensions is given in
Borwein and Zhu [2005]. The proof of the classical implicit function theorem 1A.1
given at the end of Section 4B is close, but not identical, to that in Ekeland [1990].

The coderivative criterion in 4C.2 goes back to the early works of Ioffe [1981,
1984], Kruger [1982] and Mordukhovich [1984]. Theorem 4C.3 is from Dontchev
and Frankowska [2013]; for a predecessor see Frankowska and Quincampoix [2010].
Lemma 4C.4 is a particular case of results proved in Aubin and Frankowska [1995]
and Dal Maso and Frankowska [2000]. Broad reviews of the role of coderivatives
in variational analysis are given in Rockafellar and Wets [1998] and Mordukhovich
[2006]. Detailed treatments of the topic of generalized differentiation are given in
the recent books Clarke [2013] and Penot [2013].

The strict graphical derivative was introduced by Bouligand, but may well go
back to Peano, under the name paratingent derivative; for more about its history
see Aubin and Frankowska [1990] and Dolecki and Greco [2011]. Theorem 4D.1
is from Dontchev and Frankowska [2013]. It sharpens Theorem 9.54 in Rockafellar
and Wets [1998] and also Lemma 3.1 in Klatte and Kummer [2002]. Theorem 4D.4
is from Izmailov [2013], but we supply it in Section 6F with a different proof using
ideas from Páles [1974]. Theorem 4D.6 is from Kummer [1991], see also Klatte and
Kummer [2002] and Páles [1997].

The derivative criterion for metric subregularity in 4E.1 was obtained by Rock-
afellar [1989], but the result itself was embedded in a proof of a statement requiring
additional assumptions. The necessity without those assumptions was later noted
in King and Rockafellar [1992] and in the case of sufficiency by Levy [1996]. The
statement and the proof of 4E.1 are from Dontchev and Rockafellar [2004].

Sections 4F and 4G give a unified presentation of various results scattered in the
literature. Section 4H is partially based on Dontchev and Rockafellar [1996] but also
contains some new results. The critical superface lemma 4H.2 is a particular case of
Lemma 3.5 in Robinson [1984]; see also Theorem 5.6 in Rockafellar [1989].

Theorem 4I.1 originates from Robinson [1980], see the commentary to Section 2.
The proof given here uses some ideas from Kojima [1980] and Jongen et al. [1987].
Theorem 4I.2 is a particular case of Theorem 3 in Dontchev and Rockafellar [1996]
which in turn is based on a deeper result in Robinson [1992], see also Ralph [1993].
The presented proof uses a somewhat modified version of a reduction argument
from the book Klatte and Kummer [2002], Section 7.5. For more recent results in
this direction, see Klatte and Kummer [2013].





Chapter 5
Metric Regularity in Infinite Dimensions

The theme of this chapter has origins in the early days of functional analysis and
the Banach open mapping theorem, which concerns continuous linear mappings
from one Banach space to another. The graphs of such mappings are subspaces
of the product of the two Banach spaces, but remarkably much of the classical
theory extends to set-valued mappings whose graphs are convex sets or cones in-
stead of subspaces. Openness connects up then with metric regularity and interior-
ity conditions on domains and ranges, as seen in the Robinson–Ursescu theorem.
Infinite-dimensional inverse function theorems and implicit function theorems due
to Lyusternik, Graves, and Bartle and Graves can be derived and extended. Banach
spaces can even be replaced to some degree by more general metric spaces.

Before proceeding we review some notation and terminology. Already in the first
section of Chapter 1 we stated the contraction mapping principle in metric spaces.
Given a set X , a function ρ : X×X → IR+ is said to be a metric in X when

(i) ρ(x,y) = 0 if and only if x = y;
(ii) ρ(x,y) = ρ(y,x);
(iii) ρ(x,y)≤ ρ(x,z)+ρ(z,y) (triangle inequality).

A set X equipped with a metric ρ is called a metric space. In a metric space, a
sequence {xk} is called a Cauchy sequence if for every ε > 0 there exists n ∈ IN
such that ρ(xk,x j) < ε for all k, j > n. A metric space is complete if every Cauchy
sequence converges to an element of the space. Any closed set in a Euclidean space
is a complete metric space with the metric ρ(x,y) = |x− y|.

A linear (vector) space over the reals is a set X in which addition and scalar
multiplication are defined obeying the standard algebraic laws of commutativity,
associativity and distributivity. A linear space X with elements x is normed if it
is furnished with a real-valued expression ‖x‖, called the norm of x, having the
properties

(i) ‖x‖ ≥ 0 and ‖x‖= 0 if and only if x = 0;
(ii) ‖αx‖= |α|‖x‖ for α ∈ IR;
(iii) ‖x+ y‖ ≤ ‖x‖+‖y‖.

Any normed space is a metric space with the metric ρ(x,y) = ‖x− y‖. A complete
normed vector space is called a Banach space. On a finite-dimensional space, all
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norms are equivalent, but when we refer specifically to IRn we ordinarily have in
mind the Euclidean norm denoted by | · |. Regardless of the particular norm being
employed in a Banach space, the closed unit ball for that norm will be denoted by
IB, and the distance from a point x to a set C will be denoted by d(x,C), and so forth.

As in finite dimensions, a function A acting from a Banach space X into a Banach
space Y is called a linear mapping if dom A = X and A(αx+βy) = αAx+βAy for
all x,y ∈ X and all scalars α and β . The range of a linear mapping A from X to
Y is always a subspace of Y , but it might not be a closed subspace, even if A is
continuous. A linear mapping A : X → Y is surjective if rge A = Y and injective if
ker A = {0}.

Although in finite dimensions a linear mapping A : X → Y is automatically con-
tinuous, this fails in infinite dimensions; neither does surjectivity of A when X = Y
necessarily yield invertibility, in the sense that A−1 is single-valued. However, if A
is continuous at any one point of X , then it is continuous at every point of X . That,
moreover, is equivalent to A being bounded, in the sense that A carries bounded
subsets of X into bounded subsets of Y , or what amounts to the same thing due to
linearity, the image of the unit ball in X is included in some multiple of the unit ball
in Y, i.e., the value

‖A‖= sup
‖x‖≤1

‖Ax‖

is finite. This expression defines the operator norm on the space L (X ,Y ), consisting
of all continuous linear mappings A : X → Y , which is then another Banach space.

Special and important in this respect is the Banach space L (X , IR), consisting
of all linear and continuous real-valued functions on X . It is the space dual to X ,
symbolized by X∗, and its elements are typically denoted by x∗; the value that an
x∗ ∈ X∗ assigns to an x ∈ X is written as 〈x∗,x〉. The dual of the Banach space X∗ is
the bidual X∗∗ of X ; when every function x∗∗ ∈X∗∗ on X∗ can be represented as x∗ 7→
〈x∗,x〉 for some x ∈ X , the space X is called reflexive. This holds in particular when
X is a Hilbert space with 〈x,y〉 as its inner product, and each x∗ ∈ X∗ corresponds
to a function x 7→ 〈x,y〉 for some y ∈ X , so that X∗ can be identified with X itself.

Another thing to be mentioned for a pair of Banach spaces X and Y and their
duals X∗ and Y ∗ is that any A ∈L (X ,Y ) has an adjoint A∗ ∈L (Y ∗,X∗) such that
〈Ax,y∗〉 = 〈x,A∗y∗〉 for all x ∈ X and y∗ ∈ Y ∗. Furthermore, ‖A∗‖ = ‖A‖. A gener-
alization of this to set-valued mappings having convex cones as their graphs will be
seen later.

In fact most of the definitions, and even many of the results, in the preceding
chapters will carry over with hardly any change, the major exception being results
with proofs which truly depended on the compactness of IB. Our initial task, in Sec-
tion 5A, will be to formulate various facts in this broader setting while coordinating
them with classical theory. In the remainder of the chapter, we present inverse and
implicit mapping theorems with metric regularity and strong metric regularity in
abstract spaces. Parallel results for metric subregularity are not considered.
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5A. Positively Homogeneous Mappings

We begin this section with a review of basic regularity properties introduced in
Chapter 3, now in infinite dimensions. Then we focus on the class of positively
homogeneous mapping, which are a natural generalization of linear mappings.

At the end of Chapter 1 we introduced the concept of openness of a function and
presented a Jacobian criterion for openness, but did not elaborate further. We now
return to this property in the broader context of Banach spaces X and Y . A function
f : X →Y is called open at x̄ if x̄ ∈ int dom f and, for every neighborhood U of x̄ in
X , the set f (U) is a neighborhood of f (x̄) in Y . This definition extends to set-valued
mappings F : X →→ Y :

Openness. A mapping F : X →→ Y is said to be open at x̄ for ȳ if ȳ ∈ F(x̄)

(1)
x̄ ∈ int dom F and for every neighborhood U of x̄,
the set F(U) =

⋃
x∈U F(x) is a neighborhood of ȳ.

We will also be concerned with another property, introduced for mappings F :
IRn→→ IRm in 3E but likewise directly translatable to mappings F : X →→ Y :

Metric regularity. A mapping F : X →→ Y is said to be metrically regular at x̄ for ȳ
when ȳ ∈ F(x̄), the set gph F is locally closed at (x̄, ȳ), and

(2)
there exists κ ≥ 0 with neighborhoods U of x̄ and V of ȳ
such that d(x,F−1(y))≤ κd(y,F(x)) for all (x,y) ∈U×V.

As before, the infimum of all such κ associated with choices of U and V is denoted
by reg(F ; x̄ | ȳ) and called the modulus of metric regularity of F at x̄ for ȳ.

The classical Banach open mapping theorem addresses linear mappings. There
are numerous versions of it available in the literature; we provide the following
formulation:

Theorem 5A.1 (Banach open mapping theorem). For any A∈L (X ,Y ) the follow-
ing properties are equivalent:

(a) A is surjective;
(b) A is open (at every point);
(c) 0 ∈ int A(int IB);
(d) there is a κ > 0 such that for all y ∈ Y there exists x ∈ X with Ax = y and

‖x‖ ≤ κ‖y‖.
This theorem will be derived in Section 5B from a far more general result about

set-valued mappings F than just linear mappings A. Our immediate interest lies in
connecting it with the ideas in previous chapters, so as to shed light on where we
have arrived and where we are going.
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The first observation to make is that (d) of Theorem 5A.1 is the same as the
existence of a κ > 0 such that d(0,A−1(y))≤ κ‖y‖ for all y. Clearly (d) does imply
this, but the converse holds also by passing to a slightly higher κ if need be. But
the linearity of A can also be brought in. For x ∈ X and y ∈ Y in general, we have
d(x,A−1(y)) = d(0,A−1(y)−x), and since z∈ A−1(y)−x corresponds to A(x+z) =
y, we have d(0,A−1(y)−x) = d(0,A−1(y−Ax))≤ κ‖y−Ax‖. Thus, (d) of Theorem
5A.1 is actually equivalent to:

(3) there exists κ > 0 such that d(x,A−1(y))≤ κd(y,Ax) for all x ∈ X , y ∈ Y.

Obviously this is the same as the metric regularity property in (2) as specialized to
A, with the local character property becoming global through the arbitrary scaling
made available because A(λx) = λAx. In fact, due to linearity, metric regularity of
A with respect to any pair (x̄, ȳ) in its graph is identical to metric regularity with
respect to (0,0), and the same modulus of metric regularity prevails everywhere.
We can simply denote this modulus by reg A and use the formula that

(4) reg A = sup
‖y‖≤1

d(0,A−1(y)) for A ∈L (X ,Y ).

What we see then is that the condition

(e) A is metrically regular (everywhere): reg A < ∞

could be added to the equivalences in Theorem 5A.1 as a way of relating it to the
broader picture we now have of the subject of openness.

Corollary 5A.2 (invertibility of linear mappings). If a continuous linear mapping
A : X → Y is both surjective and injective, then its inverse is a continuous linear
mapping A−1 : Y → X with ‖A−1‖= reg A.

Proof. When A is both surjective and injective, then A−1 is single-valued every-
where and linear. Observe that the right side of (4) reduces to ‖A−1‖. The finiteness
of ‖A−1‖ corresponds to A−1 being bounded, hence continuous.

It is worth noting also that if the range of A ∈L (X ,Y ) is a closed subspace Y ′

of Y , then Y ′ is a Banach space in its own right, and the facts we have recorded can
be applied to A as a surjective mapping from X to Y ′.

A result is available for set-valued mappings F : X→→Y which has close parallels
to the version of Theorem 5A.1 with (e) added, although it misses some aspects. This
result corresponds in the case of X = IRn and Y = IRn to Theorems 3E.7 and 3E.9,
where an equivalence was established between metric regularity, linear openness,
and the inverse mapping having the Aubin property. For completeness we give the
definitions.

Aubin property. A mapping S : Y →→ X is said to have the Aubin property at ȳ for
x̄ when x̄ ∈ S(ȳ), the set gph S is locally closed at (ȳ, x̄), and
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(5)
there is a κ ≥ 0 with neighborhoods U of x̄ and V of ȳ such that
e(S(y)∩U,S(y′)) ≤ κ‖y− y′‖ for all y,y′ ∈V,

where the excess e(C,D) is defined in Section 3A. The infimum of all κ in (5) over
various choices of U and V is the modulus lip(S; ȳ | x̄).

Linear openness. A mapping F : X →→ Y is said to be linearly open at x̄ for ȳ when
ȳ ∈ F(x̄), the set gph F is locally closed at (x̄, ȳ), and

(6)
there is a κ > 0 along with neighborhoods U of x̄ and V of ȳ such that
F(x+κr int IB) ⊃

[
F(x)+ r int IB

]
∩V for all x ∈U, r > 0.

The statements and proofs of Theorems 3E.7 and 3E.9 carry over in the obvious
manner to our present setting to yield the following combined result:

Theorem 5A.3 (equivalence of metric regularity, linear openness and Aubin prop-
erty). For Banach spaces X and Y , a mapping F : X →→ Y and a constant κ > 0, the
following properties with respect to a pair (x̄, ȳ) ∈ gph F are equivalent:

(a) F is linearly open at x̄ for ȳ with constant κ;
(b) F is metrically regular at x̄ for ȳ with constant κ;
(c) F−1 has the Aubin property at ȳ for x̄ with constant κ .

Moreover reg(F ; x̄ | ȳ) = lip(F−1; ȳ | x̄).
We should note here that although the same positive constant κ appear in all

three properties in 5A.3(a)(b)(c), the associated neighborhoods could be different;
for more on this see Section 5H.

When F is taken to be a mapping A ∈L (X ,Y ), how does the content of The-
orem 5A.3 compare with that of Theorem 5A.1? With linearity, the openness in
5A.1(b) comes out the same as the linear openness in 5A.3(a) and is easily seen to
reduce as well to the interiority condition in 5A.1(c). On the other hand, 5A.1(d)
has already been shown to be equivalent to the subsequently added property (e), to
which 5A.3(b) reduces when F =A. From 5A.3(c), though, we get yet another prop-
erty which could be added to the equivalences in Theorem 5A.1 for A ∈L (X ,Y ),
specifically that

(f) A−1 : Y →→ X has the Aubin property at every ȳ ∈ Y for every x̄ ∈ A−1(ȳ),

where lip(A−1; ȳ | x̄)= reg A always. This goes farther than the observation in Corol-
lary 5A.2, which covered only single-valued A−1. In general, of course, the Aubin
property in 5A.3(c) turns into local Lipschitz continuity when F−1 is single-valued.

An important feature of Theorem 5A.1, which is not represented at all in Theo-
rem 5A.3, is the assertion that surjectivity is sufficient, as well as necessary, for all
these properties to hold. An extension of that aspect to nonlinear F will be possible,
in a local sense, under the restriction that gph F is closed and convex. This will
emerge in the next section, in Theorem 5B.4.

Another result which we now wish to upgrade to infinite dimensions is the es-
timation for perturbed inversion which appeared in matrix form in Corollary 1E.7
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with elaborations in 1E.8. It lies at the heart of the theory of implicit functions and
will eventually be generalized in more than one way. We provide it here with a direct
proof (compare with 1E.8(b)).

Lemma 5A.4 (estimation for perturbed inversion). Let A ∈L (X ,Y ) be invertible.
Then for every B ∈L (X ,Y ) with ‖A−1‖·‖B‖< 1 one has

(7) ‖(A+B)−1‖ ≤ ‖A−1‖
1−‖A−1‖‖B‖ .

Proof. Let C = BA−1; then ‖C‖< 1 and hence ‖Cn‖ ≤ ‖C‖n→ 0 as n→ ∞. Also,
the elements

Sn =
n

∑
i=0

Ci for n = 0,1, . . .

form a Cauchy sequence in the Banach space L (X ,Y ) which therefore converges
to some S ∈L (X ,Y ). Observe that, for each n,

Sn(I−C) = I−Cn+1 = (I−C)Sn,

and hence, through passing to the limit, one has S = (I−C)−1. On the other hand

‖Sn‖ ≤
n

∑
i=0
‖Ci‖ ≤

∞

∑
i=0
‖C‖i =

1
1−‖C‖ .

Thus, we obtain

‖(I−C)−1‖ ≤ 1
1−‖C‖ .

All that remains is to bring in the identity (I −C)A = A− B and the inequality
‖C‖ ≤ ‖A−1‖‖B‖, and to observe that the sign of B does not matter.

Note that, with the conventions ∞ · 0 = 0, 1/0 = ∞ and 1/∞ = 0, Lemma 5A.4
also covers the cases ‖A−1‖= ∞ and ‖A−1‖·‖B‖= 1.

Exercise 5A.5. Derive Lemma 5A.4 from the contraction mapping principle 1A.2.

Guide. Setting a = ‖A−1‖, choose B ∈ L (X ,Y ) with ‖B‖ < ‖A−1‖−1 and y ∈ Y
with ‖y‖ ≤ 1− a‖B‖. Show that the mapping Φ : x 7→ A−1(y− Bx) satisfies the
conditions in 1A.2 with λ = a‖B‖ and hence, there is a unique x ∈ aIB such that
x = A−1(y−Bx), that is (A+B)x = y. Thus, A+B is invertible. Moreover ‖x‖ =
‖(A+B)−1(y)‖ ≤ a for every y ∈ (1−a‖B‖)IB, which implies that

‖(A+B)−1z‖ ≤ ‖A−1‖
1−‖A−1‖‖B‖ for every z ∈ IB.

This yields (7).

Exercise 5A.6. Let C ∈L (X ,Y ) satisfy ‖C‖< 1. Prove that
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‖(I−C)−1− I−C‖ ≤ ‖C‖2

1−‖C‖ .

Guide. Use the sequence of mappings Sn in the proof of 5A.4 and observe that

‖Sn− I−C‖= ‖C2 +C3 + · · ·+Cn‖ ≤ ‖C‖2

1−‖C‖ .

Positive homogeneity. A mapping H : X →→ Y whose graph is a cone in X ×Y is
called positively homogeneous. In infinite dimensions such mappings have proper-
ties similar to those developed in finite dimensions in Section 4A, but with some
complications. Outer and inner norms are defined for such mappings H as in Sec-
tion 4A, but it is necessary to take into account the possible variety of underlying
norms on X and Y in place of just the Euclidean norm earlier:

(8) ‖H‖+ = sup
‖x‖≤1

sup
y∈H(x)

‖y‖, ‖H‖− = sup
‖x‖≤1

inf
y∈H(x)

‖y‖.

When dom H = X and H is single-valued, these two expressions agree. For H =
A ∈L (X ,Y ), they reduce to ‖A‖.

The inverse H−1 of a positively homogeneous mapping H is another positively
homogeneous mapping, and its outer and inner norms are therefore available also.
The elementary relationships in Propositions 4A.5 and 4A.6 have the following up-
date.

Proposition 5A.7 (outer and inner norms). The inner norm of a positively homo-
geneous mapping H : X →→ Y satisfies

‖H‖− = inf
{

κ ∈ (0,∞)
∣∣H(x)∩κIB 6= /0 for all x ∈ IB

}
,

so that, in particular,

(9) ‖H‖− < ∞ =⇒ dom H = X .

In parallel, the outer norm satisfies

‖H‖+ = inf
{

κ ∈ (0,∞)
∣∣H(IB)⊂ κIB

}
= sup
‖y‖=1

1
d(0,H−1(y))

,

and we have

(10) ‖H‖+ < ∞ =⇒ H(0) = {0},

with this implication becoming an equivalence when H has closed graph and
dim X < ∞.
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The equivalence generally fails in (10) when dim X = ∞ because of the lack of
compactness then (with respect to the norm) of the ball IB in X .

An extension of Lemma 5A.4 to possibly set-valued mappings that are positively
homogeneous is now possible in terms of the outer norm. Recall that for a positively
homogeneous H : X →→ Y and a linear B : X → Y we have (H +B)(x) = H(x)+Bx
for every x ∈ X .

Theorem 5A.8 (inversion estimate for the outer norm). Let H : X→→Y be positively
homogeneous with ‖H−1‖+ <∞. Then for every B∈L (X ,Y ) with the property that
‖H−1‖+·‖B‖< 1, one has

(11) ‖(H +B)−1‖+ ≤ ‖H−1‖+
1−‖H−1‖+‖B‖ .

Proof. Having ‖H−1‖+ = 0 is equivalent to having dom H = {0}; in this case,
since /0 + y = /0 for any y, we get ‖(H + B)−1‖+ = 0 for any B ∈ L (X ,Y ) as
claimed. Suppose therefore instead that 0 < ‖H−1‖+ < ∞. If the estimate (11) is
false, there is some B∈L (X ,Y ) with ‖B‖< [‖H−1‖+]−1 such that ‖(H+B)−1‖+ >
([‖H−1‖+]−1−‖B‖)−1. In particular B 6= 0 then, and by definition there must exist
y ∈ IB and x ∈ (H +B)−1(y) such that ‖x‖ > ([‖H−1‖+]−1−‖B‖)−1, which is the
same as

(12)
1

‖x‖−1 +‖B‖ > ‖H
−1‖+.

But then y−Bx ∈ H(x) and

(13) ‖y−Bx‖ ≤ ‖y‖+‖B‖‖x‖ ≤ 1+‖B‖‖x‖.

If y = Bx then 0 ∈ H(x), so (10) yields x = 0, a contradiction. Hence α := ‖y−
Bx‖−1 > 0, and due to the positive homogeneity of H we have (αx,α(y−Bx)) ∈
gph H and α‖y−Bx‖= 1, which implies, by definition,

‖H−1‖+ ≥ ‖x‖
‖y−Bx‖ .

Combining this inequality with (12) and (13), we get

‖H−1‖+ ≥ ‖x‖
‖y−Bx‖ ≥

‖x‖
1+‖B‖‖x‖ =

1
‖x‖−1 +‖B‖ > ‖H

−1‖+.

This is impossible, and the proof is at its end.

A corresponding extension of Lemma 5A.4 in terms of the inner norm will be
possible later, in Section 5C.

Normal cones and polarity. For a closed, convex cone K ⊂ X , the polar of K is
the subset K∗ of the dual space X∗ defined by
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K∗ =
{

x∗ ∈ X∗
∣∣〈x,x∗〉 ≤ 0 for all x ∈ K

}
.

It is a closed convex cone in X∗ from which K can be recovered as the polar (K∗)∗

of K∗ in the sense that

K =
{

x ∈ X
∣∣〈x,x∗〉 ≤ 0 for all x∗ ∈ K∗

}
.

For any set C in a Banach space X and any point x ∈C, the tangent cone TC(x) at
a point x∈C is defined as in 2A to consist of all limits v of sequences (1/τk)(xk−x)
with xk→ x in C and τk↘0. When C is convex, TC(x) has an equivalent description
as the closure of the convex cone consisting of all vectors λ (x′− x) with x′ ∈C and
λ > 0.

In infinite dimensions, the normal cone NC(x) to C at x can be introduced in
various ways that extend the general definition given for finite dimensions in 4C,
but we will only be concerned with the case of convex sets C. For that case, the
special definition in 2A suffices with only minor changes caused by the need to
work with the dual space X∗ and the pairing 〈x,x∗〉 between X and X∗. Namely,
NC(x), for x ∈C, consists of all x∗ ∈ X∗ such that

〈x′− x,x∗〉 ≤ 0 for all x′ ∈C.

Equivalently, through the alternative description of TC(x) for convex C, the normal
cone NC(x) is the polar TC(x)∗ of the tangent cone TC(x). It follows that TC(x) is in
turn the polar cone NC(x)∗.

As earlier, NC(x) is taken to be the empty set when x /∈C so as to get a set-valued
mapping NC defined for all x, but this normal cone mapping now goes from X to
X∗ instead of from the underlying space into itself (except in the case of a Hilbert
space, where X∗ can be identified with X as recalled above). A generalized equation
of the form

f (x)+NC(x) 3 0 for a function f : X → X∗

is again a variational inequality. Such generalized equations are central, for in-
stance, to many applications involving differential or integral operators, especially
in a Hilbert space framework.

Exercise 5A.9 (normals to cones). Show that for a closed convex cone K ⊂ X and
its polar K∗ ⊂ X∗, one has

x∗ ∈ NK(x) ⇐⇒ x ∈ K, x∗ ∈ K∗, 〈x,x∗〉= 0.

Exercise 5A.10 (linear variational inequalities on cones). Let H(x) = Ax+NK(x)
for A ∈ L (X ,X∗) and a closed, convex cone K ⊂ X . Show that H is positively
homogeneous with closed graph, but this graph is not convex unless K is a subspace
of X in which case the graph is a subspace of X×X∗.
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5B. Mappings with Closed Convex Graphs

For X and Y Banach spaces, and for any mapping F : X →→ Y with convex graph,
the sets dom F and rge F, as the projections of gph F on the spaces X and Y, are
convex sets as well. When gph F is closed, these sets can fail to be closed (a fa-
mous example being the case where F is a “closed” linear mapping from X to Y
with domain dense in X). However, if either of them has nonempty interior, or even
nonempty “core” (in the sense about to be explained), there are highly significant
consequences for the behavior of F . This section is dedicated to developing such
consequences for properties like openness and metric regularity, but we begin with
some facts that are more basic.

The core of a set C ⊂ X is defined by

core C =
{

x
∣∣∀w ∈ X ∃ε > 0 such that x+ tw ∈C when 0≤ t ≤ ε

}
.

A set C is called absorbing if 0∈ core C. Obviously core C⊃ int C always, but there
are circumstances where necessarily core C = int C. It is elementary that this holds
when C is convex with int C 6= /0, but more attractive is the potential of using the
purely algebraic test of whether a point x belongs to core C to confirm that x ∈ int C
without first having to establish that int C 6= /0. Most importantly for our purposes
here,

(1) for a closed convex subset C of a Banach space, core C = int C.

An equivalent statement, corresponding to how this fact is often recorded in func-
tional analysis, is that if C is a closed convex set which is absorbing, then C must
be a neighborhood of 0. Through the observation already made about convexity, the
confirmation of this comes down to establishing that C has nonempty interior. That
can be deduced from the Baire category theorem, according to which the union
of a sequence of nowhere dense subsets of a complete metric space cannot cover
the whole space. If int C were empty, the closed sets nC for n = 1,2, . . . would be
nowhere dense with the entire Banach space as their union, but this is impossible.

We demonstrate now that, for some of the convex sets central to the study of
closed convex graphs on which we are embarking, the core and interior coincide
even without closedness.

Theorem 5B.1 (interiority criteria for domains and ranges). For any mapping F :
X →→ Y with closed convex graph, one has

(2) core rge F = int rge F, core dom F = int dom F.

In addition, core cl rge F = int cl rge F and core cl dom F = int cl dom F , where
moreover

(3)
int cl rge F = int rge F when dom F is bounded,
int cl dom F = int dom F when rge F is bounded.
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In particular, if dom F is bounded and rge F is dense in Y , and then rge F = Y .
Likewise, if rge F is bounded and dom F is dense in X , and then dom F = X .

Proof. The equations in the line following (2) merely apply (1) to the closed convex
sets cl rge F and cl dom F . Through symmetry between F and F−1, the two claims
in (2) are equivalent to each other, as are the two claims in (3). Also, the claims after
(3) are immediate from (3). Therefore, we only have to prove one of the claims in
(2) and one of the claims in (3).

We start with the first claim in (3). Assuming that dom F is bounded, we work
toward verifying that int rge F ⊃ int cl rge F ; this gives equality, inasmuch as the
opposite inclusion is obvious. In fact, for this we only need to show that rge F ⊃
int cl rge F .

We choose ỹ ∈ int cl rge F ; then there exists δ > 0 such that int IB2δ (ỹ) ⊂
int cl rge F . We will find a point x̃ such that (x̃, ỹ) ∈ gph F , so that ỹ ∈ rge F . The
point x̃ will be obtained by means of a sequence {(xk,yk)} which we now construct
by induction.

Pick any (x0,y0) ∈ gph F . Suppose we have already determined {(x j,y j)} ∈
gph F for j = 0,1, . . . ,k. If yk = ỹ, then take x̃ = xk and (xn,yn) = (x̃, ỹ) for all
n = k,k + 1, . . .; that is, after the index k the sequence is constant. Otherwise,
with αk = δ/‖yk− ỹ‖, we let wk := ỹ+αk(ỹ− yk). Then wk ∈ IBδ (ỹ) ⊂ cl rge F .
Hence there exists vk ∈ rge F such that ‖vk −wk‖ ≤ ‖yk − ỹ‖/2 and also uk with
(uk,vk) ∈ gph F . Having gotten this far, we pick

(xk+1,yk+1) =
αk

1+αk (x
k,yk)+

1
1+αk (u

k,vk).

Clearly, (xk+1,yk+1) ∈ gph F by its convexity. Also, the sequence {yk} satisfies

‖yk+1− ỹ‖= ‖v
k−wk‖

1+αk ≤ 1
2
‖yk− ỹ‖.

If yk+1 = ỹ, we take x̃ = xk+1 and (xn,yn) = (x̃, ỹ) for all n = k+1,k+2, . . .. If not,
we perform the induction step again. As a result, we generate an infinite sequence
{(xk,yk)}, each element of which is equal to (x̃, ỹ) after some k or has yk 6= ỹ for all
k and also

(4) ‖yk− ỹ‖ ≤ 1
2k ‖y

0− ỹ‖ for all k = 1,2, . . . .

In the latter case, we have yk → ỹ. Further, for the associated sequence {xk} we
obtain

‖xk+1− xk‖= ‖x
k−uk‖

1+αk ≤
‖xk‖+‖uk‖
‖yk− ỹ‖+δ

‖yk− ỹ‖.

Both xk and uk are from dom F and thus are bounded. Therefore, from (4), {xk} is a
Cauchy sequence, hence (because X is a complete metric space) convergent to some
x̃. Because gph F is closed, we end up with (x̃, ỹ) ∈ gph F , as required.
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Next we address the second claim in (2), where the inclusion core dom F ⊂
int dom F suffices for establishing equality. We must show that an arbitrarily cho-
sen point of core dom F belongs to int dom F , but through a translation of gph F
we can focus without loss of generality on that point in core dom F being 0,
with F(0) 3 0. Let F0 : X →→ Y be defined by F0(x) = F(x) ∩ IB. The graph of
F0, being [X × IB]∩ gph F , is closed and convex, and we have dom F0 ⊂ dom F
and rge F0 ⊂ IB (bounded). The relations already established in (3) tell us that
int cl dom F0 = int dom F0, where cl dom F0 is a closed convex set. By demon-
strating that cl dom F0 is absorbing, we will be able to conclude from (1) that
0 ∈ int dom F0, hence 0 ∈ int dom F . It is enough actually to show that dom F0
itself is absorbing.

Consider any x∈X . We have to show the existence of ε > 0 such that tx∈ dom F0
for t ∈ [0,ε]. We do know, because dom F is absorbing, that tx ∈ dom F for all
t > 0 sufficiently small. Fix t0 > 0 and let y0 ∈ F(t0x); then for y = y0/t0 we have
t0(x,y) ∈ gph F . The pair t(x,y) = (tx, ty) belongs then to gph F for all t ∈ [0, t0]
through the convexity of gph F and our arrangement that (0,0)∈ gph F . Take ε > 0
small enough that ε‖y‖ ≤ 1. Then for t ∈ [0,ε] we have ‖ty‖= t‖y‖ ≤ 1, giving us
ty ∈ F(tx)∩ IB and therefore tx ∈ dom F0, as required.

Regularity properties will now be explored. The property of a mapping F : X→→Y
being open at x̄ for ȳ, as extended to Banach spaces X and Y in 5A(1), can be restated
equivalently in a manner that more closely resembles the linear openness property
defined in 5A(6):

(5) for every a > 0 there exists b > 0 such that F(x̄+a int IB) ⊃ ȳ+b int IB.

Linear openness requires a linear scaling relationship between a and b. Under posi-
tive homogeneity, such scaling is automatic. On the other hand, an intermediate type
of property holds automatically without positive homogeneity when the graph of F
is convex, and it will be a stepping stone toward other, stronger, consequences of
convexity.

Proposition 5B.2 (openness of mappings with convex graph). Consider a mapping
F : X →→ Y with convex graph, and let ȳ ∈ F(x̄). Then openness of F at x̄ for ȳ is
equivalent to the simpler condition that

(6) there exists c > 0 with F(x̄+ int IB) ⊃ ȳ+ c int IB.

Proof. Clearly, (5) implies (6). For the converse, assume (6) and consider any a> 0.
Take b = min{1,a}c. If a ≥ 1, the left side of (6) is contained in the left side of
(5), and hence (5) holds. Suppose therefore that a < 1. Let w ∈ ȳ + b int IB. The
point v = (w/a)− (1− a)(ȳ/a) satisfies ‖v− ȳ‖ = ‖w− ȳ‖/a < b/a = c, hence
v ∈ ȳ+ c int IB. Then from (6) there exists u ∈ x̄+ int IB with (u,v) ∈ gph F . The
convexity of gph F implies a(u,v)+(1−a)(x̄, ȳ)∈ gph F and yields av+(1−a)ȳ∈
F(au+ (1− a)x̄) ⊂ F(x̄ + a int IB). Substituting v = (w/a)− (1− a)(ȳ/a) in this
inclusion, we see that w ∈ F(x̄ + a int IB), and since w was an arbitrary point in
ȳ+b int IB, we get (5).
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The following fact bridges, for set-valued mappings with convex graphs, between
condition (6) and metric regularity.

Lemma 5B.3 (metric regularity estimate). Let F : X →→ Y have convex graph con-
taining (x̄, ȳ), and suppose (6) is fulfilled. Then

(7) d(x,F−1(y)) ≤ 1+‖x− x̄‖
c−‖y− ȳ‖ d(y,F(x)) for all x ∈ X , y ∈ ȳ+ c int IB.

Proof. We may assume that (x̄, ȳ) = (0,0), since this can be arranged by translating
gph F to gph F− (x̄, ȳ). Then condition (6) has the simpler form

(8) there exists c > 0 with F(int IB)⊃ c int IB.

Let x ∈ X and y ∈ c int IB. Observe that (7) is automatically true when x /∈ dom F or
y ∈ F(x), so assume that x ∈ dom F but y /∈ F(x). Let α := c−‖y‖. Then α > 0.
Choose ε ∈ (0,α) and find y′ ∈ F(x) such that ‖y′− y‖ ≤ d(y,F(x))+ ε . The point
ỹ := y+(α − ε)‖y′− y‖−1(y− y′) satisfies ‖ỹ‖ ≤ ‖y‖+α − ε = c− ε < c, hence
ỹ ∈ c int IB. By (8) there exists x̃ ∈ int IB with ỹ ∈ F(x̃). Let β := ‖y− y′‖(α − ε +
‖y− y′‖)−1; then β ∈ (0,1). From the convexity of gph F we have

y = (1−β )y′+β ỹ ∈ (1−β )F(x)+βF(x̃)⊂ F((1−β )x+β x̃).

Thus x+ β (x̃− x) ∈ F−1(y), so d(x,F−1(y)) ≤ β‖x− x̃‖. Noting that ‖x− x̃‖ ≤
‖x‖+‖x̃‖< ‖x‖+1 and β ≤ (α− ε)−1‖y− y′‖, we obtain

d(x,F−1(y))<
1+‖x‖
α− ε

[d(y,F(x))+ ε].

Letting ε → 0, we finish the proof.

Condition (6) entails in particular having ȳ ∈ int rge F . It turns out that when
the graph of F is not only convex but also closed, the converse implication holds as
well, that is, ȳ∈ int rge F is equivalent to (6). This is a consequence of the following
theorem, which furnishes a far-reaching generalization of the Banach open mapping
theorem.

Theorem 5B.4 (Robinson–Ursescu theorem). Let F : X →→ Y have closed convex
graph and let ȳ ∈ F(x̄). Then the following are equivalent:

(a) ȳ ∈ int rge F ;
(b) F is open at x̄ for ȳ;
(c) F is metrically regular at x̄ for ȳ.

Proof. We first demonstrate that

(9) ȳ ∈ int F(x̄+ int IB) when x̄ ∈ F−1(ȳ) and ȳ ∈ int rge F.

By a translation, we can reduce to the case of (x̄, ȳ) = (0,0). To conclude (9)
in this setting, where F(0) 3 0 and 0 ∈ int rge F , it will be enough to show, for an
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arbitrary δ ∈ (0,1), that 0 ∈ int F(δ IB). Define the mapping Fδ : X →→Y by Fδ (x) =
F(x) when x ∈ δ IB but Fδ (x) = /0 otherwise. Then Fδ has closed convex graph given
by [δ IB×Y ]∩gph F . Also F(δ IB)= rge Fδ and dom Fδ ⊂ δ IB. We want to show that
0 ∈ int rge Fδ , but have Theorem 5B.1 at our disposal, according to which we only
need to show that rge Fδ is absorbing. For that purpose we use an argument which
closely parallels one already presented in the proof of Theorem 5B.1. Consider any
y∈Y . Because 0∈ int rge F , there exists t0 such that ty∈ rge F when t ∈ [0, t0]. Then
there exists x0 such that t0y ∈ F(x0). Let x = x0/t0, so that (t0x, t0y) ∈ gph F . Since
gph F is convex and contains (0,0), it also then contains (tx, ty) for all t ∈ [0, t0].
Taking ε > 0 for which ε‖x‖ ≤ δ , we get for all t ∈ [0,ε] that (tx, ty) ∈ gph Fδ ,
hence ty ∈ rge Fδ , as desired.

Utilizing (9), we can put the argument for the equivalences in Theorem 5B.4 to-
gether. That (b) implies (a) is obvious. We work next on getting from (a) to (c). When
(a) holds, we have from (9) that (6) holds for some c, in which case Lemma 5B.3
provides (7). By restricting x and y to small neighborhoods of x̄ and ȳ in (7), we
deduce the metric regularity of F at x̄ for ȳ with any constant κ > 1/c. Thus, (c)
holds. Finally, out of (c) and the equivalences in Theorem 5A.3 we may conclude
that F is linearly open at x̄ for ȳ, and this gets us back to (b).

The preceding argument passed through linear openness as a fourth property
which could be added to the equivalences in Theorem 5B.4, but which was left out
of the theorem’s statement for historical reasons. We now record this fact separately.

Theorem 5B.5 (linear openness from openness and convexity). For a mapping F :
X →→Y with closed convex graph, openness at x̄ for ȳ always entails linear openness
at x̄ for ȳ.

Another fact, going beyond the original versions of Theorem 5B.4, has come up
as well.

Theorem 5B.6 (core criterion for regularity). Condition (a) of Theorem 5B.4 can
be replaced by the criterion that ȳ ∈ core rge F .

Proof. This calls up the core property in Theorem 5B.1.

We can finish tying up loose ends now by returning to the Banach open mapping
theorem at the beginning of this chapter and tracing how it fits with the Robinson–
Ursescu theorem.

Derivation of Theorem 5A.1 from Theorem 5B.4. It was already noted in the
sequel to 5A.1 that condition (d) in that result was equivalent to the metric regularity
of the linear mapping A, stated as condition (e). It remains only to observe that when
Theorem 5B.4 is applied to F = A ∈L (X ,Y ) with x̄ = 0 and ȳ = 0, the graph of
A being a closed subspace of X ×Y (in particular a convex set), and the positive
homogeneity of A is brought in, we not only get (b) and (c) of Theorem 5A.1, but
also (a).

The argument for Theorem 5B.4, in obtaining metric regularity, also revealed a
relationship between that property and the openness condition in 5B.2 which can be



5 Metric Regularity in Infinite Dimensions 279

stated in the form

(10) sup
{

c ∈ (0,∞)
∣∣(6) holds

}
≤ [reg(F ; x̄ | ȳ)]−1.

Exercise 5B.7 (counterexample). Show that for the mapping F : IR→→ IR defined as

F(x) =

{
[−x,0.5] if x > 0.25,
[−x,2x] if x ∈ [0,0.25],
/0 if x < 0,

which is not positively homogeneous, and for x̄ = ȳ = 0 the inequality (10) is strict.

Exercise 5B.8 (effective domains of convex functions). Let g : X → (−∞,∞] be
convex and lower semicontinuous, and let D =

{
x
∣∣g(x) < ∞

}
. Show that D is a

convex set which, although not necessarily closed in X , is sure to have core D =
int D. Moreover, on that interior g is locally Lipschitz continuous.

Guide. Look at the mapping F : X →→ IR defined by F(x) =
{

y ∈ IR
∣∣y ≥ g(x)

}
.

Apply results in this section and also 5A.3.

5C. Sublinear Mappings

An especially interesting class of positively homogeneous mappings H : X →→ Y
acting between Banach spaces X and Y consists of the ones for which gph H is not
just a cone, but a convex cone. Such mappings are called sublinear, because these
geometric properties of gph H are equivalent to the rules that

(1)
0 ∈ H(0), H(λx) = λH(x) for λ > 0,
H(x+ x′)⊃ H(x)+H(x′) for all x, x′,

which resemble linearity. Since the projection of a convex cone in X×Y into X or Y
is another convex cone, it is clear for a sublinear mapping H that dom H is a convex
cone in X and rge H is a convex cone in Y . The inverse H−1 of a sublinear mapping
H is another sublinear mapping.

Although sublinearity has not been mentioned as a specific property before now,
sublinear mappings have already appeared many times. Obviously, every linear
mapping A : X → Y is sublinear (its graph being not just a convex cone but in
fact a subspace of X ×Y ). Sublinear also, though, is any mapping H : X →→ Y with
H(x)=Ax−K for a convex cone K in Y . Such mappings enter the study of constraint
systems, with linear equations corresponding to K = {0}. When A is continuous and
K is closed, their graphs are closed.
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Sublinear mappings with closed graph enjoy the properties laid out in 5B along
with those concerning outer and inner norms at the end of 5A. But their properties
go a lot further, as in the result stated now about metric regularity.

Theorem 5C.1 (metric regularity of sublinear mappings). For a sublinear mapping
H : X →→ Y with closed graph, and any (x,y) ∈ gph H we have

(2) reg(H;x |y) ≤ reg(H;0 |0) = inf
{

κ > 0
∣∣H(κ int IB)⊃ int IB

}
= ‖H−1‖−.

Moreover, reg(H;0 |0) < ∞ if and only if H is surjective, in which case H−1 is
Lipschitz continuous on Y (in the sense of Pompeiu-Hausdorff distance as defined
in 3A) and the infimum of the Lipschitz constant κ for this equals ‖H−1‖−.

Proof. Let κ > reg(H;0 |0). Then, from 5A.3, H is linearly open at 0 for 0 with con-
stant κ , which reduces to H(κ int IB)⊃ int IB. On the other hand, just from knowing
that H(κ int IB)⊃ int IB, we obtain for arbitrary (x,y) ∈ gph H and r > 0 through the
sublinearity of H that

H(x+κr int IB)⊃ H(x)+ rH(κ int IB)⊃ y+ r int IB.

This establishes that reg(H;x |y) ≤ reg(H;0 |0) for all (x,y) ∈ gph H. Appealing
again to positive homogeneity, we get

(3) reg(H;0 |0) = inf
{

κ > 0
∣∣H(κ int IB)⊃ int IB

}
.

The right side of (3) does not change if we replace the open balls with their closures,
hence, by 5A.7 or just by the definition of the inner norm, it equals ‖H−1‖−. This
confirms (2).

The finiteness of the right side of (3) corresponds to H being surjective, by virtue
of positive homogeneity. We are left now with showing that H−1 is Lipschitz con-
tinuous on Y with ‖H−1‖− as the infimum of the available constants κ .

If H−1 is Lipschitz continuous on Y with constant κ , it must in particular have
the Aubin property at 0 for 0 with this constant, and then κ ≥ reg(H;0 |0) by 5A.3.
We already know that this regularity modulus equals ‖H−1‖−, so we are left with
proving that, for every κ > reg(H;0 |0), H−1 is Lipschitz continuous on Y with
constant κ .

Let c < [‖H−1‖−]−1 and κ > 1/c. Taking (2) into account, we apply the inequal-
ity 5B(7) stated in 5B.3 with x = x̄ = 0 and ȳ = 0, obtaining the existence of a > 0
such that

d(0,H−1(y))≤ κd(y,H(0))≤ κ‖y‖ for all y ∈ aIB.

(Here, without loss of generality, we replace the open ball for y by its closure.) For
any y ∈ Y , we have ay/‖y‖ ∈ aIB, and from the positive homogeneity of H we get

(4) d(0,H−1(y))≤ κ‖y‖ for all y ∈ Y.

If ‖H−1‖− = 0 then 0 ∈H−1(y) for all y ∈Y (see 4A.9), hence (4) follows automat-
ically.
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Let y,y′ ∈ Y and x′ ∈ H−1(y′). Through the surjectivity of H again, we can find
for every δ > 0 an xδ ∈ H−1(y− y′) such that ‖xδ‖ ≤ d(0,H−1(y− y′))+ δ , and
then from (4) we get

(5) ‖xδ‖ ≤ κ‖y− y′‖+δ .

Invoking the sublinearity of H yet once more, we obtain

x := x′+ xδ ∈ H−1(y′)+H−1(y− y′)⊂ H−1(y′+ y− y′) = H−1(y).

Hence x′= x−xδ ∈H−1(y)+‖xδ‖IB. Recalling (5), we arrive finally at the existence
of x ∈ H−1(y) such that ‖x− x′‖ ≤ κ‖y− y′‖+δ . Since δ can be arbitrarily small,
this yields Lipschitz continuity of H−1, and we are done.

Corollary 5C.2 (finiteness of the inner norm). Let H : X →→ Y be a sublinear map-
ping with closed graph. Then

dom H = X ⇐⇒ ‖H‖− < ∞,
rge H = Y ⇐⇒ ‖H−1‖− < ∞.

Proof. This comes from applying Theorem 5C.1 to both H and H−1.

Exercise 5C.3 (regularity modulus at zero). For a sublinear mapping H : X →→ Y
with closed graph, prove that

reg(H;0 |0) = inf
{

κ
∣∣H(x+κrIB)⊃ H(x)+ rIB for all x ∈ X , r > 0

}
.

Guide. Utilize the connections with openness properties.

Example 5C.4 (application to linear constraints). For A ∈L (X ,Y ) and a closed,
convex cone K ⊂ Y , define the solution mapping S : Y →→ X by

S(y) =
{

x ∈ X
∣∣Ax− y ∈ K

}
.

Then S is a sublinear mapping with closed graph, and the following properties are
equivalent:

(a) S(y) 6= /0 for all y ∈ Y ;
(b) there exists κ such that d(x,S(y))≤ κd(Ax− y,K) for all x ∈ X , y ∈ Y ;
(c) there exists κ such that h(S(y),S(y′))≤ κ‖y− y′‖ for all y,y′ ∈ Y ,

in which case the infimum of the constants κ that work in (b) coincides with the
infimum of the constants κ that work in (c) and equals ‖S‖−.

Detail. Here S = H−1 for H(x) = Ax−K, and the assertions of Theorem 5C.1 then
translate into this form.

Additional insights into the structure of sublinear mappings will emerge from
applying a notion which comes out of the following fact.
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Exercise 5C.5 (directions of unboundedness in convexity). Let C be a closed, con-
vex subset of X and let x1 and x2 belong to C. If w 6= 0 in X has the property that
x1 + tw ∈C for all t ≥ 0, then it also has the property that x2 + tw ∈C for all t ≥ 0.

Guide. Fixing any t2 > 0, show that x2 + t2w can be approached arbitrarily closely
by points on the line segment between x2 and x1 + t1w by taking t1 larger.

On the basis of the property in 5C.5, the recession cone rc C of a closed, convex
set C ⊂ X , defined by

(6) rc C =
{

w ∈ X
∣∣∀x ∈C, ∀ t ≥ 0 : x+ tw ∈C

}
,

can equally well be described by

(7) rc C =
{

w ∈ X
∣∣∃x ∈C, ∀ t ≥ 0 : x+ tw ∈C

}
.

It is easily seen that rc C is a closed, convex cone. In finite dimensions, C is bounded
if and only if rc C is just {0}, but in infinite dimensions there are unbounded sets
for which that holds. For a closed, convex cone K, one just has rc K = K, as seen
from the equivalence between (6) and (7) by taking x = 0 in (7).

We will apply this now to the graph of a sublinear mapping H. It should be
recalled that dom H is a convex cone, and for any convex cone K the set K ∩ [−K]
is a subspace, in fact the largest subspace within K. On the other hand, K−K is the
smallest subspace that includes K.

Proposition 5C.6 (recession cones in sublinearity). A sublinear mapping H : X→→Y
with closed graph has

(8) rc H(x) = H(0) for all x ∈ dom H,

and on the other hand,

(9) x ∈ dom H ∩ [−dom H] =⇒
{

H(x)+H(−x) ⊂ H(0),
H(x)−H(x) ⊂ H(0)−H(0).

Proof. Let G = gph H, this being a closed, convex cone in X ×Y , therefore having
rc G = G. For any (x,y) ∈ G, the recession cone rc H(x) consists of the vectors w
such that y+ tw ∈ H(x) for all t ≥ 0, which are the same as the vectors w such that
(x,y)+ t(0,w) ∈ G for all t ≥ 0, i.e., the vectors w such that (0,w) ∈ rc G = G. But
these are the vectors w ∈ H(0). That proves (8).

The first inclusion in (9) just reflects the rule that H(x+[−x]) ⊃ H(x)+H(−x)
by sublinearity. To obtain the second inclusion, let y1 and y2 belong to H(x), which
is the same as having y1− y2 ∈ H(x)−H(x), and let y ∈ H(−x). Then by the first
inclusion we have both y1 + y and y2 + y in H(0), hence their difference lies in
H(0)−H(0).
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Theorem 5C.7 (single-valuedness of sublinear mappings). For a sublinear map-
ping H : X →→ Y with closed graph and dom H = X , the following conditions are
equivalent:

(a) H is a linear mapping from L (X ,Y );
(b) H is single-valued at some point {x};
(c) ‖H‖+ < ∞.

Proof. Certainly (a) leads to (b). On the other hand, (c) necessitates H(0) = {0} and
hence (b) for x = 0. By 5C.6, specifically the second part of (9), if (b) holds for any
x it must hold for all x. The first part of (9) reveals then that if H(x) consists just of y,
then H(−x) consists just of −y. This property, along with the rules of sublinearity,
implies linearity. The closedness of the graph of H implies that the linear mapping
so obtained is continuous, so we have come back to (a).

Note that, without the closedness of the graph of H in Theorem 5C.7, there would
be no assurance that (b) implies (a). We would still have a linear mapping, but it
might not be continuous.

Corollary 5C.8 (single-valuedness of solution mappings). In the context of Theo-
rem 5C.1, it is impossible for H−1 to be single-valued at any point without actually
turning out to be a continuous linear mapping from Y to X . The same holds for the
solution mapping S for the linear constraint system in 5C.4 when a solution exists
for every y ∈ Y .

We next state the counterpart to Lemma 5A.4 which works for the inner norm
of a positively homogeneous mapping. In contrast to the result presented in 5A.8
for the outer norm, convexity is now essential: we must limit ourselves to sublinear
mappings.

Theorem 5C.9 (inversion estimate for the inner norm). Let H : X→→Y be sublinear
with closed graph and have ‖H−1‖− < ∞. Then for every B ∈ L (X ,Y ) such that
‖H−1‖−·‖B‖< 1, one has

‖(H +B)−1‖− ≤ ‖H−1‖−
1−‖H−1‖−‖B‖ .

The proof of this is postponed until 5E, where it will be deduced from the connec-
tion between these properties and metric regularity in 5C.1. Perturbations of metric
regularity will be a major theme, starting in Section 5D.

Duality. A special feature of sublinear mappings, with parallels linear mappings,
is the availability of “adjoints” in the framework of the duals X∗ and Y ∗ of the
Banach spaces X and Y . For a sublinear mapping H : X →→ Y , the upper adjoint
H∗+ : Y ∗→→ X∗ is defined by

(10) (y∗,x∗) ∈ gph H∗+ ⇐⇒ 〈x∗,x〉 ≤ 〈y∗,y〉 for all (x,y) ∈ gph H,

whereas the lower adjoint H∗− : Y ∗→→ X∗ is defined by
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(11) (y∗,x∗) ∈ gph H∗− ⇐⇒ 〈x∗,x〉 ≥ 〈y∗,y〉 for all (x,y) ∈ gph H.

These formulas correspond to modified polarity operations on the convex cone
gph H ⊂ X ×Y with polar [gph H]∗ ⊂ X∗ ×Y ∗. They say that gph H∗+ consists
of the pairs (y∗,x∗) such that (x∗,−y∗) ∈ [gph H]∗, while gph H∗− consists of the
pairs (y∗,x∗) such that (−x∗,y∗) ∈ [gph H]∗, and thus imply in particular that the
graphs of these adjoints are closed, convex cones — so that both of these mappings
from Y ∗ to X∗ are sublinear with closed graph.

The switches of sign in (10) and (11) may seem a pointless distinction to make,
but they are essential in capturing rules for recovering H from its adjoints through
the fact that, when the spaces X and Y are reflexive, [gph H]∗∗ = gph H when the
convex cone gph H is closed, and then we get

(12) [H∗+]∗− = H and [H∗−]∗+ = H for sublinear H with closed graph.

When H reduces to a linear mapping A ∈L (X ,Y ), both adjoints come out as the
usual adjoint A∗ ∈ L (Y ∗,X∗). In that setting the graphs are subspaces instead of
just cones, and the difference between (10) and (11) has no effect. The fact that
‖A∗‖= ‖A‖ in this case has the following generalization.

Theorem 5C.10 (duality of inner and outer norms). For any sublinear mapping
H : X →→ Y with closed graph, one has

(13)
‖H‖+ = ‖H∗−‖− = ‖H∗+‖−,
‖H‖− = ‖H∗−‖+ = ‖H∗+‖+.

The proof requires some additional background. First, we need to update to Ba-
nach spaces the semicontinuity properties introduced in a finite-dimensional frame-
work in Section 3B, but this only involves an extension of notation. A mapping
F : X →→ Y is inner semicontinuous at x̄ ∈ dom F if for every y ∈ F(x̄) and every
neighborhood V of y one can find a neighborhood U of x̄ with U ⊂ F−1(V ) or,
equivalently, F(x)∩V 6= /0 for all x ∈U (for more, see 3B.2). Outer semicontinuity
has a parallel extension. Next, we record a standard fact in functional analysis which
will be called upon.

Theorem 5C.11 (Hahn–Banach theorem). Let M be a linear subspace of a Banach
space X , and let p : X → IR satisfy

(14) p(x+ y)≤ p(x)+ p(y) and p(tx) = t p(x) for all x,y ∈ X , t ≥ 0.

Let f : M → IR be a linear functional such that f (x) ≤ p(x) for all x ∈ M. Then
there exists a linear functional l : X → IR such that l(x) = f (x) for all x ∈ M, and
l(x)≤ p(x) for all x ∈ X .

In this formulation of the Hahn–Banach theorem, nothing is said about continu-
ity, so X could really be any linear space — no topology is involved. But the main
applications are ones in which p is continuous and it follows that l is continuous.
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Another standard fact in functional analysis, which can be derived from the Hahn–
Banach theorem in that manner, is the following separation theorem.

Theorem 5C.12 (separation theorem). Let C be a nonempty, closed, convex subset
of a Banach space X , and let x0 ∈ X . Then x0 6∈C if and only if there exists x∗ ∈ X∗

such that
〈x∗,x0〉> sup

x∈C
〈x∗,x〉.

Essentially, this says geometrically that a closed convex set is the intersection of
all the “closed half-spaces” that include it.

Proof of Theorem 5C.10. First, observe from (10) and (11) that

H∗+(y∗) =−H∗−(−y∗) for any y∗ ∈ Y ∗,

so that
‖H∗−‖− = ‖H∗+‖− and ‖H∗−‖+ = ‖H∗+‖+.

To prove that ‖H‖+ = ‖H∗−‖− we fix any y∗ ∈ Y ∗ and show that

(15) sup
x∈IB

sup
y∈H(x)

〈y∗,y〉= inf
x∗∈H∗−(y∗)

‖x∗‖ for all y∗ ∈ IB.

If infx∗∈H∗−(y∗) ‖x∗‖ < r for some r > 0, then there exist x∗ ∈ H∗−(y∗) such that
‖x∗‖< r. For any x̃ ∈ IB and ỹ ∈ H(x̃) we have

〈y∗, ỹ〉 ≤ 〈x∗, x̃〉 ≤ sup
x∈IB
〈x∗,x〉= ‖x∗‖< r,

and then of course supx∈IB supy∈H(x)〈y∗,y〉 ≤ r. Hence

(16) sup
x∈IB

sup
y∈H(x)

〈y∗,y〉 ≤ inf
x∗∈H∗−(y∗)

‖x∗‖.

To prove the inequality opposite to (16) and hence the equality (15), assume that
supx∈IB supy∈H(x)〈y∗,y〉< r for some r > 0 and pick 0 < d < r such that

(17) sup
x∈IB

sup
y∈H(x)

〈y∗,y〉 ≤ d.

Define the mapping G : X →→ IR by

G : x 7→
{

z
∣∣z = 〈y∗,y〉, y ∈ H(x+ IB)

}
.

First, observe that gph G is convex. Indeed, if (x1,z1),(x2,z2) ∈ gph G and 0 < λ <
1, then there exist yi ∈Y and wi ∈ IB with zi = 〈y∗,yi〉 and yi ∈H(xi+wi), for i= 1,2.
Since H is sublinear, we get λy1 +(1−λ )y2 ∈ H(λ (x1 +w1)+(1−λ )(x2 +w2)).
Hence, λy1 +(1−λ )y2 ∈ H(λx1 +(1−λ )x2 + IB), and thus,

λ (x1,z1)+(1−λ )(x2,z2) = (λx1 +(1−λ )x2,〈y∗,λy1 +(1−λ )y2〉) ∈ gph G.
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We will show next that G is inner semicontinuous at 0. Take z̃∈G(0) and ε > 0. Let
z̃ = 〈y∗, ỹ〉 for ỹ ∈ H(w̃) and w̃ ∈ IB. Since 〈y∗, ·〉 is continuous, there is some γ > 0
such that |〈y∗,y〉− z̃| ≤ ε when ‖y− ỹ‖ ≤ γ . Choose δ ∈ (0,1) such that δ‖ỹ‖ ≤ γ .
If ‖x‖ ≤ δ , we have

‖(1−δ )w̃− x‖ ≤ ‖(1−δ )w̃‖+‖x‖ ≤ 1,

and hence (1−δ )w̃− x ∈ IB. Because H is sublinear,

(1−δ )ỹ ∈H((1−δ )w̃) = H(x+((1−δ )w̃−x))⊂H(x+ IB) whenever ‖x‖ ≤ δ .

Moreover, ‖(1−δ )ỹ− ỹ‖= δ‖ỹ‖ ≤ γ, and then |〈y∗,(1−δ )ỹ〉− z̃| ≤ ε. Therefore,
for all x ∈ δ IB, we have 〈y∗,(1− δ )ỹ〉 ∈ G(x)∩ IBε(z̃), and hence G is inner semi-
continuous at 0 as desired.

Let us now define a mapping K : X →→ IR whose graph is the conical hull of
gph(d−G) where d is as in (17); that is, its graph is the set of points λh for h ∈
gph(d−G) and λ ≥ 0. The conical hull of a convex set is again convex, so K is
another sublinear mapping. Since G is inner semicontinuous at 0, there is some
neighborhood U of 0 with U ⊂ dom G, and therefore dom K = X . Consider the
functional

k : x 7→ inf
{

z
∣∣z ∈ K(x)

}
for x ∈ X .

Because K is sublinear and d−H(0)⊂ IR+, we have

(18) K(x)+K(−x)⊂ K(0)⊂ IR+.

This inclusion implies in particular that any point in −K(−x) furnishes a lower
bound in IR for the set of values K(x), for any x ∈ X . Indeed, let x ∈ X and y ∈
−K(−x). Then (18) yields K(x)− y⊂ IR+, and consequently y≤ z for all z ∈ K(x).
Therefore k(x) is finite for all x∈X ; we have dom k =X . Also, from the sublinearity
of K and the properties of the infimum, we have

k(x+ y)≤ k(x)+ k(y) and k(αx) = αk(x) for all x,y ∈ X and α ≥ 0.

Consider the subspace M = {0} ⊂ X and define f : M→ IR simply by f (0) :=
k(0) = 0. Applying Hahn–Banach theorem 5C.11 to f , we get a linear functional
l : X → IR such that l(0) = 0 and l(x)≤ k(x) for all x ∈ X . We will show now that l
is continuous at 0 and hence continuous on the whole X .

Continuity at 0 means that for every ε > 0 there is δ > 0 such that (l(x)+ IR+)∩
εIB 6= /0 whenever x ∈ δ IB. Let z ∈ d−G(0) and take 0 < λ < 1 along with a neigh-
borhood V of z such that λV ⊂ εIB. Since G is inner semicontinuous at 0, there is
some δ > 0 such that

(d−G(x))∩V 6= /0, for all x ∈ (δ/λ )IB.

Since d−G(x) ⊂ k(x)+ IR+ and k(x) ≥ l(x), we have d−G(x) ⊂ l(x)+ IR+ and
(l(x)+ IR+)∩V 6= /0 for all x ∈ (δ/λ )IB, so that (l(λx)+ IR+)∩λV 6= /0 for all x ∈
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(δ/λ )IB. This yields

(l(x)+ IR+)∩ εIB 6= /0 for all x ∈ δ IB,

which means that for all x∈ δ IB there exists some z≥ l(x) with |z| ≤ ε . The linearity
of l makes l(x) =−l(−x), and therefore |l(x)| ≤ ε for all x ∈ δ IB. This confirms the
continuity of l.

The inclusion d −G(x)− l(x) ⊂ IR+ is by definition equivalent to having d −
〈y∗,y〉− l(x)≥ 0 whenever x∈H−1(y)− IB. Let x∗ ∈ X∗ be such that 〈x∗,x〉=−l(x)
for all x ∈ X . Then

〈y∗,y〉−〈x∗,x〉 ≤ d for all y ∈ Y and all x ∈ H−1(y)− IB.

Pick any y ∈ H(x) and λ > 0. Then λy ∈ H(λx) and 〈y∗,λy〉 − 〈x∗,λx〉 ≤ d, or
equivalently,

〈y∗,y〉−〈x∗,x〉 ≤ d/λ .

Passing to the limit with λ → ∞, we obtain x∗ ∈ H∗−(y∗). Let now x ∈ IB. Since 0 ∈
H(0), we have 0 ∈ H(−x+ IB) and hence 〈y∗,0〉− 〈x∗,−x〉 ≤ d. Therefore ‖x∗‖ ≤
d < r, so that infx∗∈H∗−(y∗) ‖x∗‖< r. This, combined with (16), gives us the equality
in (15) and hence the equalities in the first line of (13).

We will now confirm the equality in the second line of (13). Suppose ‖H‖− < r
for some r > 0. Then for any x̃ ∈ IB there is some ỹ ∈H(x̃) such that ‖ỹ‖< r. Given
y∗ ∈ IB and x∗ ∈ H∗+(y∗), we have

〈x∗, x̃〉 ≤ 〈y∗, ỹ〉 ≤ ‖ỹ‖< r.

This being valid for arbitrary x̃ ∈ IB, we conclude that ‖x∗‖ ≤ r, and therefore
‖H∗+‖+ ≤ r.

Suppose now that ‖H∗+‖+ < r and pick s > 0 with

sup
x∗∈H∗+(IB)

‖x∗‖= ‖H∗+‖+ ≤ s < r,

in which case H∗+(IB)⊂ sIB. We will show that

(19) 〈x∗,x〉 ≤ 1 for all x ∈ H−1(IB) =⇒ ‖x∗‖ ≤ s.

The condition on the left of (19) can be written as supy∈IB supx∈H−1(y)〈x∗,x〉 ≤ 1,
which in turn is completely analogous to (17), with d = 1 and H replaced by H−1

and with y and y∗ replaced by x and x∗, respectively. By repeating the argument in
the first part of the proof after (17), we obtain y∗ ∈ (H−1)∗−(x∗) = (H∗+)−1(x∗) with
‖y∗‖ ≤ 1. But then x∗ ∈ H∗+(IB), and since H∗+(IB)⊂ sIB we have (19).

Now we will show that (19) implies

(20) s−1IB⊂ cl H−1(IB).
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If u 6∈ cl H−1(IB), then from 5C.12 there exists x̃∗ ∈ X∗ with

〈x̃∗,u〉> sup
x∈cl H−1(IB)

〈x̃∗,x〉 ≥ 〈x̃∗,0〉= 0.

Choose λ > 0 such that

sup
x∈cl H−1(IB)

〈x̃∗,x〉< λ
−1 < 〈x̃∗,u〉.

Then
〈λ x̃∗,u〉> 1 > sup

x∈cl H−1(IB)
〈λ x̃∗,x〉.

According to (19) this implies that λ x̃∗ ∈ sIB. Thus,

s≥ ‖λ x̃∗‖ ≥ 〈λ x̃∗,u/‖u‖〉> 1
‖u‖ ,

and therefore u 6∈ s−1IB, so (20) holds.
Our next task is to demonstrate that

(21) int s−1IB⊂ int H−1(IB).

Define the mapping

x 7→ H0(x) =
{

H(x) for x ∈ IB,
/0 otherwise.

Then gph H0 = gph H∩(X× IB) is a closed convex set and rge H0 ⊂ IB. By 5B.1 we
have

int cl H−1(IB) = int cl dom H0 = int dom H0 = int H−1(IB).

This equality combined with the inclusion (20) gives us (21). But then r−1IB ⊂
int s−1IB ⊂ H−1(IB), ensuring ‖H‖− ≤ r. This completes the proof of the second
line in (13).

The above proof can be shortened considerably in the case when X and Y are
reflexive Banach spaces, by utilizing the equality (12).

Exercise 5C.13 (more norm duality). For a sublinear mapping H : X →→ Y with
closed graph show that

‖(H∗+)−1‖+ = ‖H−1‖−.

Exercise 5C.14 (adjoint of a sum). For a sublinear mapping G : X →→ Y and B ∈
L (X ,Y ) prove that

(H +B)∗+ = H∗++B∗ and (H +B)∗− = H∗−+B∗.
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5D. The Theorems of Lyusternik and Graves

We start with the observation that inequality 5A(7) in Lemma 5A.4, giving an esti-
mate for inverting a perturbed linear mapping A, can also be written in the form

(reg A)·‖B‖ ≤ 1 =⇒ reg(A+B)≤ reg A
1− (reg A)·‖B‖ ,

since for an invertible mapping A ∈ L (X ,Y ) one has reg A = ‖A−1‖. This alter-
native formulation shows the way to extending the estimate to nonlinear and even
set-valued mappings.

First, we recall a basic definition of differentiability in infinite dimensions, which
is just an update of the definition employed in the preceding chapters in finite dimen-
sions. With differentiability as well as Lipschitz continuity and calmness, the only
difference is that the Euclidean norm is now replaced by the norms of the Banach
spaces X and Y that we work with.

Fréchet differentiability and strict differentiability. A function f : X→Y is said
to be Fréchet differentiable at x̄ if x̄∈ int dom f and there is a mapping M ∈L (X ,Y )
such that clm( f −M; x̄) = 0. When such a mapping M exists, it is unique; it is called
the Fréchet derivative of f at x̄ and denoted by D f (x̄), so that

clm( f −D f (x̄); x̄) = 0.

If actually
lip( f −D f (x̄); x̄) = 0,

then f is said to be strictly differentiable at x̄.

Partial Fréchet differentiability and partial strict differentiability can be intro-
duced as well on the basis of the partial Lipschitz moduli, by updating the defini-
tions in Section 1D to infinite dimensions. Building on the formulas for the calmness
and Lipschitz moduli, we could alternatively express these definitions in an epsilon-
delta mode as at the beginning of Chapter 1. If a function f is Fréchet differentiable
at every point x of an open set O and the mapping x 7→ D f (x) is continuous from
O to the Banach space L (X ,Y ), then f is said to be continuously Fréchet differ-
entiable on O. Most of the assertions in Section 1D about functions acting in finite
dimensions remain valid in Banach spaces, e.g., continuous Fréchet differentiability
around a point implies strict differentiability at this point.

The extension of the Banach open mapping theorem to nonlinear and set-
valued mappings goes back to the works of Lyusternik and Graves. In 1934,
L. A. Lyusternik published a result saying that if a function f : X → Y is contin-
uously Fréchet differentiable in a neighborhood of a point x̄ where f (x̄) = 0 and its
derivative mapping D f (x̄) is surjective, then the tangent manifold to f−1(0) at x̄ is
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the set x̄+ ker D f (x̄). In the current setting we adopt the following statement1 of
Lyusternik theorem:

Theorem 5D.1 (Lyusternik theorem). Consider a function f : X → Y that is con-
tinuously Fréchet differentiable in a neighborhood of a point x̄ with the derivative
mapping D f (x̄) surjective. Then, in terms of ȳ := f (x̄), for every ε > 0 there exists
δ > 0 such that

d(x, f−1(ȳ))≤ ε‖x− x̄‖ whenever x ∈ x̄+ker D f (x̄) and ‖x− x̄‖ ≤ δ .

In 1950 L. M. Graves published a result whose formulation and proof we present
here in full, up to some minor adjustments in notation:

Theorem 5D.2 (Graves theorem). Consider a function f : X → Y and a point x̄ ∈
int dom f and let f be continuous in IBε(x̄) for some ε > 0. Let A ∈ L (X ,Y ) be
surjective and let κ > reg A. Suppose there is a nonnegative µ such that µκ < 1 and

(1) ‖ f (x)− f (x′)−A(x− x′)‖ ≤ µ‖x− x′‖ whenever x,x′ ∈ IBε(x̄).

Then, in terms of ȳ := f (x̄) and c = κ−1−µ , if y is such that ‖y− ȳ‖ ≤ cε , then the
equation y = f (x) has a solution x ∈ IBε(x̄).

Proof. Without loss of generality, let x̄ = 0 and ȳ = f (x̄) = 0. Note that κ−1 > µ ,
hence 0< c<∞. Take y∈Y with ‖y‖≤ cε . Starting from x0 = 0 we use induction to
construct an infinite sequence {xk}, the elements of which satisfy for all k = 1,2, . . .
the following three conditions:

(2a) A(xk− xk−1) = y− f (xk−1),

(2b) ‖xk− xk−1‖ ≤ κ(κµ)k−1‖y‖

and

(2c) ‖xk‖ ≤ ‖y‖/c.

By (d) in the Banach open mapping theorem 5A.1 there exists x1 ∈ X such that

Ax1 = y and ‖x1‖ ≤ κ‖y‖ ≤ ‖y‖/c.

That is, x1 satisfies all three conditions (2a), (2b) and (2c). In particular, by the
choice of y and the constant c we have ‖x1‖ ≤ ε .

Suppose now that for some j≥ 1 we have obtained points xk satisfying (2a), (2b)
and (2c) for k = 1, . . . , j. Then, since ‖y‖/c≤ ε , we have from (2c) that all the points
xk satisfy ‖xk‖ ≤ ε . Again using (d) in 5A.1, we can find x j+1 such that

1 In his paper of 1934 Lyusternik did not state his result as a theorem; the statement in 5D.1 is from
Dmitruk, Milyutin and Osmolovskiı̆ [1980].
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(3) A(x j+1− x j) = y− f (x j) and ‖x j+1− x j‖ ≤ κ‖y− f (x j)‖.

If we plug y = Ax j−Ax j−1 + f (x j−1) into the second relation in (3) and use (1) for
x = x j and x′ = x j−1 which, as we already know, are from εIB, we obtain

‖x j+1− x j‖ ≤ κ‖ f (x j)− f (x j−1)−A(x j− x j−1)‖ ≤ κµ‖x j− x j−1‖.

Then, by the induction hypothesis,

‖x j+1− x j‖ ≤ κ(κµ) j‖y‖.

Furthermore,

‖x j+1‖ ≤ ‖x1‖+
j

∑
i=1
‖xi+1− xi‖ ≤

j

∑
i=0

(κµ)i
κ‖y‖ ≤ κ‖y‖

1−κµ
= ‖y‖/c.

The induction step is complete: we obtain an infinite sequence of points xk satisfying
(2a), (2b) and (2c). For any k and j with k > j > 1 we have

‖xk−x j‖≤
k−1

∑
i= j
‖xi+1−xi‖≤

k−1

∑
i= j

(κµ)i
κ‖y‖≤ (κµ) j

κ‖y‖
∞

∑
i=0

(κµ)i≤ κ‖y‖
1−κµ

(κµ) j.

Thus, {xk} is a Cauchy sequence, hence convergent to some x, and then, passing to
the limit with k→∞ in (2a) and (2c), this x satisfies y = f (x) and ‖x‖ ≤ ‖y‖/c. The
final inequality gives us ‖x‖ ≤ ε and the proof is finished.

Observe that in the Graves theorem no differentiability of the function f is re-
quired, but only “approximate differentiability” as in the theorem of Hildebrand and
Graves; see the commentary to Chapter 1. If we suppose that for every µ > 0 there
exists ε > 0 such that (1) holds for every x,x′ ∈ IBε(x̄), then A is, by definition, the
strict derivative of f at x̄, A = D f (x̄). That is, the Graves theorem encompasses the
following special case: if f is strictly differentiable at x̄ and its derivative D f (x̄) is
onto, then there exist ε > 0 and c > 0 such that for every y ∈ Y with ‖y− ȳ‖ ≤ cε

there is an x ∈ X such that ‖x− x̄‖ ≤ ε and y = f (x).
The statement of the Graves theorem above does not reflect all the information

that can be extracted from its proof. In particular, the solution x of f (x) = y whose
existence is claimed is not only in the ball IBε(x̄) but also satisfies ‖x− x̄‖ ≤ ‖y−
ȳ‖/c. Taking into account that x ∈ f−1(y), which yields d(x̄, f−1(y)) ≤ ‖x− x̄‖,
along with the form of the constant c, we get

d(x̄, f−1(y))≤ κ

1−κµ
‖y− f (x̄)‖.

Furthermore, this inequality actually holds not only at x̄ but also for all x close to x̄,
and this important extension is hidden in the proof of the theorem.

Indeed, let (1) hold for x,x′ ∈ IBε(x̄) and choose a positive τ < ε . Then there is
a neighborhood U of x̄ such that IBτ(x) ⊂ IBε(x̄) for all x ∈U . Make U smaller if
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necessary so that ‖ f (x)− f (x̄)‖ < cτ for x ∈U . Pick x ∈U and a neighborhood V
of ȳ such that ‖y− f (x)‖ ≤ cτ for y ∈V . Then, remembering that in the proof x̄ = 0,
modify the first induction step in the following way: there exists x1 ∈ X such that

Ax1 = y− f (x)+Ax and ‖x1− x‖ ≤ κ‖y− f (x)‖.

Then, construct a sequence {xk} with x0 = x satisfying (3), thereby obtaining

‖xk− xk−1‖ ≤ κ(κµ)k−1‖y− f (x)‖

and then

(4) ‖xk− x‖ ≤
k

∑
i=1
‖xi− xi−1‖ ≤ κ‖y− f (x)‖

∞

∑
i=1

(κµ)i−1 ≤ κ

1−κµ
‖y− f (x)‖.

Thus,
‖xk− x‖ ≤ ‖y− f (x)‖/c≤ τ.

The sequence {xk} is a Cauchy sequence, and therefore convergent to some x̃. In
passing to the limit in (4), we get

‖x̃− x‖ ≤ κ

1−κµ
‖y− f (x)‖.

Since x̃ ∈ f−1(y), we see that, under the conditions of the Graves theorem, there
exist neighborhoods U of x̄ and V of f (x̄) such that

(5) d(x, f−1(y))≤ κ

1−κµ
‖y− f (x)‖ for (x,y) ∈U×V.

We defined the property described in (5) in Chapter 3 and introduced again in infinite
dimensions in 5A: this is metric regularity of the function f at x̄ for ȳ. Noting that
the µ in (1) satisfies µ ≥ lip( f −A)(x̄) and it is sufficient to have κ ≥ reg A in (5),
we arrive at the following result:

Theorem 5D.3 (updated Graves theorem). Let f : X →Y be continuous in a neigh-
borhood of x̄, let A ∈L (X ,Y ) satisfy reg A ≤ κ , and suppose lip( f −A)(x̄) ≤ µ

for some µ with µκ < 1. Then

(6) reg( f ; x̄ | ȳ)≤ κ

1−κµ
for ȳ = f (x̄).

For f = A+B we obtain from this result the estimation for perturbed inversion
of linear mappings in 5A.4.
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The version of the Lyusternik theorem2 stated as Theorem 5D.1 can be derived
from the updated Graves theorem 5D.3. Indeed, the assumptions of 5D.1 are clearly
stronger than those of Theorem 5D.3. From (5) with y = f (x̄) we get

(7) d(x, f−1(ȳ))≤ κ

1−κµ
‖ f (x)− f (x̄)‖

for all x sufficiently close to x̄. Let ε > 0 and choose δ > 0 such that

(8) ‖ f (x)− f (x̄)+D f (x̄)(x− x̄)‖ ≤ (1−κµ)ε

κ
‖x− x̄‖ whenever x ∈ IBδ (x̄).

But then for any x ∈ (x̄+ker D f (x̄))∩ IBδ (x̄), from (7) and (8) we obtain

d(x, f−1(y))≤ κ

1−κµ
‖ f (x)− f (x̄)‖ ≤ ε‖x− x̄‖,

which is the conclusion of 5D.1.

Exercise 5D.4 (correction function version of Graves theorem). Show that on the
conditions of Theorem 5D.3, for ȳ = f (x̄) there exist neighborhoods U of x̄ and V
of ȳ such that for every y ∈V and x ∈U there exists ξ with the property

f (ξ + x) = y and ‖ξ‖ ≤ κ

1−κµ
‖ f (x)− y‖.

Guide. From Theorem 5D.3 we see that there exist neighborhoods U of x̄ and V of
ȳ such that for every x ∈U and y ∈V

d(x, f−1(y))≤ κ

1−κµ
‖y− f (x)‖.

Without loss of generality, let y 6= f (x); then we can slightly increase µ so that the
latter inequality becomes strict. Then there exists η ∈ f−1(y) such that

‖x−η‖ ≤ κ

1−κµ
‖y− f (x)‖.

Next take ξ = η− x.

If the function f in 5D.3 is strictly differentiable at x̄, we can choose A = D f (x̄),
and then µ = 0. In this case (6) reduces to

(9) reg( f ; x̄ | ȳ) ≤ reg D f (x̄) for ȳ = f (x̄).

2 The iteration (3), which is a key step in the proof of Graves, is also present in the original proof
of Lyusternik [1934], see also Lyusternik and Sobolev [1965]. In the case when A is invertible, it
goes back to Goursat [1903], see the commentary to Chapter 1.
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In the following section we will show that this inequality actually holds as equality.
We call this result the basic Lyusternik–Graves theorem and devote the following
several sections to extending it in various directions.

Theorem 5D.5 (basic Lyusternik–Graves theorem). For a function f : X→Y which
is strictly differentiable at x̄, one has

reg( f ; x̄ | ȳ) = reg D f (x̄).

We terminate this section with two major observations. For the first, assume that
the mapping A in Theorem 5D.2 is not only surjective but also invertible. Then the
iteration procedure used in the proof of the Graves theorem becomes the iteration
used by Goursat (see the commentary to Chapter 1), namely

x j+1 = x j−A−1( f (x j)− y).

In that case, one obtains the existence of a single-valued graphical localization of
the inverse f−1 around f (x̄) for x̄, as in Theorem 1A.1. If the derivative mapping
D f (x̄) is merely surjective, as assumed in the Graves theorem, the inverse f−1 may
not have a single-valued graphical localization around ȳ for x̄ but, still, this inverse,
being a set-valued mapping, has the Aubin property at ȳ for x̄.

Our second observation is that in the proof of Theorem 5D.2 we use the linearity
of the mapping A only to apply the Banach open mapping theorem. But we can
employ the regularity modulus for any nonlinear, even set-valued, mapping. After
this somewhat historical section, we will explore this idea further in the sections
which follow.

5E. Extending the Lyusternik–Graves Theorem

In this section we show that the updated Graves theorem 5D.3, in company with the
stability of metric regularity under perturbations, demonstrated in Theorem 3F.1,
can be extended to a much broader framework of set-valued mappings acting in
abstract spaces. Specifically, we consider a set-valued mapping F acting from a
metric space X to another metric space Y , where both metrics are denoted by ρ but
may be defined differently. In such spaces the standard definitions, e.g. of the ball
in X with center x and radius r and the distance from a point x to a set C in Y , need
only be adapted to metric notation:

IBr(x̄) =
{

x ∈ X
∣∣ρ(x, x̄)≤ r

}
, d(x,C) = inf

x′∈C
ρ(x,x′).
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Recall that a subset C of a complete metric space is closed if d(x,C) = 0 ⇔ x ∈C.
Also recall that a set C is locally closed at a point x ∈C if there is a neighborhood
U of x such that the intersection C∩U is closed.

In metric spaces X and Y , the definition of the Lipschitz modulus of a function
g : X → Y is extended in a natural way, with attention paid to the metric notation of
distance:

lip(g; x̄) = limsup
x,x′→x̄,

x 6=x′

ρ(g(x),g(x′))
ρ(x,x′)

.

For set-valued mappings F acting in such spaces, the definitions of metric regularity
and the Aubin property persist in the same manner while the linear openness of a
mapping F at x̄ for ȳ translates as the existence of a constant κ > 0 and neighbor-
hoods U of x̄ and V of ȳ such that

F(int IBκr(x))⊃ int IBr(y) for all (x,y) ∈ gph F ∩ (U×V ) and r > 0.

The equivalence of metric regularity with the Aubin property of the inverse and the
linear openness (3E.7 and 3E.9) with the same constant remains valid as well. Recall
that all three definitions require the graph of the mapping be locally closed at the
reference point.

It will be important for our efforts to take the metric space X to be complete and
to suppose that Y is a linear space equipped with a shift-invariant metric ρ . Shift
invariance means that

ρ(y+ z,y′+ z) = ρ(y,y′) for all y,y′,z ∈ Y.

Of course, any Banach space meets these requirements.
The result stated next is just a reformulation of Theorem 3F.1 for mappings acting

in metric spaces. Since this result has its roots in the theorems of Lyusternik and
Graves, we call it the extended Lyusternik–Graves theorem.

Theorem 5E.1 (extended Lyusternik–Graves theorem). Let X be a complete metric
space and let Y be a linear space with shift-invariant metric. Consider a mapping
F : X →→ Y , a point (x̄, ȳ) ∈ gph F and a function g : X → Y with x̄ ∈ int dom g. Let
κ and µ be nonnegative constants such that

κµ < 1, reg(F ; x̄ | ȳ)≤ κ and lip(g; x̄)≤ µ.

Then

(1) reg(g+F ; x̄ |g(x̄)+ ȳ)≤ κ

1−κµ
.

Before arguing this, we note that it immediately allows us to supply 5C.9 and
5D.5 with proofs.

Proof of 5C.9. We apply 5E.1 with X and Y Banach spaces, F = H, x̄ = 0 and
ȳ = 0. According to 5C.1, reg(H;0 |0) = ‖H−1‖−, so 5E.1 tells us that for any
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λ > ‖H−1‖−, any B ∈L (X ,Y ) with ‖B‖ < 1/λ , and any µ with ‖B‖ < µ < 1/λ

one has from (1) that ‖(H +B)−1‖− ≤ λ/(1−λ µ). It remains only to pass to the
limit as λ →‖H−1‖− and µ →‖B‖.
Proof of 5D.5. To obtain the inequality opposite to 5D(9), choose F = f and g =
D f (x̄)− f and apply 5E.1, in this case with µ = 0.

We proceed now with presenting a proof of Theorem 5E.1 which echoes on a
more abstract level the way we proved the classical inverse function theorem 1A.1
in Chapter 1, by using an iteration in line with the original argument in the proof
of the Graves theorem 5D.2. Another way of proving 5E.1 will be demonstrated
on a more general implicit function version of it, based on a contraction mapping
principle for set-valued mappings. Then we present yet another proof of 5E.1.

Proof I of Theorem 5E.1. Let κ and µ be as in the statement of the theorem and
choose a function g : X →Y with lip(g; x̄)≤ µ . Without loss of generality, suppose
g(x̄) = 0. Let λ > κ and ν > µ satisfy λν < 1. Choose α > 0 small enough such that
the set gph F ∩ (IBα(x̄)× IBα(ȳ)) is closed, g is Lipschitz continuous with constant
ν on IBα(x̄), and

(2) d(x,F−1(y)) ≤ λd(y,F(x)) for all (x,y) ∈ IBα(x̄)× IBα(ȳ).

From (2) with x = x̄, it follows that

(3) F−1(y) 6= /0 for all y ∈ IBα(ȳ).

Having fixed λ , α and ν , consider the following system of inequalities:

(4)


λν + ε < 1,

1
1−(λν+ε) [(1+λν)a+λb+ ε]+a≤ α,

b+ν

(
1

1−(λν+ε) [(1+λν)a+λb+ ε]+a
)
≤ α.

It is not difficult to see that there are positive a, b and ε that satisfy this system.
Indeed, first fix ε such that these inequalities hold strictly for a = b = 0; then pick
sufficiently small a and b so that both the second and the third inequality are not
violated.

Let x ∈ IBa(x̄) and y ∈ IBb(ȳ). According to the choice of a and of b in (4), we
have

(5) ρ(y−g(x), ȳ) ≤ ν ρ(x, x̄)+ ρ(y, ȳ) ≤ νa+b≤ α.

Let (xk,yk)∈ gph(g+F)∩(IBa(x̄)×IBb(g(x̄)+ ȳ)) and let (xk,yk)→ (x,y) as k→∞.
Then from (4) and (5) we have that xk ∈ F−1(yk−g(xk))∩ IBα(x̄) and yk−g(xk) ∈
IBα(ȳ). Passing to the limit and using the local closedness of gph F we conclude
that (x,y) ∈ gph(g+F)∩ (IBa(x̄)× IBb(ȳ)), hence gph(g+F) is locally closed at
(x̄,g(x̄)+ ȳ).

We will show next that
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(6) d(x,(g+F)−1(y))≤ λ

1−λν
d(y,(g+F)(x)).

Since x and y are arbitrarily chosen in the corresponding balls IBa(x̄) and IBb(ȳ), and
λ and ν are arbitrarily close to κ and µ , respectively, (6) implies (1).

Through (3) and (5), there exists z1 ∈ F−1(y−g(x)) such that

(7) ρ(z1,x)≤ d(x,F−1(y−g(x)))+ ε ≤ λd(y,(g+F)(x))+ ε.

If z1 = x, then x ∈ F−1(y−g(x)), which is the same as x ∈ (g+F)−1(y). Then (6)
holds automatically, since its left side is 0. Let z1 6= x. In this case, using (2), we
obtain

(8)

ρ(z1,x)≤ ρ(x, x̄)+d(x̄,F−1(y−g(x)))+ ε

≤ ρ(x, x̄)+λd(y−g(x),F(x̄))+ ε

≤ ρ(x, x̄)+λ ρ(y, ȳ)+λ ρ(g(x),g(x̄))+ ε

≤ ρ(x, x̄)+λ ρ(y, ȳ)+λν ρ(x, x̄)+ ε

≤ (1+λν)a+λb+ ε.

Hence, by (4),

(9) ρ(z1, x̄) ≤ ρ(z1,x)+ρ(x, x̄) ≤ (1+λν)a+λb+ ε +a≤ α.

By induction, we construct a sequence of vectors zk ∈ IBα(x̄), with z0 = x, such
that, for k = 0,1, . . .,

(10) zk+1 ∈ F−1(y−g(zk)) and ρ(zk+1,zk)≤ (λν + ε)k
ρ(z1,x).

We already found z1 which gives us (10) for k = 0. Suppose that for some n≥ 1 we
have generated z1,z2, . . . ,zn satisfying (10). If zn = zn−1 then zn ∈ F−1(y− g(zn))
and hence zn ∈ (g+F)−1(y). Then, by using (2), (7) and (10), we get

d(x,(g+F)−1(y)) ≤ ρ(zn,x)≤
n−1

∑
i=0

ρ(zi+1,zi)

≤
n−1

∑
i=0

(λν + ε)i
ρ(z1,x)≤ 1

1− (λν + ε)
ρ(z1,x)

≤ λ

1− (λν + ε)

(
d(y,(g+F)(x))+

ε

λ

)
.

Since the left side of this inequality does not depend on the ε on the right, we are
able to obtain (6) by letting ε go to 0.

Assume zn 6= zn−1. We will first show that zi ∈ IBα(x̄) for all i = 2,3, . . . ,n. Uti-
lizing (10), for such an i we have

ρ(zi,x)≤
i−1

∑
j=0

ρ(z j+1,z j)≤
i−1

∑
j=0

(λν + ε) j
ρ(z1,x)≤ 1

1− (λν + ε)
ρ(z1,x)
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and therefore, through (8) and (4),

(11) ρ(zi, x̄) ≤ ρ(zi,x)+ρ(x, x̄)≤ 1
1− (λν + ε)

[(1+λν)a+λb+ ε]+a≤ α.

Thus, we have zi ∈ IBα(x̄) for all i = 1, . . . ,n.
Taking into account the estimate in (11) for i = n and the third inequality in (4),

we get

ρ(y−g(zn), ȳ) ≤ ρ(y, ȳ)+ν ρ(zn, x̄)

≤ b+ν

(
1

1− (λν + ε)
[(1+λν)a+λb+ ε]+a

)
≤ α.

Since ρ(zn,zn−1)> 0, from (3) there exists zn+1 ∈ F−1(y−g(zn)) such that

ρ(zn+1,zn) ≤ d
(
zn,F−1(y−g(zn))

)
+ ερ(zn,zn−1),

and then (2) yields

ρ(zn+1,zn) ≤ λd(y−g(zn),F(zn))+ ερ(zn,zn−1).

Since zn ∈ F−1(y−g(zn−1)) and hence y−g(zn−1) ∈ F(zn), by invoking the induc-
tion hypothesis, we obtain

ρ(zn+1,zn) ≤ λ ρ(g(zn),g(zn−1))+ ε ρ(zn,zn−1)

≤ (λν + ε)ρ(zn,zn−1)≤ (λν + ε)n
ρ(z1,x).

The induction is complete, and therefore (10) holds for all k.
Right after (10) we showed that when zk = zk−1 for some k then (6) holds. Sup-

pose now that zk+1 6= zk for all k. By virtue of the second condition in (10), we see
for any natural n and m with m < n that

ρ(zn,zm) ≤
n−1

∑
k=m

ρ(zk+1,zk) ≤
n−1

∑
k=m

(λν + ε)k
ρ(z1,x) ≤ ρ(z1,x)

1− (λν + ε)
(λν + ε)m.

We conclude that the sequence {zk} satisfies the Cauchy condition, and all its el-
ements are in IBα(x̄). Hence this sequence converges to some z ∈ IBα(x̄) which,
from (10) and the local closedness of gph F , satisfies z ∈ F−1(y− g(z)), that is,
z ∈ (g+F)−1(y). Moreover,

d(x,(g+F)−1(y)) ≤ ρ(z,x) = lim
k→∞

ρ(zk,x)≤ lim
k→∞

k

∑
i=0

ρ(zi+1,zi)

≤ lim
k→∞

k

∑
i=0

(λν + ε)i
ρ(z1,x)≤ 1

1− (λν + ε)
ρ(z1,x)
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≤ 1
1− (λν + ε)

(
λd(y,(g+F)(x))+ ε

)
,

the final inequality being obtained from (2) and (7). Taking the limit as ε → 0 we
obtain (6), and the proof is finished.

Theorem 5E.1 can be also deduced from a more general implicit function theo-
rem (5E.5 below) which we supply with a proof based on the following extension
of the contraction mapping principle 1A.2 for set-valued mappings, furnished with
a proof the idea of which goes back to Banach [1922], if not earlier.

Theorem 5E.2 (contraction mapping principle for set-valued mappings). Let X be a
complete metric space with metric ρ , and consider a set-valued mapping Φ : X→→ X
and a point x̄ ∈ X . Suppose that there exist scalars a > 0 and λ ∈ (0,1) such that the
set gph Φ ∩ (IBa(x̄)× IBa(x̄)) is closed and

(a) d(x̄,Φ(x̄))< a(1−λ );
(b) e(Φ(u)

⋂
IBa(x̄),Φ(v))≤ λ ρ(u,v) for all u,v ∈ IBa(x̄).

Then Φ has a fixed point in IBa(x̄); that is, there exists x ∈ IBa(x̄) such that x ∈Φ(x).

Proof. By assumption (a) there exists x1 ∈ Φ(x̄) such that ρ(x1, x̄) < a(1− λ ).
Proceeding by induction, let x0 = x̄ and suppose that there exists xk+1 ∈ Φ(xk)∩
IBa(x̄) for k = 0,1, . . . , j−1 with

ρ(xk+1,xk)< a(1−λ )λ k.

By assumption (b),

d(x j,Φ(x j))≤ e(Φ(x j−1)∩ IBa(x̄),Φ(x j))≤ λ ρ(x j,x j−1)< a(1−λ )λ j.

This implies that there is an x j+1 ∈Φ(x j) such that

ρ(x j+1,x j)< a(1−λ )λ j.

By the triangle inequality,

ρ(x j+1, x̄)≤
j

∑
i=0

ρ(xi+1,xi)< a(1−λ )
j

∑
i=0

λ
i < a.

Hence x j+1 ∈Φ(x j)∩ IBa(x̄) and the induction step is complete.
For any k > m > 1 we then have

ρ(xk,xm)≤
k−1

∑
i=m

ρ(xi+1,xi)< a(1−λ )
k−1

∑
i=m

λ
i < aλ

m.

Thus, {xk} is a Cauchy sequence and consequently converges to some x ∈ IBa(x̄).
Since (xk−1,xk) ∈ gph Φ ∩ (IBa(x̄)× IBa(x̄)) which is a closed set, we conclude that
x ∈Φ(x).
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For completeness, we now supply with a proof the (standard) contraction map-
ping principle 1A.2.

Proof of Theorem 1A.2. Let Φ be a function which is Lipschitz continuous on
IBa(x̄) with constant λ ∈ [0,1) and let ρ(x̄,Φ(x̄)) ≤ a(1−λ ). If λ = 0 then Φ is a
constant function on IBa(x̄) whose value Φ(x), the same for all x ∈ IBa(x̄), is a point
in IBa(x̄). This value is the unique fixed point of Φ . Let λ > 0. By repeating the
argument in the proof of 5E.2 for the sequence of points xk satisfying xk+1 = Φ(xk),
k = 0,1, . . . , for x0 = x̄, with all strict inequalities replaced by non-strict ones, we
obtain that Φ has a fixed point in IBa(x̄). Suppose that Φ has two fixed points in
IBa(x̄), that is, there are x,x′ ∈ IBa(x̄), x 6= x′, with x = Φ(x) and x′ = Φ(x′). Then
we have

0 < ρ(x,x′) = ρ(Φ(x),Φ(x′))≤ λ ρ(x,x′)< ρ(x,x′),

which is absurd. Hence, Φ has a unique fixed point.

Theorem 5E.2 is a generalization of the following theorem due to Nadler [1969],
which is most known in the literature.

Theorem 5E.3 (Nadler fixed point theorem). Let X be a complete metric space
and suppose that Φ maps X into the set of closed subsets of X and is Lipschitz
continuous in the sense of Pompeiu-Hausdorff distance on X with Lipschitz constant
λ ∈ (0,1). Then Φ has a fixed point.

Proof. We will first show that Φ has closed graph. Indeed, let (xk,yk) ∈ gph Φ and
(xk,yk)→ (x,y). Then

d(y,Φ(x)) ≤ ρ(y,yk)+d(yk,Φ(x))

≤ ρ(y,yk)+h(Φ(xk),Φ(x))

≤ ρ(y,yk)+λρ(xk,x)→ 0 as k→ ∞.

Hence d(y,Φ(x))= 0 and since Φ(x) is closed we have (x,y)∈ gph Φ , and therefore
gph Φ is closed as claimed.

Let x̄ ∈ X and choose a > d(x̄,Φ(x̄))/(1−λ ). Clearly, the set gph Φ ∩ (IBa(x̄)×
IBa(x̄)) is closed. Furthermore, for every u,v ∈ IBa(x̄) we obtain

e(Φ(u)∩ IBa(x̄),Φ(v))≤ e(Φ(u),Φ(v))≤ h(Φ(u),Φ(v))≤ λρ(u,v).

Hence, by Theorem 5E.2 there exists x ∈ X such that x ∈Φ(x).

Exercise 5E.4. Prove Nadler’s theorem 5E.3 by using Ekeland’s principle 4B.5.

Guide. Consider the function f (x) = d(x,Φ(x)) for x∈X . First show that this func-
tion is lower semicontinuous continuous on X by using the assumption that Φ is
Lipschitz continuous (use 1D.4 and the proof of 3A.3). Also note that f (x)≥ 0 for
all x ∈ X . Choose δ ∈ (0,1−λ ). Ekeland’s principle yields that there exists uδ ∈ X
such that
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d(uδ ,Φ(uδ ))≤ d(x,Φ(x))+δρ(uδ ,x) for every x ∈ X .

Let d(uδ ,Φ(uδ )) > 0. From the last inequality and the Lipschitz continuity of Φ ,
for any x ∈Φ(uδ ) we have

d(uδ ,Φ(uδ ))≤ h(Φ(uδ ),Φ(x))+δρ(uδ ,x)≤ (λ +δ )ρ(uδ ,x).

Passing to the infimum with x ∈Φ(uδ ), we obtain

0 < d(uδ ,Φ(uδ ))≤ (λ +δ )d(uδ ,Φ(uδ ))< d(uδ ,Φ(uδ )),

a contradiction. Hence d(uδ ,Φ(uδ )) = 0. Since Φ is closed valued, we conclude
that uδ ∈Φ(uδ ).

We are now ready to state and prove an implicit mapping version of Theorem
5E.1.

Theorem 5E.5 (extended Lyusternik–Graves theorem in implicit form). Let X be
a complete metric space, let Y be a linear metric space with shift-invariant metric,
and let P be a metric space, with all metrics denoted by ρ . For f : P× X → Y
and F : X →→ Y , consider the generalized equation f (p,x)+F(x) 3 0 with solution
mapping

S(p) =
{

x
∣∣ f (p,x)+F(x) 3 0

}
having x̄ ∈ S(p̄).

Let h : X → Y be a strict estimator of f with respect to x uniformly in p at (p̄, x̄)
with constant µ , and suppose that h+F is metrically regular at x̄ for 0 with reg(h+
F ; x̄ |0)≤ κ . Assume

κµ < 1 and l̂ip p( f ;(p̄, x̄))≤ γ < ∞.

Then S has the Aubin property at p̄ for x̄, and moreover

(12) lip(S; p̄ | x̄) ≤ κγ

1−κµ
.

Proof. Choose λ > κ and ν > µ such that λν < 1. Also, let β > γ . Then there exist
positive scalars α and τ such that

(13) the set gph(h+F)∩ (IBα(x̄)× IBα(0)) is closed,

and

(14) e
(
(h+F)−1(y′)∩ IBα(x̄),(h+F)−1(y)

)
≤ λ ρ(y′,y) for all y′,y ∈ IBα(0).

Furthermore, for r(p,x) = f (p,x)−h(x),

(15) ρ(r(p,x′),r(p,x))≤ ν ρ(x′,x) for all x′,x ∈ IBα(x̄) and p ∈ IBτ(p̄)



302 5 Metric Regularity in Infinite Dimensions

and also

(16) ρ( f (p′,x), f (p,x))≤ β ρ(p′, p) for all p′, p ∈ IBτ(p̄) and x ∈ IBα(x̄).

Fix λ+ such that

(17)
2λβ

1−λν
≥ λ

+ >
λβ

1−λν
.

Now, choose positive a < α min{1,1/ν} and then q≤ τ such that

(18) νa+βq≤ α and 2λ
+q+a≤ α.

Then, from (15) and (16), for every x ∈ IBa(x̄) and p ∈ IBq(p̄) we have

(19)
ρ(r(p,x),0)≤ ρ(r(p,x),r(p, x̄))+ρ(r(p, x̄),r(p̄, x̄))

≤ ν ρ(x, x̄)+β ρ(p, p̄)≤ νa+βq≤ α.

Fix p ∈ IBq(p̄) and consider the mapping Φp : X →→ X defined as

Φp(x) = (h+F)−1(−r(p,x)).

Let p′, p ∈ IBq(p̄) with p 6= p′ and let x′ ∈ S(p′)∩ IBa(x̄). Then x′ ∈Φp′(x′)∩ IBa(x̄).
Let ε := λ+ρ(p′, p); then ε ≤ λ+(2q). Thus, from (14), where we use (19), and
from (15), (16), and (17) we deduce that

d(x′,Φp(x′))≤ e
(
(h+F)−1(−r(p′,x′))∩ IBα(x̄),(h+F)−1(−r(p,x′))

)
≤ λ ρ( f (p′,x′), f (p,x′))≤ λβ ρ(p′, p)< λ+ρ(p′, p)(1−λν) = ε(1−λν).

Since x′ ∈ IBa(x̄) and ε + a ≤ α from (18), we get IBε(x′) ⊂ IBα(x̄). Then, the set
gph Φp∩ (IBε(x′)× IBε(x′)) is closed. Further, for any u,v ∈ IBε(x′) using again (14)
(with (19)) and (15), we see that

e(Φp(u)∩ IBε(x′),Φp(v))

≤ e
(
(h+F)−1(−r(p,u))∩ IBα(x̄),(h+F)−1(−r(p,v))

)
≤ λ ρ(r(p,u),r(p,v))≤ λν ρ(u,v) .

The contraction mapping principle in Theorem 5E.2 then applies, with the λ there
taken to be the λν here, and it follows that there exists x∈Φp(x)∩ IBε(x′) and hence
x ∈ S(p)∩ IBε(x′). Thus,

d(x′,S(p))≤ ρ(x′,x)≤ ε = λ
+

ρ(p′, p).

Since this inequality holds for every x′ ∈ S(p′)∩ IBa(x̄) and evey λ+ fulfilling (17),
we arrive at

e(S(p′)∩ IBa(x̄),S(p))≤ λ
+

ρ(p′, p).
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Noting that (p,x)∈ gph S∩(IBq(p̄)×IBa(x̄)) is the same as x∈ (h+F)−1(−r(p,x))∩
IBa(x̄), p ∈ IBq(p̄), and using (13) and (19), we conclude that gph S is locally closed
at (p̄, x̄). Hence, S has the Aubin property at p̄ for x̄ with modulus not greater than
λ+. Since λ+ can be arbitrarily close to λβ/(1−λν), and λ , ν and β can be arbi-
trarily close to κ , µ , and γ , respectively, we achieve the estimate (12).

Clearly, Theorem 5E.1 is the particular case of 5E.5 for P = Y , h = 0 and
f (p,x) =−p+g(x).

A Banach space version of Theorem 3F.9 is given next whose statement and
proof need only minor adjustments in notation and terminology.

Theorem 5E.6 (using strict differentiability and ample parameterization). Let X , Y
and P be Banach spaces. For f : P×X→Y and F : X→→Y , consider the generalized
equation f (p,x)+F(x)3 0 with solution mapping S as in 5E.5 and a pair (p̄, x̄) with
x̄ ∈ S(p̄). Suppose that f is strictly differentiable at (p̄, x̄). If the mapping

h+F for h(x) = f (p̄, x̄)+Dx f (p̄, x̄)(x− x̄)

is metrically regular at x̄ for 0, then S has the Aubin property at p̄ for x̄ with

lip(S; p̄ | x̄) ≤ reg(h+F ; x̄ |0) · ‖Dp f (p̄, x̄)‖.

Furthermore, when f satisfies the ample parameterization condition

the mapping Dp f (p̄, x̄) is surjective,

then the converse implication holds as well: the mapping h+F is metrically regular
at x̄ for 0 provided that S has the Aubin property at p̄ for x̄.

The single-valued version of 5E.1 is commonly known as Milyutin’s theorem.

Theorem 5E.7 (Milyutin). Let X be a complete metric space and Y be a linear
normed space. Consider functions f : X → Y and g : X → Y and let κ and µ be
nonnegative constants such that κµ < 1. Suppose that f is linearly open at x̄ with
a constant κ and g is Lipschitz continuous around x̄ with constant µ . Then f +g is
linearly open at x̄ with constant κ/(1−κµ).

Exercise 5E.8. Prove that, under the conditions of Theorem 5E.1,

inf
g:X→Y

{
lip(g; x̄)

∣∣∣F +g is not metrically regular at x̄ for ȳ+g(x̄)
}
≥ 1

reg(F ; x̄ | ȳ) .
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5F. Strong Metric Regularity and Implicit Functions

Here we first present a strong regularity analogue of Theorem 5E.1 that provides a
sharper view of the interplay among the constants and neighborhoods of a mapping
and its perturbation. As in the preceding section, we consider mappings acting in
metric spaces, to which the concept of strong regularity can be extended in an ob-
vious way. The following result extends Theorem 3G.3 to metric spaces and can be
proved in the same way, by utilizing Theorem 5E.1 instead of 3F.1 together with
the metric space versions of Propositions 3G.1 and 3G.2. It could be also proved
directly, by using the standard (single-valued) version of the contracting mapping
principle, 1A.2. We will use this kind of a direct proof in the more general implicit
function Theorem 5F.4 and then will derive 5F.1 from it.

Theorem 5F.1 (inverse functions and strong metric regularity in metric spaces). Let
X be a complete metric space and let Y be a linear metric space with shift-invariant
metric. Let κ and µ be nonnegative constants such that κµ < 1. Consider a mapping
F : X→→Y and any (x̄, ȳ)∈ gph F such that F is strongly metrically regular at x̄ for ȳ
with reg(F ; x̄ | ȳ)≤ κ and a function g : X→Y with x̄ ∈ int dom g and lip(g; x̄)≤ µ.
Then the mapping g+F is strongly metrically regular at x̄ for g(x̄)+ ȳ. Moreover,

reg(g+F ; x̄ |g(x̄)+ ȳ)≤ κ

1−κµ
.

Exercise 5F.2. Derive 5F.1 from 5E.1.

Guide. Follow in the way 3G.3 is derived from 3F.1.

Exercise 5F.3. Let X be a complete metric space and let Y be a linear metric space
with shift-invariant metric, let κ and µ be nonnegative constants such that κµ < 1.
Let x̄ ∈ X and ȳ ∈ Y , and let g be Lipschitz continuous around x̄ with Lipschitz
constant µ and f be Lipschitz continuous around ȳ+ g(x̄) with Lipschitz constant
κ . Prove that the mapping ( f−1 + g)−1 has a Lipschitz continuous single-valued
localization around ȳ+g(x̄) for x̄ with Lipschitz constant κ/(1−κµ).

Guide. Apply 5F.1 with F = f−1.

We present next a strong regularity version of Theorem 5E.5 which has already
appeared in various forms in the preceding chapters. We proved a weaker form of
this result in 2B.5 via 2B.6 and stated it again in Theorem 3G.4, which we left
unproved. Here we treat a general case, and since the result is central in this book,
we supply it with an unabbreviated direct proof.

Theorem 5F.4 (implicit functions with strong metric regularity in metric spaces). Let
X be a complete metric space, let Y be a linear metric space with shift-invariant
metric, and let P be a metric space. For f : P×X → Y and F : X →→ Y , consider the
generalized equation f (p,x)+F(x) 3 0 with solution mapping
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S(p) =
{

x
∣∣ f (p,x)+F(x) 3 0

}
having x̄ ∈ S(p̄).

Let f (·, x̄) be continuous at p̄ and let h : X → Y be a strict estimator of f with
respect to x uniformly in p at (p̄, x̄) with constant µ . Suppose that h+F is strongly
metrically regular at x̄ for 0 or, equivalently, the inverse (h+F)−1 has a Lipschitz
continuous single-valued localization ω around 0 for x̄ such that there exists κ ≥
reg(h+F ; x̄ |0) = lip(ω;0) with κµ < 1.

Then the solution mapping S has a single-valued localization s around p̄ for x̄.
Moreover, for every ε > 0 there exists a neighborhood Q of p̄ such that

(1) ρ(s(p′),s(p))≤ κ + ε

1−κµ
ρ( f (p′,s(p)), f (p,s(p))) for all p′, p ∈ Q.

In particular, s is continuous at p̄. In addition, if

(2) clm p( f ;(x̄, p̄))< ∞,

then the solution mapping S has a single-valued graphical localization s around p̄
for x̄ which is calm at p̄ with

(3) clm(s; p̄)≤ κ

1−κµ
clm p( f ;(p̄, x̄)).

If (2) is replaced by the stronger condition

(4) l̂ip p( f ;(p̄, x̄))< ∞,

then the graphical localization s of S around p̄ for x̄ is Lipschitz continuous near p̄
with

(5) lip(s; p̄)≤ κ

1−κµ
l̂ip p( f ;(p̄, x̄)).

If h : X → Y is not only a strict estimator of f , but also a strict first-order approxi-
mation of f with respect to x uniformly in p at (p̄, x̄), then, under (2), we have

clm(s; p̄)≤ lip(ω;0)clm p( f ;(p̄, x̄)),

and under (4),
lip(s; p̄)≤ lip(ω;0) l̂ip p( f ;(p̄, x̄)).

Proof. Let ε > 0 and choose λ > κ and ν > µ such that

(6) λν < 1 and
λ

1−λν
≤ κ + ε

1−κµ
.

Then there exist positive scalars α and τ such that for each y ∈ IBα(0) the set
(h+F)−1(y)∩ IBα(x̄) is a singleton, equal to the value ω(y) of the single-valued
localization of (h + F)−1, and this localization ω is Lipschitz continuous with
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Lipschitz constant λ on IBα(0). We adjust α and τ to also have, for e(p,x) =
f (p,x)−h(x),

(7) ρ(e(p,x′),e(p,x))≤ ν ρ(x′,x) for all x′,x ∈ IBα(x̄) and p ∈ IBτ(p̄).

Choose a positive a≤ α satisfying

(8) νa+
a(1−λν)

λ
≤ α

and then a positive r ≤ τ such that

(9) ρ( f (p, x̄), f (p̄, x̄))≤ a(1−λν)

λ
for all p ∈ IBr(p̄).

Then for every x ∈ IBa(x̄) and p ∈ IBr(p̄), from (7)–(9) we have

ρ(e(p,x),0)≤ ρ(e(p,x),e(p, x̄))+ρ(e(p, x̄),e(p̄, x̄))
≤ νρ(x, x̄)+ρ( f (p, x̄), f (p̄, x̄))≤ νa+a(1−λν)/λ ≤ α.

Hence, for such x and p, e(p,x) ∈ dom ω .
Fix an arbitrary p ∈ IBr(p̄) and consider the mapping

Φp : x 7→ ω(−e(p,x)) for x ∈ IBa(x̄).

Observe that for any x ∈ IBa(x̄) having x = Φp(x) implies x ∈ S(p)∩ IBa(x̄), and
conversely. Noting that x̄ = ω(0) and using (9) we obtain

ρ(x̄,Φp(x̄)) = ρ(ω(0),ω(−e(p, x̄)))≤ λ ρ( f (p̄, x̄), f (p, x̄))≤ a(1−λν).

Further, for any u,v ∈ IBa(x̄), using (7) we see that

ρ(Φp(u),Φp(v)) = ρ(ω(−e(p,u)),ω(−e(p,v)))
≤ λ ρ(e(p,u),e(p,v))≤ λν ρ(u,v).

The contraction mapping principle 1A.2 applies, with the λ there taken to be the
λν here, hence for each p ∈ IBr(p̄) there exists exactly one s(p) in IBa(x̄) such that
s(p) ∈ S(p); thus

(10) s(p) = ω(−e(p,s(p))).

The function p 7→ s(p) is therefore a single-valued localization of S around p̄ for x̄.
Moreover, from (10), for each p′, p ∈ IBr(p̄) we have

ρ(s(p′),s(p)) = ρ(ω(−e(p′,s(p′))),ω(−e(p,s(p))))

≤ ρ(ω(−e(p′,s(p′))),ω(−e(p′,s(p))))

+ρ(ω(−e(p′,s(p))),ω(−e(p,s(p))))

≤ λ ρ(−e(p′,s(p′)),−e(p′,s(p)))
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+λ ρ(−e(p′,s(p)),−e(p,s(p)))

≤ λν ρ(s(p′),s(p))+λ ρ( f (p′,s(p)), f (p,s(p))).

Hence,

ρ(s(p′),s(p))≤ λ

1−λν
ρ( f (p′,s(p)), f (p,s(p))).

Taking into account (6), we obtain (1). In particular, for p = p̄, from the continuity
of f (·, x̄) at p̄ we get that s is continuous at p̄. Under (2), the estimate (3) directly
follows from (1) by passing to zero with ε , and the same for (5) under (4). If h
is a strict first-order approximation of f , then µ could be arbitrarily small, and by
passing to lip(ω;0) with κ and to 0 with µ we obtain from (3) and (5) the last two
estimates in the statement.

Proof of 5F.1. Apply 5F.2 with P =Y , h = 0 and f (p,x) =−p+g(x); then pass to
zero with ε in (1).

Utilizing strict differentiability and ample parameterization we come to the fol-
lowing infinite-dimensional implicit function theorem which parallels 5E.6.

Theorem 5F.5 (using strict differentiability and ample parameterization). Let X , Y
and P be Banach spaces. For f : P×X→Y and F : X→→Y , consider the generalized
equation f (p,x)+F(x) 3 0 with solution mapping S and a pair (p̄, x̄) with x̄ ∈ S(p̄)
and suppose that f is strictly differentiable at (p̄, x̄). If the mapping

h+F for h(x) = f (p̄, x̄)+Dx f (p̄, x̄)(x− x̄)

is strongly metrically regular at x̄ for 0, then S has a Lipschitz continuous single-
valued localization s around p̄ for x̄ with

lip(s; p̄) ≤ reg(h+F ; x̄ |0) · ‖Dp f (p̄, x̄)‖.

Furthermore, when f satisfies the ample parameterization condition:

the mapping Dp f (p̄, x̄) is surjective,

then the converse implication holds as well: the mapping h+F is strongly met-
rically regular at x̄ for 0 provided that S has a Lipschitz continuous single-valued
localization around p̄ for x̄.
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5G. Parametric Inverse Function Theorems

In this section we first present an extension of Theorem 5E.1 in which the func-
tion g, added to the metrically regular mapping F , depends on a parameter. This
result shows in particular that the regularity constant of F and the neighborhoods of
metric regularity of the perturbed mapping g+F depend only on the regularity mod-
ulus of the underlying mapping F and the Lipschitz modulus of the function g, and
not on the actual value of the parameter in a neighborhood of the reference value.
The proof is parallel to the proof of 5E.5 with some subtle differences; therefore
we present it in full detail. For better transparency, we consider mappings acting in
Banach spaces, but the extension to metric spaces as in 5E is straightforward.

Theorem 5G.1 (parametric Lyusternik–Graves theorem). Let X , Y and P be Banach
spaces and consider a mapping F : X →→ Y and a point (x̄, ȳ) ∈ gph F . Consider
also a function g : P×X → Y with (q̄, x̄) ∈ int dom g and suppose that there exist
nonnegative constants κ and µ such that

κµ < 1 reg(F ; x̄ | ȳ)≤ κ and l̂ip x(g;(q̄, x̄))≤ µ.

Then for every κ ′ > κ/(1−κµ) there exist neighborhoods Q′ of q̄, U ′ of x̄ and V ′

of ȳ such that for each q ∈ Q′ the mapping g(q, ·)+F(·) is metrically regular in x
at x̄ for g(q, x̄)+ ȳ with constant κ ′ and neighborhoods U ′ of x̄ and g(q, x̄)+V ′ of
g(q, x̄)+ ȳ.

Proof. Pick the constants κ and µ as in the statement of the theorem and then any
κ ′ > κ/(1−κµ). Let λ > κ and ν > µ be such that λν < 1 and λ/(1−λν)< κ ′.
Then there exist positive constants a and b such that

(1) d(x,F−1(y))≤ λd(y,F(x)) for all (x,y) ∈ IBa(x̄)× IBb(ȳ).

Adjust a and b if necessary to obtain

(2) the set gph F ∩ (IBa(x̄)× IBb(ȳ)) is closed.

Then choose c > 0 and make a smaller if necessary such that νa < b/2 and

(3) ‖g(q,x)−g(q,x′)‖ ≤ ν‖x− x′‖ for all x,x′ ∈ IBa(x̄) and q ∈ IBc(q̄).

Choose positive constants α and β to satisfy

(4) α +5κ
′
β ≤ a, 8β ≤ b, α ≤ 2κ

′
β , and ν(α +5κ

′
β )+β ≤ b.

Fix q ∈ IBc(q̄). We will first prove that for every x ∈ IBα(x̄), y ∈ IBβ (g(q, x̄)+ ȳ)
and y′ ∈ (g(q,x)+F(x))∩ IB4β (g(q, x̄)+ ȳ) one has

(5) d(x,(g(q, ·)+F(·))−1(y))≤ κ
′‖y− y′‖.
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Let y′ ∈ (g(q,x)+F(x))∩ IB4β (g(q, x̄)+ ȳ). If y = y′ then x ∈ (g(q, ·)+F(·))−1(y)
and (5) holds since both the left side and the right side are zero. Suppose y′ 6= y and
consider the mapping

Φ : u 7→ F−1(−g(q,u)+ y) for u ∈ IBa(x̄).

Using (3) and (4), for any u ∈ IBa(x̄) we have

‖−g(q,u)+ y′− ȳ‖ ≤ ‖−g(q,u)+g(q, x̄)‖+‖y′− ȳ−g(q, x̄)‖ ≤ νa+4β ≤ b.

The same estimate holds of course with y′ replaced by y because y was chosen in
IBβ (g(q, x̄)+ ȳ). Hence, both −g(q,x)+ y′ and −g(q,x)+ y are in IBb(ȳ).

Let r := κ ′‖y− y′‖. We will show next that the set gph Φ ∩ (IBr(x)× IBr(x)) is
closed. Let (un,zn) ∈ gph Φ ∩ (IBr(x)× IBr(x)) and (un,zn)→ (ũ, z̃). Then

(zn,−g(q,un)+ y) ∈ gph F

and also, from (4),

‖zn− x̄‖ ≤ ‖zn− x‖+‖x− x̄‖ ≤ r+α = κ
′‖y− y′‖+α ≤ 5κ

′
β +α ≤ a

and

‖−g(q,un)+ y− ȳ‖ ≤ ‖−g(q,un)+g(q, x̄)‖+‖y− ȳ−g(q, x̄)‖
≤ ν‖un− x̄‖+β ≤ ν(‖un− x‖+‖x− x̄‖)+β

≤ ν(r+α)+β ≤ ν(5κ
′
β +α)+β ≤ b.

Thus (zn,−g(q,un) + y) ∈ gph F ∩ (IBa(x̄)× IBb(ȳ)) which is closed by (2). Note
that r ≤ κ ′(4β +β ) and hence, from the first relation in (4), IBr(x) ⊂ IBa(x̄). Since
g(q, ·) is continuous in IBa(x̄) (even Lipschitz, from (3)) and un ∈ IBr(x) ⊂ IBa(x̄),
we get that (z̃,−g(q, ũ) + y) ∈ gph F. Clearly, both ũ and z̃ are from IBr(x), thus
(ũ, z̃) ∈ gph Φ ∩ (IBr(x)× IBr(x)). Hence, the set gph Φ ∩ (IBr(x)× IBr(x)) is closed,
which implies that gph(g(q, ·)+F(·)) is locally closed at (x̄,g(q, x̄)+ ȳ).

Since x ∈ (g(q, ·)+F(·))−1(y′)∩ IBa(x̄), utilizing the metric regularity of F we
obtain

d(x,Φ(x)) = d(x,F−1(−g(q,x)+ y))≤ λd(−g(q,x)+ y,F(x))

≤ λ‖−g(q,x)+ y− (y′−g(q,x))‖= λ‖y− y′‖
< κ

′‖y− y′‖(1−λν) = r(1−λν).

Then (1), combined with (3) and the observation above that IBr(x)⊂ IBa(x̄), implies
that for any u,v ∈ IBr(x),

e(Φ(u)∩ IBr(x),Φ(v))

≤ sup{d(z,F−1(−g(q,v)+ y)) : z ∈ F−1(−g(q,u)+ y)∩ IBa(x̄)}
≤ sup{λd(−g(q,v)+ y,F(z)) : z ∈ F−1(−g(q,u)+ y)∩ IBa(x̄)}
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≤ λ‖−g(q,u)+g(q,v)‖ ≤ λν‖u− v‖.

Theorem 5E.2 then yields the existence of a point x̂ ∈Φ(x̂)∩ IBr(x); that is,

y ∈ g(q, x̂)+F(x̂) and ‖x̂− x‖ ≤ κ
′‖y− y′‖.

Thus, since x̂ ∈ (g(q, ·)+F(·))−1(y) we obtain (5).
To complete the proof it remains to show that for every x ∈ IBα(x̄) and y ∈

IBβ (g(q, x̄)+ ȳ) one has

(6) d(x,(g(q, ·)+F(·))−1(y))≤ κ
′d(y,g(q,x)+F(x)),

which gives us the desired property of g(q, ·) + F(·). First, note that if g(q,x) +
F(x) = /0 the right side of (6) is ∞ and we are done. Let ε > 0 and w∈ g(q,x)+F(x)
be such that

(7) ‖w− y‖ ≤ d(y,g(q,x)+F(x))+ ε.

If w ∈ IB4β (g(q, x̄)+ ȳ) then from (5) and (7) we have that

d(x,(g(q, ·)+F(·))−1(y))≤ κ
′‖y−w‖ ≤ κ

′(d(y,g(q,x)+F(x))+ ε)

and since the left side of this inequality does not depend on ε , we obtain (6). If
w /∈ IB4β (g(q, x̄)+ ȳ) then

‖w− y‖ ≥ ‖w−g(q, x̄)− ȳ‖−‖y−g(q, x̄)− ȳ‖ ≥ 3β .

Using (5) with x= x̄ and y′= g(q, x̄)+ ȳ) and the Lipschitz continuity of the distance
function with constant 1, see 1D.4(b), we obtain

d(x,(g(q, ·)+F(·))−1(y)) ≤ ‖x− x̄‖+d(x̄,(g(q, ·)+F(·))−1(y))

≤ α +κ
′‖ȳ+g(q, x̄)− y‖ ≤ 3κ

′
β

≤ κ
′‖w− y‖ ≤ κ

′(d(y,g(q,x)+F(x))+ ε).

This again implies (6) and the proof is complete.

Our next theorem is a parametric version of 5F.1 which easily follows from 5G.1
and (the Banach space version of) 3G.1.

Theorem 5G.2 (parametric strong metric regularity). Let X , Y and P be Banach
spaces and consider a mapping F : X →→Y and (x̄, ȳ) ∈ gph F such that F is strongly
metrically regular at x̄ for ȳ. Let κ and µ be nonnegative constants such that
κ ≥ reg(F ; x̄ | ȳ) and κµ < 1 and consider a function g : P×X → Y which satisfies
l̂ip x(g;(q̄, x̄))≤ µ. Then for every κ ′ > κ/(1−κµ) there exist neighborhoods Q of
q̄, U of x̄ and V of ȳ such that for each q ∈ Q the mapping g(q, ·)+F(·) is strongly
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metrically regular in x at x̄ for g(q, x̄)+ ȳ with constant κ ′ and neighborhoods U of
x̄ and g(q, x̄)+V of g(q, x̄)+ ȳ.

At the end of this section we present a theorem which combines perturbed ver-
sions of 5E.1 and 5F.1. It complements 5G.1 and 5G.2 and is more convenient to
use in certain cases. We will apply all three results in Chapter 6.

Theorem 5G.3 (perturbed [strong] metric regularity). Let X ,Y be Banach spaces.
Consider a mapping F : X →→ Y and a point (x̄, ȳ) ∈ gph F at which F is metrically
regular, that is, there exist positive constants a, b, and a nonnegative κ such that

(8) the set gph F ∩ (IBa(x̄)× IBb(ȳ)) is closed

and

(9) d(x,F−1(y))≤ κd(y,F(x)) for all (x,y) ∈ IBa(x̄)× IBb(ȳ).

Let µ > 0 be such that κµ < 1 and let κ ′ > κ/(1−κµ). Then for every positive α

and β such that

(10) α ≤ a/2, µα +2β ≤ b and 2κ
′
β ≤ α

and for every function g : X → Y satisfying

(11) ‖g(x̄)‖ ≤ β

and

(12) ‖g(x)−g(x′)‖ ≤ µ‖x− x′‖ for every x,x′ ∈ IBα(x̄),

the mapping g+F has the following property: for every y,y′ ∈ IBβ (ȳ) and every
x ∈ (g+F)−1(y)∩ IBα(x̄) there exists x′ ∈ (g+F)−1(y′) such that

(13) ‖x− x′‖ ≤ κ
′‖y− y′‖.

In addition, if the mapping F is strongly metrically regular at x̄ for ȳ; that is, the
mapping y 7→ F−1(y)∩ IBa(x̄) is single-valued and Lipschitz continuous on IBb(ȳ)
with a Lipschitz constant κ , then for µ , κ ′, α and β as above and any function
g satisfying (11) and (12), the mapping y 7→ (g+F)−1(y)∩ IBα(x̄) is a Lipschitz
continuous function on IBβ (ȳ) with a Lipschitz constant κ ′.

Observe that if we assume g(x̄)= 0 then this theorem reduces to the Banach space
versions of 5E.1 and 5F.1. However, if g(x̄) 6= 0 then (x̄, ȳ) may be not in the graph of
g+F and we cannot claim that g+F is (strongly) metrically regular at x̄ for ȳ. This
could be handled easily by choosing a new function g̃ with g̃(x) = g(x)−g(x̄). We
prefer however to have explicit bounds on the constants involved, which is important
in applications.
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Proof. Choose µ and κ ′ as required and then α and β to satisfy (10). For any
x ∈ IBα(x̄) and y ∈ IBβ (ȳ), using (11), (12) and the triangle inequality, we obtain

(14)
‖−g(x)+ y− ȳ‖ ≤ ‖g(x̄)‖+‖g(x̄)−g(x)‖+‖y− ȳ‖

≤ β +µ‖x− x̄‖+β ≤ 2β +µα ≤ b,

where the last inequality follows from the second inequality in (10). Fix y′ ∈ IBβ (ȳ)
and consider the mapping

IBα(x̄) 3 x 7→Φy′(x) := F−1(−g(x)+ y′)∩ IBα(x̄).

Let y∈ IBβ (ȳ), y 6= y′ and let x∈ (g+F)−1(y)∩ IBα(x̄). We will apply Theorem 5E.2
with the complete metric space X identified with the closed ball IBa(x̄) to show that
there is a fixed point x′ ∈Φy′(x′) in the closed ball centered at x with radius

(15) r := κ
′‖y− y′‖.

From the third inequality in (10), we obtain

r ≤ κ
′(2β )≤ α.

Hence, from the first inequality in (10) we get IBr(x) ⊂ IBa(x̄). Let (xn,zn) ∈
gph Φy′ ∩ (IBr(x)× IBr(x)) and (xn,zn)→ (x̃, z̃). From (14), ‖−g(xn)+ y′− ȳ‖ ≤ b;
also note that ‖zn − x̄‖ ≤ a. Using (8) and passing to the limit we obtain that
(x̃, z̃) ∈ gph Φy′ ∩ (IBr(x)× IBr(x)), hence this set is closed.

Since y∈ g(x)+F(x) and (x,y) satisfies (14), from the assumed metric regularity
of F we have

d(x,Φy′(x)) = d(x,F−1(−g(x)+ y′))≤ κd(−g(x)+ y′,F(x))

= κd(y′,g(x)+F(x))≤ κ‖y− y′‖
< κ

′‖y− y′‖(1−κµ) = r(1−κµ).

For any u,v ∈ IBr(x), using (12), we have

e(Φy′(u)∩ IBr(x),Φy′(v)) ≤ e(F−1(−g(u)+ y′)∩ IBa(x̄),F−1(−g(v)+ y′))

≤ κ‖g(u)−g(v)‖ ≤ κµ ‖u− v‖.

Applying 5E.2 to the mapping Φy′ , with x̄ identified with x and constants a = r and
λ = κµ , we obtain the existence of a fixed point x′ ∈Φy′(x′), which is equivalent to
x′ ∈ (g+F)−1(y′), within distance r given by (15) from x. This proves (13).

For the second part of the theorem, suppose that y 7→ s(y) := F−1(y)∩ IBa(x̄) is
a Lipschitz continuous function on IBb(ȳ) with a Lipschitz constant κ . Choose µ ,
κ ′, α and β as in the statement and let g satisfy (11) and (12). For any y ∈ IBβ (ȳ),
since x̄ ∈ (g+F)−1(ȳ+ g(x̄))∩ IBα(x̄), from (13) we obtain that there exists x ∈
(g+F)−1(y) such that

‖x− x̄‖ ≤ κ
′‖y− ȳ−g(x̄)‖.
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Since ‖y− ȳ− g(x̄)‖ ≤ 2β , by (10) we get ‖x− x̄‖ ≤ α , that is, (g+ F)−1(y)∩
IBα(x̄) 6= /0. Hence the domain of the mapping (g+F)−1∩ IBα(x̄) contains IBβ (ȳ).

If x ∈ (g+F)−1(y)∩ IBα(x̄), then x ∈ F−1(y−g(x))∩ IBα(x̄)⊂ F−1(y−g(x))∩
IBa(x̄) = s(y−g(x)) since y−g(x) ∈ IBb(ȳ) according to (14). Hence,

(16) F−1(y−g(x))∩ IBα(x̄) = s(y−g(x)) = x.

Let y,y′ ∈ IBβ (ȳ). Utilizing the equality σ(y) = s(−g(σ(y))+y) which comes from
(16), we have

(17)
‖σ(y)−σ(y′)‖= ‖s(−g(σ(y))+ y)− s(−g(σ(y′))+ y′)‖
≤ κ‖g(σ(y))−g(σ(y′))‖+κ‖y− y′‖ ≤ κµ‖σ(y)−σ(y′)‖+κ‖y− y′‖.

If y= y′, taking into account that κµ < 1 we obtain that σ(y) must be equal to σ(y′).
Hence, the mapping y 7→ σ(y) := (g+F)−1(y)∩ IBα(x̄) is single-valued, that is, a
function, defined on IBβ (ȳ). From (17) this fucntion satisfies

‖σ(y)−σ(y′)‖ ≤ κ
′‖y− y′‖.

The proof is complete.

5H. Further Extensions in Metric Spaces

In this section we extend the Lyusternik–Graves theorem 5E.1 to nonlinear metric
spaces. The key to obtaining such extensions is to employ regularity properties on
a set rather than just at a point. In this section X and Y are metric spaces with both
metrics denoted by ρ , as in 5E.

Metric regularity on a set. Let U , V be nonempty subsets of X and Y , respectively.
A set-valued mapping F from X to Y is said to be metrically regular on U for V when
the set gph F ∩ (U×V ) is closed and there is a constant κ ≥ 0 such that

(1) d(x,F−1(y))≤ κd(y,F(x)∩V ) for all (x,y) ∈U×V.

A particular case of metric regularity on a set was displayed in Proposition 3C.1,
where it was shown for the inverse F−1 of F and U = X , V ⊂ dom F−1 that (1)
is equivalent to the Lipschitz continuity of F−1 on V with respect to the Pompeiu-
Hausdorff distance.

Observe that on the right side of (1) the value F(x) is intersected with the set
V ; this makes metric regularity on a set more general than the metric regularity at
a point introduced in Section 3E and studied in detail earlier in the current chapter.
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Recall that a mapping F : X →→ Y is said to be metrically regular at x̄ for ȳ when
(x̄, ȳ)∈ gph F and there exist neighborhoods U of x̄ and V of ȳ with gph F∩(U×V )
closed and a constant κ > 0 such that

(2) d(x,F−1(y))≤ κd(y,F(x)) for all (x,y) ∈U×V.

The infimum of κ over all combinations of κ and neighborhoods U of x̄ and V of
ȳ in (2) is the modulus of metric regularity reg(F ; x̄ | ȳ); then the presence of metric
regularity of F at x̄ for ȳ is identified with reg(F ; x̄ | ȳ)< ∞.

If F is metrically regular at a point (x̄, ȳ) ∈ gph F with neighborhoods U of x̄
and V of ȳ with constant κ , then F is clearly metrically regular on U for V with the
same constant κ . Conversely, when the sets U and V are neighborhoods of points x̄
and ȳ with ȳ ∈ F(x̄), then metric regularity on U for V becomes equivalent to metric
regularity at x̄ for ȳ but perhaps with different neighborhoods. We will supply the
latter statement with a proof.

Proposition 5H.1 (metric regularity on a set implies metric regularity at a point). For
positive scalars a, b and κ , and points x̄ ∈ X , ȳ ∈ Y consider a mapping F : X →→ Y
with ȳ ∈ F(x̄) and assume that F is metrically regular on IBa(x̄) for IBb(ȳ) with con-
stant κ . Then F is metrically regular at x̄ for ȳ with constant κ .

Proof. Set β = b/4 and α =min{a,κb/4}. Let x∈ IBα(x̄) and y∈ IBβ (ȳ). If F(x) =
/0 the right side of (2) is ∞. If not, let y′ ∈ F(x). We consider two cases. First, if
ρ(y,y′)> b/2, then we have

d(x,F−1(y)) ≤ ρ(x, x̄)+d(x̄,F−1(y))≤ ρ(x, x̄)+κd(y,F(x̄)∩ IBb(ȳ))

≤ ρ(x, x̄)+κρ(y, ȳ)≤ κb/4+κb/4 = κb/2 < κρ(y,y′).

Further, if ρ(y,y′)≤ b/2, then

ρ(y′, ȳ)≤ ρ(y′,y)+ρ(y, ȳ)≤ b/2+b/4 = 3b/4,

hence
d(x,F−1(y))≤ κd(y,F(x)∩ IBb(ȳ))≤ κρ(y,y′).

Thus, we obtain that for any y′ ∈ F(x) we have d(x,F−1(y)) ≤ κρ(y,y′). Taking
infimum of the right side over y′ ∈ F(x) we obtain (2).

As an example showing the difference between metric regularity on a set and
metric regularity at a point, consider the mapping F : IR→ IR whose graph is {(x,y) |
y = 0}. Then F is metrically regular on any closed set U for V = {0} with any
constant κ > 0 but it is not metrically regular at any x̄ for 0.

We focus next on the equivalence of the metric regularity with the Aubin property
of the inverse and linear openness, where the differences between these properties
on a set and at a point become more visible. But first, let us introduce the Aubin
property and linear openness on a set.
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Aubin property on a set. Let U and V be nonempty subsets of X and Y respec-
tively. A mapping S : Y →→ X is said to have the Aubin property on V for U when the
set gph S∩ (V ×U) is closed and there exists a constant κ ≥ 0 such that

(3) e(S(y)∩U,S(y′))≤ κρ(y,y′) for all y,y′ ∈V.

Clearly, when U and V are assumed to be neighborhoods of reference points x̄
and ȳ, respectively, with (ȳ, x̄) ∈ gph S, we obtain the Aubin property at the point
which we introduced in Section 3E. If U = X , then the Aubin property becomes
the usual Lipschitz continuity on V with respect to the Pompeiu-Hausdorff distance.
Note that in that case S must have closed graph.

Next comes a definition of openness with linear rate on a set.

Linear openness on a set. Let U and V be two nonempty subsets of X and Y
respectively. A mapping F : X →→ Y is said to be open with linear rate (or linearly
open) on U for V when the set gph F ∩ (U×V ) is closed and there exists a constant
κ > 0 such that

(4) int IBr(y)∩V ⊂F(int IBκr(x)) for all r∈ (0,∞] and (x,y)∈ gph F∩(U×V ).

In Section 3 we established equivalence between metric regularity, linear open-
ness, and the inverse mapping having the Aubin property, all at a point in the graph
of the mapping; this equivalence was stated in 5A.3 in the setting of Banach spaces.
For completeness we state this result once again, now in metric spaces.

Theorem 5H.2 (metric regularity, linear openness and Aubin property of the inverse
at a point). For metric spaces X and Y , a mapping F : X →→Y , and a constant κ > 0,
the following properties with respect to a pair (x̄, ȳ) ∈ gph F are equivalent:

(a) F is linearly open at x̄ for ȳ with constant κ;
(b) F is metrically regular at x̄ for ȳ with constant κ;
(c) F−1 has the Aubin property at ȳ for x̄ with constant κ .

Moreover reg(F ; x̄ | ȳ) = lip(F−1; ȳ | x̄).
Taking into account 5H.1, it is now clear that the properties in (a)(b)(c) are equiv-

alent with the same constant κ but perhaps with different neighborhoods of the
points x̄ and ȳ.

In the following theorem we show that, when we switch to definitions on a set
as given above rather than at a point, metric regularity on a set of a mapping F
is equivalent to the Aubin property on a set of the inverse F−1 and also to linear
openness on a set of F with the same sets U and V and the same constant κ .

Theorem 5H.3 (metric regularity, linear openness and Aubin property of the inverse
on a set). Let U and V be nonempty subsets of X and Y respectively, let κ > 0, and
consider a mapping F : X →→ Y such that

(5) gph F ∩ (U×V ) 6= /0.
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Then the following are equivalent:
(a) F is metrically regular on U for V with constant κ;
(b) F−1 has the Aubin property on V for U with constant κ;
(c) F is linearly open on U for V with constant κ .

Proof. Each of (a), (b) and (c) requires the set gph F ∩ (U ×V ) be closed. Let (a)
hold. First, note that by (5) there exists x̄ ∈U such that F(x̄)∩V 6= /0. Then from
(1) it follows that d(x̄,F−1(y)) < ∞ for any y ∈ V . Thus, V ⊂ dom F−1. Now, fix
y,y′ ∈ V . Since V ⊂ dom F−1, we have F−1(y′) 6= /0. If F−1(y)∩U = /0, then the
left side of (3) is zero and hence (3) is automatically satisfied. Let x ∈ F−1(y)∩U .
Then, from (1),

d(x,F−1(y′))≤ κd(y′,F(x)∩V )≤ κρ(y′,y)

since y∈F(x)∩V . Taking the supremum of the left side with respect to x∈F−1(y)∩
U we obtain (3), that is, (b).

Assume (b). By (5) there exists (x,y)∈ gph F∩(U×V ). Let r > 0. If int IBr(y)∩
V = /0 then (4) holds automatically. For any w∈V from (3) we have that e(F−1(y)∩
U,F−1(w))≤ κρ(y,w)< ∞ and since x ∈ F−1(y)∩U 6= /0, we get that F−1(w) 6= /0.
But then V ⊂ dom F−1. Let y′ ∈ int IBr(y)∩V ; then y′ ∈ rge F = dom F−1 and hence
F−1(y′) 6= /0. We have

d(x,F−1(y′))≤ e(F−1(y)∩U,F−1(y′))≤ κρ(y,y′)< κr.

Hence, there exists x′ ∈ F−1(y′) with ρ(x,x′) < κr, that is, x′ ∈ int IBκr(x). Thus
y′ ∈ F(x′)⊂ F(int IBκr(x)) and we obtain (4), that is, (c) is satisfied.

Now, assume (c). Let x ∈U , y ∈ V and let y′ ∈ F(x)∩V ; if there is no such y′

the right side in (1) is ∞ and we are done. If y = y′ then (1) holds since both the
left and the right sides are zero. Let r := ρ(y,y′) > 0 and let ε > 0. Then of course
y ∈ int IBr(1+ε)(y′)∩V . From (c) there exists x′ ∈ int IBκr(1+ε)(x)∩F−1(y). Then

(6) d(x,F−1(y))≤ ρ(x,x′)≤ κr(1+ ε) = κ(1+ ε)ρ(y,y′).

Taking infimum in the right side of (6) with respect to ε > 0 and y′ ∈ F(x)∩V we
obtain (1) and hence (a). The proof is complete.

Note that if condition (5) is violated, then (a) and (c) hold automatically, whereas
(b) holds if and only if V ⊂ rge F. Also note that for metric regularity at a point the
condition (5) is always satisfied.

It turns out that if instead of (1) we choose (2) for a (stronger) definition of
metric regularity for the sets U and V , then, in order to have a kind of equivalence
displayed in 5H.3, we have to change the definitions of the Aubin property and the
linear openness. Specifically, we have the following theorem whose proof is similar
to that of 5H.3; for completeness and because of some subtle differences we present
it in full.
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Theorem 5H.4 (equivalence of alternative definitions). Let U and V be nonempty
sets in X and Y respectively, let κ > 0 and consider a mapping F : X →→ Y such that
condition (5) is fulfilled. Then the following are equivalent:

(a) d(x,F−1(y))≤ κd(y,F(x)) for all (x,y) ∈U×V ;
(b) e(F−1(y′)∩U,F−1(y))≤ κρ(y,y′) for all y′ ∈ rge F and y ∈V ;
(c) int IBr(F(x))∩V ⊂ F(int IBκr(x)) for all r ∈ (0,∞] and x ∈U.

Proof. Let (a) hold. By (5) there exists x̄ ∈U such that F(x̄) 6= /0. Then from (a)
F−1(y) 6= /0 for any y ∈ V , hence V ⊂ dom F−1. Now, let y′ ∈ rge F and y ∈ V .
Then F−1(y) 6= /0 and if F−1(y′)∩U = /0 then the left side of the inequality in
(b) is zero, hence (b) holds automatically. If not, let x ∈U be such that y′ ∈ F(x).
Applying (a) with so chosen x and y and taking supremum on the left with respect
to x ∈ F−1(y′)∩U we obtain (b).

Assume (b). Let x ∈U and r > 0. If int IBr(F(x))∩V = /0 then (c) holds automat-
ically. If not, let y′ ∈V and y ∈ F(x) be such that ρ(y′,y)< r. Then, since y ∈ rge F
we have from (b) that

d(x,F−1(y′))≤ e(F−1(y)∩U,F−1(y′))≤ κρ(y,y′)< κr.

Then there exists x′ ∈ F−1(y′)∩ int IBκr(x), that is, y′ ∈ F(x′) ⊂ F(int IBκr(x)) and
thus (c) holds.

Assume (c). Let x∈U , y∈V and let y′ ∈ F(x); if there is no such y′ the right side
in (2) is ∞ and hence (a) holds. If y= y′ then (a) holds since both the left and the right
sides are zero. Let r := ρ(y,y′)> 0 and let ε > 0. Then y ∈ int IBr(1+ε)(F(x))∩V . It
remains to repeat the last part of the proof of 5H.3.

All six properties in 5H.3 and 5H.4 become equivalent when understood as prop-
erties at a point.

We will now utilize the regularity properties on a set to obtain a generalization
of Theorem 5E.1 to the case when Y is not necessarily a linear space and then the
perturbation is not additive. We denote by fixF the set of fixed points of a mapping
F .

Theorem 5H.5 (extended Lysternik–Graves in metric spaces). Let X be a complete
metric space, Y and P be metric spaces and let κ , µ , α and β be positive constants
such that κµ < 1. Consider a mapping F : X →→ Y and a function g : P×X → Y ,
and let (p̄, x̄) ∈ P×X and ( ¯̄x, ȳ) ∈ X ×Y be such that U := IBα(x̄)∩ IBα( ¯̄x) 6= /0.
Assume that the set gph F∩(U× IBβ (ȳ)) is closed, the set gph F∩(IBα( ¯̄x)× IBβ (ȳ))
is nonempty, and F is metrically regular on IBα( ¯̄x) for IBβ (ȳ) with constant κ . Also,
assume that there exists a neighborhood Q of p̄ such that g is continuous in Q×X ,
Lipschitz continuous with respect to x in IBα(x̄) uniformly in p ∈ Q with constant
µ , and satisfies

(7) ρ(ȳ,g(p,x))≤ β for every p ∈ Q and x ∈U.

Let c and ε be positive constants such that
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(8) c+ ε ≤ α.

Then for evey x ∈ IBc(x̄)∩ IBc( ¯̄x) and p ∈ Q that satisfy

(9)
κ

1−κµ
d(g(p,x),F(x)∩ IBβ (ȳ))< ε

one has

(10) d(x,fix(F−1(g(p, ·))))≤ κ

1−κµ
d(g(p,x),F(x)∩ IBβ (ȳ)).

In particular, there exists a fixed point of the mapping F−1(g(p, ·)) which is at dis-
tance from x less than ε .

Proof. From the assumed metric regularity of F and 5H.3 with condition (5) satis-
fied, we obtain

(11) e(F−1(y′)∩ IBα( ¯̄x),F−1(y))≤ κρ(y′,y) for all y′,y ∈ IBβ (ȳ).

We also have that

(12) ρ(g(p,x′),g(p,x))≤ µρ(x′,x) for all p ∈ Q and x′,x ∈ IBα(x̄).

Pick c > 0 and ε > 0 that satisfy (8) and then choose x ∈ IBc(x̄)∩ IBc( ¯̄x) and p ∈ Q
such that (9) holds. If d(g(p,x),F(x)∩ IBβ (ȳ)) = 0, then x ∈ fix(F−1(g(p, ·))), the
left side of (10) is zero and there is nothing more to prove. Let d(g(p,x),F(x)∩
IBβ (ȳ))> 0 and let κ+ > κ be such that

κ+

1−κµ
d(g(p,x),F(x)∩ IBβ (ȳ))≤ ε.

Let

(13) γ :=
κ+

1−κµ
d(g(p,x),F(x)∩ IBβ (ȳ)).

Then γ ≤ ε and for every u ∈ IBγ(x) we have from (8) that

ρ(u, x̄)≤ ρ(u,x)+ρ(x, x̄)≤ γ + c≤ ε + c≤ α.

In the same way, ρ(u, ¯̄x) ≤ α , and hence IBγ(x) ⊂ U. We apply Theorem 5E.2 to
the mapping x 7→ Φp(x) := F−1(g(p,x)) with the following specifications: x̄ = x,
a= γ and λ = κµ . Clearly, the set gph Φp∩(IBγ(x)×IBγ(x)) is closed. Furthermore,
utilizing metric regularity of F on a set, (7) and (13), we obtain

d(x,Φp(x)) = d(x,F−1(g(p,x))) ≤ κd(g(p,x),F(x)∩ IBβ (ȳ))

< κ
+d(g(p,x),F(x)∩ IBβ (ȳ)) = γ(1−κµ).
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Also, for any u,v ∈ IBγ(x), from (8), (11), (12) and (13) we have

e(Φp(u)∩ IBγ(x),Φp(v)) ≤ e(F−1(g(p,u))∩ IBα( ¯̄x),F−1(g(p,v)))

≤ κρ(g(p,u),g(p,v))≤ κµρ(u,v).

Hence, from 5E.2 we obtain the existence of x̃ ∈ Φp(x̃) ∩ IBγ(x), that is, x̃ ∈
F−1(g(p, x̃))∩ IBγ(x). Using (13) and noting that κ+ can be arbitrarily close to κ ,
we complete the proof.

It turns out that 5H.5 not only follows from but is actually equivalent to Theorem
5E.2:

Proof of Theorem 5E.2 from Theorem 5H.5. We apply Theorem 5H.5 with X =
Y =P, F =Φ−1, g(p,x)= x, κ = λ , µ = 1 and α = β = a. Then we choose ¯̄x, x̄ and ȳ
in 5H.5 all equal to x̄ in 5E.2, c= a(1−κ) and ε = aκ. By assumption, Φ =F−1 has
the Aubin property on IBa(x̄) for IBa(x̄) with constant λ ; hence, IBa(x̄) ⊂ dom Φ =
rge F and then by 5H.4, F is metrically regular on IBa(x̄) for IBa(x̄) with constant
κ = λ . The conditions (7) and (8) hold trivially. From the assumption (a) in 5E.2,
which now becomes d(x̄,F−1(x̄))< a(1−κ), it follows that there exists x̃ ∈ F−1(x̄)
such that ρ(x̃, x̄)< a(1−κ) = c. Then x̄ ∈ F(x̃) and from

κ

1−κ
d(x̃,F(x̃)∩ IBa(x̄))≤

κ

1−κ
ρ(x̄, x̃)< aκ = ε,

thus condition (9) holds for x = x̃. Then, by the last claim in the statement of 5H.5,
Φ = F−1 has a fixed point in IBε(x̃). But IBε(x̃) ⊂ IBa(x̄) and hence Φ has a fixed
point in IBa(x̄).

The following exercise gives a version of 5E.5 in metric spaces:

Exercise 5H.6 (metric Lyusternik–Graves theorem in implicit form). Let X be a
complete metric space, Y and P be metric spaces and let κ , µ and ν be positive
constants such that κµ < 1. Consider a mapping F : X →→ Y and a function g :
P×X → Y , and let x̄ ∈ X , p̄ ∈ P and ȳ ∈ Y be such that ȳ ∈ F(x̄) and ȳ = g(p̄, x̄).
Assume that F is metrically regular at x̄ for ȳ with reg(F ; x̄ | ȳ)< κ and g is Lipschitz
continuous around (p̄, x̄) with l̂ip x(g;(p̄, x̄)) < µ and l̂ip p(g;(p̄, x̄)) < ν . Then the
mapping p 7→ fix(F−1(g(p, ·))) has the Aubin property at p̄ for x̄ with constant
κν/(1−κµ).

Guide. Follow the proof of 5E.5 with h+F there replaced by F and r(p,x) there
replaced by g(p,x). Apply 5E.2 to the mapping x 7→ Φp(x) = F−1(g(p,x)) noting
that x ∈Φp(x) whenever x ∈ fix(F−1(g(p, ·))).

Sometimes it is more convenient to use the following version of linear open-
ness at a point: there exist positive constants κ , δ and h0 such that the set gph F ∩
(IBδ (x̄)× IBδ (ȳ)) is closed and
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(14) IBh(y)⊂ F(IBκh(x)) for all h∈ [0,h0] and (x,y)∈ gph F∩(IBδ (x̄)× IBδ (ȳ)).

Proposition 5H.7 (equivalence to metric regularity). The property described in (14)
is equivalent to metric regularity of F at x̄ for ȳ with constant κ .

Proof. Let (14) be satisfied and choose a > 0 such that a < min{δ ,h0/2}. Pick
x ∈ IBa(x̄) and y ∈ IBa(ȳ). Let F(x)∩ IBa(ȳ) 6= /0. Choose y′ ∈ F(x)∩ IBa(ȳ). Since
ρ(y,y′)< h0 there exists ε > 0 such that h := ρ(y,y′)(1+ ε)< h0. Then y ∈ IBh(y′)
and from (14) there exists x′ ∈ F−1(y)∩ IBκh(x). Thus

d(x,F−1(y))≤ ρ(x,x′)≤ κh = κρ(y,y′)(1+ ε),

and taking the limit with ε → 0 and infimum with respect to y′ ∈ F(x)∩ IBa(ȳ) we
obtain

d(x,F−1(y))≤ κd(y,F(x)∩ IBa(ȳ)).

If F(x)∩ IBa(ȳ) = /0 this holds automatically. Hence F is metrically regular on IBa(x̄)
for IBa(ȳ) with constant κ . From 5H.1 we obtain that F is metrically regular at x̄ for
ȳ with constant κ .

Let F−1 have the Aubin property with neighborhoods IBa(x̄) and IBb(ȳ) and
with constant κ , and make b smaller if necessary so that F−1(y)∩ IBa(x̄) 6= /0 for
all y ∈ IBb(ȳ) (recall 3E.1). Choose positive δ and h0 such that δ + h0 ≤ b, then
pick h ∈ [0,h0]. Let (x,y) ∈ gph F ∩ (IBδ (x̄)× IBδ (ȳ)) and let y′ ∈ IBh(y). Since
y′ ∈ IBb(ȳ) ⊂ rge F there exists x′ ∈ F−1(y′) such that ρ(x,x′) ≤ κρ(y,y′) ≤ κh.
Hence y′ ∈ F(IBκh(x)) and we come to (14).

At the end of this section we present a new proof of Theorem 5E.1 based on the
following result:

Theorem 5H.8 (openness from relaxed openness). Let X and Y be metric spaces
with X being complete and Y having a shift-invariant metric. Consider a mapping
F : X →→ Y and a point (x̄, ȳ) ∈ gph F at which gph F is locally closed. Let τ and µ

be positive constants such that τ > µ . Then the following are equivalent:
(a) there exists a > 0 and α > 0 such that for every h ∈ [0,a]

(15) IBτh(y)⊂ IBµh(F(IBh(x))) whenever (x,y) ∈ gph F ∩ (IBα(x̄)× IBα(ȳ));

(b) there exist b > 0 and β > 0 such that for every h ∈ [0,b]

(16) IB(τ−µ)h(y)⊂ F(IBh(x)) whenever (x,y) ∈ gph F ∩ (IBβ (x̄)× IBβ (ȳ)).

Proof. Clearly, (b) implies (a). Let (a) hold. Without loss of generality, let the set
gph F∩(IBα(x̄)× IBα(ȳ)) be closed. Let γ := µ/τ ∈ (0,1) and choose positive b and
β such that

(17) b≤ a, b+β ≤ α and (µ + τ)(1− γ)b+β ≤ α.
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Let (x,y) ∈ gph F ∩ (IBβ (x̄)× IBβ (ȳ)) and let 0 < h ≤ b. We construct next a se-
quence (xn,yn) by induction, with starting point (x0,y0) = (x,y).

Since (1− γ)h < a, we have

IBτ(1−γ)h(y0)⊂ IBµ(1−γ)h(F(IB(1−γ)h(x0))).

Let v∈ IBτ(1−γ)h(y0); then v∈ IBµ(1−γ)h(F(IB(1−γ)h(x0))). Hence there exists (x1,y1)∈
gph F such that

(18) ρ(x1,x0)≤ (1− γ)h and ρ(y1,v)≤ µ(1− γ)h.

Using (17), we obtain

(19) ρ(x1, x̄)≤ ρ(x1,x)+ρ(x, x̄)≤ (1− γ)h+β ≤ α

and

(20) ρ(y1, ȳ)≤ ρ(y1,v)+ρ(v,y)+ρ(y, ȳ)≤ µ(1− γ)h+ τ(1− γ)h+β ≤ α.

Noting that γ(1− γ)h < a and τγ = µ , from (15) we get

IBµ(1−γ)h(y1) = IBτγ(1−γ)h(y1)⊂ IBµ(1−γ)γh(F(IB(1−γ)γh(x1))).

Thus, from the second inequality in (18) we obtain

v ∈ IBµ(1−γ)h(y1)⊂ IBµ(1−γ)γh(F(IB(1−γ)γh(x1))).

Hence, there exists (x2,y2) ∈ gph F such that

ρ(x2,x1)≤ γ(1− γ)h and ρ(v,y2)≤ γµ(1− γ)h.

By induction, let (xi,yi) ∈ gph F , i = 1,2, . . . ,n be such that, for all such i,

ρ(xi,xi−1)≤ γ
i−1(1− γ)h and ρ(v,yi)≤ µ(1− γ)γ i−1h.

Then,

(21) ρ(xn,x)≤
n

∑
i=1

ρ(xi,xi−1)≤
∞

∑
i=1

γ
i−1(1− γ)h = h.

Using the second inequality in (17), we have

ρ(xn, x̄) ≤ ρ(xn,x)+ρ(x, x̄)

≤
n

∑
i=1

ρ(xi,xi−1)+β ≤ h+β ≤ b+β ≤ α.

Furthermore, by the third inequality in (17),
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ρ(yn, ȳ) ≤ ρ(yn,v)+ρ(v,y)+ρ(y, ȳ)

≤ µ(1− γ)γn−1h+ τ(1− γ)h+β

≤ (µ + τ)(1− γ)b+β ≤ α.

By repeating the argument used in the first step, we get

v ∈ IBµ(1−γ)γnh(F(IB(1−γ)γnh(xn))),

hence there exists (xn+1,yn+1) ∈ gph F such that

(22) ρ(v,yn+1)≤ γ
n
µ(1− γ)h and ρ(xn+1,xn)≤ γ

n(1− γ)h.

We obtain a sequence {(xn,yn)} such that (xn,yn) ∈ gph F and {xn} is a Cauchy
sequence, hence convergent to some u ∈ IBh(x), from (21). Furthermore from (22),
yn converges to v, hence (u,v)∈ gph F . Since v is arbitrary in IBτ(1−γ)h(y) we obtain
(16).

From the above result we can derive Theorem 5E.1 in yet another way.

Proof of Theorem 5E.1 from 5H.8. By the equivalence of metric regularity at x̄ for
ȳ with constant κ > 0 and the property (14) established in 5H.7, there exist positive
constants α and h0 such that for every (x,y) ∈ gph F ∩ (IBα(x̄)× IBα(ȳ)) we have

(23) IBτh(y)⊂ F(IBh(x)) for all h ∈ [0,h0],

where τ = 1/κ . Let a > 0 satisfy a(1 + µ) ≤ α and let (u,v) ∈ gph(g + F) ∩
(IBa(x̄)× IBa(ȳ+g(x̄))). Then

ρ(v−g(u), ȳ)≤ ρ(v, ȳ+g(x̄))+ρ(g(u),g(x̄))≤ a+µa≤ α.

Also, since v ∈ (g+F)(u), we obtain that (u,v−g(u)) ∈ gph F , that is, there exists
y ∈ F(u) such that y = v−g(u).

Let h ∈ [0,h0] and let t ∈ IBτh(v). Then ρ(t−g(u),y) = ρ(t,v)≤ τh, which is the
same as t−g(u) ∈ IBτh(y), and hence, from (23), t−g(u) ∈ F(IBh(u)). Thus, there
exists w ∈ IBh(u) such that t−g(u) ∈ F(w). Therefore,

t ∈ F(w)+g(u) = (g+F)(w)+g(u)−g(w)

which, by the Lipschitz continuity of g with constant µ , implies

IBτh(v)⊂ (g+F)(IBh(u))+µhIB.

Theorem 5H.8 then yields the existence of b > 0 and β > 0 such that for every
h ∈ [0,b] and every (x,y) ∈ gph(g+F)∩ (IBβ (x̄)× IBβ (ȳ+g(x̄))) one has

IB(τ−µ)h(y)⊂ (g+F)(IBh(x)).
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In order to apply 5H.7, it remains to observe that the graph of g+F is locally closed
at (x̄, ȳ+g(x̄)). Hence, the mapping g+F is metrically regular at x̄ for ȳ+g(x̄) with
constant 1/(1/κ−µ) = κ/(1−κµ).

5I. Metric Regularity and Fixed Points

Is a result of the kind given in Theorem 5E.1 valid for set-valued perturbations?
Specifically, the question is whether the function g can be replaced by a set-valued
mapping G, perhaps having the Aubin property with suitable modulus, or even a
Lipschitz continuous single-valued localization. The answer to this question turns
out to be no in general, as the following example confirms.

Example 5I.1 (counterexample for set-valued perturbations). Consider F : IR→→ IR
and G : IR→→ IR specified by

F(x) = {−2x,1} and G(x) = {x2,−1} for x ∈ IR.

Then F is metrically regular at 0 for 0 while G has the Aubin property at 0 for 0.
Moreover, reg(F ;0 |0) = 1/2 whereas the Lipschitz modulus of the single-valued
localization of G around 0 for 0 is 0 and serves also as the infimum of all Aubin
constants. The mapping

(F +G)(x) = {x2−2x,x2 +1,−2x−1,0} for x ∈ IR

is not metrically regular at 0 for 0. Indeed, for x and y close to zero and positive
we have that d(x,(F +G)−1(y)) = |x− 1+

√
1+ y|, but also d(y,(F +G)(x)) =

min{|x2−2x−y|,y}. Take x= ε > 0 and y= ε2. Then, since (ε−1+
√

1+ ε2)/ε2→
∞, the mapping F +G is seen not to be metrically regular at 0 for 0.

It is clear from this example that adding set-valued mappings may lead to mis-
matching the reference points. One way to avoid such a mismatch is to consider
regularity properties on sets rather than at points, what we did in the preceding sec-
tion. Here we go a step further focusing on global regularity properties. Following
the pattern of the preceding section, we define global metric regularity of a mapping
F : X →→ Y , where X and Y are metric spaces, as metric regularity of F on X for Y .
This requires F have closed graph. From 5H.3, global metric regularity is equiva-
lent to the Aubin property of F−1 on Y for X , which is the same as global Lipschitz
continuity of F−1 supplemented with closedness of its graph. Recall that a mapping
G : Y →→ X is globally Lipschitz continuous when it is closed valued and there exists
µ ≥ 0 (Lipschitz constant) such that

h(G(y),G(y′))≤ µρ(y,y′) for all y,y′ ∈ Y.
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If a mapping G acting from a metric space Y to a complete metric space X is globally
Lipschitz continuous, then G necessarily has closed graph. Indeed, let (yk,xk) ∈
gph G and (yk,xk)→ (y,x); then

d(x,G(y))≤ ρ(x,xk)+d(xk,G(yk))+h(G(yk),G(y))≤ ρ(x,xk)+µρ(yk,y)→ 0,

and hence (y,x) ∈ gph G. Having this in mind, we start with a global version of the
Lyusternik–Graves theorem.

Theorem 5I.2 (global Lyusternik–Graves theorem). Let X be a complete metric
space and Y be a Banach space. Consider mappings Φ : X →→ Y and Ψ : X →→ Y
and suppose that Φ is metrically regular with constant κ > 0 and Ψ is Lipschitz
continuous with constant µ > 0, both globally. If κµ < 1 then

d(x,(Φ +Ψ)−1(y))≤ κ

1−κµ
d(y,(Φ +Ψ)(x)) for all (x,y) ∈ X×Y.

Note that the graph of Φ +Ψ in the statement of 5I.2 may not be closed, what is
needed to claim that Φ +Ψ is globally metrically regular. We will derive Theorem
5I.2 from the more general Theorem 5I.3 given next. As in 5H we denote by fixF
the set of fixed points of a mapping F . For mappings F : Y →→ X and G : X →→Y , one
has fix(F ◦G) = {x ∈ X | F−1(x)∩G(x) 6= /0}. Also, we use the notation d(A,B) =
inf{ρ(x,y) | x ∈ A,y ∈ B} for the minimal distance between two sets; if either A or
B is empty, we set d(A,B) = ∞.

Theorem 5I.3 (fixed points of composition). Let X and Y be complete metric
spaces. Let κ and µ be positive constants such that κµ < 1. Consider a mapping
F : X →→ Y which is metrically regular with constant κ and a mapping G : X →→ Y
which is Lipschitz continuous with constant µ , both globally. Then the following
inequality holds:

(1) d(x,fix(F−1 ◦G))≤ κ

1−κµ
d(F(x),G(x)) for every x ∈ X .

Proof. Let x ∈ X and y ∈ G(x). If x /∈ dom F then (1) holds automatically. Let
F(x) 6= /0. Choose ε > 0. Since dom F−1 = Y there exists u ∈ F−1(y) such that
ρ(x,u)≤ d(x,F−1(y))+ ε. If u = x then x ∈ fix(F−1 ◦G) and the left side of (1) is
zero, so there is nothing more to prove. If not, we can write

(2) d(x,F−1(y))< (1+ ε)ρ(u,x).

Let a := (1+ ε)ρ(u,x); then

(3) a≤ (1+ ε)(d(x,F−1(y))+ ε).

We will construct a sequence {(xk,yk)} with the following properties:

(4) yk ∈ F(xk+1)∩G(xk)
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and

(5) ρ(yk,yk−1)< µa(κµ)k−1, ρ(xk+1,xk)< a(κµ)k.

Let x0 = x and y0 = y. In the first step, observe that, from (2), d(x0,F−1(y0)) < a.
Then there exists x1 ∈ F−1(y0) with ρ(x1,x0)< a(κµ)0. Furthermore, since

d(y0,G(x1))≤ h(G(x0),G(x1))≤ µρ(x0,x1)< µa,

there exists y1 ∈ G(x1) such that ρ(y1,y0)< µa(κµ)0. From the Lipschitz continu-
ity of F−1 we have

d(x1,F−1(y1))≤ h(F−1(y0),F−1(y1))≤ κρ(y0,y1)< κµa(κµ)0 = a(κµ).

Hence there exists x2 ∈ F−1(y1) with

ρ(x2,x1)< a(κµ)1.

We obtain (4) and (5) for k = 1.
Proceeding by induction, suppose that we have already found a sequence {(xk,yk)}

satisfying (4) and (5) for k = 1, . . . , j, for some j > 1. Then

d(y j,G(x j+1))≤ h(G(x j),G(x j+1))≤ µρ(x j,x j+1)< µa(κµ) j.

Hence one can find y j+1 ∈ G(x j+1) such that

ρ(y j,y j+1)< µa(κµ) j.

The Lipschitz continuity of F−1 gives us

d(x j+1,F−1(y j+1))≤ h(F−1(y j),F−1(y j+1))≤ κρ(y j,y j+1)< κµa(κµ) j = a(κµ) j+1.

Then there exists x j+2 ∈ F−1(y j+1) with

ρ(x j+2,x j+1)< a(κµ) j+1.

The induction step is complete. For natural k and m with k−1 > m≥ 1, we have

ρ(xk,xm)≤
k−1

∑
i=m

ρ(xi+1,xi)<
a(κµ)m

1−κµ

and

ρ(yk,ym)≤
k−1

∑
i=m

ρ(yi+1,yi)<
µa(κµ)m

1−κµ
.

Thus {(xk,yk)} is a Cauchy sequence. Since the space X ×Y is complete, the se-
quence (xk,yk) is convergent to some (x̂, ŷ). Both F and G have closed graphs, then
from (4) we obtain ŷ ∈ F(x̂)∩G(x̂), hence x̂ ∈ fix(F−1 ◦G).
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To complete the proof, note that

ρ(xk,x)≤
k−1

∑
i=0

ρ(xi+1,xi)< a
k−1

∑
i=0

(κµ)i ≤ a
(1−κµ)

.

Passing to the limit with k→ ∞ and using (3), we obtain

d(x,fix(F−1 ◦G))≤ ρ(x̂,x)≤ (1+ ε)(d(x,F−1(y))+ ε)

1−κµ
.

Since ε can be arbitrarily small we get

(6) d(x,fix(F−1 ◦G))≤ 1
1−κµ

d(x,F−1(y)).

Metric regularity of F combined with (6) gives us

d(x,fix(F−1 ◦G))≤ κ

1−κµ
d(y,F(x)).

Taking into account that y can be any point in G(x) we obtain (1).

Note that the estimate (1) is sharp in the sense that if the left side is zero, so is
the right side. Possible extensions to noncomplete metric spaces can be made by
adapting the proof accordingly, but we shall not go into this further.

Nadler’s fixed point theorem 5E.3 easily follows from Theorem 5I.3. Indeed, let
X be a complete metric space and let Φ : X →→ X be Lipschitz continuous on X with
constant λ ∈ (0,1). Then in particular dom Φ = X and Φ has closed graph. Apply
5I.3 with F−1 = Φ and G the identity, obtaining that for any x ∈ X = rge F the right
side of (1) is finite, hence the set of fixed points of Φ is nonempty.

Proof of 5I.2. Choose y ∈Y and let u ∈ fix(Φ−1 ◦ (−Ψ +y)). Then there exists z ∈
−Ψ(u)+ y with u ∈ Φ−1(z), therefore u ∈ (Φ +Ψ)−1(y). Thus, fix(Φ−1 ◦ (−Ψ +
y))⊂ (Φ +Ψ)−1(y). Therefore, for any x ∈ X we have

d(x,(Φ +Ψ)−1(y))≤ d(x,fix(Φ−1 ◦ (−Ψ + y))).

Applying Theorem 5I.3 with F = Φ and G(·) =−Ψ(·)+ y, from (1) we obtain

d(x,(Φ +Ψ)−1(y))≤ κ

1−κµ
d(Φ(x),−Ψ(x)+ y)≤ κ

1−κµ
d(y,Φ(x)+Ψ(x)).

As another application of 5I.3 we obtain the following result:

Theorem 5I.4 (one-sided estimate for fixed points). Let X be a complete metric
space and let T1 and T2 map X into the family of nonempty closed subsets of X .
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Suppose that both T1 and T2 are globally Lipschitz continuous with the same Lip-
schitz constant µ ∈ (0,1). Then for i, j ∈ {1,2} we have

e(fix(Ti),fix(Tj))≤
1

1−µ
sup
x∈X

e(Ti(x),Tj(x)).

Proof from 5I.3. First note that, by using the observation before the statement of
5E.2, both T1 and T2 have closed graphs. Then apply Theorem 5I.3 with F the iden-
tity mapping and G = T1. From (1) we have that for any x ∈ X ,

(8) d(x,fix(T1))≤
1

1−µ
d(x,T1(x)).

Then, taking supremum in (8) with respect to x ∈ fixT2 we have

e(fix(T2),fix(T1)) ≤
1

1−µ
sup

x∈fixT2

d(x,T1(x))

≤ 1
1−µ

sup
x∈fixT2

e(T2(x),T1(x))≤
1

1−µ
sup
x∈X

e(T2(x),T1(x)).

By symmetry, the proof is complete.

Theorem 5I.4 can be also derived from the contracting mapping principle for
set-valued mappings 5E.2.

Proof from 5E.2. As already observed, T1 has closed graph. Let

a =
1

1−µ
sup
x∈X

e(T1(x),T2(x)).

The fixed point theorem 5E.2, via Nadler’s theorem 5E.3, yields that fixT2 6= /0. Let
x ∈ fixT2. Then

d(x,T1(x))≤ e(T2(x),T1(x))≤ a(1−µ).

Furthermore, for any u,v ∈ IBa(x)

e(T1(u)∩ IBa(x),T1(v))≤ h(T1(u),T1(v))≤ µρ(u,v).

Hence, from 5E.2 with Φ = T1 and λ = µ , the mapping T1 has a fixed point x̂ ∈
IBa(x). Then

d(x,fixT1)≤ ρ(x, x̂)≤ a =
1

1−µ
sup
x∈X

e(T1(x),T2(x)),

and taking supremum with respect to x ∈ fixT2 we complete the proof.

As a corollary of 5I.4 we obtain the following result known as Lim’s lemma3:

3 Cf. Lim [1985].
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Corollary 5I.5 (Lipschitz estimate for fixed points). On the assumptions of 5I.5,

h(fix(T1),fix(T2))≤
1

1−µ
sup
x∈X

h(T1(x),T2(x)).

Recall that a mapping F : X →→ Y is said to be outer Lipschitz continuous at x̄
relative to a set D⊂ dom F when x̄ ∈ D and there exists a constant λ ≥ 0 such that

e(F(x),F(x̄))≤ λρ(x, x̄) for all x ∈ D.

When D = X we say that F is outer Lipschitz continuous at x̄. In that case, dom F =
X . Another corollary of 5I.4 is the following.

Corollary 5I.6 (outer Lipschitz estimate for fixed points). Let X be a complete
metric spaces and Y be metric space. Consider a mapping M : Y ×X →→ X having
the following properties:

(i) M(y, ·) is Lipschitz continuous with a Lipschitz constant µ ∈ (0,1) uniformly
in y ∈ Y ;

(ii) M(·,x) is outer Lipschitz continuous at ȳ with a constant λ uniformly in
x ∈ X .

Then the mapping y 7→ fix(M(y, ·)) is outer Lipschitz continuous at ȳ with con-
stant λ/(1−µ).

Proof. Applying 5I.4 with T1(x) = M(y,x) and T2(x) = M(ȳ,x) we have

e(fix(M(y, ·),fix(M(ȳ, ·))≤ 1
1−µ

sup
x∈X

e(M(y,x),M(ȳ,x))≤ λ

1−µ
ρ(y, ȳ).

5J. The Bartle–Graves Theorem and Extensions

To set the stage, we begin with a Banach space version of the implication (a)⇒ (b)
in the symmetric inverse function theorem 1D.9.

Theorem 5J.1 (inverse function theorem in infinite dimensions). Let X be a Banach
space and consider a function f : X → X and a point x̄ ∈ int dom f at which f
is strictly (Fréchet) differentiable and the derivative mapping D f (x̄) is invertible.
Then the inverse mapping f−1 has a single-valued graphical localization s around
ȳ := f (x̄) for x̄ which is strictly differentiable at ȳ, and moreover

Ds(ȳ) = [D f (x̄)]−1.
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In Section 1F we considered what may happen (in finite dimensions) when the
derivative mapping is merely surjective; by adjusting the proof of Theorem 1F.6
one obtains that when the Jacobian ∇ f (x̄) has full rank, the inverse f−1 has a local
selection which is strictly differentiable at f (x̄). The claim can be easily extended
to Hilbert (and even more general) spaces:

Exercise 5J.2 (differentiable inverse selections). Let X and Y be Hilbert spaces and
let f : X → Y be a function which is strictly differentiable at x̄ and such that the
derivative A := D f (x̄) is surjective. Then the inverse f−1 has a local selection s
around ȳ := f (x̄) for x̄ which is strictly differentiable at ȳ with derivative Ds(ȳ) =
A∗(AA∗)−1, where A∗ is the adjoint of A.

Guide. Use the argument in the proof of 1F.6 with adjustments to the Hilbert space
setting. Another way of proving this result is to consider the function

g : (x,u) 7→
(

x+A∗u
f (x)

)
for (x,u) ∈ X×Y,

which satisfies g(x̄,0) = (x̄, ȳ) and whose Jacobian is

J =

(
I A∗

A 0

)
.

In the Hilbert space context, if A is surjective then the operator J is invertible.
Hence, by Theorem 5J.1, the mapping g−1 has a single-valued graphical localiza-
tion (ξ ,η) : (v,y) 7→ (ξ (v,y),η(v,y)) around (x̄, ȳ) for (x̄,0). In particular, for some
neighborhoods U of x̄ and V of ȳ, the function s(y) := ξ (x̄,y) satisfies y = f (s(y))
for y ∈V . To obtain the formula for the strict derivative, find the inverse of J.

In the particular case when the function f in 5J.2 is linear, the mapping A∗(AA∗)−1

is a continuous linear selection of A−1. A famous result by R. G. Bartle and
L. M. Graves [1952] yields that, for arbitrary Banach spaces X and Y , the surjectivity
of a mapping A ∈L (X ,Y ) implies the existence of a continuous local selection of
A−1; this selection, however, may not be linear. The original Bartle–Graves theorem
is for nonlinear mappings and says the following:

Theorem 5J.3 (Bartle–Graves theorem). Let X and Y be Banach spaces and let
f : X →Y be a function which is strictly differentiable at x̄ and such that the deriva-
tive D f (x̄) is surjective. Then there is a neighborhood V of ȳ := f (x̄) along with a
continuous function s : V → X and a constant γ > 0 such that

(1) f (s(y)) = y and ‖s(y)− x̄‖ ≤ γ‖y− ȳ‖ for every y ∈V.

In other words, the surjectivity of the strict derivative at x̄ implies that f−1 has
a local selection s which is continuous around f (x̄) and calm at f (x̄). It is known4

that, in contrast to the strictly differentiable local selection in 5J.2 for Hilbert spaces,

4 Cf. Deville, Godefroy and Zizler [1993], p. 200.



330 5 Metric Regularity in Infinite Dimensions

the selection in the Bartle–Graves theorem, even for a bounded linear mapping f ,
might be not even Lipschitz continuous around ȳ. For this case we have:

Corollary 5J.4 (inverse selection of a surjective linear mapping in Banach spaces).
For any bounded linear mapping A from X onto Y , there is a continuous (but gener-
ally nonlinear) mapping B such that ABy = y for every y ∈ Y .

Proof. Theorem 5J.3 tells us that A−1 has a continuous local selection at 0 for 0.
Since A−1 is positively homogeneous, this selection is global.

In this section we develop a generalization of the Bartle–Graves theorem for
metrically regular set-valued mappings. First, recall that a mapping F : Y →→ X is
(sequentially) inner semicontinuous on a set T ⊂Y if for every y∈ T , every x∈F(y)
and every sequence of points yk ∈ T , yk→ y, there exists xk ∈ F(yk) for k = 1,2, . . .
such that xk → x as k→ ∞. We also need a basic result which we only state here
without proof:

Theorem 5J.5 (Michael selection theorem). Let X and Y be Banach spaces and
consider a mapping F : Y →→ X which is closed-convex-valued and inner semicon-
tinuous on dom F 6= /0. Then F has a continuous selection s : dom F → X .

We require a lemma which connects the Aubin property of a mapping with the
inner semicontinuity of a truncation of this mapping:

Lemma 5J.6 (inner semicontinuous selection from the Aubin property). Consider a
mapping S : Y →→X and any (ȳ, x̄)∈ gph S, and suppose that S has the Aubin property
at ȳ for x̄ with constant κ . Suppose, for some c > 0, that the sets S(y)∩ IBc(x̄) are
convex and closed for all y∈ IBc(ȳ). Then for any α > κ there exists β > 0 such that
the mapping

y 7→Mα(y) =
{

S(y)∩ IBα‖y−ȳ‖(x̄) for y ∈ IBβ (ȳ),
/0 otherwise

is nonempty-closed-convex-valued and inner semicontinuous on IBβ (ȳ).

Proof. Let a and b be positive numbers such that the balls IBa(x̄) and IBb(ȳ) are
associated with the Aubin property of S (metric regularity of S−1) with a constant
κ . Without loss of generality, let max{a,b}< c. Fix α > κ and choose β such that

0 < β ≤min
{ a

α
,

c
3α

,b,c
}
.

For such a β the mapping Mα has nonempty closed convex values. It remains to
show that Mα is inner semicontinuous on IBβ (ȳ).

Let (y,x)∈ gph Mα and yk→ y, yk ∈ IBβ (ȳ). First, let y = ȳ. Then Mα(y) = x̄, and
from the Aubin property of S there exists a sequence of points xk ∈ S(yk) such that
‖xk− x̄‖ ≤ κ‖yk− ȳ‖. Then xk ∈Mα(yk), xk→ x as k→ ∞ and we are done in this
case.
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Now let y 6= ȳ. The Aubin property of S yields that there exists x̌k ∈ S(yk) such
that

‖x̌k− x̄‖ ≤ κ‖yk− ȳ‖
and also there exists x̃k ∈ S(yk) such that

‖x̃k− x‖ ≤ κ‖yk− y‖.

Then, the choice of β above yields

‖x̌k− x̄‖ ≤ κβ ≤ α
c

3α
≤ c

and

‖x̃k− x̄‖ ≤ ‖x̃k− x‖+‖x− x̄‖
≤ κ‖yk− y‖+α‖y− ȳ‖
≤ 2κβ +αβ ≤ 3αβ ≤ c.

Let

(2) ε
k =

(α +κ)‖yk− y‖
(α−κ)‖yk− ȳ‖+(α +κ)‖yk− y‖ .

Then 0≤ εk < 1 and εk↘0 as k→ ∞. Let xk = εkx̌k +(1− εk)x̃k. Then xk ∈ S(yk).
Moreover, we have

‖xk− x̄‖ ≤ ε
k‖x̌k− x̄‖+(1− ε

k)‖x̃k− x̄‖
≤ ε

k
κ‖yk− ȳ‖+(1− ε

k)(‖x̃k− x‖+‖x− x̄‖)
≤ ε

k
κ‖yk− ȳ‖+(1− ε

k)κ‖yk− y‖+(1− ε
k)α‖y− ȳ‖

≤ ε
k
κ‖yk− ȳ‖+(1− ε

k)κ‖yk− y‖
+(1− ε

k)α‖yk− ȳ‖+(1− ε
k)α‖yk− y‖

≤ α‖yk− ȳ‖− ε
k(α−κ)‖yk− ȳ‖

+(1− ε
k)(α +κ)‖yk− y‖= α‖yk− ȳ‖,

where in the last inequality we take into account the expression (2) for εk. Thus
xk ∈Mα(yk), and since xk→ x, we are done.

Lemma 5J.6 allows us to apply Michael’s selection theorem to the mapping Mα ,
obtaining the following result:

Theorem 5J.7 (continuous inverse selection from metric regularity). Consider a
mapping F : X →→ Y which is metrically regular at x̄ for ȳ. Let, for some c > 0,
the sets F−1(y)∩ IBc(x̄) be convex and closed for all y ∈ IBc(ȳ). Then for every
α > reg(F ; x̄ | ȳ) the mapping F−1 has a continuous local selection s around ȳ for x̄
which is calm at ȳ with
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(3) clm(s; ȳ)≤ α.

Proof. Choose α such that α > reg(F ; x̄ | ȳ), and apply Michael’s theorem 5J.5 to
the mapping Mα in 5J.6 for S = F−1. By the definition of Mα , the continuous local
selection obtained in this way is calm with a constant α .

Note that the continuous local selection s in 5J.7 depends on α and therefore we
cannot replace α in (3) with reg(F ; x̄ | ȳ).

In the remainder of this section we show that if a mapping F satisfies the as-
sumptions of Theorem 5J.7, then for any function g : X → Y with lip(g; x̄) <
1/ reg(F ; x̄ | ȳ), the mapping (g+F)−1 has a continuous and calm local selection
around g(x̄)+ ȳ for x̄. We will prove this generalization of the Bartle–Graves theo-
rem by repeatedly using an argument similar to the proof of Lemma 5J.6, the idea
of which goes back to (modified) Newton’s method used to prove the theorems of
Lyusternik and Graves and, in fact, to Goursat’s proof on his version of the classical
inverse function theorem. We put the theorem in the format of the general implicit
function theorem paradigm:

Theorem 5J.8 (inverse mappings with continuous calm local selections). Consider
a mapping F : X →→ Y and any (x̄, ȳ) ∈ gph F and suppose that for some c > 0
the mapping IBc(ȳ) 3 y 7→ F−1(y)∩ IBc(x̄) is closed-convex-valued. Consider also
a function g : X →Y with x̄ ∈ int dom g. Let κ and µ be nonnegative constants such
that

κµ < 1, reg(F ; x̄ | ȳ)≤ κ and lip(g; x̄)≤ µ.

Then for every γ satisfying
κ

1−κµ
< γ,

the mapping (g+F)−1 has a continuous local selection s around g(x̄) + ȳ for x̄,
which moreover is calm at g(x̄)+ ȳ with

(4) clm(s;g(x̄)+ ȳ)≤ γ.

Proof. The proof consists of two main steps. In the first step, we use induction
to obtain a Cauchy sequence of continuous functions z0,z1, . . ., such that zn is a
continuous and calm selection of the mapping y 7→ F−1(y− g(zn−1(y))). Then we
show that this sequence has a limit in the space of continuous functions acting from
a fixed ball around ȳ to the space X and equipped with the supremum norm, and this
limit is the selection whose existence is claimed.

Choose κ and µ as in the statement of the theorem and let γ > κ/(1−κµ). Let
λ , α and ν be such that κ < λ < α < 1/ν and ν > µ , and also λ/(1−αν) ≤ γ .
Without loss of generality, we can assume that g(x̄) = 0. Let IBa(x̄) and IBb(ȳ) be
the neighborhoods of x̄ and ȳ, respectively, that are associated with the assumed
properties of the mapping F and the function g. Specifically,

(a) For every y,y′ ∈ IBb(ȳ) and x ∈ F−1(y)∩ IBa(x̄) there exists x′ ∈ F−1(y′) with

‖x′− x‖ ≤ λ‖y′− y‖.
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(b) For every y ∈ IBb(ȳ) the set F−1(y)∩ IBa(x̄) is nonempty, closed and convex
(that is, max{a,b} ≤ c).

(c) The function g is Lipschitz continuous on IBa(x̄) with a constant ν .
According to 5J.7, there we can find a constant β , 0 < β ≤ b, and a continuous

function z0 : IBβ (ȳ)→ X such that

F(z0(y)) 3 y and ‖z0(y)− x̄‖ ≤ λ‖y− ȳ‖ for all y ∈ IBβ (ȳ).

Choose a positive τ such that

(5) τ ≤ (1−αν)min
{

a,
a

2λ
,

β

2

}
and consider the mapping y 7→M1(y) where

M1(y) =
{

x ∈ F−1(y−g(z0(y)))
∣∣‖x− z0(y)‖ ≤ αν‖z0(y)− x̄‖

}
for y ∈ IBτ(ȳ) and M1(y) = /0 for y /∈ IBτ(ȳ). Clearly, (ȳ, x̄) ∈ gph M1. Also, for any
y ∈ IBτ(ȳ), we have from the choice of λ and α , using (5), that z0(y) ∈ IBa(x̄) and
therefore

‖y−g(z0(y))− ȳ‖≤ τ+ν‖z0(y)− x̄‖≤ τ+νλτ ≤ (1−αν)(1+νλ )(β/2)≤ β ≤ b.

Then from the Aubin property of F−1 there exists x ∈ F−1(y−g(z0(y))) with

‖x− z0(y)‖ ≤ λ‖g(z0(y))−g(x̄)‖ ≤ αν‖z0(y)− x̄‖,

which implies x ∈M1(y). Thus M1 is nonempty-valued. Further, if (y,x) ∈ gph M1,
using (5) we have that y ∈ IBb(ȳ) and also

‖x− x̄‖ ≤ ‖x− z0(y)‖+‖z0(y)− x̄‖ ≤ (1+αν)λτ ≤ (1− (αν)2)λ
a

2λ
≤ a

2
.

Then, from the property (b) above, since for any y ∈ dom M the set M1(y) is the
intersection of a closed ball with a closed convex set, the mapping M1 is closed-
convex-valued on its domain. We will show that this mapping is inner semicontinu-
ous on IBτ(ȳ).

Let y ∈ IBτ(ȳ) and x ∈M1(y), and let yk ∈ IBτ(ȳ), yk→ y as k→ ∞. If z0(y) = x̄,
then M1(y) = {x̄} and therefore x = x̄. Any xk ∈M1(yk) satisfies

‖xk− z0(yk)‖ ≤ αν‖z0(yk)− x̄‖.

Using the continuity of the function z0, we see that xk → z0(y) = x̄ = x; thus M1 is
inner semicontinuous.

Now let z0(y) 6= x̄. Since z0(yk) ∈ F−1(yk−g(x̄))∩ IBa(x̄), the Aubin property of
F−1 furnishes the existence of x̌k ∈ F−1(yk−g(z0(yk))) such that

(6) ‖x̌k− z0(yk)‖ ≤ λ‖g(z0(yk))−g(x̄)‖ ≤ λν‖z0(yk)− x̄‖ ≤ αν‖z0(yk)− x̄‖.
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Then x̌k ∈M1(yk), and in particular, x̌k ∈ IBa(x̄). Further, the inclusion x ∈ F−1(y−
g(z0(y)))∩ IBa(x̄) combined with the Aubin property of F−1 entails the existence of
x̃k ∈ F−1(yk−g(z0(yk))) such that

(7) ‖x̃k− x‖ ≤ λ (‖yk− y‖+ν‖z0(yk)− z0(y)‖)→ 0 as k→ ∞.

Then x̃k ∈ IBa(x̄) for large k. Let

ε
k :=

(1+αν)‖z0(yk)− z0(y)‖+‖x̃k− x‖
αν‖z0(y)− x̄‖−λν‖z0(yk)− x̄‖ .

Note that, for k→ ∞, the numerator in the definition of εk goes to 0 because of the
continuity of z0 and (7), while the denominator converges to (α−λ )ν‖z0(y)− x̄‖>
0; therefore εk→ 0 as k→ ∞. Let

xk = ε
kx̌k +(1− ε

k)x̃k.

Since x̃k→ x and εk→ 0, we get xk→ x as k→∞ and also, since y 7→F−1(y)∩IBa(x̄)
is convex-valued around (x̄, ȳ), we have xk ∈ F−1(yk−g(z0(yk))) for large k. By (6),
(7), the assumption that x ∈M1(y), and the choice of εk, we have

‖xk− z0(yk)‖ ≤ ε
k‖x̌k− z0(yk)‖+(1− ε

k)‖x̃k− z0(yk)‖
≤ ε

k
λν‖z0(yk)− x̄‖+(1− ε

k)(‖x̃k− x‖
+‖x− z0(y)‖+‖z0(y)− z0(yk)‖)

≤ ε
k
λν‖z0(yk)− x̄‖+‖x̃k− x‖

+(1− ε
k)αν‖z0(y)− x̄‖+‖z0(y)− z0(yk)‖

≤ αν‖z0(yk)− x̄‖+αν‖z0(yk)− z0(y)‖
+‖x̃k− x‖+‖z0(y)− z0(yk)‖
−ε

k
αν‖z0(y)− x̄‖+ ε

k
λν‖z0(yk)− x̄‖

≤ αν‖z0(yk)− x̄‖+‖x̃k− x‖+(1+αν)‖z0(y)− z0(yk)‖
−ε

k(αν‖z0(y)− x̄‖−λν‖z0(yk)− x̄‖)
= αν‖z0(yk)− x̄‖.

We obtain that xk ∈M1(yk), and since xk → x, we conclude that the mapping M1 is
inner semicontinuous on its domain IBτ(ȳ). Hence, by Michael’s selection theorem
5J.5, it has a continuous selection z1 : IBτ(ȳ)→ X ; that is, a continuous function z1

which satisfies

z1(y) ∈ F−1(y−g(z0(y))) and ‖z1(y)− z0(y)‖ ≤ αν‖z0(y)− x̄‖ for all y ∈ IBτ(ȳ).

Then for y ∈ IBτ(ȳ), by the choice of γ ,

‖z1(y)− x̄‖ ≤ ‖z1(y)− z0(y)‖+‖z0(y)− x̄‖ ≤ (1+αν)λ‖y− ȳ‖ ≤ γ‖y− ȳ‖.
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The induction step is parallel to the first step. Let z0 and z1 be as above and
suppose we have also found functions z1,z2, . . . ,zn, such that each z j, j = 1,2, . . . ,n,
is a continuous selection of the mapping y 7→M j(y), where

M j(y) =
{

x ∈ F−1(y−g(z j−1(y)))
∣∣‖x− z j−1(y)‖ ≤ αν‖z j−1(y)− z j−2(y)‖

}
for y ∈ IBτ(ȳ) and M j(y) = /0 for y /∈ IBτ(ȳ), where we put z−1(y) = x̄ for y ∈ IBτ(ȳ).
Then for y ∈ IBτ(ȳ) we obtain

‖z j(y)− z j−1(y)‖ ≤ (αν) j−1‖z1(y)− z0(y)‖ ≤ (αν) j‖z0(y)− x̄‖, j = 2, . . . ,n.

Therefore,

‖z j(y)− x̄‖ ≤
j

∑
i=0
‖zi(y)− zi−1(y)‖

≤
j

∑
i=0

(αν)i‖z0(y)− x̄‖ ≤ λ

1−αν
‖y− ȳ‖ ≤ γ‖y− ȳ‖.

Hence, from (5), for j = 1,2, . . . ,n,

(8) ‖z j(y)− x̄‖ ≤ a

and also

(9) ‖y−g(z j(y))− ȳ‖ ≤ τ +ν‖z j(y)− x̄‖ ≤ τ +
λντ

1−αν
≤ τ

1−αν
≤ β ≤ b.

Consider the mapping y 7→Mn+1(y) where

Mn+1(y) =
{

x ∈ F−1(y−g(zn(y)))
∣∣‖x− zn(y)‖ ≤ αν‖zn(y)− zn−1(y)‖

}
for y∈ IBτ(ȳ) and Mn+1(y)= /0 for y /∈ IBτ(ȳ). As in the first step, we find that Mn+1 is
nonempty-closed-convex-valued. Let y∈ IBτ(ȳ) and x∈Mn+1(y), and let yk ∈ IBτ(ȳ),
yk → y as k → ∞. If zn−1(y) = zn(y), then Mn+1(y) = {zn(y)}, and consequently
x = zn(y); then from zn(yk) ∈ F−1(yk−g(zn−1(yk)))∩ IBa(x̄) and yk−g(zn−1(yk)) ∈
IBb(ȳ), we obtain, using the Aubin property of F−1, that there exists xk ∈ F−1(yk−
g(zn(yk))) such that

‖xk− zn(yk)‖ ≤ λ‖g(zn(yk))−g(zn−1(yk))‖ ≤ αν‖zn(yk)− zn−1(yk)‖.

Therefore xk ∈Mn+1(yk), xk→ zn(y) = x as k→ ∞, and hence Mn+1 is inner semi-
continuous for the case considered.

Let zn(y) 6= zn−1(y). From (8) and (9) for y = yk, since

zn(yk) ∈ F−1(yk−g(zn−1(yk)))∩ IBa(x̄),
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the Aubin property of F−1 implies the existence of x̌k ∈ F−1(yk− g(zn(yk))) such
that

‖x̌k− zn(yk)‖ ≤ λ‖g(zn(yk))−g(zn−1(yk))‖ ≤ λν‖zn(yk)− zn−1(yk)‖.

Similarly, since x∈F−1(y−g(zn(y)))∩IBa(x̄), there exists x̃k ∈F−1(yk−g(zn(yk)))
such that

‖x̃k− x‖ ≤ λ (‖yk− y‖+‖g(zn(yk))−g(zn(y))‖)
≤ λ (‖yk− y‖+ν‖zn(yk)− zn(y)‖)→ 0 as k→ ∞.

Put

ε
k :=

αν‖zn−1(y)− zn−1(yk)‖+(1+αν)‖zn(y)− zn(yk)‖+‖x̃k− x‖
αν‖zn(y)− zn−1(y)‖−λν‖zn(yk)− zn−1(yk)‖ .

Then εk→ 0 as k→ ∞. Taking

xk = ε
kx̌k +(1− ε

k)x̃k,

we obtain that xk ∈ F−1(yk−g(zn(yk))) for large k. Further, we can estimate ‖xk−
zn(yk)‖ in the same way as in the first step, that is,

‖xk− zn(yk)‖ ≤ ε
k‖x̌k− zn(yk)‖+(1− ε

k)‖x̃k− zn(yk)‖
≤ ε

k
λν‖zn(yk)− zn−1(yk)‖

+(1− ε
k)(‖x̃k− x‖+‖x− zn(y)‖+‖zn(y)− zn(yk)‖)

≤ ε
k
λν‖zn(yk)− zn−1(yk)‖+‖x̃k− x‖

+(1− ε
k)αν‖zn(y)− zn−1(y)‖+‖zn(y)− zn(yk)‖

≤ αν‖zn(yk)− zn−1(yk)‖+αν‖zn(yk)− zn(y)‖
+αν‖zn−1(yk)− zn−1(y)‖+‖x̃k− x‖
+‖zn(y)− zn(yk)‖− ε

k
αν‖zn(y)− zn−1(y)‖

+ε
k
λν‖zn(yk)− zn−1(yk)‖

≤ αν‖zn(yk)− zn−1(yk)‖+‖x̃k− x‖
+(1+αν)‖zn(y)− zn(yk)‖+αν‖zn−1(y)− zn−1(yk)‖
−ε

k(αν‖zn(y)− zn−1(y)‖−λν‖zn(yk)− zn−1(yk)‖)
= αν‖zn(yk)− zn−1(yk)‖.

We conclude that xk ∈Mn+1(yk), and since xk → x as k→ ∞, the mapping Mn+1 is
inner semicontinuous on IBτ(ȳ). Hence, the mapping Mn+1 has a continuous selec-
tion zn+1 : IBτ(ȳ)→ X , that is,

zn+1(y) ∈ F−1(y−g(zn(y))) and ‖zn+1(y)− zn(y)‖ ≤ αν‖zn(y)− zn−1(y)‖.

Thus
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‖zn+1(y)− zn(y)‖ ≤ (αν)(n+1)‖z0(y)− x̄‖.
The induction step is now complete. In consequence, we have an infinite se-

quence of bounded continuous functions z0, . . . ,zn, . . . such that for all y ∈ IBτ(ȳ)
and for all n,

‖zn(y)− x̄‖ ≤
n

∑
i=0

(αν)i‖z0(y)− x̄‖ ≤ λ

1−αν
‖y− ȳ‖ ≤ γ‖y− ȳ‖

and moreover,

sup
y∈IBτ (ȳ)

‖zn+1(y)− zn(y)‖ ≤ (αν)n sup
y∈IBτ (ȳ)

‖z0(y)− x̄‖ ≤ (αν)n
λτ for n≥ 1.

The sequence {zn} is a Cauchy sequence in the space of functions that are continu-
ous and bounded on IBτ(ȳ) equipped with the supremum norm. Then this sequence
has a limit s which is a continuous function on IBτ(ȳ) and satisfies

s(y) ∈ F−1(y−g(s(y)))

and

‖s(y)− x̄‖ ≤ λ

1−αν
‖y− ȳ‖ ≤ γ‖y− ȳ‖ for all y ∈ IBτ(ȳ).

Thus, s is a continuous local selection of (g+F)−1 which has the calmness property
(4). This brings the proof to its end.

Proof of Theorem 5J.3. Apply 5J.8 with F = D f (x̄) and g(x) = f (x)−D f (x̄)x.
Metric regularity of F is equivalent to surjectivity of D f (x̄), and F−1 is convex-
closed-valued. The mapping g has lip(g; x̄) = 0 and finally F +g = f .

Note that Theorem 5J.7 follows from 5J.8 with g being the zero function.

We present next an implicit mapping version of Theorem 5J.7.

Theorem 5J.9 (implicit mapping version). Let X ,Y and P be Banach spaces. For
f : P×X → Y and F : X →→ Y , consider the generalized equation f (p,x)+F(x) 3 0
with solution mapping

S(p) =
{

x
∣∣ f (p,x)+F(x) 3 0

}
having x̄ ∈ S(p̄).

Suppose that F satisfies the conditions in Theorem 5J.7 with ȳ = 0 and associate
constant κ ≥ reg(F ; x̄ |0) and also that f is continuous on a neighborhood of (p̄, x̄)
and has l̂ip x( f ;(p̄, x̄)) ≤ µ , where µ is a nonnegative constant satisfying κµ < 1.
Then for every γ satisfying

(10)
κ

1−κµ
< γ,
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there exist neighborhoods U of x̄ and Q of p̄ along with a continuous function s :
Q→U such that

(11) s(p) ∈ S(p) and ‖s(p)− x̄‖ ≤ γ‖ f (p, x̄)− f (p̄, x̄)‖ for every p ∈ Q.

Proof. The proof is parallel to the proof of Theorem 5J.7. First we choose γ satis-
fying (10) and then λ , α and ν such that κ < λ < α < ν−1 and ν > µ , and also

(12)
λ

1−αν
< γ.

There are neighborhoods U , V and Q of x̄, 0 and p̄, respectively, which are associated
with the metric regularity of F at x̄ for 0 with constant λ and the Lipschitz continuity
of f with respect to x with constant ν uniformly in p. By appropriately choosing a
sufficiently small radius τ of a ball around p̄, we construct an infinite sequence of
continuous and bounded functions zk : IBτ(p̄)→X , k = 0,1, . . ., which are uniformly
convergent on IBτ(p̄) to a function s satisfying the conditions in (11). The initial z0

satisfies

z0(p) ∈ F−1(− f (p, x̄)) and ‖z0(p)− x̄‖ ≤ λ‖ f (p, x̄)− f (p̄, x̄)‖.

For k = 1,2, . . ., the function zk is a continuous selection of the mapping

Mk : p 7→
{

x ∈ F−1(− f (p,zk−1(p)))
∣∣‖x− zk−1(p)‖ ≤ αν‖zk−1(p)− zk−2(p)‖

}
for p ∈ IBτ(p̄), where z−1(p) = x̄. Then for all p ∈ IBτ(p̄) we obtain

zk(p) ∈ F−1(− f (p,zk−1(p))) and ‖zk(p)− zk−1(p)‖ ≤ (αν)k‖z0(p)− x̄‖,

hence,

(13) ‖zk(y)− x̄‖ ≤ λ

1−αν
‖ f (p, x̄)− f (p̄, x̄)‖.

The sequence {zk} is a Cauchy sequence of continuous and bounded function, hence
it is convergent with respect to the supremum norm. In the limit with k→ ∞, taking
into account (12) and (13), we obtain a selection s with the desired properties.

Exercise 5J.10 (specialization for closed sublinear mappings). Let F : X →→Y have
convex and closed graph, let f : X → Y be strictly differentiable at x̄ and let (x̄, ȳ) ∈
gph( f +F). Suppose that

ȳ ∈ int rge( f (x̄)+D f (x̄)(x− x̄)+F).

Apply the Robinson–Ursescu theorem 5B.4 to prove that there exist neighborhoods
U of x̄ and V of ȳ, a continuous function s : V →U , and a constant γ , such that

( f +F)(s(y)) 3 y and ‖s(y)− x̄‖ ≤ γ‖y− ȳ‖ for every y ∈V.
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5K. Selections from Directional Differentiability

Here, at the end of this chapter, we present a result which is in the spirit of the
inverse function theorems for nonstrictly differentiable functions in finite dimen-
sions established in 1G. We deal with functions, acting in Banach spaces, that are
directionally differentiable. We show that when the inverse of the directional deriva-
tive of a such a function has a uniformly bounded selection, then the inverse of the
function itself has a selection which is calm.

We start by restating the definition of directional differentiability given in Section
2D for functions acting from a Banach space X to a Banach space Y .

Directional derivative. For a function f : X→Y , a point x̄∈ dom f and a direction
w ∈ X the limit

f ′(x̄;w) = lim
t↘0

f (x̄+ tw)− f (x̄)
t

,

when it exists, is said to be the (one-sided) directional derivative of f at x̄ for w. For
an open subset U of X , if f ′(x;w) exists for all x ∈U and w ∈ X , then we say that f
is directionally differentiable on U .

The main result of this section is the following inverse function theorem.

Theorem 5K.1 (inverse selection from directional differentiability). Let f : X → Y
be continuous and directionally differentiable on a neighborhood U of x̄∈ int dom f ,
and assume that there exists κ > 0 such that for any x ∈U there exists a selection
σ(x; ·) for f ′(x; ·)−1 such that

(1) ‖σ(x;y)‖ ≤ κ‖y‖ for all y ∈ Y.

Then the inverse f−1 has a local selection s around f (x̄) for x̄ which is calm at f (x̄)
with clm(s; f (x̄))≤ κ.

That σ(x; ·) is a selection for f ′(x; ·)−1 simply means that σ(x; ·) is a function
from Y to X such that f ′(x,σ(x;y)) = y for all y ∈ Y . In particular, σ(x;0) = 0 for
any x ∈U .

In preparation to proving the theorem, first recall5 that for any y 6= 0 there exists
y∗ ∈ Y ∗ satisfying

‖y∗‖= 1 and 〈y∗,y〉= ‖y‖
such that, for any w ∈ Y ,

(2) lim
t↘0

1
t
(‖y+ tw‖−‖y‖) = 〈y∗,w〉.

Thus, 〈y∗,w〉 is just the derivative of the norm at y in direction w. If Y is a Hilbert
space, then y∗ = ‖y‖−1y. We will use (2) in the following lemma which gives the di-

5 See Rockafellar [1974], Theorem 11. Here y∗ is a subgradient of the norm mapping.
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rectional derivative of the composition of the norm and a directionally differentiable
function.

Lemma 5K.2. Consider a function f : X → Y and a point x ∈ int dom f for which
there exists a neighborhood U of x such that f (u) 6= 0 for all u ∈ U and f is di-
rectionally differentiable on U . Let ξ ∈ X and t0 be such that x+ tξ ∈ U for all
t ∈ [0, t0). Then for any t ∈ [0, t0) there exists y∗ such that

(3) ‖y∗‖= 1 〈y∗, f (x+ tξ )〉= ‖ f (x+ tξ )‖

and moreover

(4) lim
h↘0

1
h

(
‖ f (x+(t +h)ξ )‖−‖ f (x+ tξ )‖

)
= 〈y∗, f ′(x+ tξ ;ξ )〉.

Proof. Having t ∈ [0, t0) and ξ ∈ X fixed, let

z(h) =
1
h
( f (x+(t +h)ξ )− f (x+ tξ )).

Since f is directionally differentiable around x, we have

lim
h↘0

z(h) = f ′(x+ tξ ;ξ ).

Further, combining

1
h

(
‖ f (x+(t +h)ξ )‖−‖ f (x+ tξ )‖

)
=

1
h

(
‖ f (x+ tξ )+hz(h)‖−‖ f (x+ tξ )‖

)
with

1
h
‖ f (x+ tξ )+hz(h)‖− 1

h
‖ f (x+ tξ )+h f ′(x+ tξ ;ξ )‖ ≤ ‖z(h)− f ′(x+ tξ ;ξ )‖

and passing to the limit as h↘0, we obtain

lim
h↘0

1
h

(
‖ f (x+(t +h)ξ )‖−‖ f (x+ tξ )‖

)
= lim

h↘0

1
h

(
‖ f (x+ tξ )+h f ′(x+ tξ ;ξ )‖−‖ f (x+ tξ )‖

)
.

Applying the relation (2) stated before the lemma to the last equality, we conclude
that there exists y∗ with the desired properties (3) and (4).

Proof of Theorem 5K.1. Without loss of generality, let x̄ = 0 and f (x̄) = 0. The
theorem will be proved if we show that for any µ > κ there exist positive a and b
such that for any y ∈ IBb(0) there exists x ∈ IBa(0) satisfying

(5) f (x) = y and ‖x‖ ≤ µ‖y‖.
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Let µ > κ and choose positive a and b such that the estimate (1) holds for all
x ∈ IBa(0) and y ∈ IBb(0), and moreover, µb < a. Fix y ∈ IBb(0) and set ϕ(x) =
‖ f (x)− y‖. Note that ϕ(0) = ‖y‖. We apply Ekeland’s variational principle 4B.5,
obtaining that for every δ > 0 there exists a point xδ such that

ϕ(xδ )+δ‖xδ‖ ≤ ϕ(0)

and
ϕ(xδ )≤ ϕ(x)+δ‖x− xδ‖ for every x ∈ X .

Take δ = 1/µ. Then we get ϕ(xδ )≤ ϕ(0), ‖xδ‖ ≤ µ‖y‖, and

(6) ϕ(x)≥ ϕ(xδ )−
1
µ
‖x− xδ‖ for every x ∈ X .

Note that ‖xδ‖ ≤ µ‖y‖ ≤ µb < a. The proof will be complete if we show that
f (xδ ) = y.

On the contrary, assume that f (xδ ) 6= y, that is, ϕ(0) 6= 0. Let u ∈ X . Let t0 > 0
be such that f (xδ + tu) 6= y for all t ∈ [0, t0) and let t ∈ [0, t0). Taking x = xδ + tu in
(6) we obtain

(7)
1
t
(‖ f (xδ + tu)− y‖−‖ f (xδ )− y‖ ≥ − 1

µ
‖u‖.

From 5K.2 there exists y∗ satisfying (3) and (4) with x = xδ and ξ = u; that is,

(8) ‖y∗‖= 1 and 〈y∗, f (xδ )− y〉= ‖ f (xδ )− y‖

and
lim
t↘0

1
t
(‖ f (xδ + tu)− y‖−‖ f (xδ )− y‖) = 〈y∗, f ′(xδ ;u)〉.

Passing to the limit in (7), we obtain

〈y∗, f ′(xδ ;u)〉 ≥ − 1
µ
‖u‖.

Then, taking u = σ(xδ ;− f (xδ )+ y) we come to

〈y∗, f ′(xδ ;σ(xδ ;− f (xδ )+ y))〉= 〈y∗,−( f (xδ )− y)〉 ≥ − 1
µ
‖u‖.

From the last inequality, taking into account (1) and (8), we get

‖ f (xδ )− y‖ ≤ 1
µ
‖σ(xδ ;− f (xδ )+ y)‖ ≤ κ

µ
‖ f (xδ )− y‖.

This is a contradiction since κ < µ.
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Exercise 5K.3. State and prove an implicit function analogue of Theorem 5K.1.
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Commentary

The equivalence of (a) and (d) in 5A.1 for mappings whose ranges are closed was
shown in Theorem 10 on p. 150 of the original treatise of S. Banach [1932]. The
statements of this theorem usually include the equivalence of (a) and (b), which is
called in Dunford and Schwartz [1958] the “interior mapping principle.” Lemma
5A.4 is usually stated for Banach algebras, see, e.g., Theorem 10.7 in Rudin [1991].
Theorem 5A.8 is from Robinson [1972].

The generalization of the Banach open mapping theorem to set-valued mappings
with convex closed graphs was obtained independently by Robinson [1976] and
Ursescu [1975]; the proof of 5B.3 given here is close to the original proof in Robin-
son [1976]. A particular case of this result for positively homogeneous mappings
was shown earlier by Ng [1973]. The Baire category theorem can be found in Dun-
ford and Schwartz [1958], p. 20. The Robinson–Ursescu theorem is stated in var-
ious ways in the literature, see, e.g., Theorem 3.3.1 in Aubin and Ekeland [1984],
Theorem 2.2.2 in Aubin and Frankowska [1990], Theorem 2.83 in Bonnans and
Shapiro [2000], Theorem 9.48 in Rockafellar and Wets [1998], and Theorem 1.3.11
in Zălinescu [2002].

Sublinear mappings (under the name “convex processes”) and their adjoints were
introduced by Rockafellar [1967]; see also Rockafellar [1970]. Theorem 5C.9 first
appeared in Lewis [1999], see also Lewis [2001]. The norm duality theorem, 5C.10,
was originally proved by Borwein [1983], who later gave in Borwein [1986b] a
more detailed argument. The statement of the Hahn–Banach theorem 5C.11 is from
Dunford and Schwartz [1958], p. 62.

Theorems 5D.1 and 5D.2 are versions of results originally published in Lyusternik
[1934] and Graves [1950], with some adjustments to the current setting. Lyusternik
apparently viewed his theorem mainly as a stepping stone to obtain the Lagrange
multiplier rule for abstract minimization problems, and the title of his paper from
1934 clearly says so. It is also interesting to note that, after the statement of the
Lyusternik theorem as 8.10.2 in the functional analysis book by Lyusternik and
Sobolev [1965], the authors say that “the proof of this theorem is a modification
of the proof of the implicit function theorem, and the [Lyusternik] theorem is a di-
rect generalization of this [implicit function] theorem.”

In the context of his work on implicit functions, see Commentary to Chapter 1,
it is quite likely that Graves considered his theorem 5D.2 as an extension of the
Banach open mapping theorem for nonlinear mappings6. But there is more in its
statement and proof; namely, the Graves theorem does not involve differentiation
and then, as shown in 5D.3, can be easily extended to become a generalization of

6 A little known fact is that Graves was the supervisor of the master thesis of W. Karush [“Minima
of functions of several variables with inequalities as side conditions”, Departament of of Math-
ematics, University of Chicago, 1939], where the necessary optimality conditions for nonlinear
programming problems now known as the Karush-Kuhn-Tucker conditions (see 2A) were first de-
rived; for a review of Karush’s work see Cottle [2012]. It is quite possible that already in the 1930s
Graves new the connection between metric regularity with the Lagrange multiplier rule.



344 5 Metric Regularity in Infinite Dimensions

the basic Lemma 5A.4 for nonlinear mappings. This was mentioned already in the
historical remarks of Dunford and Schwartz [1958], p. 85. A further generalization
in line with the present setting was revealed in Dmitruk, Milyutin and Osmolovskiı̆
[1980], where the approximating linearization is replaced by a function such that the
difference between the original mapping and this function is Lipschitz continuous
with a sufficiently small Lipschitz constant; this is now Theorem 5E.7. Estimates
for the regularity modulus of the kind given in 5D.3 are also present in Ioffe [1979],
see also Ioffe [2000].

In the second part of the last century, when the development of optimality con-
ditions was a key issue, the approach of Lyusternik was recognized for its virtues
and extended to great generality. Historical remarks regarding these developments
can be found in Rockafellar and Wets [1998]. The statement in 5D.4 is a modified
version of the Lyusternik theorem as given in Section 0.2.4 of Ioffe and Tikhomirov
[1974].

Theorem 5E.1 is given as in Dontchev, Lewis and Rockafellar [2003]; earlier re-
sults in this vein were obtained by Dontchev and Hager [1993, 1994]. The contrac-
tion mapping theorem 5E.2 is from Dontchev and Hager [1994]. Theorem 5G.1 is
from Aragón Artacho et al. [2011]. Most of the results in 5H are from Dontchev
and Frankowska [2011], [2012]. Theorem 5H.8 has its origins in the works of
Frankowska [1990, 1992] and Ursescu [1996]. Theorem 5I.3 can be traced back
to Arutyunov [2007]. Corollary 5I.5 is due to Lim [1985].

Since the publication of the first edition of this book, a large number of works
have appeared dealing with various aspects of metric regularity. Among them are:
Azé [2006], Schirotzek [2007], Azé and Corvellec [2009], Dmitruk and Kruger
[2009], Zheng and Ng [2009], Pang [2011], Uderzo [2009, 2012a, 2012b], Ioffe
[2008, 2010a, 2010b, 2011, 2013], Durea and Strugariu [2012a, 2012b], Cibulka
[2011], Cibulka and Fabian [2013], Ngai, Kruger, and Théra [2012], Ngai, Nguyen
and Théra [2013], Klatte, Kruger and Kummer [2012], Gfrerer [2013], Bianchi,
Kassay and Pini [2013], and Apetrii, Durea and Strugariu [2013].

In this chapter we present developments centered around metric regularity in
abstract spaces, but there are many other techniques and results that fall into the
same category. In particular, we do not discuss the concept of slope introduced by
De Georgi, Marino and Tosques [1980] which, as shown by Aze, Corvellec and
Lucchetti [1999] and later by Ioffe [2001] can be quite instrumental in deriving
criteria for metric regularity.

Theorem 5J.3 gives the original form of the Bartle–Graves theorem as con-
tributed in Bartle and Graves [1952]. The particular form 5J.5 of Michael’s selection
theorem7 is Lemma 2.1 in Deimling [1992]. Lemma 5J.6 was first given in Borwein
and Dontchev [2003], while Theorem 5J.8 is from Dontchev [2004]. These two pa-
pers were largely inspired by contacts of the first author of this book with Robert G.
Bartle, who was able to read them before he passed away Sept. 18, 2002. Shortly

7 The original statement of Michael’s selection theorem is for mappings acting from a paracompact
space to a Banach space; by a theorem of A. H. Stone every metric space is paracompact and hence
every subset of a Banach space is paracompact.
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before he died he sent to the first author a letter, where he, among other things, wrote
the following:

“Your results are, indeed, an impressive and far-reaching extension of the theo-
rem that Professor Graves and I published over a half-century ago. I was a student
in a class of Graves in which he presented the theorem in the case that the parame-
ter domain is the interval [0,1]. He expressed the hope that it could be generalized
to a more general domain, but said that he didn’t see how to do so. By a stroke of
luck, I had attended a seminar a few months before given by André Weil, which
he titled “On a theorem by Stone.” I (mis)understood that he was referring to M.
H. Stone, rather than A. H. Stone, and attended. Fortunately, I listened carefully
enough to learn about paracompactness and continuous partition of unity8 (which
were totally new to me) and which I found to be useful in extending Graves’ proof.
So the original theorem was entirely due to Graves; I only provided an extension
of his proof, using methods that were not known to him. However, despite the fact
that I am merely a ‘middleman,’ I am pleased that this result has been found to be
useful.”

The material in Section 5K is basically from Ekeland [2011], where the role
of the local selection sx is played by the right inverse of the Gâteaux derivative
derivative of f .

In this book we present inverse/implicit function theorems related to variational
analysis, but there are many other theorems that fall into the same category and are
designed as tools in other areas of mathematics. A prominent example of such a
result not discussed in this book is the celebrated Nash–Moser theorem used mainly
in geometric analysis and partial differential equations. A rigorous introduction of
this theorem and the theory around it would require a lot of space and would tip
the balance of topics and ideas away from what we want to emphasize. More im-
portantly, we have not been able to identify (as of yet) a specific, sound application
of this theorem in variational analysis such as would have justified the inclusion. A
rigorous and nice presentation of the Nash–Moser theorem along with the theory
and applications behind it is given in Hamilton [1982]. A Nash-Moser type version
of Theorem 5K.1 can be found in Ekeland [2011]. In the following lines, we only
briefly point out a connection to the results in Section 5E.

The Nash–Moser theorem is about mappings acting in Fréchet spaces, which are
more general than the Banach spaces. Consider a linear (vector) space F equipped
with the collection of seminorms {‖ · ‖n|n ∈ IN} (a seminorm differs from a norm
in that the seminorm of a nonzero element could be zero). The topology induced
by this (countable) collection of seminorms makes the space F a locally convex
topological vector space. If x = 0 when ‖x‖n = 0 for all n, the space is Hausdorff.
In a Hausdorff space, one may define a metric based the family of seminorms in the
following way:

(1) ρ(x,y) =
∞

∑
n=1

2−n ‖x− y‖n

1+‖x− y‖n
.

8 Michael’s theorem was not known at that time.
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It is not difficult to see that this metric is shift-invariant. A sequence {xk} is said to be
Cauchy when ‖xk−x j‖n→ 0 as k and j→∞ for all n, or, equivalently, ρ(xk,x j)→ 0
as k→ ∞ and j→ ∞. As usual, a space is complete if every Cauchy sequence con-
verges. A Fréchet space is a complete Hausdorff metrizable locally convex topolog-
ical vector space.

Having two Fréchet spaces F and G, we can now introduce a metric ρ associated
with their collections of seminorms as in (1) above, and define Lipschitz continuity
and metric regularity accordingly. Then 5E.1 will apply of course and from it we can
obtain a Graves-type theorem in Fréchet spaces. To get to the Nash–Moser theorem,
however, we have a long way to go, translating the meaning of the assumptions in
terms of the metric ρ for the collections of seminorms and the mappings considered.
For that we will need more structure in the spaces, an ordering (grading) of the
sequence of seminorms and, moreover, a certain uniform approximation property
called the tameness condition. For the mappings, the associated tameness property
means that certain growth estimates hold. The basic statement of the Nash–Moser
theorem is surprisingly similar to the classical inverse function theorem, but the
meaning of the concepts used is much more involved: when a smooth tame mapping
f acting between Fréchet spaces has an invertible tame derivative, then f−1 has
a smooth tame single-valued localization. The rigorous introduction of the tame
spaces, mappings and derivatives is beyond the scope of this book; we only note
here that extending the Nash–Moser theorem to set-valued mappings, e.g. in the
setting of Section 5E, is a challenging avenue for future research.



Chapter 6
Applications in Numerical Variational Analysis

The classical implicit function theorem finds a wide range of applications in numer-
ical analysis. For instance, it helps in deriving error estimates for approximations
to differential equations and is often relied on in establishing the convergence of
algorithms for solving nonlinear equations. Can the generalizations of the classical
theory to which we have devoted so much of this book have comparable applica-
tions in the numerical treatment of nonclassical problems for generalized equations
and beyond? In this chapter we provide positive answers in several directions.

We begin with a topic at the core of numerical work, the “conditioning” of a
problem and how it extends to concepts like metric regularity. We also explain how
the conditioning of a feasibility problem, like solving a system of inequalities, can
be understood. Next we take up the age-old procedure known as Newton’s method
in several guises. We go a step further with Newton’s method by showing that
the mapping which assigns to an instance of a parameter the set of all sequences
generated by the method obeys, in a Banach space of sequences, the Lyusternik–
Graves/implicit function theorem paradigm in the same pattern as the solution map-
ping for the underlying generalized equation. Then we give generalized forms of the
Dennis–Moré theorem and also consider inexact and nonsmooth versions of New-
ton’s method. We deal next with a parameterized generalized equation and derive an
error estimate for an extended version of the Euler-Newton path-following method.
Approximations of quadratic optimization problems in Hilbert spaces are then stud-
ied. In the last two sections we apply our methodology to discrete approximations
in optimal control.

347
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6A. Radius Theorems and Conditioning

In numerical analysis, a measure of “conditioning” of a problem is typically con-
ceived as a bound on the ratio of the size of solution (output) error to the size of
data (input) error. At its simplest, this pattern is seen when solving a linear equa-
tion Ax = y for x in terms of y when A is a nonsingular matrix in IRn×n. The data
input then is y and the solution output is A−1y, but for computational purposes the
story cannot just be left at that. Much depends on the extent to which an input
error δy leads to an output error δx. The magnitudes of the errors can be mea-
sured by the Euclidean norm, say. Then, through linearity, there is the tight bound
|δx| ≤ |A−1||δy|, in which |A−1| is the corresponding matrix (operator) norm of the
mapping y 7→ A−1y and in fact is the global Lipschitz constant for this mapping. In
providing such a bound on the ratio of |δx| to |δy|, |A−1| is called the absolute con-
dition number for the problem of solving Ax = y. A high value of |A−1| is a warning
flag signaling trouble in computing the solution x for a given y.

Another popular conditioning concept concerns relative errors instead of absolute
errors. In solving Ax = y, the relative error of the input is |δy|/|y| (with y 6= 0),
while the relative error of the output is |δx|/|x|. It is easy to see that the best bound
on the ratio of |δx|/|x| to |δy|/|y| is the product |A||A−1|. Therefore, |A||A−1| is
called the relative condition number for the problem of solving Ax = y. But absolute
conditioning will be the chief interest in our present context, for several reasons.

The reciprocal of the absolute condition number |A−1| of a nonsingular matrix A
has a geometric interpretation which will serve as an important guide to our devel-
opments. It turns out to give an exact bound on how far A can be perturbed to A+B
before good behavior breaks down by A+B becoming singular, and thus has more
significance for numerical analysis than simply comparing the size of δx to the size
of δy. This property of the absolute condition number comes from a classical result
about matrices which was stated and proved in Chapter 1 as 1E.9:

inf
{
|B|
∣∣∣A+B is singular

}
=

1
|A−1| , for any nonsingular matrix A.

In this sense, |A−1|−1 gives the radius of nonsingularity around A. As long as B lies
within that distance from A, the nonsingularity of A+B is assured. Clearly from this
angle as well, a large value of the condition number |A−1| points toward numerical
difficulties.

The model provided to us by this example is that of a radius theorem, furnishing
a bound on how far perturbations of some sort in the specification of a problem can
go before some key property is lost. Radius theorems can be investigated not only
for solving equations, linear and nonlinear, but also generalized equations, systems
of constraints, etc.

We start down that track by stating the version of the cited matrix result that
works in infinite dimensions for bounded linear mappings acting in Banach spaces.
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Theorem 6A.1 (radius theorem for invertibility of bounded linear mappings). Let
X and Y be Banach spaces and let A ∈L (X ,Y ) be invertible1. Then

(1) inf
B∈L (X ,Y )

{
‖B‖

∣∣∣A+B is not invertible
}

=
1

‖A−1‖ .

Moreover the infimum is the same if restricted to mappings B of rank one.

Proof. The estimation for perturbed inversion in Lemma 5A.4 gives us “≥” in (1).
To obtain the opposite inequality and thereby complete the proof, we take any r >
1/‖A−1‖ and construct a mapping B of rank one such that A+B is not invertible
and ‖B‖< r. There exists x̂ with ‖Ax̂‖= 1 and ‖x̂‖> 1/r. Choose an x∗ ∈ X∗ such
that x∗(x̂) = ‖x̂‖ and ‖x∗‖= 1. The linear and bounded mapping

(2) Bx =−x∗(x)Ax̂
‖x̂‖

has ‖B‖ = 1/‖x̂‖ and (A+B)x̂ = Ax̂−Ax̂ = 0. Then A+B is not invertible and
hence the infimum in (1) is ≤ r. It remains to note that B in (2) is of rank one.

The initial step that can be taken toward generality beyond linear mappings is
in the direction of positively homogeneous mappings H : X →→ Y ; here and further
on, X and Y are Banach spaces. For such a mapping, ordinary norms can no longer
be of help in conditioning, but the outer and inner norms introduced in 4A in finite
dimensions and extended in 5A to Banach spaces can come into play:

‖H‖+ = sup
‖x‖≤1

sup
y∈H(x)

‖y‖ and ‖H‖− = sup
‖x‖≤1

inf
y∈H(x)

‖y‖.

Their counterparts for the inverse H−1 will have a role as well:

‖H−1‖+ = sup
‖y‖≤1

sup
x∈H−1(y)

‖x‖ and ‖H−1‖− = sup
‖y‖≤1

inf
x∈H−1(y)

‖x‖.

In thinking of H−1(y) as the set of solutions x to H(x) 3 y, it is clear that the outer
and inner norms of H−1 capture two different aspects of solution behavior, roughly
the distance to the farthest solution and the distance to the nearest solution (when
multivaluedness is present). We are able to assert, for instance, that

dist(0,H−1(y))≤ ‖H−1‖−‖y‖ for all y.

From that angle, ‖H−1‖− could be viewed as a sort of inner absolute condition
number—and in a similar manner, ‖H−1‖+ could be viewed as a sort of outer ab-
solute condition number. This idea falls a bit short, though, because we only have
a comparison between sizes of ‖x‖ and ‖y‖, not the size of a shift from x to x+δx

1 This assumption can be dropped if we identify invertibility of A with ‖A−1‖ < ∞ and adopt the
convention 1/∞ = 0. Similar adjustments can be made in the remaining radius theorems in this
section.
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caused by a shift from y to y+ δy. Without H being linear, there seems little hope
of quantifying that aspect of error, not to speak of relative error. Nonetheless, it will
be possible to get radius theorems in which the reciprocals of ‖H−1‖+ and ‖H−1‖−
are featured.

For ‖H−1‖+, we can utilize the inversion estimate for the outer norm in 5A.8. A
definition is needed first.

Extended nonsingularity. A positively homogeneous mapping H : X →→ Y is said
to be nonsingular if ‖H−1‖+ < ∞; it is said to be singular if ‖H−1‖+ = ∞.

As shown in 5A.7, nonsingularity of H in this sense implies that H−1(0) = {0};
moreover, when dim X < ∞ and gph H is closed the converse is true as well.

Theorem 6A.2 (radius theorem for nonsingularity of positively homogeneous map-
pings). For any H : X →→ Y that is positively homogeneous and nonsingular, one
has

(3) inf
B∈L (X ,Y )

{
‖B‖

∣∣∣H +B is singular
}

=
1

‖H−1‖+ .

Moreover the infimum is the same if restricted to mappings B of rank one.

Proof. The proof is parallel to that of 6A.1. From 5A.8 we get “≥” in (3), and also
“=” for the case ‖H−1‖+ = 0 under the convention 1/0 = ∞. Let ‖H−1‖+ > 0 and
consider any r > 1/‖H−1‖+. There exists (x̂, ŷ)∈ gph H with ‖ŷ‖= 1 and ‖x̂‖> 1/r.
Let x∗ ∈ X∗, x∗(x̂) = ‖x̂‖ and ‖x∗‖= 1. The linear and bounded mapping

Bx =−x∗(x)ŷ
‖x̂‖

has ‖B‖ = 1/‖x̂‖ < r and (H +B)(x̂) = H(x̂)− ŷ 3 0. Then the nonzero vector x̂
belongs to (H +B)−1(0), hence ‖(H +B)−1‖+ = ∞, i.e., H +B is singular. The infi-
mum in (3) must therefore be less than r. Appealing to the choice of r we conclude
that the infimum in (3) cannot be more than 1/‖H−1‖+, and we are done.

To develop a radius theorem about ‖H−1‖−, we have to look more narrowly
at sublinear mappings, which are characterized by having graphs that are not just
cones, as corresponds to positive homogeneity, but convex cones. For such a map-
ping H, if its graph is also closed, we have an inversion estimate for the inner norm
in 5C.9. Furthermore, we know from 5C.2 that the surjectivity of H is equivalent to
having ‖H−1‖− < ∞. We also have available the notion of the adjoint mapping as
introduced in Section 5C: the upper adjoint of H : X →→ Y is the sublinear mapping
H∗+ : Y ∗→→ X∗ defined by

(y∗,x∗) ∈ gph H∗+ ⇐⇒ 〈x∗,x〉 ≤ 〈y∗,y〉 for all (x,y) ∈ gph H.

Recall too, from 5C.13, that for a sublinear mapping H with closed graph,

(4) ‖(H∗+)−1‖+ = ‖H−1‖−,
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and also, from 5C.14,

(5) (H +B)∗+ = H∗++B∗ for any B ∈L (X ,Y ).

Theorem 6A.3 (radius theorem for surjectivity of sublinear mappings). For any
H : X →→ Y that is sublinear, surjective, and with closed graph,

inf
B∈L (X ,Y )

{
‖B‖

∣∣∣H +B is not surjective
}

=
1

‖H−1‖− .

Moreover the infimum is the same if restricted to B of rank one.

Proof. For any B ∈L (X ,Y ), the mapping H +B is sublinear with closed graph, so
that (H+B)∗+ =H∗++B∗ by (5). By the definition of the adjoint, H+B is surjective
if and only if H∗++B∗ is nonsingular. It follows that

(6)
infB∈L (X ,Y )

{
‖B‖

∣∣∣H +B is not surjective
}

= infB∈L (X ,Y )

{
‖B∗‖

∣∣∣H∗++B∗ is singular
}
.

The right side of (6) can be identified through Theorem 6A.2 with

(7) inf
C∈L (Y ∗,X∗)

{
‖C‖

∣∣∣H∗++C is singular
}
=

1
‖(H∗+)−1‖+

by the observation that any C ∈L (Y ∗,X∗) of rank one has the form B∗ for some
B ∈L (X ,Y ) of rank one. It remains to apply the relation in (4). In consequence of
that, the left side of (7) is 1/‖H−1‖−, and we get the desired equality.

In the case of H being a bounded linear mapping A : X →Y , Theorems 6A.2 and
6A.3 both furnish results which complement Theorem 6A.1, since nonsingularity
just comes down to A−1 being single-valued on rge A, while surjectivity corresponds
only to dom A−1 being all of Y , and neither of those properties automatically entails
the other. When X = Y = IRn, of course, all three theorems reduce to the matrix
result recalled at the beginning of this section.

The surjectivity result in 6A.3 offers more than an extended insight into equation
solving, however. It can be applied also to systems of inequalities. This is true even
in infinite dimensions, but we are not yet prepared to speak of inequality constraints
in that framework, so we limit the following illustration to solving Ax ≤ y in the
case of a matrix A ∈ IRm×n. It will be convenient to say that

Ax≤ y is universally solvable if it has a solution x ∈ IRn for every y ∈ IRm.

We adopt for y = (y1, . . . ,ym) ∈ IRm the maximum norm |y|∞ = max1≤k≤m |yk| but
equip IRn with any norm. The associated operator norm for linear mappings acting
from IRn to IRm is denoted by | · |∞. Also, we use the notation for y = (y1, . . . ,ym) that

y+
= (y+

1 , . . . ,y
+

m), where y+

k = max{0,yk}.
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Example 6A.4 (radius of universal solvability for systems of linear inequalities).
Suppose for a matrix A ∈ IRm×n that Ax≤ y is universally solvable. Then

inf
B∈IRm×n

{
|B|∞

∣∣∣(A+B)x≤ y is not universally solvable
}

=
1

sup|x|≤1 | [Ax]+|∞
.

Detail. We apply Theorem 6A.3 to the mapping F : x 7→
{

y
∣∣Ax ≤ y

}
. Then

|F−1|− = sup|x|≤1 infy≥Ax |y|∞, where the infimum equals | [Ax]+|∞.

More will be said about constraint systems in Section 6B.
Since surjectivity of a sublinear mapping is also equivalent to its metric regularity

at 0 for 0, we could restate Theorem 6A.3 in terms of metric regularity as well. Such
a result is actually true for any strictly differentiable function. Specifically, the basic
Lyusternik–Graves theorem 5D.5 says that, for a function f : X→Y which is strictly
differentiable at x̄, one has

reg( f ; x̄ | ȳ) = reg D f (x̄) for ȳ = f (x̄).

Since any linear mapping is sublinear, this equality combined with 6A.3 gives us
yet another radius result.

Corollary 6A.5 (radius theorem for metric regularity of strictly differentiable func-
tions). Let f : X → Y be strictly differentiable at x̄, let ȳ := f (x̄), and let D f (x̄) be
surjective. Then

inf
B∈L (X ,Y )

{
‖B‖

∣∣∣ f +B is not metrically regular at x̄ for ȳ+Bx̄
}

=
1

‖D f (x̄)−1‖− .

It should not escape attention here that in 6A.5 we are not focused any more on
the origins of X and Y but on a general pair (x̄, ȳ) in the graph of f . This allows us
to return to “conditioning” from a different perspective, if we are willing to think of
such a property in a local sense only.

Suppose that a y near to ȳ is perturbed to y + δy. The solution set f−1(y) to
the problem of solving f (x) 3 y is thereby shifted to f−1(y+ δy), and we have an
interest in understanding the “error” vectors δx such that x + δx ∈ f−1(y+ δy).
Since anyway x need not be the only element of f−1(y), it is appropriate to quantify
the shift by looking for the smallest size of δx, or in other words at dist(x, f−1(y+
δy)) and how it compares to ‖δy‖. This ratio, in its limit as (x,y) goes to (x̄, ȳ) and
‖δy‖ goes to 0, is precisely reg( f ; x̄ | ȳ).

In this sense, reg( f ; x̄ | ȳ) can be deemed the absolute condition number locally
with respect to x̄ and ȳ for the problem of solving f (x) 3 y for x in terms of y. We
then have a local, nonlinear analog of Theorem 6A.1, tying a condition number to
a radius. It provides something more even for linear f , of course, since in contrast
to Theorem 6A.1, it imposes no requirement of invertibility.

Corollary 6A.5 can be stated in a more general form, which we give here as an
exercise:
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Exercise 6A.6. Let F : X →→ Y be metrically regular at x̄ for ȳ, and let f : X → Y
satisfy x̄ ∈ int dom f and lip( f ; x̄) = 0. Then

inf
B∈L (X ,Y )

{
‖B‖

∣∣∣F +B is not metrically regular at x̄ for ȳ+Bx̄
}

= inf
B∈L (X ,Y )

{
‖B‖

∣∣∣F + f +B is not metrically regular at x̄ for ȳ+ f (x̄)+Bx̄
}
.

Guide. Observe that, by the Banach space version of 3F.3 (which follows from
5E.1), the mapping F +B is metrically regular at ȳ+Bx̄ if and only if the mapping
F + f +B is metrically regular at ȳ+ f (x̄)+Bx̄.

We will show next that, in finite dimensions at least, the radius result in 6A.5 is
valid when f is replaced by any set-valued mapping F whose graph is locally closed
around the reference pair (x̄, ȳ).

Theorem 6A.7 (radius theorem for metric regularity). Let X and Y be Euclidean
spaces, and for F : X →→ Y and ȳ ∈ F(x̄) let gph F be locally closed at (x̄, ȳ). Then

(8) inf
B∈L (X ,Y )

{
|B|
∣∣∣F +B is not metrically regular at x̄ for ȳ+Bx̄

}
=

1
reg(F ; x̄ | ȳ) .

Moreover, the infimum is unchanged if taken with respect to linear mappings of
rank 1, but also remains unchanged when the class of perturbations B is enlarged
to all locally Lipschitz continuous functions g, with |B| replaced by the Lipschitz
modulus lip(g; x̄) of g at x̄.

Proof. If F is not metrically regular at x̄ for ȳ, then (8) holds under the conven-
tion 1/∞ = 0. Let reg(F ; x̄ | ȳ) < ∞. The general perturbation inequality derived in
Theorem 5E.1, see 5E.8, produces the estimate

inf
g:X→Y

{
lip(g; x̄)

∣∣∣F +g is not metrically regular at x̄ for ȳ+g(x̄)
}
≥ 1

reg(F ; x̄ | ȳ) ,

which becomes the equality (8) in the case when reg(F ; x̄ | ȳ) = 0 under the conven-
tion 1/0 = ∞. To confirm the opposite inequality when reg(F ; x̄ | ȳ) > 0, we apply
Theorem 4C.6, according to which

(9) reg(F ; x̄ | ȳ) = limsup
(x,y)→(x̄,ȳ)
(x,y)∈gph F

|D̃F(x |y)−1|−,

where D̃F(x |y) is the convexified graphical derivative of F at x for y. Take a se-
quence of positive real numbers εk↘0. Then for k sufficiently large, say k > k̄, by
(9) there exists (xk,yk) ∈ gph F with (xk,yk)→ (x̄, ȳ) and

reg(F ; x̄ | ȳ)+ εk ≥ |D̃F(xk|yk)
−1|− ≥ reg(F ; x̄ | ȳ)− εk > 0.
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Let Hk := D̃F(xk|yk) and Sk := H∗+k ; then norm duality gives us |H−1
k |

− = |S−1
k |

+,
see 5C.13.

For each k > k̄ choose a positive real rk satisfying |S−1
k |

+− εk < 1/rk < |S−1
k |

+.
From the last inequality there must exist (ŷk, x̂k)∈ gph Sk with |x̂k|= 1 and |S−1

k |
+ ≥

|ŷk| > 1/rk. Pick y∗k ∈ Y with 〈ŷk,y∗k〉 = |ŷk| and |y∗k | = 1, and define the rank-one
mapping Ĝk ∈L (Y,X) by

Ĝk(y) :=−〈y,y
∗
k〉

|ŷk|
x̂k.

Then Ĝk(ŷk) = −x̂k and hence (Sk + Ĝk)(ŷk) = Sk(ŷk)+ Ĝk(ŷk) = Sk(ŷk)− x̂k 3 0.
Therefore, ŷk ∈ (Sk + Ĝk)

−1(0), and since ŷk 6= 0 and Sk is positively homogeneous
with closed graph, we have by Proposition 5A.7, formula 5A(10), that

(10) |(Sk + Ĝk)
−1|+ = ∞.

Note that |Ĝk|= |x̂k|/|ŷk|= 1/|ŷk|< rk.
Since the sequences ŷk, x̂k and y∗k are bounded (and the spaces are finite-

dimensional), we can extract from them subsequences converging respectively to
ŷ, x̂ and y∗. The limits then satisfy |ŷ|= reg(F ; x̄ | ȳ), |x̂|= 1 and |y∗|= 1. Define the
rank-one mapping Ĝ ∈L (Y,X) by

Ĝ(y) :=−〈y,y
∗〉
|ŷ| x̂.

Then we have |Ĝ|= reg(F ; x̄ | ȳ)−1 and |Ĝk− Ĝ| → 0.
Let B := (Ĝ)∗ and suppose F +B is metrically regular at x̄ for ȳ+Bx̄. Theorem

4C.6 yields that there is a finite positive constant c such that for k > k̄ sufficiently
large, we have

c > |D̃(F +B)(xk|yk +Bxk)
−1|−.

Through 4C.7, this gives us

c > ‖(D̃F(xk|yk)+B)−1‖− = ‖(Hk +B)−1‖−.

Since B is linear, we have B∗= ((Ĝ)∗)∗= Ĝ, and since Hk+B is sublinear, it follows
further by 5C.14 that

(11) c > |([Hk +B]∗+)−1|+ = |(H∗+k +B∗)−1|+ = |(Sk + Ĝ)−1|+.

Take k > k̄ sufficiently large such that |Ĝ− Ĝk| ≤ 1/(2c). Setting Pk := Sk + Ĝ and
Qk := Ĝk− Ĝ, we have that

[|P−1
k |

+
]−1 ≥ 1/c > 1/(2c)≥ |Qk|.

By using the inversion estimate for the outer norm in 5A.8, we have
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|(Sk + Ĝk)
−1|+ = |(Pk +Qk)

−1|+ ≤
(
[|P−1

k |
+
]−1−|Qk|

)−1 ≤ 2c < ∞.

This contradicts (10). Hence, F +B is not metrically regular at x̄ for ȳ+Bx̄. Noting
that |B|= |Ĝ|= 1/ reg(F ; x̄ | ȳ) and that B is of rank one, we are finished.

In a pattern just like the one laid out after Corollary 6A.5, it is appropriate to
consider reg(F ; x̄ | ȳ) as the local absolute condition number with respect to x̄ and ȳ
for the problem of solving F(x) 3 y for x in terms of y. An even grander extension
of the fact in 6A.1, that the reciprocal of the absolute condition number gives the
radius of perturbation for preserving an associated property, is thereby achieved.

Based on Theorem 6A.7, it is now easy to obtain a parallel radius result for strong
metric regularity.

Theorem 6A.8 (radius theorem for strong metric regularity). Let X and Y be Eu-
clidean spaces, and let F : X →→ Y be strongly metrically regular at x̄ for ȳ. Then

(12) inf
B∈L (X ,Y )

{
|B|
∣∣∣F +B is not strongly regular at x̄ for ȳ+Bx̄

}
=

1
reg(F ; x̄ | ȳ) .

Moreover, the infimum is unchanged if taken with respect to linear mappings of rank
1, but also remains unchanged when the class of perturbations B is enlarged to the
class of locally Lipschitz continuous functions g with |B| replaced by the Lipschitz
modulus lip(g; x̄).

Proof. Theorem 5F.1 reveals that “≥” holds in (12) when the linear perturbation is
replaced by a Lipschitz perturbation, and moreover that (12) is satisfied in the limit
case reg(F ; x̄ | ȳ) = 0 under the convention 1/0 = ∞. The inequality becomes an
equality with the observation that the assumed strong metric regularity of F implies
that F is metrically regular at x̄ for ȳ. Hence the infimum in (12) is not greater than
the infimum in (8).

Next comes a radius theorem for strong subregularity to go along with the ones
for metric regularity and strong metric regularity.

Theorem 6A.9 (radius theorem for strong metric subregularity). Let X and Y be
Euclidean spaces, and for for F : X →→Y and ȳ ∈ F(x̄) let gph F be locally closed at
(x̄, ȳ). Suppose that F is strongly metrically subregular at x̄ for ȳ. Then

inf
B∈L (X ,Y )

{
|B|
∣∣∣F +B is not strongly subregular at x̄ for ȳ+Bx̄

}
=

1
subreg(F ; x̄ | ȳ) .

Moreover, the infimum is unchanged if taken with respect to mappings B of rank 1,
but also remains unchanged when the class of perturbations is enlarged to the class
of functions g : X →Y that are calm at x̄ and continuous around x̄, with |B| replaced
by the calmness modulus clm(g; x̄).

Proof. From the equivalence of the strong subregularity of a mapping F at x̄ for
ȳ with the nonsingularity of its graphical derivative DF(x̄ | ȳ), as shown in Theo-
rem 4E.1, we have
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(13)
inf

B∈L (X ,Y )

{
|B|
∣∣∣F +B is not strongly subregular at x̄ for ȳ+Bx̄

}
= inf

B∈L (X ,Y )

{
|B|
∣∣∣D(F +B)(x̄ | ȳ+Bx̄) is singular

}
.

We know from the sum rule for graphical differentiation (see 4A.2) that D(F +
B)(x̄ | ȳ+Bx̄) = DF(x̄ | ȳ)+B, hence

(14)
inf

B∈L (X ,Y )

{
|B|
∣∣∣D(F +B)(x̄ | ȳ+Bx̄) is singular

}
= inf

B∈L (X ,Y )

{
|B|
∣∣∣DF(x̄ | ȳ)+B is singular

}
.

Since DF(x̄ | ȳ)+B is positively homogeneous, 6A.2 translates to

(15) inf
B∈L (X ,Y )

{
|B|
∣∣∣DF(x̄ | ȳ)+B is singular

}
=

1
|DF(x̄ | ȳ)−1|+ ,

including the case |DF(x̄ | ȳ)−1|+ = 0 with the convention 1/0 = ∞. Theorem 4E.1
tells us also that |DF(x̄ | ȳ)−1|+ = subreg(F ; x̄ | ȳ) and then, putting together (13),
(14) and (15), we get the desired equality.

As with the preceding results, the modulus subreg(F ; x̄ | ȳ) can be regarded
as a sort of local absolute condition number. But in this case only the ratio of
dist(x̄,F−1(ȳ+δy)) to |δy| is considered in its limsup as δy goes to 0, not the lim-
sup of all the ratios dist(x,F−1(y+ δy))/|δy| with (x,y) ∈ gph F tending to (x̄, ȳ),
which gives reg(F ; x̄ | ȳ). Specifically, with reg(F ; x̄ | ȳ) appropriately termed the ab-
solute condition number for F locally with respect to x̄ and ȳ, subreg(F ; x̄ | ȳ) is the
corresponding subcondition number.

The radius-type theorems above could be rewritten in terms of the associated
equivalent properties of the inverse mappings. For example, Theorem 6A.7 could
be restated in terms of perturbations B of a mapping F whose inverse has the Aubin
property.

6B. Constraints and Feasibility

Universal solvability of systems of linear inequalities in finite dimensions was al-
ready featured in Example 6A.4 as an application of one of our radius theorems,
but now we will go more deeply into the subject of constraint systems and their
solvability. We take as our focus problems of the very general type

(1) find x such that F(x) 3 0
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for a set-valued mapping F : X →→ Y from one Banach space to another. Of course,
the set of all solutions is just F−1(0), but we are thinking of F as representing a kind
of constraint system and are concerned with whether the set F−1(0) might shift from
nonempty to empty under some sort of perturbation. Mostly, we will study the case
where F has convex graph.

Feasibility. Problem (1) will be called feasible if F−1(0) 6= /0, i.e., 0 ∈ rge F , and
strictly feasible if 0 ∈ int rge F .

Two examples will point the way toward progress. Recall that any closed, convex
cone K ⊂ Y with nonempty interior induces a partial ordering “≤K” under the rule
that y0 ≤K y1 means y1− y0 ∈ K. Correspondingly, y0 <K y1 means y1− y0 ∈ int K.

Example 6B.1 (convex constraint systems). Let C ⊂ X be a closed convex set, let
K ⊂ Y be a closed convex cone, and let A : C → Y be a continuous and convex
mapping with respect to the partial ordering in Y induced by K; that is,

A((1−θ)x0 +θx1)≤K (1−θ)A(x0)+θA(x1) for x0,x1 ∈C when 0 < θ < 1.

Define the mapping F : X →→ Y by

F(x) =
{

A(x)+K if x ∈C,
/0 if x /∈C.

Then F has closed, convex graph, and feasibility of solving F(x) 3 0 for x refers to

∃ x̄ ∈C such that A(x̄)≤K 0.

On the other hand, as long as int K 6= /0, strict feasibility refers to

∃ x̄ ∈C such that A(x̄)<K 0.

Detail. To see this, note that, when int K 6= /0, we have K = cl int K, so that the
convex set rge F = A(C)+K is the closure of the open set O := A(C)+ int K. Also,
O is convex. It follows then that int rge F = O.

Example 6B.2 (linear-conic constraint systems). Consider the convex constraint
system in Example 6B.1 under the additional assumptions that A is linear and C is
a cone, so that the condition x̄ ∈C can be written equivalently as x̄≥C 0. Then F is
sublinear, and its adjoint F∗+ : Y ∗→→ X∗ is given in terms of the adjoint A∗ of A and
the dual cones K+ =−K∗ and C+ =−C∗ (where ∗ denotes polar) by

F∗+(y∗) =
{

A∗(y∗)−C+ if y∗ ∈ K+,
/0 if y∗ /∈ K+,

so that F∗+(y∗) 3 x∗ if and only if y∗ ≥K+ 0 and A∗(y∗)≥C+ x∗.

Detail. In this case the graph of F is clearly a convex cone, and that means F is
sublinear. The claims about the adjoint of F follow by elementary calculation.
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Along the lines of the analysis in 6A, in dealing with the feasibility problem (1)
we will be interested in perturbations in which F is replaced by F +B for some
B ∈L (X ,Y ), and at the same time, the zero on the right is replaced by some other
b ∈ Y . Such a double perturbation, the magnitude of which can be quantified by the
norm

(2) ‖(B,b)‖= max
{
‖B‖,‖b‖

}
,

transforms the condition F(x) 3 0 to (F +B)(x) 3 b and the solution set F−1(0) to
(F +B)−1(b), creating infeasibility if (F +B)−1(b) = /0, i.e., if b /∈ rge(F +B). We
want to understand how large ‖(B,b)‖ can be before this happens.

Distance to infeasibility. For F : X →→ Y with convex graph and 0 ∈ rge F , the
distance to infeasibility of the system F(x) 3 0 is defined to be the value

(3) inf
B∈L (X ,Y ), b∈Y

{
‖(B,b)‖

∣∣∣b /∈ rge(F +B)
}
.

Surprisingly, perhaps, it turns out that there would be no difference if feasibility
were replaced by strict feasibility in this definition. In the next pair of lemmas, it is
assumed that F : X →→ Y has convex graph and 0 ∈ rge F .

Lemma 6B.3 (distance to infeasibility versus distance to strict infeasibility). The
distance to infeasibility is the same as the distance to strict infeasibility, namely the
value

(4) inf
B∈L (X ,Y ), b∈Y

{
‖(B,b)‖

∣∣∣b /∈ int rge(F +B)
}
.

Proof. Let S1 denote the set of (B,b) over which the infimum is taken in (3) and let
S2 be the corresponding set in (4). Obviously S1 ⊂ S2, so the first infimum cannot
be less than the second. We must show that it also cannot be greater. This amounts
to demonstrating that for every (B,b) ∈ S2 and every ε > 0 we can find (B′,b′) ∈ S1
such that ‖(B′,b′)‖ ≤ ‖(B,b)‖+ ε . In fact, we can get this with B′ = B simply by
noting that when b /∈ int rge(F +B) there must exist b′ ∈ Y with b′ /∈ rge(F +B)
and ‖b′−b‖ ≤ ε .

By utilizing the Robinson–Ursescu theorem 5B.4, we can see furthermore that
the distance to infeasibility is actually the same as the distance to metric nonregu-
larity:

Lemma 6B.4 (distance to infeasibility equals radius of metric regularity). The dis-
tance to infeasibility in problem (1) coincides with the value

(5) inf
(B,b)∈L (X ,Y )×Y

{
‖(b,B)‖

∣∣∣F +B is not metrically regular at any x̄ for b
}
.
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Proof. In view of the equivalence of infeasibility with strict feasibility in 6B.3, the
Robinson–Ursescu theorem 5B.4 just says that problem (1) is feasible if and only if
F is metrically regular at x̄ for 0 for any x̄ ∈ F−1(0), hence (5).

In order to estimate the distance to infeasibility in terms of the modulus of metric
regularity, we pass from F to a special mapping F̄ constructed as a “homogeniza-
tion” of F . We will then be able to apply to F̄ the result on distance to metric
nonregularity of sublinear mappings given in 6A.3.

We use the horizon mapping F∞ associated with F , the graph of F∞ in X ×Y
being the recession cone of gph F in the sense of convex analysis:

(x′,y′) ∈ gph F∞ ⇐⇒ gph F +(x′,y′)⊂ gph F.

Homogenization. For F : X →→ Y and 0 ∈ rge F , the homogenization of the con-
straint system F(x) 3 0 in (1) is the system F̄(x, t) 3 0, where F̄ : X × IR→→ Y is
defined by

F̄(x, t) =

{
tF(t−1x) if t > 0,
F∞(x) if t = 0,
/0 if t < 0.

The solution sets to the two systems are related by

x ∈ F−1(0) ⇐⇒ (x,1) ∈ F̄−1(0).

Note that if F is positively homogeneous with closed graph, then tF(t−1x) =
F(x) = F∞(x) for all t > 0, so that we simply have F̄(x, t) = F(x) for t ≥ 0, but
F̄(x, t) = /0 for t < 0.

In what follows, we adopt the norm

(6) ‖(x, t)‖= ‖x‖+ |t| for (x, t) ∈ X× IR.

We are now ready to state and prove a result which gives a quantitative expression
for the magnitude of the distance to infeasibility:

Theorem 6B.5 (distance to infeasibility for the homogenized mapping). Let F :
X →→ Y have closed, convex graph and let 0 ∈ rge F . Then in the homogenized sys-
tem F̄(t,x) 3 0 the mapping F̄ is sublinear with closed graph, and

(7) 0 ∈ int rge F ⇐⇒ 0 ∈ int rge F̄ ⇐⇒ F̄ is surjective.

Furthermore, for the given constraint system F(x) 3 0 one has

(8) distance to infeasibility = 1/ reg(F̄ ;0,0 |0).

Proof. The definition of F̄ corresponds to gph F̄ being the closed convex cone in
X× IR×Y that is generated by

{
(x,1,y)

∣∣(x,y) ∈ gph F
}

. Hence F̄ is sublinear, and
also, rge F̄ is a convex cone. We have (rge F) = F(X) = F̄(X ,1). So it is obvious
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that if 0 ∈ int rge F , then 0 ∈ int rge F̄ . Since rge F̄ is a convex cone, the latter is
equivalent to having rge F̄ = Y , i.e., surjectivity.

Conversely now, suppose F̄ is surjective. Theorem 5B.4 (Robinson–Ursescu) in-
forms us that in this case, 0 ∈ int F̄(W ) for every neighborhood W of the origin in
IR×X . It must be verified, however, that 0 ∈ int rge F . In terms of C(t) = F̄(IB, t)⊂
Y , it will suffice to show that 0 ∈ int C(t) for some t > 0. Note that the sublinearity
of F̄ implies that

(9) C((1−θ)t0 +θ t1)⊃ (1−θ)C(t0)+θC(t1) for 0 < θ < 1.

Our assumption that 0 ∈ rge F ensures having F−1(0) 6= /0. Choose τ ∈ (0,∞) small
enough that 1/(2τ)> d(0,F−1(0)). Then

(10) 0 ∈C(t) for all t ∈ [0,2τ],

whereas, because [−2τ,2τ]× IB is a neighborhood W of the origin in IR×X , we
have

(11) 0 ∈ int F̄(IB, [−2τ,2τ]) = int
⋃

0≤t≤2τ

C(t).

We will use this to show that actually 0 ∈ int C(τ). For y∗ ∈ Y ∗ define

σ(y∗, t) := sup
y∈C(t)

〈y,y∗〉, λ (t) := inf
‖y∗‖=1

σ(y∗, t).

The property in (9) makes σ(y∗, t) concave in t, and the same then follows for λ (t).
As long as 0 ≤ t ≤ 2τ , we have σ(y∗, t) ≥ 0 and λ (t) ≥ 0 by (10). On the other
hand, the union in (11) includes some ball around the origin. Therefore,

(12) ∃ε > 0 such that sup
0≤t≤2τ

σ(y∗, t)≥ ε for all y∗ ∈ Y ∗ with ‖y∗‖= 1.

We argue next that λ (τ)> 0. If not, then since λ is a nonnegative concave func-
tion on [0,2τ], we would have to have λ (t) = 0 for all t ∈ [0,2τ]. Supposing that
to be the case, choose δ ∈ (0,ε/2) and, in the light of the definition of λ (τ), an
element ŷ∗ with σ(ŷ∗,τ)< δ . The nonnegativity and concavity of σ(ŷ∗, ·) on [0,2τ]
imply then that σ(ŷ∗, t)≤ (δ/τ)t when τ ≤ t ≤ 2τ and σ(ŷ∗, t)≤ 2δ−(δ/τ)t when
0≤ t ≤ τ . But that gives us σ(ŷ∗, t)≤ 2δ < ε for all t ∈ [0,2τ], in contradiction to
the property of ε in (12). Therefore, λ (τ)> 0, as claimed.

We have σ(y∗,τ) ≥ λ (τ) when ‖y∗‖ = 1, and hence by positive homogeneity
σ(y∗,τ)≥ λ (τ)‖y∗‖ for all y∗ ∈Y ∗. In this inequality, σ(·,τ) is the support function
of the convex set C(τ), or equivalently of cl C(τ), whereas λ (τ)‖ · ‖ is the support
function of λ (τ)IB. It follows therefore that cl C(τ) ⊃ λ (τ)IB, so that at least 0 ∈
int cl C(τ).

Now, remembering that C(τ) = τF(τ−1IB), we obtain 0 ∈ int cl F(τ−1IB). Con-
sider the mapping
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F̃(x) =
{

F(x) if x ∈ τ−1IB,
/0 otherwise.

Clearly rge F̃ ⊂ rge F . Applying Theorem 5B.1 to the mapping F̃ gives us

0 ∈ int cl rge F̃ = int rge F̃ ⊂ int rge F.

This completes the proof of (7).
Let us turn now to (8). The first thing to observe is that every B̄ ∈L (X × IR,Y )

can be identified with a pair (B,b)∈L (X ,Y )×Y under the formula B̄(x, t)=B(x)−
tb. Moreover, under this identification we get ‖B̄‖ equal to the expression in (2), due
to the choice of norm in (6). The next thing to observe is that

(F̄ + B̄)(x, t) =

 t(F +B)(t−1x)− tb if t > 0,
(F +B)∞(x) if t = 0,
/0 if t < 0,

so that F̄ + B̄ gives the homogenization of the perturbed system (F +B)(x) 3 b.
Therefore, on the basis of what has so far been proved, we have

b ∈ int rge(F +B) ⇐⇒ F̄ + B̄ is surjective.

Hence, through Lemma 6B.4, the distance to infeasibility for the system F(x) 3 0
is the infimum of ‖B̄‖ over all B̄ ∈L (X × IR,Y ) such that F̄ + B̄ is not surjective.
Theorem 6A.3 then furnishes the conclusion in (8).

Passing to the adjoint mapping, we can obtain a “dual” formula for the distance
to infeasibility:

Corollary 6B.6 (distance to infeasibility for closed convex processes). Let F :
X →→ Y have closed, convex graph, and let 0 ∈ rge F . Define the convex, positively
homogeneous function h : X∗×Y ∗→ (−∞,∞] by

h(x∗,y∗) = supx,y
{
〈x,x∗〉−〈y,y∗〉

∣∣y ∈ F(x)
}
.

Then for the system F(x) 3 0,

(13) distance to infeasibility = inf
‖y∗‖=1, x∗

max
{
‖x∗‖, h(x∗,y∗)

}
.

Proof. By Theorem 6B.5, the distance to infeasibility is 1/ reg(F̄ ;0,0 |0). On the
other hand, reg(F̄ ;0,0 |0) = ‖(F̄∗+)−1‖+ for the adjoint mapping F̄∗+ : Y ∗→→ X∗×
IR. By definition, (x∗,s)∈ F̄∗+(y∗) if and only if (x∗,s,−y∗) belongs to the polar cone
(gph F̄)∗. Because gph F̄ is the closed convex cone generated by

{
(x,1,y)

∣∣(x,y) ∈
gph F

}
, this condition is the same as

s+ 〈x,x∗〉−〈y,y∗〉 ≤ 0 for all (x,y) ∈ gph F

and can be expressed as s+h(x∗,y∗)≤ 0. Hence
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(14) ‖(F∗+)−1‖+ = sup
{
‖y∗‖

∣∣∣‖(x∗,s)‖ ≤ 1, s+h(x∗,y∗)≤ 0
}
,

where the norm on X∗× IR dual to the one in (6) is ‖(x∗,s)‖= max
{
‖x∗‖, |s|

}
. The

distance to infeasibility, being the reciprocal of the quantity in (14), can be expressed
therefore (through the positive homogeneity of h) as

(15) inf
‖y∗‖=1, x∗,s

{
max

{
‖x∗‖, |s|

}∣∣∣s+h(x∗,y∗)≤ 0
}
.

(In converting from (14) to an infimum restricted to ‖y∗‖ = 1 in (15), we need
to be cautious about the possibility that there might be no elements (x∗,s,y∗) ∈
gph(F̄∗+)−1 with y∗ 6= 0, in which case the infimum in (15) is ∞. But then the
expression in (10) is 0, so the statement remains correct under the convention 1/∞=
0.) Observe next that, in the infimum in (15), s will be taken to be as near to 0
as possible while maintaining −s ≥ h(x∗,y∗). Thus, |s| will be the max of 0 and
h(x∗,y∗), and max

{
‖x‖, |s|

}
will be the max of these two quantities and ‖x‖—but

then the 0 is superfluous, and we end up with (15) equaling the expression on the
right side of (3).

We can now present our result for homogeneous systems:

Corollary 6B.7 (distance to infeasibility for sublinear mappings). Let F : X →→ Y
be sublinear with closed graph and let 0 ∈ rge F . Then for the inclusion F(x) 3 0,

distance to infeasibility = inf
‖y∗‖=1

d
(
0,F∗+(y∗)

)
.

Proof. In this case the function h in 6B.6 has h(x∗,y∗) = 0 when x∗ ∈ F∗+(y∗), but
h(x∗,y∗) = ∞ otherwise.

In particular, for a linear-conic constraint system of type x≥C 0, A(x)≤K 0, with
respect to a continuous linear mapping A : X → Y and closed, convex cones C ⊂ X
and K ⊂ Y , we obtain

distance to infeasibility = inf
y∗∈K+, ‖y∗‖=1

d(A∗(y∗),C+).
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6C. Iterative Processes for Generalized Equations

Our occupation with numerical matters turns even more serious in this section,
where we consider computational methods for solving generalized equations. The
problem is to

(1) find x such that f (x)+F(x) 3 0,

where f : X → Y is a continuously Fréchet differentiable function and F : X →→ Y
is a set-valued mapping with closed graph; both X and Y are Banach spaces. As
we already know, the model of a generalized equation covers huge territory. The
classical case of nonlinear equations corresponds to having F = 0, whereas by taking
F ≡−K for a fixed set K one gets various constraint systems. When F is the normal
cone mapping NC associated with a closed, convex set C ⊂ X , and Y = X∗, we
have a variational inequality. In Section 6I we will deal with a generalized equation
representing optimality conditions for an optimal control problem.

With the aim of approximating a solution to the generalized equation (1), we
consider first the following version of Newton’s method:

(2) f (xk)+D f (xk)(xk+1− xk)+F(xk+1) 3 0, for k = 0,1, . . . .

This approach uses “partial linearization,” in which we linearize f at the current
point but leave F intact. It reduces to the standard version of Newton’s method for
solving the nonlinear equation f (x) = 0 when F is the zero mapping. We used this
method to prove the classical inverse function theorem 1A.1. Although one might
imagine that a “true” Newton-type method for (1) ought to involve some kind of
approximation to F as well as f , such an extension runs into technical difficulties,
in particular for infinite-dimensional variational problems.

In the case when (1) represents the optimality systems for a nonlinear program-
ming problem, the iteration (2) becomes the popular sequential quadratic program-
ming (SQP) algorithm for optimization. We will briefly describe the SQP algorithm
later in the section.

We shall not discuss stopping criteria in this book; we assume that Newton’s
method (2), and any other iterative method considered later in the book, generates
an infinite sequence {xk}; if this sequence is convergent to a solution x̄, then we say
that the method is convergent. There are various modes of convergence; in this book
we utilize the terms of superlinear and quadratic convergence for which it is conve-
nient to use the following definitions. A sequence {xk} with xk 6= x̄ is superlinearly
convergent to x̄ when

lim
k→∞

‖xk+1− x̄‖
‖xk− x̄‖ = 0.

A sequence {xk} is quadratically convergent to x̄ when there exist γ > 0 and a
natural k0 such that

‖xk+1− x̄‖ ≤ γ‖xk− x̄‖2 for all k ≥ k0.
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In Theorem 6C.1 we show superlinear convergence of Newton’s method (2) on
the assumption of strong metric regularity of the mapping f +F at a solution x̄ of
(1) for 0. Specifically, we show that when the starting point x0 is chosen in a suffi-
ciently small neighborhood O of the solution x̄, then Newton’s method (2) generates
a unique in O sequence which converges superlinearly to x̄. The proof of this con-
vergence result is postponed until 6F where we present a much stronger version of
it for a nonsmooth function f . In the case of an equation, that is, when F in (1)
is the zero mapping, strong metric regularity is equivalent to the invertibility of the
derivative mapping D f (x̄), and we arrive at a well known result present in most text-
books on numerical analysis. In Section 6D we will show that when the derivative
mapping D f is not only continuous but also Lipschitz continuous around x̄, then the
convergence is quadratic.

In Section 6D we focus on the stability properties of the set of sequences gen-
erated by the method under metric regularity. Then in Section 6E we discuss an
approximate version of the Newton method (2) under strong metric subregularity.
Section 6F is devoted to nonsmooth Newton’s method in finite dimensions.

Theorem 6C.1 (superlinear convergence of Newton method). Consider Newton’s
method (2) applied to (1) and assume that the mapping f +F is strongly metrically
regular at x̄ for 0. Then there exists a neighborhood O of x̄ such that, for every
x0 ∈O, there is a unique sequence {xk} generated by the method (2) all elements of
which are contained in O; moreover, this sequence is superlinearly convergent to x̄.

Proof. Choose κ > reg( f +F ; x̄ |0) and µ > 0 such that 2κµ < 1. From 2B.10 and
later in the book we know that

reg( f +F ; x̄ |0) = reg( f (x̄)+D f (x̄)(·− x̄)+F(·); x̄ |0).

Choose a > 0 and b > 0 so that the mapping

IBb(0) 3 y 7→ s(y) := ( f (x̄)+D f (x̄)(·− x̄)+F(·))−1(y)∩ IBa(x̄)

is a Lipschitz continuous function with Lipschitz constant κ . Make a > 0 smaller if
necessary to have

(3) ‖D f (x′)−D f (x)‖ ≤ µ for x′, x ∈ IBa(x̄)

and also

(4) 3µa≤ b.

From the standard equality

f (u)− f (v) =
∫ 1

0
D f (v+ t(u− v))(u− v)dt,

we have through (3) that, for all u,v ∈ IBa(x̄),
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(5)
‖ f (u)− f (v)−D f (v)(u− v)‖

= ‖∫ 1
0 D f (v+ t(u− v))(u− v)dt−D f (v)(u− v)‖ ≤ µ‖u− v‖.

For the function

IBa(x̄)× IBa(x̄) 3 (w,x) 7→ g(w,x) = f (x̄)+D f (x̄)(x− x̄)− f (w)−D f (w)(x−w),

using (4) and (5) we get

(6)
‖g(w,x)‖ ≤ ‖ f (x̄)+D f (x̄)(x− x̄)− f (x)‖

+‖ f (x)− f (w)−D f (w)(x−w)‖
≤ µ‖x− x̄‖+µ‖x−w‖ ≤ µa+µ2a≤ b.

Pick x0 ∈ IBa(x̄), x0 6= x̄, and consider the mapping

IBa(x̄) 3 x 7→Φ0(x) = ( f (x̄)+D f (x̄)(·− x̄)+F(·))−1(g(x0,x))∩ IBa(x̄).

Let c := κµ/(1− κµ) and r0 := c‖x0 − x̄‖; then c < 1 and r0 < a. Noting that
Φ0(x̄) = s(g(x0, x̄)) and x̄ = s(0), and using the Lipschitz continuity of s together
with (4), (5) and (6), we obtain

‖x̄−Φ0(x̄)‖ = ‖s(0)− s(g(x0, x̄))‖ ≤ κ‖g(x0, x̄)‖
≤ κ‖ f (x̄)− f (x0)−D f (x0)(x̄− x0)‖ ≤ κµ‖x0− x̄‖< r0(1−κµ).

Moreover, for any u,v ∈ IBr0(x̄),

‖Φ0(u)−Φ0(v)‖ ≤ κ‖g(x0,u)−g(x0,v)‖
= κ‖(D f (x̄)−D f (x0))(u− v)‖ ≤ κµ‖u− v‖.

Hence, by the standard contraction mapping principle 1A.2 there exists a unique
x1 =Φ0(x1)∩ IBr0(x̄), which translates to having x1 obtained from x0 as a first iterate
of Newton’s method (2) and satisfying

‖x1− x̄‖ ≤ c‖x0− x̄‖.

The induction step is completely analogous. Namely, for rk := c‖xk− x̄‖ at the
(k+1)-step we show that the function

IBa(x̄) 3 x 7→Φk(x) = ( f (x̄)+D f (x̄)(·− x̄)+F(·))−1(g(xk,x))∩ IBa(x̄)

has a unique fixed point xk+1 = s(g(xk,xk+1)) in IBrk(x̄), which means that xk+1 is
obtained from (2) and satisfies

‖xk+1− x̄‖ ≤ c‖xk− x̄‖.

Since c < 1, the sequence {xk} generated in this way is convergent to x̄. Also note
that this sequence is unique in IBa(x̄). Indeed, if for some k we obtain from xk two
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different xk+1 and x′k+1, then, since xk+1 = s(g(xk,xk+1)) and x′k+1 = s(g(xk,x′k+1)),
from the Lipschitz continuity of s with constant κ and (3) we get

0 < ‖xk+1− x′k+1‖ ≤ κ‖(D f (x̄)−D f (xk))(xk+1− x′k+1)‖ ≤ κµ <
1
2
‖xk+1− x′k+1‖,

which is absurd.
To show superlinear convergence of the sequence {xk}, take any ε ∈ (0,1/(2κ)

and choose α ∈ (0,a) such that (3) holds with µ = ε for all x ∈ IBα(x̄). Let k0 be
so large that xk ∈ IBα(x̄) for all k ≥ k0 and let xk 6= x̄ for all k ≥ k0. Since xk+1 =
s(g(xk,xk+1)), isung the Lipschitz continuity of s and the first inequality in the third
line of (6), we obtain

‖xk+1− x̄‖ = ‖s(g(xk,xk+1))− s(0)‖ ≤ κ‖g(xk,xk+1))‖
≤ κε‖xk+1− x̄‖+κε‖xk+1− xk‖
≤ 2κε‖xk+1− x̄‖+κε‖xk− x̄‖.

Hence,
‖xk+1− x̄‖
‖xk− x̄‖ ≤

κε

1−2κε
for all k ≥ k0.

Since the sequence {xk} does not depend on ε and ε can be arbitrarily small, passing
to the limit with k→ ∞ we obtain superlinear convergence.

It is important to note that the map F in (1) could be quite arbitrary, and then
Newton’s iteration (2) may generate in general more than one sequence. However,
as 6C.1 says, there is only one such sequence which stays near the solution x̄ and this
sequence is moreover superlinearly convergent to x̄. In other words, if the method
generates two or more sequences, only one of them will converge to the solution x̄
and the other sequences will be not convergent at all or at least not convergent to
the same solution. This is in contrast with the case of an equation where, in the case
when the Jacobian at the solution x̄ is nonsingular, the method generates exactly one
sequence when started close to x̄ and this sequence converges superlinearly to x̄.

As an application, consider the nonlinear programming problem studied in sec-
tions 2A and 2G:

(7) minimize g0(x) over all x satisfying gi(x)
{
≤ 0 for i ∈ [1,s],
= 0 for i ∈ [s+1,m],

where the functions gi : IRn→ IR are twice continuously differentiable. In terms of
the Lagrangian function

L(x,y) = g0(x)+ y1g1(x)+ · · ·+ ymgm(x),

the first-order optimality (Karush–Kuhn–Tucker) condition takes the form
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(8)
{

∇xL(x,y) = 0,
g(x) ∈ NIRs

+×IRm−s(y),

where we denote by g(x) the vector with components g1(x), . . . ,gm(x). Let x̄ be
a local minimum for (7) satisfying the standard constraint qualification condition
2A.9(14), and let ȳ be an associated Lagrange multiplier vector. As applied to the
variational inequality (8), Newton’s method (2) consists in generating a sequence
{(xk,yk)} starting from a point (x0,y0), close enough to (x̄, ȳ), according to the iter-
ation

(9)
{

∇xL(xk,yk)+∇2
xxL(xk,yk)(xk+1− xk)+∇g(xk)

T(yk+1− yk) = 0,
g(xk)+∇g(xk)(xk+1− xk) ∈ NIRs

+×IRm−s(yk+1).

Theorem 2G.8 (with suppressed dependence on the parameter p in its statement)
provides conditions under which the mapping appearing in the variational inequality
(8) is strongly metrically regular at the reference point: linear independence of the
gradients of the active constraints and strong second-order sufficient optimality; we
recall these conditions in the next Example 6C.2. Under these conditions, we can
find (xk+1,yk+1) which satisfies (9) by solving the quadratic programming problem

(10)

minimize
[

1
2
〈x− xk,∇

2
xxL(xk,yk)(x− xk)〉

+〈∇xL(xk,yk)−∇g(xk)
Tyk,(x− xk)〉

]

subject to gi(xk)+∇gi(xk)(x− xk)

{
≤ 0 for i ∈ [1,s],
= 0 for i ∈ [s+1,m].

Thus, in the circumstances of (7) under strong metric regularity of the mapping in
(8), Newton’s method (2) comes down to sequentially solving quadratic programs
of the form (10). This specific application of Newton’s method is therefore called
the sequential quadratic programming (SQP) method.

We summarize the conclusions obtained so far about the SQP method as an il-
lustration of the power of the theory developed in this section.

Example 6C.2 (convergence of SQP). Consider the nonlinear programming prob-
lem (7) with the associated Karush–Kuhn–Tucker condition (8) and let x̄ be a solu-
tion with an associated Lagrange multiplier vector ȳ. In the notation

I =
{

i ∈ [1,m]
∣∣gi(x̄) = 0

}
⊃ {s+1, . . . ,m},

I0 =
{

i ∈ [1,s]
∣∣gi(x̄) = 0 and ȳi = 0

}
⊂ I

and
M+ =

{
w ∈ IRn

∣∣w⊥ ∇xgi(x̄) for all i ∈ I\I0
}
,

M− =
{

w ∈ IRn
∣∣w⊥ ∇xgi(x̄) for all i ∈ I

}
,

suppose that the following conditions are both fulfilled:
(a) the gradients ∇xgi(x̄) for i ∈ I are linearly independent;
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(b) 〈w,∇2
xxL(x̄, ȳ)w〉> 0 for every nonzero w ∈M+ with ∇2

xxL(x̄, ȳ)w⊥M−.
Then there exists a neighborhood O of (x̄, ȳ) such that, for every starting point
(x0,y0)∈O, the SQP method (9) generates a unique in O sequence which converges
superlinearly to (x̄, ȳ).

There are various numerical issues related to implementation of the SQP method
that have been investigated in the last several decades, and various enhancements
are available as commercial software, but we shall not go into this further.

We consider next the following version of the proximal point method applied to
the generalized equation (1):

(11) λk(xk+1− xk)+ f (xk+1)+F(xk+1) 3 0, for k = 0,1, . . . ,

where λk is a sequence of positive numbers convergent to zero. From now on X =Y .
First, we prove superlinear convergence of this method under strong metric regula-
rity.

Theorem 6C.3 (convergence of proximal point method). Consider the generalized
equation (1) where the function f is continuous and F has closed graph. Assume that
the mapping f +F is strongly metrically regular at x̄ for 0 and let µ be a positive
scalar such that

(12) 2µ reg( f +F ; x̄ |0)< 1.

Consider the proximal point method (11) for a sequence λk convergent to zero and
such that λk ≤ µ for all k. Then there exists a neighborhood O such that for ev-
ery x0 ∈ O the method (11) generates a unique in O sequence {xk}; moreover, this
sequence is superlinearly convergent to x̄.

Proof. Let κ > reg( f +F ; x̄ |0) be such that, by (12), 2µκ < 1. Then there exist
a > 0 and b > 0 such that the mapping

IBb(0) 3 y 7→ s(y) := ( f +F)−1(y)∩ IBa(x̄)

is a Lipschitz continuous function with Lipschitz constant κ , and this remains true
if we replace a by any positive a′ ≤ a. Make a smaller if necessary so that 2aµ ≤ b.
Then for any x,x′ ∈ IBa(x̄) we have

(13) ‖λk(x− x′)‖ ≤ 2µa≤ b.

Pick x0 ∈ IBa(x̄), x0 6= x̄ and consider the mapping

IBa(x̄) 3 x 7→Φ0(x) = ( f +F)−1(−λ0(x− x0))∩ IBa(x̄) = s(−λ0(x− x0)).

Since x̄ = s(0) and Φ0(x̄) = s(−λ0(x̄− x0)), from (13) we have

‖x̄−Φ0(x̄)‖= ‖s(0)− s(−λ0(x̄− x0))‖ ≤ κλ0‖x̄− x0‖ ≤ r0(1−κλ0),
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where

r0 =
κλ0

1−κλ0
‖x0− x̄‖.

Noting that r0 ≤ a and using (13), for any u,v ∈ IBr0(x̄) we obtain

‖Φ0(u)−Φ0(v)‖= ‖s(−λ0(u− x0))− s(−λ0(v− x0))‖ ≤ κλ0‖u− v‖.

Hence, there exists a unique fixed point x1 = Φ0(x1) in IBr0(x̄), i.e., x1 satisfies (11)
for k = 1 and also

‖x1− x̄‖ ≤ κλ0

1−κλ0
‖x0− x̄‖.

Clearly x1 ∈ IBa(x̄). It turns out that x1 is the only iterate in IBa(x̄). Assume on
the contrary that it is not; that is, there exists x′1 = Φ0(x′1)∩ IBa(x̄). Then, since
x1 = s(−λ0(x1− x0)) and x′1 = s(−λ0(x′1− x0)) we get

‖x1− x′1‖= ‖s(−λ0(x1− x0))− s(−λ0(x′1− x0))‖ ≤ κλ0‖x1− x′1‖< ‖x1− x′1‖,

a contradiction.
If x1 = x̄ there is nothing more to prove. Assume x1 6= x̄ and consider the mapping

IBa(x̄) 3 x 7→Φ1(x) = s(−λ1(x− x1)).

Then

‖x̄−Φ1(x̄)‖= ‖s(0)− s(−λ1(x̄− x1))‖ ≤ κλ1‖x̄− x1‖ ≤ r1(1−κλ1),

where

r1 :=
κλ1

1−κλ1
‖x1− x̄‖.

Also, for any u,v ∈ IBr1(x̄) we have

‖Φ1(u)−Φ1(v)‖= ‖s(−λ1(u− x1))− s(−λ1(v− x1))‖ ≤ κλ1‖u− v‖.

Therefore, there exists a unique x2 = Φ1(x2) in IBr1(x̄) which turns out to be unique
also in IBa(x̄), that is, x2 satisfies (11) for k = 2 and also

‖x2− x̄‖ ≤ κλ1

1−κλ1
‖x1− x̄‖.

The induction step is completely analogous. Thus, we obtain a sequence {xk}
satisfying (11) the elements of which are unique in O = IBa(x̄) and such that

‖xk+1− x̄‖ ≤ κλk

1−κλk
‖xk− x̄‖.

If xk 6= x̄ for all k, since λk↘0, this sequence is superlinearly convergent to x̄.
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Lastly, we will discuss a bit more the proximal point method in the context of
monotone mappings. First, note that the iterative process (11) can be equally well
written as

(14) xk+1 ∈ [I +λ
−1
k T ]−1(xk) for k = 0,1, . . . , where T = f +F.

It has been extensively studied under the additional assumption that X is a Hilbert
space (e.g., consider IRn under the Euclidean norm) and T is a maximal monotone
mapping from X to X . Monotonicity, which we introduced in 1H for functions, and
a local version of it in 3G for set-valued mappings, refers here in the case of a
set-valued mapping T : X →→ X to the property of having

(15) 〈y′− y,x′− x〉 ≥ 0 for all (x,y),(x′,y′) ∈ gph T.

It is called maximal when no more points can be added to gph T without running
into a violation of (15). (A localized monotonicity for set-valued mappings was
introduced at the end of 3G, but again only in finite dimensions.)

The following fact about maximal monotone mappings, recalled here without its
proof, underlies much of the literature on the proximal point method in basic form
and indicates its fixed-point motivation.

Theorem 6C.4 (resolvents of maximal monotone mappings). Let X be a Hilbert
space, and let T : X →→ X be maximal monotone. Then for any c > 0 the mapping
Pc = (I + cT )−1 is single-valued with all of X as its domain and moreover is non-
expansive; in other words, it is globally Lipschitz continuous from X into X with
Lipschitz constant 1. The fixed points of Pc are the points x̄ such that T (x̄) 3 0 (if
any), and they form a closed, convex set.

According to this, xk+1 always exists and is uniquely determined from xk in the
proximal point iterations (11) as expressed in (14), when f +F is maximal mono-
tone. Here is an important example of that circumstance, which we again state with-
out bringing out its proof:

Theorem 6C.5 (maximal monotonicity in a variational inequality). Let X be a
Hilbert space, and let F = NC for a nonempty, closed, convex set C in X . Let
f : C→ X be continuous and monotone. Then f +F is maximal monotone.

The “proximal point” terminology comes out of this framework through an ap-
plication to optimization, as now explained. For a real-valued function g on a Hilbert
space X with derivative Dg(x), we denote by ∇g(x), as in the case of X = IRn, the
unique element of X such that Dg(x)w = 〈∇g(x),w〉 for all w ∈ X .

Example 6C.6 (connections with minimization). Let X be a Hilbert space, let C be a
nonempty, closed, convex subset of X , and let h : X→ IR be convex and continuously
(Fréchet) differentiable. Let f (x) = ∇h(x). Then f is continuous and monotone, and
the variational inequality

f (x)+NC(x) 3 0,
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as an instance of the generalized equation (1), describes the points x (if any) which
minimize h over C. In comparison, in the iterations for this case of the proximal
point method in the basic form (11), the point xk+1 determined from xk is the unique
minimizer of h(x)+(λk/2)||x− xk||2 over C.

Detail. This invokes the gradient monotonicity property associated with convexity
in 2A.6, along with the optimality condition in 2A.7, both of which are equally valid
in infinite dimensions. The addition of the quadratic expression (λk/2)||x− xk||2 to
h creates a function hk which is strongly convex with constant λk and thus attains its
minimum, moreover uniquely.

The expression (λk/2)||x− xk||2 in 6C.6 is called a proximal term because it
helps to keep x near to the current point xk. Its effect is to stabilize the procedure
while inducing technically desirable properties like strong convexity in place of
plain convexity. It’s from this that the algorithm got its name.

Instead of adding a quadratic term to h, the strategy in Example 6C.6 could be
generalized to adding a term rk(x−xk) for some other convex function rk having its
minimum at the origin, and adjusting the algorithm accordingly.

6D. Metric Regularity of Newton’s Iteration

In this section we put Newton’s iteration in the context of metric regularity, by con-
sidering the parameterized generalized equation

(1) f (p,x)+F(x) 3 0, or equivalently − f (p,x) ∈ F(x),

for a function f : P×X → Y and a set-valued mapping F : X →→ Y , where p ∈ P
is a parameter and P, X and Y are Banach spaces. Associated with the generalized
equation (1) as usual is its solution mapping

S : p 7→
{

x
∣∣ f (p,x)+F(x) 3 0

}
for p ∈ P.

We focus on a neighborhood of a given reference solution x̄ of (1) for p̄. In this
section our standing assumption is that the function f is continuously differentiable
in a neighborhood of (p̄, x̄) with strict partial derivatives denoted by Dx f (p̄, x̄) and
Dp f (p̄, x̄) such that

lip(Dx f ;(p̄, x̄))< ∞,

and that the mapping F has closed graph.
As in the preceding section, we consider the following Newton’s method for

solving (1), now for a fixed value of the parameter p:

(2) f (p,xk)+Dx f (p,xk)(xk+1− xk)+F(xk+1) 3 0, for k = 0,1, . . . ,
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with a given starting point x0. Under strong metric regularity of the mapping
f (p, ·) + F(·) we proved there that when the starting point is in a neighborhood
of the reference solution, the method generates a sequence which is unique in this
neighborhood and converges quadratically to the reference solution. In this section
we focus on the case when the underlying mapping is merely metrically regular.

We start with a technical result which follows from 5G.1 and 5G.2.

Theorem 6D.1 (parametrized linearization). Consider the parameterized mapping

(3) X 3 x 7→ Gp,u(x) = f (p,u)+Dx f (p,u)(x−u)+F(x), for p ∈ P, u ∈ X ,

and suppose that the mapping

(4) x 7→ G(x) = f (p̄, x̄)+Dx f (p̄, x̄)(x− x̄)+F(x)

is metrically regular at x̄ for 0. Then for every λ > reg(G; x̄ |0) there exist positive
numbers a, b and c such that

d(x, G−1
p,u(y))≤ λd(y,Gp,u(x)) for every u, x ∈ IBa(x̄), y ∈ IBb(0), p ∈ IBc(p̄).

If in addition the mapping G is strongly metrically regular, then for every λ >
reg(G; x̄ |0) there exist positive numbers a, b and c such that for every u ∈ IBa(x̄)
and p ∈ IBc(p̄) the mapping y 7→ G−1

p,u(y)∩ IBa(x̄) is a Lipschitz continuous function
on IBb(0) with a Lipschitz constant λ .

Proof. To prove the first claim, we apply Theorem 5G.1 with the following specifi-
cations: F(x) = G(x), ȳ = 0, q = (p,u), q̄ = (p̄, x̄), and

g(q,x) = f (p,u)+Dx f (p,u)(x−u)− f (p̄, x̄)−Dx f (p̄, x̄)(x− x̄).

Let λ > κ ≥ reg(G; x̄ |0). Pick any µ > 0 such that µκ < 1 and λ > κ/(1−κµ).
Choose a positive L such that

L > max{l̂ip p( f ;(p̄, x̄)), l̂ip x(Dx f ;(p̄, x̄))}.

Then there exist positive constants α and β such that

(5) ‖ f (p,x)− f (p′,x)‖ ≤ L‖p− p′‖ for every p, p′ ∈ IBβ (p̄), x ∈ IBα(x̄),

(6) ‖Dx f (p,x)−Dx f (p,x′)‖ ≤ L‖x− x′‖ for every x,x′ ∈ IBα(x̄), p ∈ IBβ (p̄),

and

(7) ‖Dx f (p,u)−Dx f (p̄, x̄)‖ ≤ µ for every p ∈ IBβ (p̄), u ∈ IBα(x̄).

Observe that for any x,x′ ∈ X and any q = (p,u) ∈ IBβ (p̄)× IBα(x̄), from (7),

‖g(q,x)−g(q,x′)‖ ≤ ‖Dx f (p,u)−Dx f (p̄, x̄)‖‖x− x′‖ ≤ µ‖x− x′‖,
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that is, l̂ip x(g;(q̄, x̄)) ≤ µ . Thus, the assumptions of Theorem 5G.1 are satisfied
and hence there exist positive constants a′ ≤ α , b′ and c′ ≤ β such that for any
q ∈ IBc′(p̄)× IBa′(x̄) the mapping Gp,u(x) = g(q,x)+G(x) is metrically regular at x̄
for g(q, x̄)= f (p,u)+Dx f (p,u)(x̄−u)− f (p̄, x̄) with constant λ and neighborhoods
IBa′(x̄) and IBb′(g(q, x̄)). Now choose positive scalars a, b and c such that

a≤ a′, c≤ c′, and La2/2+Lc+b≤ b′.

Fix any q = (p,u) ∈ IBc(p̄)× IBa(x̄). Using (6) in the standard estimation

(8)

‖ f (p,u)+Dx f (p,u)(x̄−u)− f (p, x̄)‖
=
∥∥∥∫ 1

0 Dx f (p, x̄+ t(u− x̄))(u− x̄)dt−Dx f (p,u)(u− x̄)
∥∥∥

≤ L
∫ 1

0 (1− t)dt ‖u− x̄‖2 = L
2‖u− x̄‖2,

and applying (5) and (8), we obtain that, for y ∈ IBb(0),

‖g(q, x̄)− y‖ ≤ ‖ f (p,u)+Dx f (p,u)(x̄−u)− f (p̄, x̄)‖+‖y‖
≤ ‖ f (p,u)+Dx f (p,u)(x̄−u)− f (p, x̄)‖+‖ f (p, x̄)− f (p̄, x̄)‖+‖y‖

≤ L
2
‖u− x̄‖2 +L‖p− p̄‖+b≤ La2/2+Lc+b≤ b′.

Thus, IBb(0) ⊂ IBb′(g(q, x̄)) and the proof of the first part of the theorem is com-
plete. The proof of the second part regarding strong metric regularity is completely
analogous, using Theorem 5G.2 instead of Theorem 5G.1.

Our first result reveals quadratic convergence, uniform in the parameter, under
metric regularity.

Theorem 6D.2 (quadratic convergence of Newton method). Suppose that the map-
ping G defined in (4) is metrically regular at x̄ for 0. Then for every

(9) γ >
1
2

reg(G; x̄ |0)·l̂ip x(Dx f ;(p̄, x̄))

there are positive constants ā and c̄ such that for every p ∈ IBc̄(p̄) the set S(p)∩
IBā/2(x̄) is nonempty and for every σ ∈ S(p)∩ IBā/2(x̄) and every x0 ∈ IBā(x̄) there
exists a sequence {xk} in IBā(x̄) satisfying (2) for p with starting point x0 and this
sequence converges to σ ; moreover, the convergence is quadratic, namely

(10) ‖xk+1−σ‖ ≤ γ‖xk−σ‖2 for all k = 0,1, . . . .

If the mapping G in (4) is not only metrically regular but also strongly metrically
regular at x̄ for 0, which is the same as having f +F strongly metrically regular at x̄
for 0, then there exist neighborhoods Q of p̄ and U of x̄ such that, for every p ∈ Q
and u ∈U , there is exactly one sequence {xk} in U generated by Newton’s iteration
(2) for p with x0 as a starting point. This sequence converges to the value s(p) of



374 6 Applications in Numerical Variational Analysis

the Lipschitz continuous localization s of the solution mapping S around p̄ for x̄;
moreover, the convergence is quadratic with constant γ , as in (10).

Proof. Choose γ as in (9) and let λ > reg(G; x̄ |0) and L > l̂ip x(Dx f ;(p̄, x̄)) be such
that

γ >
1
2

λL.

According to 6D.1 there exist positive a and c such that

d(x, G−1
p,u(0))≤ λd(0,Gp,u(x)) for every u, x ∈ IBa(x̄), p ∈ IBc(p̄).

The Aubin property of the mapping S established in Theorem 5E.5 implies that for
every d > lip(S; p̄ | x̄) there exists c′ > 0 such that x̄ ∈ S(p)+ d‖p− p̄‖IB for any
p ∈ IBc′(p̄). Then

S(p)∩ IBd‖p−p̄‖(x̄) 6= /0 for p ∈ IBc′(p̄).

We choose next positive constants ā and c̄ such that the following inequalities are
satisfied:

(11) ā < a, c̄ < min{ ā
2d

,c,c′} and
9
2

γ ā≤ 1.

Then, for every p ∈ IBc̄(p̄) the set S(p)∩ IBā/2(x̄) is nonempty. Moreover, for every
s ∈ S(p)∩ IBā/2(x̄) and u ∈ IBā(x̄) we have

(12) d(s, G−1
p,u(0))≤ λd(0,Gp,u(s)).

Fix arbitrary p ∈ IBc̄(p̄), σ ∈ S(p)∩ IBā/2(x̄) and u ∈ IBā(x̄). In the next lines we
will show the existence of x1 such that

(13) Gp,u(x1) 3 0, ‖x1−σ‖ ≤ γ‖u−σ‖2 and x1 ∈ IBā(x̄).

If d(0,Gp,u(σ)) = 0 we set x1 = σ . Since F is closed-valued, (12) implies the first
relation in (13), while the second one is obvious and the third one follows from the
fact that σ ∈ IBā/2(x̄).

If d(0,Gp,u(σ))> 0, then

d(σ , G−1
p,u(0))≤ λd(0,Gp,u(σ))<

2γ

L
d(0,Gp,u(σ)),

and hence there exists x1 ∈ G−1
p,u(0) such that

(14) ‖σ − x1‖<
2γ

L
d(0,Gp,u(σ)).

Since f (p,σ)+F(σ) 3 0, using the estimate (8) with x̄ replaced by σ we obtain



6 Applications in Numerical Variational Analysis 375

d(0,Gp,u(σ))≤ ‖ f (p,u)+Dx f (p,u)(σ −u)− f (p,σ)‖ ≤ L
2
‖u−σ‖2.

Then (14) implies the inequality in (13). To complete the proof of (13) we estimate

‖x1− x̄‖ ≤ ‖x1−σ‖+‖σ − x̄‖< γ‖u−σ‖2 + ā/2≤ γ (3ā/2)2 + ā/2 < ā,

where we use (11).
Due to the inequality in (13), the same argument can be applied with u = x1, to

obtain the existence of x2 such that ‖x2−σ‖ ≤ γ‖x1−σ‖2, and in the same way we
get the existence of a sequence {xk} satisfying (10) for all k.

We will now show that this sequence is convergent. From the third inequality in
(11),

θ := γ‖x0−σ‖ ≤ γ(‖x0− x̄‖+‖σ − x̄‖)≤ γ(ā+ ā/2)< 1,

and then from (10) we obtain

(15) ‖xk+1−σ‖ ≤ θ
2k+1−1‖x0−σ‖.

Thus the sequence {xk} is convergent to σ . The quadratic rate of convergence is
already established.

The second part of the proof is completely analogous, using the strong regularity
of the mapping Gp,u claimed in the second part of 6D.1.

We now present a Lyusternik–Graves type theorem connecting metric regularity
of the linearized mapping (4) with metric regularity of a mapping whose values are
the sets of all convergent sequences generated by Newton’s method (2). This result
shows that Newton’s iteration is, roughly, as “stable” as the mapping of the inclusion
to be solved. This conclusion may have important implications in the analysis of the
effect of various errors, including the errors of approximations of the problem in
hand, on the complexity of the method.

Specifically, we consider the method (2) more broadly by reconceiving New-
ton’s iteration as an inclusion, the solution of which gives a whole sequence instead
of just an element in X . Let l∞(X) be the Banach space consisting of all infinite
sequences ξ = {x1,x2, . . . ,xk, . . .} with elements xk ∈ X , k = 1,2, . . . equipped with
the supremum norm

‖ξ‖∞ = sup
k≥1
‖xk‖

and let lc
∞(X) be the closed subspace of l∞(X) consisting of all infinite sequences

ξ = {x1,x2, . . . ,xk, . . .} that are convergent. Define the mapping Ξ : X×P→→ lc
∞(X)

(16)
Ξ : (p,u) 7→

{
ξ = {x1,x2, . . .} ∈ lc

∞(X)
∣∣∣ξ is such that

f (p,xk)+Dx f (p,xk)(xk+1− xk)+F(xk+1) 3 0
for k = 0,1, . . . , with x0 = u} .

That is, for a given (p,u) the value of Ξ(p,u) is the set of all convergent sequences
{xk}∞

k=1 generated by Newton’s iteration (2) for p that start from u. If x̄ is a solution
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to (1) for p̄, then the constant sequence ξ̄ whose components are all x̄ satisfies ξ̄ ∈
Ξ(p̄, x̄). Further, note that if s∈ S(p) then the constant sequence whose components
are all s belongs to Ξ(p,s). Also note that if ξ ∈ Ξ(p,u) for some (p,u) close
enough to (p̄, x̄), then by definition ξ is convergent and since F has closed graph the
limit of ξ is from S(p), that is a solution of (1) for p.

By using the parameterized mapping Gp,u(x) in (3) we can define equivalently Ξ

as

Ξ : (p,u) 7→
{

ξ ∈ lc
∞(X)

∣∣∣x0 = u and Gp,xk(xk+1) 3 0 for k = 0,1, . . .
}
.

Along with the mapping Ξ defined in (16) we introduce a mapping Ξ̂ in exactly
the same way but with lc

∞(X) replaced by l∞(X). Clearly, Ξ(p,u) ⊂ Ξ̂(p,u) for all
(p,u) ∈ P×X . Theorem 6D.2 says that for each constant γ satisfying (9) there are
neighborhood Q of p̄ and O of x̄ such that the mapping Ξ̂ has a selection Q×O 3
p 7→ ξ (p,u) ∈ Ξ(p,u) with the property that for each (p,u) ∈ Q×O the sequence
ξ (p,u) is quadratically convergent to a solution s ∈ S(p), hence it is an element
of Ξ(p,u). If the mapping G is strongly metrically regular at x̄ for 0, then this
selection is locally unique, that is, locally, there is exactly one sequence generated by
Newton’s method. Specifically, in the case of strong metric regularity the mapping
Ξ̂ has a single-valued graphical localization ξ around (p̄, x̄) for ξ̄ ; moreover, this
localization has property that for u close to x̄ and p close to p̄ the value ξ (p,u) of the
localization is a sequence which converges quadratically to the associated solution
s(p) for p. Hence, the mapping Ξ̂ locally coincides with the mapping Ξ and both
mappings are one and the same function whose values are quadratically convergent
sequences.

To proceed we need the following lemma, which extends Theorem 6D.1.

Lemma 6D.3. Suppose that the mapping G defined in (4) is metrically regular at x̄
for 0 and let γ , γ1 and γ2 be positive constants such that

γ >
1
2

reg(G; x̄ |0)·l̂ip x(Dx f ;(p̄, x̄)), γ1 > reg(G; x̄ |0)·‖Dp f (p̄, x̄)‖,

and
γ2 > reg(G; x̄ |0)·lip(Dx f ;(p̄, x̄)).

Then there exist positive ζ and α such that for every p, p′ ∈ IBζ (p̄), u, u′ ∈ IBα(x̄)
and x ∈ G−1

p,u(0)∩ IBα(x̄) there exists x′ ∈ G−1
p′,u′(0) satisfying

(17) ‖x− x′‖ ≤ γ‖u−u′‖2 + γ1‖p− p′‖+ γ2(‖p− p′‖+‖u−u′‖)‖x−u‖.

Proof. Let λ ′ > λ > reg(G; x̄ |0), L > l̂ip x(Dx f ;(p̄, x̄)), L1 > ‖Dp f (p̄, x̄)‖
= l̂ip p( f ;(p̄, x̄)) and L2 > lip(Dx f ;(p̄, x̄)) be such that

γ >
λ ′

2
L, γ1 > λ

′L1, γ2 > λ
′L2.
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Now we chose positive α and ζ which are smaller than the numbers a and c in the
claim of 6D.1 and such that Dx f is Lipschitz with respect to x∈ IBα(x̄) with constant
L uniformly in p∈ IBζ (p̄), f is Lipschitz with constant L1 with respect to p∈ IBζ (p̄)
uniformly in x ∈ IBα(x̄), and Dx is Lipschitz with constant L2 in IBζ (p̄)× IBα(x̄).

Let p, p′, u, u′, x be as in the statement of the lemma. If d(0,Gp′,u′(x)) = 0, by
the closedness of G−1

p′,u′(0) we obtain that x ∈ G−1
p′,u′(0) and there is nothing more to

prove. If not, then, from 6D.1 we get

d(x,G−1
p′,u′(0))≤ λd(0,Gp′,u′(x)),

hence there exists x′ ∈ G−1
p′,u′(0) such that

(18) ‖x− x′‖< λ
′d(0,Gp′,u′(x)).

Since

0 ∈ Gp,u(x) = f (p,u)+Dx f (p,u)(x−u)+F(x)

= Gp′,u′(x)+ f (p,u)+Dx f (p,u)(x−u)

− f (p′,u′)−Dx f (p′,u′)(x−u′),

the estimate (18) implies

‖x− x′‖< λ
′‖ f (p,u)+Dx f (p,u)(x−u)− f (p′,u′)−Dx f (p′,u′)(x−u′)‖.

By the choice of the constants γ , γ1 and γ2 we obtain

‖x− x′‖ < λ
′ [‖ f (p′,u)+Dx f (p′,u′)(x−u)− f (p′,u′)−Dx f (p′,u′)(x−u′)‖

+ L1‖p− p′‖+L2(‖p− p′‖+‖u−u′‖)‖x−u‖
]

< λ
′‖ f (p′,u)+Dx f (p′,u′)(u′−u)− f (p′,u′)‖

+ γ1‖p− p′‖+ γ2(‖p− p′‖+‖u−u′‖)‖x−u‖
≤ γ‖u−u′‖2 + γ1‖p− p′‖+ γ2(‖p− p′‖+‖u−u′‖)‖x−u‖.

This gives us (17).

The result presented next is stated in two ways: the first exhibits the qualitative
side of it while the second one gives quantitative estimates.

Theorem 6D.4 (Lyusternik–Graves theorem for Newton method). If the mapping
G defined in (4) is metrically regular at x̄ for 0 then the mapping Ξ defined in (16)
has the partial Aubin property with respect to p uniformly in x at (p̄, x̄) for ξ̄ . In
fact, we have the following: if the mapping G is metrically regular at x̄ for 0 then

(19) l̂ip u(Ξ ;(p̄, x̄) | ξ̄ ) = 0 and l̂ip p(Ξ ;(p̄, x̄) | ξ̄ )≤ reg(G; x̄ |0)·‖Dp f (p̄, x̄)‖.

Furthermore, if the function f satisfies the ample parameterization condition
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(20) the mapping Dp f (p̄, x̄) is surjective,

then the converse implication holds as well: if the mapping Ξ has the partial Aubin
property with respect to p uniformly in x at (p̄, x̄) for ξ̄ , then the mapping G is
metrically regular at x̄ for 0.

Proof. Fix γ, γ1, γ2 as in Lemma 6D.3 and let α, ζ be the corresponding constants
whose existence is claimed in this lemma, while ā and c̄ are the constants in the
statement of Theorem 6D.2. Choose positive reals ε and d satisfying the inequalities

(21) ε ≤ ā/2, ε ≤ α, τ := 2(γ + γ2)ε <
1
8
,

(22) d ≤ c̄, d ≤ ζ ,
1

1− τ
(γ1 + τ)d <

ε

8
,

and

(23) e(S(p)∩ IBε/2(x̄),S(p′))< γ1‖p− p′‖ for p, p′ ∈ IBd(p̄), p 6= p′.

The existence of ε and d such that the last relation (23) holds is implied by the
Aubin property of S claimed in Theorem 5E.5.

Let p, p′ ∈ IBd(p̄), p 6= p′ and u,u′ ∈ IBε(x̄), u 6= u′. Let ξ = {xk} ∈ Ξ(p,u)∩
IBε/2(ξ̄ ). Then ξ is convergent and its limit is an element of S(p). Let

δk := τ
k‖u−u′‖+ 1− τk

1− τ
(γ1 + τ)‖p− p′‖, k = 0,1, . . . .

The last inequalities in (21) and (22) imply δk < ε/2.
First we define a sequence ξ ′ = {x′k} ∈ Ξ(p′,u′) with the additional property that

(24) ‖xk− x′k‖ ≤ δk, ‖x′k− x̄‖ ≤ ε.

Since p, p′ ∈ IBd(p̄)⊂ IBζ (p̄), u, u′, x1 ∈ IBε(x̄)⊂ IBα(x̄) and x1 ∈ G−1
p,u(0), accord-

ing to Lemma 6D.3 there exists x′1 ∈ G−1
p′,u′(0) such that

‖x1− x′1‖ ≤ γ‖u−u′‖2 + γ1‖p− p′‖+ γ2(‖p− p′‖+‖u−u′‖)‖u− x1‖.

Using (21) and (22) we obtain

‖x1− x′1‖ ≤ 2γε‖u−u′‖+ γ1‖p− p′‖+ γ2(‖p− p′‖+‖u−u′‖)2ε

≤ τ‖u−u′‖+(γ1 + τ)‖p− p′‖= δ1.

In addition, we have

(25) ‖x′1− x̄‖ ≤ ‖x′1− x1‖+‖x1− x̄‖ ≤ δ1 +
ε

2
< ε.
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Now assume that x′k is already defined so that (24) holds. Applying Lemma 6D.3
for p, p′, xk, x′k and xk+1 ∈G−1

p,xk
(0)∩IBε/2(x̄) (instead of (p, p′, u, u′, x1)) we obtain

that there exists x′k+1 ∈ G−1
p′,x′k

(0) such that

‖xk+1− x′k+1‖ ≤ γ‖xk− x′k‖2 + γ1‖p− p′‖+ γ2(‖p− p′‖+‖xk− x′k‖)‖xk− xk+1‖.

In a similar way,

‖xk+1− x′k+1‖ ≤ 2γε‖xk− x′k‖+ γ1‖p− p′‖+ γ2(‖p− p′‖+‖xk− x′k‖)2ε

≤ 2(γ + γ2)ε‖xk− x′k‖+(γ1 +2γ2ε)‖p− p′‖
≤ τδk +(γ1 + τ)‖p− p′‖

= τ

(
τ

k‖u−u′‖+ 1− τk

1− τ
(γ1 + τ)‖p− p′‖

)
+(γ1 + τ)‖p− p′‖

= τ
k+1‖u−u′‖+ 1− τk+1

1− τ
(γ1 + τ)‖p− p′‖= δk+1.

To complete the induction, it remains to note that ‖x′k+1− x̄‖ ≤ ε follows from the
last estimate in exactly the same way as in (25). In particular, from the last inequality
we obtain that

(26) ‖xk− x′k‖ ≤ τ‖u−u′‖+ γ1 + τ

1− τ
‖p− p′‖ for all k ≥ 1.

Since the sequence ξ is convergent to some s ∈ S(p), there exists a natural N
such that

‖xk− s‖ ≤ τ(‖u−u′‖+‖p− p′‖) for all k ≥ N.

We will now take the finite sequence x′1, . . . ,x
′
N and extend it to an infinite se-

quence which belongs to Ξ(p′,u′) by replacing the existing elements x′N+1,x
′
N+2, · · ·

by new ones. With some abuse of notation the new elements are denoted again by
x′N+1,x

′
N+2, · · · and the new sequence is again denoted by ξ ′. The Aubin property of

the solution map S implies that there exists s′ ∈ S(p′) such that ‖s′−s‖≤ γ1‖p− p′‖.
We also have

‖s′− x̄‖ ≤ ‖s′− s‖+‖s− x̄‖ ≤ γ1‖p− p′‖+ ε/2≤ 2dγ1 + ε/2 < ā/2,

by (21) and (22). Thus, for k > N we determine x′k as the elements of a sequence
generated by the Newton iteration for p′ and initial point x′N , which is quadratically
convergent to s′; indeed, Theorem 6D.2 claims that such a sequence exists. Observe
that p′ ∈ IBd(p̄)⊂ IBc̄(p̄) and x′N ∈ IBā(x̄) by the second inequality in (24) and since
ε ≤ ā/2 as assumed in (21). Using (21) and (22) we also have

‖x′N− s′‖ ≤ ‖x′N− xN‖+‖xN− s‖+‖s− s′‖
≤ δN + τ(‖u−u′‖+‖p− p′‖)+ γ1‖p− p′‖
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≤ 2τ‖u−u′‖+
(

γ1 + τ

1− τ
+ γ1 + τ

)
‖p− p′‖,

hence

(27) ‖x′N− s′‖< 1
8

2ε +
ε

4
+

ε

4
< ε.

According to Theorem 6D.2 there is a sequence x′N+1, . . . ,x
′
k, . . . such that

(28) ‖x′k+1− s′‖ ≤ γ‖x′k− s′‖2 for all k ≥ N.

Then, for k > N,

‖x′k− s′‖ ≤ γ
2k−N−1‖x′N− s′‖2k−N ≤ γ

2k−N−1
ε

2k−N
< ε,

where we apply (27) and use the inequality γε < 1 coming from (21). Therefore,
applying the last estimate to (28), we get

‖x′k+1− s′‖ ≤ γε‖x′k− s′‖ for all k ≥ N.

Further, since γε < 1, we come to

‖x′k− s′‖ ≤ γε‖x′N− s′‖ for all k > N.

From the estimate just before (27) we obtain that for k ≥ N +1

‖xk− x′k‖ ≤ ‖xk− s‖+‖s− s′‖+‖s′− x′k‖
≤ τ(‖u−u′‖+‖p− p′‖)+ γ1‖p− p′‖+ εγ‖x′N− s′‖

≤ (τ +2τεγ)‖u−u′‖+
[

τ + γ1 + εγ

(
γ1 + τ

1− τ
+ γ1 + τ

)]
‖p− p′‖

≤ (τ +2τεγ)‖u−u′‖+
[

γ1 + τ

1− τ
+ εγ

(
γ1 + τ

1− τ
+ γ1 + τ

)]
‖p− p′‖.

By comparing with (26) we conclude that ‖xk−x′k‖ is bounded by the same expres-
sion as on the last line above not only for k > N but also for k ≤ N, hence for all
k. Thus the distance d(ξ ,Ξ(p′,u′)) is bounded by the same expression. This holds
for every p, p′ ∈ IBd(p̄), u, u′ ∈ IBε(x̄) and every ξ ∈ Ξ(p,u)∩ IBε/2(ξ̄ ) and ε can
be arbitrarily small. Observe that when ε is small, then τ is also small, hence the
constant multiplying ‖u−u′‖ can be arbitrarily close to zero, and that the constant
multiplying ‖p− p′‖ can be arbitrarily close to γ1. This yields (19) and completes
the proof of the first part of the theorem.

Now, let the ample parameterization condition (20) be satisfied. Let κ , c and a be
positive constants such that

e(Ξ(p,u)∩Ω ,Ξ(p′,u))≤ κ‖p− p′‖ whenever p, p′ ∈ IBc(p̄),u ∈ IBa(x̄),
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where Ω is a neighborhood of ξ̄ . Make a smaller if necessary so that IBa(ξ̄ ) ⊂ Ω

and then take c smaller so that κc < a/2. Since gph F is closed, it follows that for
any p ∈ IBc(p̄) and any sequence with components xk ∈ IBa(x̄) convergent to x and
satisfying

(29) f (p,xk)+Dx f (p,xk)(xk+1− xk)+F(xk+1) 3 0 for all k = 1,2, . . . ,

one has f (p,x)+F(x) 3 0, that is, x ∈ S(p).
We will prove that S has the Aubin property at p̄ for x̄, and then we will apply

Theorem 5E.6 to show the metric regularity of G at x̄ for 0. Pick p, p′ ∈ IBc/2(p̄) with
p 6= p′ and x∈ S(p)∩ IBa/2(x̄) (if there is no such x we are done). Let χ := {x,x, . . .}.
Since ‖χ− ξ̄‖∞ = ‖x− x̄‖ ≤ a/2, we have χ ∈ Ξ(p,x)∩Ω . Hence

d(χ,Ξ(p′,x))≤ κ‖p− p′‖.

Take ε > 0 such that (κ + ε)c≤ a/2. Then there is some Ψ ∈ Ξ(p′,x) such that

‖χ−Ψ‖∞ < (κ + ε)‖p− p′‖,

with Ψ = {x′1,x′2, . . .} and x′k→ x′ ∈ X . For all k we have

‖x′k− x̄‖ ≤ ‖x′k− x‖+‖x− x̄‖ ≤ ‖Ψ −χ‖∞ +a/2≤ (κ + ε)c+a/2≤ a.

Hence from (29) we obtain x′ ∈ S(p′)∩ IBa(x̄). Moreover,

‖x−x′‖≤‖x−x′k‖+‖x′k−x′‖≤‖χ−Ψ‖∞+‖x′k−x′‖≤ (κ+ε)‖p− p′‖+‖x′k−x′‖.

Making k→ ∞, we get ‖x− x′‖ ≤ (κ + ε)‖p− p′‖. Thus,

d(x,S(p′))≤ ‖x− x′‖ ≤ (κ + ε)‖p− p′‖.

Taking ε↘0, we obtain that S has the Aubin property at p̄ for x̄ with constant κ , as
claimed. From Theorem 5E.6, G is metrically regular at x̄ for 0 and we obtain the
desired result.

To shed more light on the kind of result we just proved, consider the special case
when f (p,x) has the form f (x)− p and take, for simplicity, p̄ = 0. Then the Newton
iteration (2) becomes

f (xk)+D f (xk)(xk+1− xk)+F(xk+1) 3 p, for k = 0,1, . . . ,

where the ample parameterization condition (20) holds automatically. Define the
mappings

X 3 x 7→ Gu(x) = f (u)+D f (u)(x−u)+F(x), for u ∈ X .

and Γ : lc
∞(X)→→ X×P as



382 6 Applications in Numerical Variational Analysis

(30) Γ : ξ 7→
{(

u
p

)
| u = x0 and Gxk(xk+1) 3 p for every k = 0,1, . . .

}
.

Then Theorem 6D.4 becomes the following characterization result:

Corollary 6D.5 (symmetric Lyusternik–Graves theorem for Newton method). The
following are equivalent:

(a) The mapping f +F is metrically regular at x̄ for 0;
(b) The mapping Γ defined in (30) is metrically regular at ξ̄ for (x̄,0).

Next comes a statement analogous to Theorem 6D.4 for the case when the map-
ping G is strongly metrically regular.

Theorem 6D.6 (implicit function theorem for Newton iteration). Suppose that the
mapping G defined in (4) is strongly metrically regular at x̄ for 0. Then the mapping
Ξ in (16) has a Lipschitz single-valued localization ξ around (p̄, x̄) for ξ̄ , with

(31) l̂ip u(ξ ;(p̄, x̄)) = 0 and l̂ip p(ξ ;(p̄, x̄))≤ reg(G; x̄ |0)·l̂ip p( f ;(p̄, x̄)).

Moreover, for (p,u) close to (p̄, x̄), ξ (p,u) is a quadratically convergent sequence
to a locally unique solution. Also, the same conclusion holds if we replace the space
lc
∞(X) in the definition of Ξ by the space of all sequences with elements in X , not

necessarily convergent, equipped with the l∞(X) norm; that is, we consider the map-
ping Ξ̂ introduced after Theorem 6D.2.

If the function f satisfies the ample parameterization condition (20), then the
converse implication holds as well: the mapping G is strongly metrically regular
at x̄ for 0 provided that Ξ has a Lipschitz continuous single-valued localization ξ

around (p̄, x̄) for ξ̄ .

Proof. Assume that the mapping G is strongly metrically regular at x̄ for 0. Then,
by 5F.4, the solution mapping p 7→ S(p) is strongly metrically regular; let x(p) be
the locally unique solution associated with p near p̄. Consider the mapping Ξ̂ de-
fined in the same way as Ξ in (16) but with lc

∞(X) replaced by l∞(X). According to
Theorem 6D.2, the mapping Ξ̂ has a single valued graphical localization ξ around
(p̄, x̄) for ξ̄ satisfying (31). Moreover, from Theorem 6D.2, for (p,u) close to (p̄, x̄),
the values ξ (p,u) of this localization are quadratically convergent sequences to the
locally unique solution x(p). Thus, any graphical localization of the mapping Ξ̂ with
sufficiently small neighborhoods agrees with the corresponding graphical localiza-
tion of the mapping Ξ , which gives us the first claim of the theorem.

Assume that the ample parameterization condition (20) holds and let Ξ have a
Lipschitz localization ξ around (p̄, x̄) for ξ̄ ; that is, (p,u) 7→ Ξ(p,u)∩ IBβ (ξ̄ ) is
a singleton ξ (p,u) for any p ∈ IBα(p̄) and u ∈ IBα(x̄). Then in particular, Ξ has
the Aubin property with respect to p uniformly in x at (p̄, x̄) for ξ̄ and hence, by
Theorem 6D.4, G is metrically regular at x̄ for 0. Take ā as in (11) and make it
smaller if necessary so that ā ≤ β . Since by Theorem 5E.5 the solution mapping
S has the Aubin property at p̄ for x̄, it remains to show that S is locally nowhere
multivalued.



6 Applications in Numerical Variational Analysis 383

Take a :=min{ā/2,α,β} and c :=min{c̄,α} and let p∈ IBc(p̄) and x,x′ ∈ S(p)∩
IBa(x̄), x 6= x′. Clearly, {x,x, . . .}= Ξ(p,x)∩ IBβ (ξ̄ ) = ξ (p,x). Further, according to
Theorem 6D.2 there exists a Newton sequence ξ ′ for p starting again from x and
each element of which is in IBā(x̄), which converges to x′, thus ξ ′ ∈Ξ(p,x)∩IBβ (ξ̄ ).
But this contradicts the assumption that Ξ(p,x)∩ IBβ (ξ̄ ) is a singleton. Thus, S has
a single-valued graphical localization around p̄ for x̄ and since it has the Aubin
property it is in fact Lipschitz continuous, by Proposition 3G.1, whose extension to
Banach spaces is straightforward. It remains to apply Theorem 5F.5 which asserts
that the latter property is equivalent to the strong metric regularity of G at x̄ for 0.

As an illustration of possible applications of the results in Theorem 6D.6 in
studying complexity of Newton’s iteration, we will derive an estimate for the num-
ber of iterations needed to achieve a particular accuracy of the method, which is
the same for all values of the parameter p in some neighborhood of the reference
point p̄. Consider Newton’s method (2) in the context of 6D.6. Given an accuracy
measure ρ , suppose that the method is to be terminated at the k-th step if

(32) d(0, f (p,xk)+F(xk))≤ ρ.

Let a and c be positive constants such that for any p ∈ IBc(p̄) the locally unique
solution s(p) ∈ IBa/2(x̄) and also all elements of the sequence {xk} generated by (2)
for p are in IBa(x̄). Since xk is a Newton’s iterate from xk−1, we have that

f (p,xk)− f (p,xk−1)−Dx f (p,xk−1)(xk− xk−1) ∈ f (p,xk)+F(xk).

Let L be a Lipschitz constant of Dx f with respect to x uniformly in p around (p̄, x̄).
Using (8), as in the proof of 6D.1, we have

(33)
d(0, f (p,xk)+F(xk))
≤ ‖ f (p,xk)− f (p,xk−1)−Dx f (p,xk−1)(xk− xk−1)‖
≤ L‖xk− xk−1‖2/2.

Let kρ be the first iteration at which (32) holds; then for k < kρ from (33) we obtain

(34) ρ <
L
2
‖xk− xk−1‖2.

Further, utilizing (15) with θ = γ‖x0− s(p)‖ we get

‖xk− xk−1‖ ≤ ‖xk− s(p)‖+‖xk−1− s(p)‖ ≤ θ
2k−2(1+θ)(‖x0− x̄‖+‖s(p)− x̄‖),

and from the choice of x0 we have

‖xk− xk−1‖ ≤ θ
2k−2(1+θ)

3a
2
.

But then, taking into account (34), we obtain
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ρ <
1
2

Lθ
2k+1 9a2(1+θ)2

4θ 4 .

Therefore kρ satisfies

kρ ≤ log2

(
logθ

(
8θ 4ρ

9a2L(1+θ)2

))
−1.

Thus, we have obtained an upper bound of the number of iterations needed to
achieve a particular accuracy, which, most importantly, is the same for all values
of the parameter p in some neighborhood of the reference value p̄. This tells us, for
example, that small changes of parameters in a problem don’t affect the performance
of Newton’s method as applied to this problem.

6E. Inexact Newton’s Methods under Strong Metric
Subregularity

In Section 3I we introduced the property of strong metric subregularity and pro-
vided an equivalent definition of it in 3I(5), which we now restate in an infinite-
dimensional space setting. Throughout, X and Y are Banach spaces.

Strong metric subregularity. A mapping F : X →→ Y is said to be strongly metri-
cally subregular at x̄ for ȳ when ȳ ∈ F(x̄) and there is a constant κ ≥ 0 together with
a neighborhood U of x̄ such that

‖x− x̄‖ ≤ κd(ȳ,F(x)) for all x ∈U.

From Theorem 3I.3 and the discussion after it, the strong metric subregularity of
F at x̄ for ȳ is equivalent to the isolated calmness property of the inverse mapping
F−1 with the same constant κ > 0; namely, there exists a neighborhood U of x̄ such
that

F−1(y)∩U ⊂ x̄+κ‖y− ȳ‖IB when y ∈ Y.

As shown in Theorem 3I.7, strong metric subregularity obeys the general paradigm
of the inverse function theorem. For example, if f is Fréchet differentiable at x̄
with derivative D f (x̄), then the strong metric subregularity of f at x̄ is equivalent to
the following property of the derivative D f (x̄): there exists κ > 0 such that ‖w‖ ≤
κ‖D f (x̄)w‖ for all w ∈ X . If X = Y = IRn this reduces to nonsingularity of the
Jacobian ∇ f (x̄) and then strong metric subregularity becomes equivalent to strong
metric regularity. Note that a strongly subregular at x̄ mapping F could be empty-
valued at some points in every neighborhood of x̄.
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Recall that a function f : X→Y is said to be calm at x̄∈ dom f when there exists
a constant L > 0 and a neighborhood U of x̄ such that

‖ f (x)− f (x̄)‖ ≤ L‖x− x̄‖ for all x ∈U ∩dom f .

The following proposition shows that under calmness and strong metric subregula-
rity of a function f one can characterize superlinear convergence of a sequence {xk}
through convergence of the function values f (xk).

Proposition 6E.1 (characterization of superlinear convergence). Let f : X → X be
a function which is both calm and strongly metrically subregular at x̄ ∈ int dom f ;
that is, there exist positive constants κ and L, and a neighborhood U of x̄ such that

1
κ
‖x− x̄‖ ≤ ‖ f (x)− f (x̄)‖ ≤ L‖x− x̄‖ for all x ∈U.

Consider any sequence {xk} the elements of which satisfy xk 6= x̄ for all k. Then
xk→ x̄ superlinearly if and only if

(1) xk ∈U for all k sufficiently large and lim
k→∞

‖ f (xk+1)− f (x̄)‖
‖sk‖

= 0.

Proof. Consider an infinite sequence {xk} such that xk 6= x̄ for all k. Let xk → x̄
superlinearly. Let ε > 0 and choose k0 large enough so that xk ∈U for all k ≥ k0
and, by the superlinear convergence, ‖ek+1‖/‖ek‖< ε for all k≥ k0. Observing that∣∣∣∣‖sk‖−‖ek‖

‖ek‖

∣∣∣∣≤ ‖sk + ek‖
‖ek‖

=
‖ek+1‖
‖ek‖

we obtain

(2)
‖sk‖
‖ek‖

→ 1 as k→ ∞.

Then we can take k0 even larger if necessary so that

(3) ‖ek+1‖ ≤ ε‖sk‖ for all k ≥ k0,

in which case

‖ f (xk+1)− f (x̄)‖
‖sk‖

≤ L‖xk+1− x̄‖
‖sk‖

=
L‖ek+1‖
‖sk‖

≤ Lε.

Since ε can be arbitrarily small, this proves (1).
For the other direction, let (1) be satisfied for a sequence {xk}. Choose any ε ∈

(0,1/κ) and let k1 be so large that xk ∈U for all k ≥ k1 and, from (1),

‖ f (xk+1)− f (x̄)‖ ≤ ε‖sk‖ for all k ≥ k1.
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The assumed strong metric subregularity yields ‖xk+1− x̄‖≤ κ‖ f (xk+1)− f (x̄)‖ for
all k ≥ k1, and hence, ‖ek+1‖ ≤ κε‖sk‖ for all k ≥ k1. But then, for such k,

‖ek+1‖ ≤ κε‖sk‖ ≤ κε(‖ek‖+‖ek+1‖),

therefore,
‖ek+1‖
‖ek‖

≤ κε

1−κε

for all k≥ k1. Since ε can be arbitrarily small, we conclude that xk→ x̄ superlinearly
as claimed. The proof is complete.

We will now use 6E.1 to prove superlinear convergence of Newton’s method for
solving an equation f (x) = 0.

Theorem 6E.2 (superlinear convergence from strong subregularity). Consider a
function f : X → X with a zero at x̄ and suppose that there exists a > 0 such that f
is both continuously Fréchet differentiable in the ball IBa(x̄) and strongly metrically
subregular at x̄ for 0 with neighborhood IBa(x̄). Consider the Newton method

(4) f (xk)+D f (xk)(xk+1− xk) = 0 for k = 0,1, . . . .

Then every sequence {xk} generated by the iteration (4) which is convergent to x̄ is
in fact superlinearly convergent to x̄.

Proof. By elementary calculus, the boundedness of D f on IBa(x̄) implies that f is
calm at x̄. Let ε > 0; then there exists a′ ∈ (0,a] such that

(5) ‖D f (x)−D f (x′)‖ ≤ ε for all x, x′ ∈ IBa′(x̄).

Suppose that the method (4) generates a sequence {xk} convergent to x̄; then xk ∈
IBa′(x̄) for all sufficiently large k. Using (4), we have

f (xk+1) = f (xk)+
∫ 1

0
D f (xk + τsk)skdτ =

∫ 1

0
(D f (xk + τsk)−D f (xk))skdτ.

Hence, from (5), for every ε > 0 there exists k0 such that for all k > k0 one has

‖ f (xk+1)− f (x̄)‖= ‖ f (xk+1)‖ ≤ ε‖sk‖.

Since ε can be arbitrarily small, this yields (1). Applying 6E.1 we complete the
proof.

In the 1960s it was discovered that in order to have fast convergence of Newton’s
iteration (4) for solving an equation f (x) = 0 with f : IRn → IRn, it is sufficient to
use an “approximation” of the derivative D f at each iteration. This has resulted in
the rapid development of quasi-Newton methods having the form

(6) f (xk)+Bk(xk+1− xk) = 0 for k = 0,1, . . . .
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where Bk is a sequence of nonsingular matrices. The particular way Bk is constructed
determines the quasi-Newton method, e.g., the Broyden class, BFGS, SR1, etc.,
which are now considered as methods of choice for solving nonlinear equations. We
shall not discuss here specific quasi-Newton methods but rather turn our attention to
a general result, the Dennis–Moré theorem, which shows exactly how the derivative
has to be approximated in order to obtain superlinear convergence.

The Dennis–Moré theorem was initially proved for equations; here we will
present an extended version of it for the generalized equation

(7) f (x)+F(x) 3 0,

where f : X→Y is a continuously differentiable function everywhere and F : X→→Y
is a set-valued mapping with closed graph. We consider the following class of quasi-
Newton methods for solving (7):

(8) f (xk)+Bk(xk+1− xk)+F(xk+1) 3 0 for k = 0,1, . . . ,

where Bk is a sequence of linear and bounded mappings acting from X to Y . When
(7) describes the Karush-Kuhn-Tucker optimality system for a nonlinear program-
ming problem, the method (8) may be viewed as a combination of the SQP method
with a quasi-Newton method approximating the second derivative of the Lagran-
gian.

Theorem 6E.3 (Dennis–Moré theorem for generalized equations). Suppose that f
is Fréchet differentiable in an open and convex neighborhood U of x̄, where x̄ is
a solution of (7), and that the derivative mapping D f is continuous at x̄. For some
starting point x0 in U consider a sequence {xk} generated by (8) which remains in
U for all k and satisfies xk 6= x̄ for all k. Let Ek = Bk−D f (x̄).

If xk→ x̄ superlinearly, then

(9) lim
k→∞

d(0, f (x̄)+Eksk +F(xk+1))

‖sk‖
= 0.

Conversely, if the mapping x 7→ H(x) = f (x̄)+D f (x̄)(x− x̄)+F(x) is strongly
metrically subregular at x̄ for 0 and the sequence {xk} satisfies

(10) xk→ x̄ and lim
k→∞

‖Eksk‖
‖sk‖

= 0,

then xk→ x̄ superlinearly.

Proof. Suppose that the method (8) generates an infinite sequence {xk} with ele-
ments in U such that xk 6= x̄ for all k and xk→ x̄ superlinearly. Then

(11)
− f (xk)+ f (x̄)−D f (x̄)(xk+1− xk)

∈ f (x̄)+(Bk−D f (x̄))(xk+1− xk)+F(xk+1).

Thus, to obtain (9) it is sufficient to show that for any δ > 0
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(12) ‖ f (xk)− f (x̄)+D f (x̄)sk‖ ≤ δ‖sk‖ for all sufficiently large k.

Let ε > 0. Then there exists k0 such that

(13) ‖D f (x̄+ τek)−D f (x̄)‖< ε for all τ ∈ [0,1] and k ≥ k0.

Choose k0 larger if necessary so that, by the superlinear convergence,

(14)
‖ek+1‖
‖ek‖

< ε for all k ≥ k0.

Relying on (2), we can take k0 even larger if necessary to obtain

(15) ‖ek‖< 2‖sk‖ for all k ≥ k0.

Using the equality

f (xk)− f (x̄)+D f (x̄)sk = f (xk)− f (x̄)−D f (x̄)ek +D f (x̄)ek+1

=
∫ 1

0
[D f (x̄+ τek)−D f (x̄)]ekdτ +D f (x̄)ek+1

together with (13), (14) and (15), we obtain that, for k ≥ k0,

(16)
‖ f (xk)− f (x̄)+D f (x̄)sk‖

< ε‖ek‖+‖D f (x̄)‖‖ek+1‖< 2ε(1+‖D f (x̄)‖)‖sk‖.

Hence, for every δ > 0 one can find a sufficiently small ε such that (12) holds. Then
(9) is satisfied, too.

To prove the second part of the theorem, let the sequence {xk} be generated by
(8) for some x0 in U , remain in U and satisfy xk 6= x̄ for all k, and let condition (10)
be satisfied. By the assumption of strong metric subregularity, there exist a positive
scalar κ and a neighborhood U ′ ⊂U such that

(17) ‖x− x̄‖ ≤ κd(0,H(x)) for all x ∈U ′.

Clearly, for all sufficiently large k we have xk ∈U ′. Since

f (x̄)+D f (x̄)ek− f (xk)−Eksk ∈ H(xk+1),

we obtain from (17) that, for all large k,

(18) ‖xk+1− x̄‖ ≤ κ‖ f (x̄)+D f (x̄)ek− f (xk)−Eksk‖.

Let ε ∈ (0,1/κ) and choose k0 so large that (13) holds for k≥ k0 and τ ∈ [0,1], and
(18) is satisfied for all k ≥ k0. Then,

(19) ‖ f (xk)− f (x̄)−D f (x̄)ek‖= ‖
∫ 1

0
[D f (x̄+ τek)−D f (x̄)]ekdτ‖ ≤ ε‖ek‖.
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Make k0 even larger if necessary so that, by condition (10),

(20) ‖Eksk‖< ε‖sk‖ for all k ≥ k0.

Then, from (18), taking into account (19) and (20), for k ≥ k0 we obtain

‖xk+1− x̄‖ ≤ κ‖ f (x̄)+D f (x̄)ek− f (xk)‖+κ‖Eksk‖
< κε‖ek‖+κε‖sk‖< κε(2‖ek‖+‖ek+1‖).

Thus,
‖ek+1‖
‖ek‖

<
2κε

1−κε
.

Since ε can be arbitrarily small, this implies that xk→ x̄ superlinearly.

For the case of an equation, that is, for F ≡ 0 and f (x̄) = 0, we obtain from 6E.3
the well-known Dennis–Moré theorem for equations; it was originally stated in IRn,
now we have it in Banach spaces:

Theorem 6E.4 (Dennis–Moré theorem for equations). Suppose that f : X → X is
Fréchet differentiable in an open convex set D in X containing x̄, a zero of f , that
the derivative mapping D f is continuous at x̄ and that there exists a constant α > 0
such that ‖D f (x̄)w‖ ≥ α‖w‖ for all w ∈ X . Let {Bk} be a sequence of linear and
bounded mappings from X to X and let for some starting point x0 in D the sequence
{xk} be generated by (6), remain in D for all k and satisfy xk 6= x̄ for all k. Then
xk→ x̄ superlinearly if and only if

xk→ x̄ and lim
k→∞

‖Eksk‖
‖sk‖

= 0,

where Ek = Bk−D f (x̄).

The quasi-Newton method (6) can be viewed as an inexact version of the New-
ton method (4) which clearly has computational advantages. Another way to intro-
duce inexactness is to terminate the iteration (4) when a certain level of accuracy
is reached, determined by the residual f (xk). Specifically, consider the following
inexact Newton method: given a sequence of positive scalars ηk and a starting point
x0, the (k+1)st iterate is chosen to satisfy the condition

(21) ‖ f (xk)+D f (xk)(xk+1− xk)‖ ≤ ηk‖ f (xk)‖.

For example, if the linear equation in (4) is solved by an iterative method, say SOR,
then the iteration is terminated when the condition (21) is satisfied for some k. Note
that (21) can be also written as

( f (xk)+D f (xk)(xk+1− xk))∩ IBηk‖ f (xk)‖(0) 6= /0.
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In sections 6C and 6D we studied the exact Newton iteration for solving (7), but
now we will focus on the following inexact version of it. Given x0 compute xk+1 to
satisfy

(22) ( f (xk)+D f (xk)(xk+1− xk)+F(xk+1))∩Rk(xk) 6= /0 for k = 0,1, . . . ,

where Rk : X →→ Y is a sequence of set-valued mappings with closed graphs which
represent the inexactness. In the case when F is the zero mapping and Rk(xk) =
IBηk‖ f (xk)‖(0), the iteration (22) reduces to (21).

Theorem 6E.5 (convergence of inexact Newton method). Suppose that the function
f is continuously Fréchet differentiable in a neighborhood of a solution x̄ and the
mapping f +F is strongly metrically subregular at x̄ for 0.

(a) Let there exist a sequences of positive scalars γk↘0 and β > 0 such that

(23) sup
x∈Rk(u)

‖x‖ ≤ γk‖u− x̄‖ for all u ∈ IBβ (x̄), k = 0,1, . . . .

Then every sequence {xk} generated by the Newton method (22) which is conver-
gent to x̄ is in fact superlinearly convergent to x̄.

(b) Suppose that the derivative mapping D f is Lipschitz continuous near x̄ with
Lipschitz constant L and let there exist positive scalars γ and β such that

(24) sup
x∈Rk(u)

‖x‖ ≤ γ‖u− x̄‖2 for all u ∈ IBβ (x̄), k = 0,1, . . . .

Then every sequence {xk} generated by the Newton method (22) which is conver-
gent to x̄ is in fact quadratically convergent to x̄.

In the proof we employ the following corollary of Theorem 3I.7, stated as an
exercise.

Exercise 6E.6. Suppose that the mapping f +F is strongly metrically subregular
at x̄ for 0 with constant λ . For any u ∈ X consider the mapping

X 3 x 7→ Gu(x) = f (u)+D f (u)(x−u)+F(x).

Prove that for every κ > λ there exists a > 0 such that

(25) ‖x− x̄‖ ≤ κd( f (u)+D f (u)(x̄−u)− f (x̄),Gu(x)) for every x ∈ IBa(x̄).

Guide. Let κ > λ and let µ > 0 be such that λ µ < 1 and κ > λ/(1−λ µ). There
exists a > 0 such that

(26) ‖D f (x)−D f (x′)‖ ≤ µ for every x,x′ ∈ IBa(x̄).

Fix u ∈ X and consider the function

x 7→ gu(x) = f (u)+D f (u)(x−u)− f (x).
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For every x ∈ IBa(x̄), using (26), we have

‖gu(x)−gu(x̄)‖= ‖ f (x̄)− f (x)−D f (u)(x̄− x)‖
= ‖∫ 1

0 [D f (x+ t(x̄− x))(x̄− x)−D f (u)(x̄− x)]dt‖ ≤ µ‖x− x̄‖,

that is, clm(g; x̄)≤ µ . Apply Theorem 3I.7 to the mapping gu+ f +F =Gu to obtain
(25).

Proof of 6E.5(a). Let the mapping f + F be strongly metrically subregular at x̄
for 0 with constant λ and consider any sequence {xk} generated by the Newton
method (22) which is convergent to x̄. Let κ > λ and choose a > 0 such that (25)
holds. Pick any µ > 0 and adjust a if necessary so that a ≤ β and (26) is satisfied
with that µ . Then xk ∈ IBa(x̄) for k sufficiently large. For all such k there exists
yk ∈ Rk(xk)∩Gxk(xk+1) and from (25) we have

‖xk+1− x̄‖ ≤ κ‖ f (xk)+D f (xk)(x̄− xk)− f (x̄)− yk‖
≤ κµ‖xk− x̄‖+κ‖yk‖ ≤ κ(µ + γk)‖xk− x̄‖.

If xk 6= x̄ for all k, passing to the limit as k→ ∞ we obtain

(27) lim
k→∞

‖xk+1− x̄‖
‖xk− x̄‖ ≤ κµ.

Since µ can be arbitrary small and the limit on the left side of (27) does not depend
on it, we are done.

Proof of 6E.5(b). As in the preceding argument, pick κ > λ and choose a > 0 such
that (25) holds. Let L be a Lipschitz constant of D f and make a smaller if necessary
so that a≤ β and

‖D f (u)−D f (v)‖ ≤ L‖u− v‖ for all u,v ∈ IBa(x̄).

Then, for any x ∈ IBa(x̄) we have the standard estimate

(28)
‖ f (x)+D f (x)(x̄− x)− f (x̄)‖

=
∥∥∥∫ 1

0 D f (x̄+ t(x− x̄))(x− x̄)dt−D f (x)(x− x̄)
∥∥∥≤ L

2‖x− x̄‖2.

Consider a sequence {xk} generated by Newton method (22) which is convergent
to x̄. By repeating the argument of case (a) and employing (28) in place of (26), we
obtain

‖xk+1− x̄‖ ≤ κ(γ +L/2)‖xk− x̄‖2.

Hence, {xk} converges quadratically to x̄.
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6F. Nonsmooth Newton’s Method

In this section we continue our study of Newton’s method for solving the gener-
alized equation

(1) find x such that f (x)+F(x) 3 0,

now in finite dimensions, where the set-valued mapping F : IRn →→ IRn has closed
graph but, in contrast to the preceding section, the function f : IRn → IRn is not
necessarily differentiable. Let x̄ be a solution of (1). To introduce a Newton-type
iteration for (1) we use a “linearization” at x̄ of the form

(2) GA : x 7→ f (x̄)+A(x− x̄)+F(x),

where the matrix A is an element of Clarke’s generalized Jacobian ∂̄ f (x̄) defined in
Section 4D. We focus on a class of nonsmooth functions defined next.

Semismooth functions. A function f : IRn → IRm is said to be semismooth at x̄ ∈
int dom f when it is Lipschitz continuous around x̄, directionally differentiable in
every direction, and for every ε > 0 there exists δ > 0 such that

| f (x)− f (x̄)−A(x− x̄)| ≤ ε|x− x̄| for every x ∈ IBδ (x̄) and every A ∈ ∂̄ f (x).

Examples.
1) The function f (x) = |x| is semismooth at 0 and smooth everywhere else.
2) The function f : IR2 → IR defined as f (x) = x1 + x2− |x| is semismooth at

zero. This function is known as the Fischer-Burmeister function and is used to nu-
merically handle complementarity problems.

3) Every piecewise smooth function is semismooth in the interior of its domain.
4) A Lipschitz continuous function f : IRn→ IRm is semismooth at x̄ if and only

if for any A ∈ ∂̄ f (x̄+h) one has Ah− f ′(x̄;h) = o(|h|).
We consider the following version of Newton’s method for solving (1):

(3) f (xk)+Ak(xk+1− xk)+F(xk+1) 3 0 for Ak ∈ ∂̄ f (xk), k = 0,1, . . . .

When the function f in (1) is semismooth, the method (3) is usually referred to as
semismooth Newton’s method.

Theorem 6F.1 (superlinear convergence of semismooth Newton method). Consider
the method (3) applied to (1) with a solution x̄ for a function f which is semismooth
at x̄ and assume that

(4) for every A ∈ ∂̄ f (x̄) the mapping GA defined in (2)
is strongly metrically regular at x̄ for 0.

Then there exists a neighborhood O of x̄ such that for every x0 ∈ O and k = 0,1, . . .
and for every Ak ∈ ∂̄ f (xk) there is a unique in O sequence {xk} generated by the



6 Applications in Numerical Variational Analysis 393

method (3) and this sequence converges to x̄. In fact, the sequence generated in such
a way is superlinearly convergent to x̄.

In preparation to proving Theorem 6F.1 we present a proposition, which shows
that G−1

A has a Lipschitz continuous single-valued localization uniformly in A ∈
∂̄ f (x̄), in the sense that the neighborhoods and the Lipschitz constant associated
with the localization of G−1

A are the same for all A ∈ ∂̄ f (x̄).

Proposition 6F.2 (strong regularity for generalized Jacobian). For a solution x̄ of
(1) suppose that f is Lipschitz continuous around x̄ and condition (4) is fulfilled.
Then there exist constants α , β and ` such that for every A ∈ ∂̄ f (x̄), the mapping
IBβ (0) 3 y 7→ G−1

A (y)∩ IBα(x̄) is a Lipschitz continuous function with Lipschitz
constant `.

Proof. Choose any A∈ ∂̄ f (x̄) as well as positive constants κ and κ ′ such that κ ′< κ

and the mapping G−1
A has a Lipschitz continuous localization around 0 for x̄ with a

Lipschitz constant κ ′ and neighborhoods IBa(x̄) and IBb(0) for some positive a and
b. Make b > 0 smaller if necessary so that

b < 2a/κ
′.

Let ε > 0 satisfy

ε < 1/κ
′, κ

′/(1−κ
′
ε)≤ κ, εa≤ b/2 and κ

′b/2≤ a(1−κ
′
ε).

Choose any A′ ∈ ∂̄ f (x̄) such that |A−A′|< ε. Now consider the mapping GA′ asso-
ciated with A′ as in (2). For every y ∈ IBb/2(0) and every x ∈ IBa(x̄) we have

|y+(A−A′)(x− x̄)| ≤ b/2+ εa≤ b.

Clearly,

x ∈ G−1
A′ (y)∩ IBa(x̄) ⇐⇒ x ∈ ξy(x) := G−1

A (y+(A−A′)(x− x̄))∩ IBa(x̄).

Let y ∈ IBb/2(0). We have

|ξy(x̄)− x̄|= |G−1
A (y)∩ IBa(x̄)−G−1

A (0)∩ IBa(x̄)| ≤ κ
′b/2≤ a(1−κ

′
ε).

Further, for any x,x′ ∈ IBa(x̄) we obtain

|ξy(x)−ξy(x′)| ≤ κ
′|(A−A′)(x− x′)| ≤ κ

′
ε|x− x′|.

Thus, from the standard contraction principle 1A.2 the function IBa(x̄) 3 x 7→ ξy(x)
has a unique fixed point x(y) in IBa(x̄). Since x(y) = G−1

A′ (y)∩ IBa(x̄) for every y ∈
IBb/2(0), we conclude that the mapping IBb/2(0) 3 y 7→ x(y) = G−1

A′ (y)∩ IBa(x̄) is
single-valued. Furthermore, for any y,y′ ∈ IBb/2(0) we have

|x(y)− x(y′)| = |ξy(x(y))−ξy′(x(y
′))|
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≤ κ
′|y− y′|+κ

′|(A−A′)(x(y)− x(y′))|
≤ κ

′|y− y′|+κ
′
ε|x(y)− x(y′)|,

hence x(·) is Lipschitz continuous on IBb/2(0) with Lipschitz constant κ ′/(1−
κ ′ε) ≤ κ . Thus, for a, b, ε , κ and κ ′ as above, and for any A′ ∈ ∂̄ f (x̄) with
A′ ∈ int IBε(A) the mapping G−1

A′ has a Lipschitz continuous single-valued local-
ization around 0 for x̄ with neighborhoods IBa(x̄) and IBb/2(0) and with Lipschitz
constant κ. In other words, for any matrix A′ which is sufficiently close to A the
sizes of the neighborhoods and the Lipschitz constant associated with the localiza-
tion of G−1

A′ remain the same.
Pick any A ∈ ∂̄ f (x̄) and corresponding a, b, κ and κ ′, and then εA > 0 to obtain

that for every A′ ∈ int IBεA(A) the mapping IBb/2(0) 3 y 7→ G−1
A′ (y)∩ IBa(x̄) is a Lip-

schitz continuous function with Lipschitz constant κ . Since ∂̄ f (x̄) is compact, from
the open covering ∪A∈∂̄ f (x̄)int IBεA(A) of ∂̄ f (x̄) we can choose a finite subcovering
with open balls int IB

εAi (Ai); let ai, bi and κi be the constants associated with the
Lipschitz localizations for G−1

Ai
. Taking α = mini ai, β = mini bi/2 and `= maxi κi

we terminate the proof.

Proof of Theorem 6F.1. According to Proposition 6F.2, under condition (4) there
exist constants α , β and ` such that for every A ∈ ∂̄ f (x̄), the mapping IBβ (0) 3 y 7→
G−1

A (y)∩ IBα(x̄) is a Lipschitz continuous function with Lipschitz constant `. Pick
positive ν and a such that

(5) ν <
1
2
, `ν <

1
2

and a≤min{α,β}.

Make a smaller if necessary so that, from the outer semicontinuity of the generalized
Jacobian ∂̄ f , for any x ∈ IBa(x̄) and any A ∈ ∂̄ f (x) there exists Ā ∈ ∂̄ f (x̄) such that

(6) |A− Ā| ≤ ν ,

and also, from the semismoothness of f , for any x ∈ IBa(x̄) and any A ∈ ∂̄ f (x),

(7) | f (x)− f (x̄)−A(x− x̄)| ≤ ν |x− x̄|.

Let x0 ∈ IBa(x̄) and let A0 ∈ ∂̄ f (x0). Choose Ā0 ∈ ∂̄ f (x̄) such that, according to
(6), |A0− Ā0| ≤ ν . Then, for any x ∈ IBa(x̄), from (5), (6) and (7) we have

| f (x̄)− f (x0)+A0(x0− x̄)+(Ā0−A0)(x− x̄)| ≤ νa+νa < a≤ β .

Consider the function

IBa(x̄) 3 x 7→ ξ0(x) := G−1
Ā0
( f (x̄)− f (x0)+A0(x0− x̄)+(Ā0−A0)(x− x̄))∩ IBa(x̄).

Since

ξ0(x̄) = G−1
Ā0
( f (x̄)− f (x0)+A0(x0− x̄))∩ IBa(x̄) and x̄ = G−1

Ā0
(0)∩ IBa(x̄),
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we have from 6F.2, (5) and (7) that

|ξ0(x̄)− x̄| ≤ `| f (x̄)− f (x0)+A0(x0− x̄)| ≤ `νa < a(1− `ν).

For any x,x′ ∈ IBa(x̄) we obtain

|ξ0(x)−ξ0(x′)| ≤ `|(Ā0−A0)(x− x′)| ≤ `ν |x− x′|.

Hence, by the standard contraction mapping theorem 1A.2, there exists a unique
x1 ∈ IBa(x̄) such that x1 = ξ0(x1). That is, there exists a unique x1 ∈ IBa(x̄) which
satisfies the iteration (3) for k = 0. Furthermore, using (7),

|x1− x̄| = |ξ0(x1)− x̄|
= |G−1

Ā0
( f (x̄)− f (x0)+A0(x0− x̄)+(Ā0−A0)(x1− x̄))∩ IBa(x̄)

−G−1
Ā0
(0)∩ IBa(x̄)|

≤ `| f (x̄)− f (x0)+A0(x0− x̄)|+ `ν |x1− x̄|,

which gives us

|x1− x̄| ≤ `| f (x̄)− f (x0)+A0(x0− x̄)|
1− `ν

≤ `ν

1− `ν
|x0− x̄|.

The induction step is completely analogous. Given xk ∈ IBa(x̄) and Ak ∈ ∂̄ f (xk) we
choose Āk ∈ ∂̄ f (x̄) such that |Ak− Āk| ≤ ν . Then we consider the function

IBa(x̄) 3 x 7→ ξk(x) := G−1
Āk
( f (x̄)− f (xk)+Ak(xk− x̄)+(Āk−Ak)(x− x̄))∩ IBa(x̄),

for which we show the existence of a unique xk+1 in IBa(x̄) satisfying the iteration
(3) and

|xk+1− x̄| ≤ `| f (x̄)− f (xk)+Ak(xk− x̄)|
1− `ν

≤ `ν

1− `ν
|xk− x̄|.

Since `ν/(1− `ν)< 1 the sequence {xk} converges to x̄. Let O = IBa(x̄).
We will show now that the sequence {xk} constructed in such a way is convergent

superlinearly. Let ε ∈ (0,ν) and choose α ∈ (0,a) such that (6) and (7) hold with
ν = ε . Let k0 be so large that xk ∈ IBα(x̄) and xk 6= x̄ for all k ≥ k0. Then

|xk+1− x̄| = |G−1
Āk
( f (x̄)− f (xk)+Ak(xk− x̄)+(Āk−Ak)(xk+1− x̄))∩ IBa(x̄)

−G−1
Āk
(0)∩ IBa(x̄)|

≤ `| f (x̄)− f (xk)+Ak(xk− x̄)|+ `ε|xk+1− x̄|
≤ `ε|xk− x̄|+ `ε|xk+1− x̄|.

Hence
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|xk+1− x̄|
|xk− x̄| ≤

`ε

1− `ε
.

Since ε can be arbitrarily small, we have superlinear convergence.

Since every smooth function is semismooth and condition (4) reduces to strong
metric regularity of the mapping x 7→ f (x̄)+D f (x̄)(x− x̄)+F(x) at x̄ for 0, which is
in turn equivalent to strong metric regularity of f +F at x̄ for 0, in finite dimensions
Theorem 6C.1 is a particular case of 6F.1.

In further lines we utilize the following property of the generalized Jacobian.

Proposition 6F.3 (selection of generalized Jacobian). Let f : IRn→ IRm be Lipschitz
continuous around x̄. Then for every ε > 0 there exists δ > 0 such that for every
x,x′ ∈ IBδ (x̄) there exists A ∈ ∂̄ f (x̄) with the property

| f (x)− f (x′)−A(x− x′)| ≤ ε|x− x′|.

Proof. Let ε > 0. From the outer semicontinuity of ∂̄ f there exists δ > 0 such that

∂̄ f (x)⊂ ∂̄ f (x̄)+ εIBm×n for all x ∈ IBδ (x̄).

Thus, for any x,x′ ∈ IBδ (x̄),

∂̄ f (tx+(1− t)x′)⊂ ∂̄ f (x̄)+ εIBm×n.

The set on the right side of this inclusion is convex and does not depend on t, hence

co
⋃

t∈[0,1]
∂̄ f (tx+(1− t)x′)⊂ ∂̄ f (x̄)+ εIBm×n.

But then, from the mean value theorem stated before 4D.3, there exists A ∈ ∂̄ f (x̄)
with the desired property.

We are now also ready to present a proof of the inverse function theorem for
nonsmooth generalized equations, which we left unproved in Section 4D.

Proof of Theorem 4D.4. Without loss of generality, let ȳ = 0. Then the assumption
of 4D.4 becomes condition (4). According to 6F.2, there exist constants β and `
such that for every A ∈ ∂̄ f (x̄), the mapping

IB2β (0) 3 y 7→ sA := G−1
A (y)∩ IB2`β (x̄)

is a Lipschitz continuous function with Lipschitz constant `. Let L > lip( f ; x̄). Ad-
just β if necessary so that f is Lipschitz continuous on IB2`β (x̄) with Lipschitz con-
stant L and, from Proposition 3G.6, the set gph F∩(IB`β (x̄)×IBβ (− f (x̄))) is closed.
Since ∂̄ f (x̄) is compact, there exists µ such that

(8) sup
A∈∂̄ f (x̄)

|A| ≤ µ.
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Define the function

∂̄ f (x̄)× IBβ (0) 3 (A,z) 7→ ϕ(A,z) := sA(z)∩ IB`β (x̄).

Then ϕ has the following properties:
(a) dom ϕ = ∂̄ f (x̄)× IBβ (0) thanks to the Lipschitz continuity of sA with Lip-

schitz constant `;
(b) For each A ∈ ∂̄ f (x̄) the function ϕ(A, ·) = sA is Lipschitz continuous on

IBβ (0) with Lipschitz constant `;
(c) For each A ∈ ∂̄ f (x̄) one has ϕ(A,0) = x̄ = sA(0);
(d) ϕ is continuous in its domain.
Only (c) needs to be proved. Let {An} be a sequence of matrices from ∂̄ f (x̄)

which is convergent to Ā and {zn} be a sequence of points from IBβ (0) convergent
to z̄; then Ā ∈ ∂̄ f (x̄) and z̄ ∈ IBβ (0). Set ū = ϕ(Ā, z̄) and un = ϕ(An,zn) for each
natural n. We have

zn ∈ f (x̄)+An(un− x̄)+F(un),

that is,
f (x̄)+ Ā(un− x̄)+F(un) 3 zn +(Ā−An)(un− x̄).

Since each un ∈ IB`β (x̄) and An→ Ā as n→ ∞, we obtain that

zn +(Ā−An)(un− x̄) ∈ IB2β (0) for all n sufficiently large.

Then, using the definitions of un and ū, and property (b),

|un− ū| = |sĀ(zn +(Ā−An)(un− x̄))− sĀ(z̄)|
≤ l|zn− z̄|+ l2

β |Ā−An| → 0 as n→ ∞.

Thus (c) is established.
Our next step is to show that

(9) the mapping ( f +F)−1 has a nonempty-valued
graphical localization around 0 for x̄.

In preparation for that, fix ε ∈ (0,1/`) and then apply Proposition 6F.3 to find δ such
that for each two distinct points u and v in IB3δ (x̄) there exists A ∈ ∂̄ f (x̄) satisfying

(10) | f (v)− f (u)−A(v−u)|< ε|v−u|.

Adjust δ if necessary to satisfy

(11) 0 < 3δ <
β

(1/`+L+µ)
.

Clearly, δ < `β . Set

(12) b := (1− `ε)δ , then b < δ .
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For any y ∈ IBεb(0), w ∈ IBδ (x̄), ũ ∈ IBδ (x̄) and A ∈ ∂̄ f (x̄) the relations (8), (11) and
(12) yield the estimate

|y− f (w)+ f (x̄)+A(w− ũ)| ≤ |y|+L|w− x̄|+µ|w− x̄|+µ|ũ− x̄|
≤ εb+Lδ +2µδ < 2δ (1/`+L+µ)< 2β/3,

hence,

(13)
y− f (w)+ f (x̄)+A(w− ũ) ∈ IB2β/3(0)

whenever (y,w, ũ,A) ∈ IBεb(0)× IBδ (x̄)× IBδ (x̄)× ∂̄ f (x̄).

Let y ∈ IBεb(0) be fixed. We will now find x ∈ ( f +F)−1(y)∩ IBδ (x̄); this will
prove (9). Denote K = IB2`εδ (0)\{0}. Fix u ∈ IBδ (x̄) and define the function

(14) ∂̄ f (x̄) 3 A 7→Φu(A) = ϕ
(
A,y− f (u)+ f (x̄)+A(u− x̄)

)
−u.

By (13) with ũ = x̄ and w = u we obtain that dom Φu = ∂̄ f (x̄). From the continuity
of ϕ , for any u ∈ IBδ (x̄) the function Φu is continuous in its domain. If there exist
A ∈ ∂̄ f (x̄) and u ∈ IBδ (x̄) such that Φu(A) = 0, then x ∈ ( f +F)−1(y). If this is not
the case, that is,

(15) Φu(A) 6= 0 for all A ∈ ∂̄ f (x̄) and all u ∈ IBδ (x̄),

we will construct a sequence of points convergent to an x ∈ ( f +F)−1(y). To this
end, we make use of the following two lemmas:

Lemma 4D.1a. Given u ∈ IBδ (x̄), suppose that there exist v ∈ IBδ (x̄) \ {u} along
with Ã ∈ ∂̄ f (x̄) satisfying

(16) | f (v)− f (u)− Ã(v−u)| ≤ ε|v−u| and f (v)+ Ã(u− v)+F(u) 3 y.

Then

(17) 0 < |Φu(A)| ≤ `ε|u− v| whenever A ∈ ∂̄ f (x̄).

In particular, Φu maps ∂̄ f (x̄) into K.

Proof. Pick any A ∈ ∂̄ f (x̄). The first inequality follows from (15). For z := y−
f (v)+ f (x̄)+A(u− x̄)− Ã(u− v), the inclusion (13) with A = Ã, w = v and ũ = u
combined with (11) implies that

|z| ≤ |y− f (v)+ f (x̄)+ Ã(v−u)|+ |A(u− x̄)| ≤ 2β/3+µδ < 2β/3+β/3 = β .

Rearranging the inclusion in (16) gives us

f (x̄)+A(u− x̄)+F(u) 3 y+ f (x̄)+A(u− x̄)− f (v)− Ã(u− v) = z.

Therefore, u = ϕ(A,z) and we conclude that
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|Φu(A)| = |ϕ
(
A,y− f (u)+ f (x̄)+A(u− x̄)

)
−ϕ(A,z)|

≤ `| f (v)− f (u)− Ã(v−u)| ≤ `ε|u− v| ≤ 2`εδ ,

that is, (17) holds.

Keeping u ∈ IBδ (x̄) fixed define the following set-valued mapping acting from K
into the subsets of ∂̄ f (x̄):

(18) K 3 h 7→Ψu(h) =
{

A ∈ ∂̄ f (x̄) : | f (u+h)− f (u)−Ah| ≤ ε|h|
}
.

Lemma 4D.1b. Given u ∈ IBδ (x̄), suppose that Φu maps ∂̄ f (x̄) into K. Then there
exists a continuous selection ψu of the mapping Ψu such that the function defined as
the composition ψu ◦Φu has a fixed point.

Proof. Note that the values of Ψu are closed convex sets. Fix any h ∈ K. Since
ε < 1/`, we get that |u+h− x̄| ≤ |u− x̄|+ |h| ≤ δ +2`εδ < 3δ . Hence u and u+h
are distinct elements of IB3δ (x̄). Then (10) with v = u+h implies that dom Ψu = K.
We show next that Ψu is inner semicontinuous. Fix any h ∈ K, and let Ω be an open
set in ∂̄ f (x̄) which meets Ψu(h). Let A ∈Ψu(h)∩Ω . According to (10), there is
Ã ∈ ∂̄ f (x̄) such that

| f (u+h)− f (u)− Ãh|< ε|h|.
Since Ω is open and A∈Ω , there exists λ ∈ (0,1) such that Aλ := (1−λ )A+λ Ã∈
Ω . Put

V = {τ ∈ K | | f (u+ τ)− f (u)−Aλ τ|< ε|τ|} .
The estimate

| f (u+h)− f (u)−Aλ h| ≤ (1−λ )| f (u+h)− f (u)−Ah|
+λ | f (u+h)− f (u)− Ãh|

< (1−λ )ε|h|+λε|h|= ε|h|,

tells us that h ∈V . Employing the continuity of f , we have that every τ sufficiently
close to h belongs to V ; hence V is a neighborhood of h in K. From the definitions
of Ψu and V we get that Aλ ∈Ψu(w) for every w ∈ V, therefore Ψu(w) intersects Ω

for every w ∈ V . This proves that Ψu is inner semicontinuous. Michael’s selection
theorem 5J.5 yields the existence of a continuous selection ψu for Ψu, that is, a
function acting from K into ∂̄ f (x̄) which is continuous in its domain and has the
property that if w ∈ K and A := ψu(w) then

(19) | f (u+w)− f (u)−Aw| ≤ ε|w|.

Since ∂̄ f (x̄) is a compact convex set, Φu is a continuous function, and by assump-
tion Φu maps ∂̄ f (x̄) into K, by Brouwer’s fixed point theorem 1G.2 the composite
mapping ψu ◦Φu acting from ∂̄ f (x̄) into itself has a fixed point.
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In our next step, based on the above lemmas, we will construct sequences {xn}
in IRn and {An} in ∂̄ f (x̄) whose entries have the following properties for each n:

(i) |xn− x̄|< δ ;
(ii) 0 < |xn+1− xn| ≤ (lε)n|x1− x0|;
(iii) | f (xn+1)− f (xn)−An(xn+1− xn)| ≤ ε|xn+1− xn|;
(iv) f (xn)+An(xn+1− xn)+F(xn+1) 3 y.

Clearly, x0 := x̄ satisfies (i) for n = 0. For any A ∈ ∂̄ f (x̄), we have Φx0(A) =
ϕ(A,y)− x0. Using the properties (a) and (b) of the function ϕ along with (12)
and (15), we moreover have that for any A ∈ ∂̄ f (x̄),

0 < |Φx0(A)|= |ϕ(A,y)−ϕ(A,0)| ≤ `|y| ≤ `εb < `εδ < δ .

Hence Φx0 maps ∂̄ f (x̄) into K. According to Lemma 4D.1b, there exists a contin-
uous selection ψx0 of the mapping Ψx0 such that the composite function ψx0 ◦Φx0

has a fixed point. Denote this fixed point by A0; that is, A0 = ψx0(Φx0(A0))∈ ∂̄ f (x̄).
Then

x1 := x0 +Φx0(A0) = ϕ(A0,y)

satisfies (i) with n = 1, as well as (ii) and (iv) with n = 0. Since A0 = ψx0(x1− x0),
condition (iii) holds as well thanks to (19).

Further, we proceed by induction. Suppose that for some natural number N > 0
we have found xn+1 and An that satisfy conditions (i)–(iv) for all n<N. Set v := xN−1
and Ã = AN−1. Conditions (ii)–(iv) with n = N − 1 imply that the mapping ΦxN

satisfies the assumption (16) of Lemma 4D.1a. Hence, by using lemmas 4D.1a and
4D.1b, we obtain that there exists AN ∈ ∂̄ f (x̄) such that AN = ψxN (ΦxN (AN)). Let

(20) xN+1 = xN +ΦxN (AN) = ϕ
(
AN ,y− f (xN)+ f (x̄)+AN(xN− x̄)

)
.

Then

f (x̄)+AN(xN+1− x̄)+F(xN+1) 3 y− f (xN)+ f (x̄)+AN(xN− x̄).

This is (iv) for n = N. Since AN = ψxN (xN+1−xN), (iii) holds for n = N. Combining
(17), (20), and (ii) for n = N−1, gives us (ii) for n = N. Furthermore, since

|x1− x0|= |x1− x̄|= |Φx0(A0)| ≤ `εb,

using (ii) and (12), we conclude that

|xN+1− x̄| ≤
N

∑
n=0
|xn+1− xn|<

|x1− x̄|
1− `ε

≤ `εb
1− `ε

= `εδ < δ .

We arrive at (i) for n = N +1. The induction step is complete.
By (ii), the sequence {xn} is a Cauchy sequence, hence it converges to some

x ∈ IBδ (x̄). For any n, from (i), both xn and xn+1 are in IBδ (x̄)⊂ IB`β (x̄). Moreover,
from (13) for ũ = xn, w = xn+1 and A = An, combined with (ii), we get
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|y− f (xn)+ f (x̄)+An(xn+1− xn)|
≤ |y− f (xn+1)+ f (x̄)+An(xn+1− xn)|+ | f (xn+1)− f (xn)|
< 2β/3+L|x1− x0|< 2β/3+Lδ < 2β/3+β/3 = β .

Using (iv) we obtain(
xn+1,y− f (xn)−An(xn+1− xn)

)
∈ gphF ∩

(
IB`β (x̄)× IBβ (− f (x̄))

)
.

Passing to the limit and remembering the set on the right is closed, we conclude that
f (x)+F(x) 3 y, that is, x ∈ ( f +F)−1(y)∩ IBδ (x̄). Since y ∈ IBεb(0) was chosen
arbitrarily, the mapping

IBεb(0) 3 y 7→ σ(y) := ( f +F)−1(y)∩ IBδ (x̄)

is a nonempty-valued localization of ( f +F)−1. Thus, (9) is established.
It remains to show that σ is a Lipschitz continuous function. Choose any y′,y′′ ∈

IBεb(0). Pick any x′ ∈ σ(y′) and x′′ ∈ σ(y′′). Then there exists A ∈ ∂̄ f (x̄) such that

| f (x′)− f (x′′)−A(x′− x′′)| ≤ ε|x′− x′′|.

Using (13) we get that both

y′− f (x′)+ f (x̄)+A(x′− x̄) and y′′− f (x′′)+ f (x̄)+A(x′′− x̄)

are in IBβ (0). Moreover, we have

x′ = sA(y′− f (x′)+ f (x̄)+A(x′− x̄)) and x′′ = sA(y′′− f (x′′)+ f (x̄)+A(x′′− x̄)).

Taking the difference, we obtain

|x′− x′′| ≤ `|y′− y′′|+ `| f (x′)− f (x′′)−A(x′− x′′)| ≤ `|y′− y′′|+ `ε|x′− x′′|.

This gives us

|x′− x′′| ≤ `

1− `ε
|y′− y′′|.

This shows that σ is both single-valued and Lipschitz continuous.

In the reminder of this section we obtain a nonsmooth version of the Dennis–
Moré theorem, a result we presented in the preceding Section 6E. We will use the
following immediate corollary of Proposition 6F.3:

Corollary 6F.4. Let f : IRn→ IRm be Lipschitz continuous around x̄ and consider a
sequence {xk} convergent to x̄ and such that xk 6= x̄. Then there exists a sequence of
matrices Ak ∈ ∂̄ f (x̄) such that

(21) lim
k→∞

| f (xk+1)− f (xk)−Aksk|
|sk|

= 0.
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As before, for a sequence {xk} convergent to x̄, let ek = xk− x̄ and sk = xk+1−xk.
Consider the following quasi-Newton method for solving (1):

(22) f (xk)+Bk(xk+1− xk)+F(xk+1) 3 0, for k = 0,1, . . . ,

where x0 is given and Bk is a sequence of n× n matrices that are to be selected
in a particular way. We will not discuss here how to construct a matrix Bk but, as
in Section 6E, we will focus on the issue how close these matrices should be to a
“derivative” of the function f to obtain superlinear convergence. In the following
theorem we show that the Dennis–Moré type theorem can be extended to general-
ized equations involving functions that are merely Lipschitz continuous, where the
derivative is replaced by a specially selected element of the generalized Jacobian.

Theorem 6F.5 (Dennis–Moré theorem for nonsmooth generalized equations). Let
f in (1) be Lipschitz continuous in a neighborhood of the reference solution x̄. Con-
sider a sequence {xk} generated by the iteration (22) which is convergent to x̄ and
such that xk 6= x̄. Let {Ak} be a sequence of matrices Ak ∈ ∂̄ f (x̄) satisfying (21)
whose existence is claimed in Corollary 6F.4, and let Ek = Bk−Ak.

If xk→ x̄ superlinearly, then

(23) lim
k→∞

d(0, f (x̄)+Eksk +F(xk+1))

|sk|
= 0.

Conversely, if the mapping f +F is strongly metrically subregular at x̄ for 0 and

(24) lim
k→∞

|Eksk|
|sk|

= 0,

then xk→ x̄ superlinearly.

Proof. Let xk→ x̄ superlinearly and let ε > 0. In the proof of 6E.1 we showed that

(25)
|sk|
|ek|
→ 1 as k→ ∞.

Then, for large k we get

(26) |ek+1| ≤ ε|sk| and |ek| ≤ 2|sk|.

Adding and subtracting in (22), we have

(27) f (x̄)− f (xk+1)+ f (xk+1)− f (xk)−Aksk ∈ f (x̄)+Eksk +F(xk+1).

Let L be a Lipschitz constant of f near x̄; then, from (26),

(28) | f (x̄)− f (xk+1)| ≤ L|ek+1| ≤ Lε|sk|.

From (21), for all sufficiently large k, we obtain
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(29) | f (xk+1)− f (xk)−Aksk| ≤ ε|sk|.

Using (28) and (29), we get

| f (x̄)− f (xk+1)+ f (xk+1)− f (xk)−Aksk|
≤ | f (x̄)− f (xk+1)|+ | f (xk+1)− f (xk)−Aksk| ≤ Lε|sk|+ ε|sk|.

Then (27) yields

d(0, f (x̄)+Eksk +F(xk+1))≤ (L+1)ε|sk|.

Since ε can be arbitrarily small, we obtain (23).
Now, suppose that the mapping f +F is strongly metrically subregular at the

solution x̄ for 0 and consider a sequence {xk} generated by (22) and convergent to
x̄ for a sequence of matrices {Bk}. Let {Ak} be a sequence of matrices Ak ∈ ∂̄ f (x̄)
satisfying (21) and suppose that (24) holds. From the assumed strong subregularity,
there exists a constant κ > 0 such that, for large k,

(30) |ek+1| ≤ κd(0, f (xk+1)+F(xk+1)).

From (22) we have

f (xk+1)− f (xk)−Aksk−Eksk ∈ f (xk+1)+F(xk+1).

Hence, using (30),

|ek+1| ≤ κ|− f (xk)−Aksk−Eksk + f (xk+1)| ≤ κ| f (xk+1)− f (xk)−Aksk|+κ|Eksk|.

Let ε ∈ (0,1/2κ). From (24), for large k,

|Eksk| ≤ ε|sk|.

Thus, from (29) and the last two estimates we obtain

|ek+1| ≤ 2κε|sk| ≤ 2κε|ek+1|+2κε|ek|.

Hence, if ek 6= 0 for all large k, we have

|ek+1|
|ek|

≤ 2κε

1−2κε
.

Since ε can be arbitrarily small this yields superlinear convergence.

For the case of an equation, when F ≡ 0 in (1), we obtain from 6F.5 the following
nonsmooth version of the Dennis–Moré theorem 6E.4:

Corollary 6F.6 (Dennis–Moré theorem for nonsmooth equations). Consider the
equation f (x) = 0 with a solution x̄, and let f be Lipschitz continuous in a neigh-
borhood U of x̄ and such that
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|x− x̄| ≤ κ| f (x)| for all x ∈U ;

that is, f is strongly metrically subregular at x̄ with constant κ > 0 and neighborhood
U . Consider a sequence {xk} generated by the iteration

f (xk)+Bk(xk+1− xk) = 0, for k = 0,1, . . . ,

which is convergent to x̄ and such that xk 6= x̄. Let {Ak} be a sequence of matrices
Ak ∈ ∂̄ f (x̄) satisfying (21) and let Ek = Bk−Ak. Then xk → x̄ superlinearly if and
only if

(31) lim
k→∞

|Eksk|
|sk|

= 0.

When the function f is continuously differentiable in a neighborhood of x̄, 6F.6
becomes 6E.4 in finite dimensions.

If the function f is not only Lipschitz continuous but also semismooth, it turns
out that the necessary condition (23) for superlinear convergence is valid for any
choice of matrices Ak ∈ ∂̄ f (xk). The proof of this statement is left to the reader as
the following exercise:

Exercise 6F.7. Consider a function f which is semismooth at x̄ and a sequence
{xk} generated by (22) which converges to x̄ superlinearly. Prove that for every
sequence of matrices {Ak} such that Ak ∈ ∂̄ f (xk) for all k, condition (23) holds with
Ek = Bk−Ak.

Guide. Repeat the proof of 6F.5 until formula (27) and write instead

(32) f (x̄)− f (xk)+Akek−Akek+1 ∈ f (x̄)+Eksk +F(xk+1).

Since the generalized Jacobian ∂̄ f is outer semicontinuous and compact-valued, the
sequence {Ak} is bounded, say, by a constant λ . Then use the semismoothness of f
and (26) to obtain

| f (xk)− f (x̄)−Akek +Akek+1| ≤ | f (xk)− f (x̄)−Akek|+ |Ak||ek+1|
≤ ε|ek|+λ |ek+1| ≤ (λ +2)ε|sk|.

The inclusion (32) then implies

d(0, f (x̄)+Eksk +F(xk+1))≤ (λ +2)ε|sk|

for all sufficiently large k.

Exercise 6F.8. State and prove a version of 6F.1 on the assumption that each GA is
metrically regular, but not necessarily strongly metrically regular.

Guide. Combine the arguments in the proofs of 6D.2 and 6F.1
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6G. Uniform Strong Metric Regularity and Path-Following

In the section we consider the generalized equation

(1) f (t,u)+F(u) 3 0,

where the function f now depends on a scalar parameter t ∈ [0,1]. Throughout,
f : IR× IRn → IRm is twice continuously differentiable everywhere (for simplicity)
and F : IRn →→ IRm is a set-valued mapping with closed graph. The equation case
corresponds to F ≡ 0 while for F = NC, the normal cone mapping to a convex and
closed set C we obtain a variational inequality. The generally set-valued mapping

S : t 7→ S(t) =
{

u ∈ IRn ∣∣ f (t,u)+F(u) 3 0
}

is the solution mapping associated with (1), and a solution trajectory over [0,1] is
in this case a function ū(·) such that ū(t) ∈ S(t) for all t ∈ [0,1], that is, ū(·) is a
selection for S over [0,1]. Clearly, the map S has closed graph.

For any given (t,u) ∈ gph S, the graph of the solution mapping of (1), define the
mapping

(2) v 7→ Gt,u(v) := f (t,u)+∇u f (t,u)(v−u)+F(v).

A point (t,u) ∈ IR1+n is said to be a strongly regular point for the generalized equa-
tion (1) when (t,u) ∈ gph S and the mapping Gt,u is strongly metrically regular at
u for 0. Then, from 2B.7 we obtain that when (t̄, ū) is a strongly regular point for
(1), then there are open neighborhoods T of t̄ and U of ū such that the mapping
T ∩ [0,1] 3 τ 7→ S(τ)∩U is single-valued and Lipschitz continuous on T ∩ [0,1].

In the theorem which follows we show that if each point in gph S is strongly
regular then there are finitely many solution trajectories; moreover, each of these
trajectories is Lipschitz continuous on [0,1] and their graphs never intersect each
other. In addition, along any such trajectory ū(·) the mapping Gt,ū(t) is strongly
regular uniformly in t ∈ [0,1], meaning that the neighborhoods and the constant
involved in the definition do not depend on t.

Theorem 6G.1 (uniform strong metric regularity). Suppose that there exists a
bounded set C ⊂ IRn such that for each t ∈ [0,1] the set S(t) is nonempty and con-
tained in C for all t ∈ [0,1]. Also, suppose that each point in gph S is strongly re-
gular. Then there are finitely many Lipschitz continuous functions ū j : [0,1]→ IRn,
j = 1,2, · · · ,M such that for each t ∈ [0,1] one has S(t) =∪1≤ j≤M{ū j(t)}; moreover,
the graphs of the functions ū j are isolated from each other, in the sense that there
exists δ > 0 such that

|u j′(t)−u j(t)| ≥ δ for every j′ 6= j and every t ∈ [0,1].

Also, there exist positive constants a, b and λ such that for each such function ūi
and for each t ∈ [0,1] the mapping
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(3) IBb(0) 3 w 7→ G−1
t,ūi(t)

(w)∩ IBa(ūi(t))

is a Lipschitz continuous function with a Lipschitz constant λ .

Proof. From the assumed uniform boundedness of the solution mapping S and the
continuity of f and its derivatives, we get, for use in what follows, the existence of
a constant K > 0 such that

(4) sup
t∈[0,1],v∈C

(|∇t f (t,v)|+ |∇u f (t,v)|+ |∇2
uu f (t,v)|+ |∇2

ut f (t,v)|)≤ K.

Let (t,v) ∈ gph S. Then, according to 2B.7 there exists a neighborhood Tt,v of
t which is open relative to [0,1] and an open neighborhood Ut,v of v such that
the mapping Tt,v 3 τ 7→ S(τ)∩Ut,v is a function, denoted ut,v(·), which is Lip-
schitz continuous on Tt,v with Lipschitz constant Lt,v. From the open covering
{Tt,v×Ut,v}(t,v)∈gph S of the graph of S, which is a compact set in IR1+n, we extract
a finite subcovering {Tt j ,v j ×Ut j ,v j}M

j=1. Let L = max1≤ j≤M Lt j ,v j .
Let τ ∈ [0,1] and choose any ū ∈ S(τ). Now we will prove that there exists a

Lipschitz continuous function ū(·) with Lipschitz constant L such that ū(t) ∈ S(t)
for all t ∈ [0,1] and also ū(τ) = ū.

Assume τ < 1. Then there exists j ∈ {1, · · · ,M} such that (τ, ū) ∈ Tt j ,v j ×Ut j ,v j .
Define ū(t) = ut j ,v j(t) for all t ∈ (t ′j, t

′′
j ) := Tt j ,v j . Then ū(τ) = ū and ū(·) is Lip-

schitz continuous on [t ′j, t
′′
j ]. If t

′′
j < 1 then there exists some i ∈ {1, · · · ,M} such that

(t
′′
j , ū(t

′′
j )) ∈ Tti,vi ×Uti,vi := (t ′i , t

′′
i )×Uti,vi . Then of course uti,vi(t

′′
j ) = ū(t

′′
j ) and we

can extend ū(·) to [t j, ti′′ ] as ū(t) = uti,vi(t) for t ∈ [t j′ , ti′′ ]. After at most M such steps
we extend ū(·) to [t j′ ,1]. By repeating the same argument on the interval [0,τ] we
extend ū(·) on the entire interval [0,1] thus obtaining a Lipschitz continuous selec-
tion for S. It τ = 1 then we repeat the same argument on [0,1] starting from 1 and
going to the left.

Now assume that (τ, ū) and (θ , ũ) are two points in gph S and let ū(·) and ũ(·) be
the functions determined by the above procedure such that ū(τ) = ū and ũ(θ) = ũ.
Assume that ū(0) 6= ũ(0) and the set ∆ := {t ∈ [0,1]

∣∣ ū(t)= ũ(t)} is nonempty. Since
∆ is closed, inf∆ := v > 0 is attained and then we have that ū(ν) = ũ(ν) and ū(t) 6=
ũ(t) for t ∈ [0,ν). But then (ν , ū(ν)) ∈ gph S cannot be a strongly regular point
of S, a contradiction. Thus, the number of different Lipschitz continuous functions
ū(·) constructed from points (τ, ū) ∈ gph S is not more than the number of points
in S(0). Hence there are finitely many Lipschitz continuous functions ū j(·) such
that for every t ∈ [0,1] one has S(t) = ∪ j{ū j(t)}. This proves the first part of the
theorem.

Choose a Lipschitz continuous function ū(·) whose values are in the set of values
of S, that is, ū(·) is one of the functions ū j(·) and its Lipschitz constant is L. Let
t ∈ (0,1) and let Gt = Gt,ū(t), for simplicity. Let at , bt and λt be positive constants
such that the mapping

(5) IBbt (0) 3 w 7→ G−1
t (w)∩ IBat (ū(t))



6 Applications in Numerical Variational Analysis 407

is a Lipschitz continuous function with Lipschitz constant λt . Make bt > 0 smaller
if necessary so that

(6) 2btλt < at .

Let ρt > 0 be such that Lρt < at/2. Then, from the Lipschitz continuity of ū around t
we have that IBat/2(ū(τ))⊂ IBat (ū(t)) for all τ ∈ (t−ρt , t+ρt). Make ρt > 0 smaller
if necessary so that

(7) K(L+1)ρt < 1/λt .

We will now apply (the strong regularity part of) Theorem 5G.3 to show that
there exist a neighborhood Ot of t and positive constants αt and βt such that for
each τ ∈ Ot ∩ [0,1] the mapping

(8) IBβt (0) 3 w 7→ G−1
τ (w)∩ IBαt (ū(t))

is a Lipschitz continuous function. Consider the function

gt,τ(v) = f (t, ū(t))− f (τ, ū(τ))

+(∇u f (t, ū(t))−∇u f (τ, ū(τ)))v

−∇u f (t, ū(t))ū(t)+∇u f (τ, ū(τ))ū(τ).

Note that the Lipschitz constant of gt,τ is bounded by the expression on the left of
(7). For each v we have

Gt(v) = Gτ(v)+gt,τ(v).

We apply Theorem 5G.3 with F = Gt , x̄ = ū(t), ȳ = 0, g = gt,τ , 2a = at , b = bt ,
κ = λt , µ = µt := K(L+1)ρt , and

(9) κ
′ = λ

′
t :=

3λt

2(1−K(L+1)ρtλt)
>

λt

1−λt µt
.

For that purpose we need to show that there exist constants αt and βt that satisfy the
inequalities

(10) αt ≤ at/2, µtαt +2βt ≤ bt , 2λ
′
t βt ≤ αt(1−λt µt), |gt,τ(ū(t))| ≤ βt .

Elementary calculus gives us

gt,τ(ū(t)) =
∫ 1

0

d
ds

f (τ + s(t− τ), ū(τ)+ s(ū(t)− ū(τ)))ds

−∇u f (τ, ū(τ))(ū(t)− ū(τ))

=
∫ 1

0
(t− τ)∇t f (τ + s(t− τ), ū(τ)+ s(ū(t)− ū(τ)))ds

+
∫ 1

0

(
∇u f (τ + s(t− τ), ū(τ)+ s(ū(t)− ū(τ)))



408 6 Applications in Numerical Variational Analysis

−∇u f (τ, ū(τ))
)
(ū(t)− ū(τ))ds

which yields

|gt,τ(ū(t))| ≤ Kρt +
1
2

KLρ
2
t +

1
2

KL2
ρ

2
t .

Choose ρt smaller if necessary such that 1
2 Lρt +L2ρt < 1; then

|gt,τ(ū(t))| ≤ 2Kρt .

Denoting A := K(1+L) and B := 2K we have

µt = Aρt and |gt,τ(ū(t))| ≤ Bρt .

Set βt := Bρt . We will now show that there exists a positive αt which satisfies all
inequalities in (10) and also

(11) λ
′
t βt < αt .

Substituting the already chosen µt and βt in (10) we obtain that αt should satisfy

(12)

αt ≤ at/2,
Aρtαt +2Bρt ≤ bt ,
2λtBρt ≤ αt(1−λtAρt).

System (12) has a solution αt > 0 provided that

2λtBρt

1−λtAρt
≤ bt −2Bρt

Aρt
and

bt −2Bρt

Aρt
≤ at/2.

Thus, everything comes down to checking whether this system of inequalities is
consistent. But this system is consistent whenever

(2B+btλtA)ρt ≤ bt ≤ (2B+Aat/2)ρt ,

which in turn always holds because of (6). Hence, there exist αt satisfying (12).
Moreover, using (9) and the third inequality in (10) we obtain

λ
′
t βt =

3
2

βtλt

1−λt µt
<

2βtλt

1−λt µt
≤ αt ,

hence (11) holds.
We are now ready to apply Theorem 5G.3 from which we conclude that the

mapping in (8) is a Lipschitz continuous function with Lipschitz constant λ ′t . From
the open covering ∪t∈[0,1](t − ρt , t + ρt) of [0,1] choose a finite subcovering of
open intervals (ti − ρti , ti + ρti), i = 1,2, . . . ,m. Let a = min{αti | i = 1, . . . ,m},
b = min{βti | i = 1, . . . ,m} and λ = max{λ ′ti | i = 1, . . . ,m}.
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We will now use the following fact which is a straightforward consequence of the
definition of strong regularity: Let a mapping H be strongly regular at x̄ for ȳ with a
Lipschitz constant κ and neighborhoods IBa(x̄) and IBb(ȳ). Then for every positive
constants a′ ≤ a and b′ ≤ b such that κb′ ≤ a′, the mapping H is strongly regular
with a Lipschitz constant κ and neighborhoods IBa′(x̄) and IBb′(ȳ). Indeed, in this
case any y ∈ IBb′(ȳ) will be in the domain of H−1(·)∩ IBa′(x̄).

From (11) we get b≤ a/λ ; then the above observation applies, hence for each τ ∈
(ti−ρti , ti+ρti)∩ [0,1] the mapping IBb(0)3w 7→G−1

τ (w)∩ IBa(ū(τ)) is a Lipschitz
continuous function with Lipschitz constant λ . Let t ∈ [0,1]; then t ∈ (ti−ρti , ti+ρti)
for some i ∈ {1, . . . ,m}. Hence the mapping IBb(0) 3 w 7→ G−1

t (w)∩ IBa(ū(t)) is a
Lipschitz continuous function with Lipschitz constant λ . The proof is complete.

In the second part of this section we introduce and study, in this setting of the pa-
rameterized generalized equation (1), a method of Euler-Newton type. This method
is a straightforward extension of the standard Euler-Newton continuation, or path-
following, for solving equations of the form f (t,u) = 0 obtained from (1) by simply
taking F ≡ 0 and m= n. That standard scheme is a predictor-corrector method of the
following kind. For N > 1, let {ti}N

i=0 with t0 = 0, tN = 1, be a uniform (for simplic-
ity) grid on [0,1] with step size h = ti+1− ti = 1/N for i = 0,1, . . . ,N− 1. Starting
from a solution u0 to f (0,u) = 0, the method iterates between an Euler predictor
step and a Newton corrector step:

(13)
{

vi+1 = ui−h∇u f (ti,ui)
−1∇t f (ti,ui),

ui+1 = vi+1−∇u f (ti+1,vi+1)
−1 f (ti+1,vi+1).

Here we propose an extension of the Euler-Newton continuation method to the
generalized equation (1), in which both the predictor and corrector steps consist of
solving linearized generalized equations:

(14)
{

f (ti,ui)+h∇t f (ti,ui)+∇u f (ti,ui)(vi+1−ui)+F(vi+1) 3 0,
f (ti+1,vi+1)+∇u f (ti+1,vi+1)(ui+1− vi+1)+F(ui+1) 3 0.

Observe that the Euler step of iteration (14) does not reduce to the Euler step in
(13) when F ≡ 0. However, as we see later, it reduces to a method which gives the
same order of error.

According to Theorem 6G.1, the graph of the solution mapping S consists of
the graphs of finitely many Lipschitz continuous functions which are isolated from
each other; let L be a Lipschitz constant for all such functions. Choose any of these
functions and call it ū(·).

Theorem 6G.2 (convergence of Euler-Newton path-following). Suppose that each
point in gph S is strongly regular and let ū be a solution trajectory. Let u0 = ū(0).
Then there exist positive constants c and α and a natural N0 such that for any natural
N ≥ N0 the iteration (14) with h = 1/N generates a unique sequence {ui} starting
from u0 and such that ui ∈ IBα(ū(ti)) for i = 0,1, . . . ,N. Moreover, this sequence
satisfies
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max
0≤i≤N

|ui− ū(ti)| ≤ ch4.

Proof. We already know from 6G.1 that there exist positive a, b and κ such that,
for each i = 0,1, . . . ,N−1, the mapping

IBb(0) 3 w 7→ G−1
ti (w)∩ IBa(ū(ti))

is a Lipschitz continuous function with Lipschitz constant κ , where we recall that
Gti = Gti,ū(ti) for Gt,u given in (2). Let κ ′, µ , α and β be chosen according to 5G(9)
in the statement of Theorem 5G.3. Let K be as in (4), let

(15) c :=
K3κ ′3

2
(1+L+L2)2,

and chose N0 so large that for h = 1/N with N ≥ N0 the following inequalities hold:

(16) ch3(2+2L+ ch3)≤ 1+L2,

(17) Kh(1+L+ ch3)≤ µ, Kh2 (1+L+L2)≤ β ,

(18) κ
′K2h2(1+L+L2)≤ µ, ch4 ≤ α.

To prove the theorem we use induction. First, for i = 0 we have u0 = ū(t0) and
there is nothing more to prove. Let for j = 1,2, · · · , i the iterates u j be already gen-
erated by (14) uniquely in IBα(ū(t j)) and in such a way that

|u j− ū(t j)| ≤ ch4 for all j = 1,2, · · · , i.

We will prove that (14) determines a unique ui+1 ∈ IBα(ū(ti+1)) which satisfies

(19) |ui+1− ū(ti+1)| ≤ ch4.

We start with the Euler step. The generalized equation

(20) f (ti,ui)+∇u f (ti,ui)(v−ui)+h∇t f (ti,ui)+F(v) 3 0

for any v ∈ IRn can be written as

(21) g(v)+Gti+1(v) 3 0,

where, as before, Gt = Gt,ū(t) with Gt,u defined in (2), and

g(v) = f (ti,ui)+∇u f (ti,ui)(v−ui)+h∇t f (ti,ui)

−[ f (ti+1, ū(ti+1))+∇u f (ti+1, ū(ti+1))(v− ū(ti+1))].

For any v, v′ ∈ IRn we have
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|g(v)−g(v′)| = |[∇u f (ti,ui)−∇u f (ti+1, ū(ti+1))](v− v′)|
≤ K (h+ |ui− ū(ti+1)|) |v− v′|
≤ K(h+ |ui− ū(ti)|+ |ū(ti)− ū(ti+1)|) |v− v′|
≤ K(h+ ch4 +Lh)|v− v′| ≤ µ|v− v′|,

where we use the first inequality in (17). Furthermore,

|g(ū(ti+1))|

≤
∣∣∣∣∫ 1

0
h [∇t f (ti + sh,ui + s(ū(ti+1)−ui))−∇t f (ti,ui)]ds

∣∣∣∣
+

∣∣∣∣∫ 1

0
[∇u f (ti + sh,ui + s(ū(ti+1)−ui))−∇u f (ti,ui)] (ū(ti+1)−ui))ds

∣∣∣∣
≤
∫ 1

0
K(sh2 + sh|ū(ti+1)−ui|)ds+

∫ 1

0
K(sh|ū(ti+1)−ui|+ s|ū(ti+1)−ui|2)ds

≤ Kh2

2
+

Kh
2
|ū(ti+1)−ui|+

Kh
2
|ū(ti+1)−ui|+

K
2
|ū(ti+1)−ui|2

≤ Kh2

2
+Kh(|ū(ti+1)− ū(ti)|+ |ū(ti)−ui|)

+
K
2
(|ū(ti+1)− ū(ti)|+ |ū(ti)−ui|)2

≤ K
2
(h2 +2h(Lh+ ch4)+(Lh+ ch4)2)≤ Kh2(1+L+L2),

where in the last inequality we use (16). This implies that |g(ū(ti+1))| ≤ β due to the
second relation in (17). Applying Theorem 5G.3 we obtain the existence of a unique
in IBα(ū(ti+1)) solution vi+1 of (21), hence of (20), and moreover the function

IBβ (0) 3 y 7→ ξ (y) := (g+Gti+1)
−1(y)∩ IBα(ū(ti+1))

is Lipschitz continuous on IBβ (0) with Lipschitz constant κ ′. Observe that vi+1 =
ξ (0) and ū(ti+1) = ξ (g(ū(ti+1))); then

(22)
|vi+1− ū(ti+1)|= |ξ (0)−ξ (g(ū(ti+1)))|

≤ κ ′|g(ū(ti+1))| ≤ κ ′Kh2
(
1+L+L2

)
.

The Newton step solves the generalized equation

(23) f (ti+1,vi+1)+∇u f (ti+1,vi+1)(u− vi+1)+F(u) 3 0,

which can be rewritten as
h(u)+Gti+1(u) 3 0,

where

h(u) = f (ti+1,vi+1)+∇u f (ti+1,vi+1)(u− vi+1)



412 6 Applications in Numerical Variational Analysis

−[ f (ti+1, ū(ti+1))+∇u f (ti+1, ū(ti+1))(u− ū(ti+1))].

For any u, u′ ∈ IRn we have

|h(u)−h(u′)| = |(∇u f (ti+1,vi+1)−∇u f (ti+1, ū(ti+1))(u−u′)|
≤ K|vi+1− ū(ti+1)||u−u′|
≤ κ

′K2h2(1+L+L2)|u−u′| ≤ µ|u−u′|,

where we use (22) and the first inequality in (18). Moreover,

|h(ū(ti+1))|
= | f (ti+1,vi+1)+∇u f (ti+1,vi+1)(ū(ti+1)− vi+1)− f (ti+1, ū(ti+1))|

=

∣∣∣∣∫ 1

0

d
ds

f (ti+1,vi+1 + s(ū(ti+1)− vi+1))ds−∇u f (ti+1,vi+1)(ū(ti+1)− vi+1)

∣∣∣∣
=

∣∣∣∣∫ 1

0
[∇u f (ti+1,vi+1 + s(vi+1− ū(ti+1)))−∇u f (ti+1,vi+1)] (vi+1− ū(ti+1))ds

∣∣∣∣
≤
∫ 1

0
sK|vi+1− ū(ti+1)|2 ds =

K
2
|vi+1− ū(ti+1)|2

≤ K
2
(
κ
′Kh2 (1+L+L2))2

= (c/κ
′)h4.

In particular, this implies that |h(ū(ti+1))| ≤ β due to the second relation in (18).
Applying Theorem 5G.3 with g = h in the same way as for the estimate (22) we
obtain that there exists a unique in IBα(ū(ti+1)) solution ui+1 of (23) which moreover
satisfies (19). This completes the induction step and the proof of the theorem.

We should note that a solution trajectory of the parameterized generalized equa-
tion (1) cannot be expected to be smoother than Lipschitz continuous; therefore a
piecewise linear (or of higher order) interpolation across (ti,ui) will have error of
order no better than O(h) if we measure it in the uniform norm over the interval
[0,1] rather than in the interpolation points only.

For F ≡ 0 and m = n the Euler step for the method (14) becomes

(24) vi+1 = ui−∇u f (ti,ui)
−1(h∇t f (ti,ui)+ f (ti,ui))

which is different from the Euler step in the equation case (13). We just proved
in 6G.2 that the method combining the modified Euler step (24) with the standard
Newton step has error of order O(h4). It turns out that the error has the same order
when we use the method (13). This could be shown in various ways; in our case the
simplest is to follow the proof of 6G.2. Indeed, if instead of g in (21) we use the
function

ḡ(v) = ∇u f (ti,ui)(v−ui)+h∇t f (ti,ui)

−[ f (ti+1, ū(ti+1))+∇u f (ti+1, ū(ti+1))(v− ū(ti+1))],
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then, from the induction hypothesis and the fact that f (ti, ū(ti)) = 0, we get

| f (ti,ui)|= | f (ti,ui)− f (ti, ū(ti))| ≤ Kch4.

Hence,

|ḡ(ū(ti+1))| ≤ |g(ū(ti+1))|+ |ḡ(ū(ti+1))−g(ū(ti+1))|
≤ |g(ū(ti+1))|+ | f (ti,ui)| ≤ |g(ū(ti+1))|+Kch4.

Thus, the estimate for |ḡ(ū(ti+1)| is of the same order as for |g(ū(ti+1)| and hence
the final estimate (19) is of the same order.

We end this section with an important observation. Consider the following
method where we have not one but two corrector (Newton) steps: f (ti,ui)+h∇t f (ti,ui)+∇u f (ti,ui)(vi+1−ui)+F(vi+1) 3 0,

f (ti+1,vi+1)+∇u f (ti+1,vi+1)(wi+1− vi+1)+F(wi+1) 3 0,
f (ti+1,wi+1)+∇u f (ti+1,wi+1)(ui+1−wi+1)+F(ui+1) 3 0.

By repeating the argument used in the proof of Theorem 6G.2 one obtains an es-
timate for the error of order O(h8). A third Newton step will give O(h16)! Such
a strategy would be perhaps acceptable for relatively small problems. For practi-
cal problems, however, a trade off is to be sought between theoretical accuracy and
computational complexity of an algorithm. Also, one should remember that the error
in the uniform norm will always be O(h) in general, unless the solution has better
smoothness properties than just Lipschitz continuity.

6H. Galerkin’s Method for Quadratic Minimization

The topic of this section is likewise a traditional scheme in numerical analysis and
its properties of convergence, again placed in a broader setting than the classical
one. The problem at which this scheme will be directed is quadratic optimization in
a Hilbert space setting:

(1) minimize
1
2
〈x,Ax〉−〈v,x〉 over x ∈C,

where C is a nonempty, closed and convex set in a Hilbert space X , and v ∈ X
is a parameter. Here 〈·, ·〉 denotes the inner product in X ; the associated norm is
‖x‖ =

√
〈x,x〉. We take A : X → X to be a linear and bounded mapping, entailing

dom A=X ; furthermore, we take A to be self-adjoint, 〈x,Ay〉= 〈y,Ax〉 for all x,y∈X
and require that

(2) 〈x,Ax〉 ≥ µ‖x‖2 for all x ∈C−C, for a constant µ > 0.
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This property of A, sometimes called coercivity (a term which can have conflict-
ing manifestations), corresponds to A being strongly monotone relative to C in the
sense defined in 2F, as well as to the quadratic function in (1) being strongly convex
relative to C. For X = IRn, (2) is equivalent to positive definiteness of A relative to
the subspace generated by C−C. For any Hilbert space X in which that subspace is
dense, it entails A being invertible with ‖A−1‖ ≤ µ−1.

In the usual framework for Galerkin’s method, C would be all of X , so the tar-
geted problem would be unconstrained. The idea is to consider an increasing se-
quence of finite-dimensional subspaces Xk of X , and by iteratively minimizing over
Xk, to get a solution point x̂k, generate a sequence which, in the limit, solves the
problem for X .

This approach has proven valuable in circumstances where X is a standard func-
tion space and the special functions making up the subspaces Xk are familiar tools
of approximation, such as trigonometric expansions. Here, we will work more gen-
erally with convex sets Ck furnishing “inner approximations” to C, with the eventual
possibility of taking Ck =C∩Xk for a subspace Xk.

In Section 2G with X = IRn, we looked at a problem like (1) in which the function
was not necessarily quadratic, and we studied the dependence of its solution on the
parameter v. Before proceeding with anything else, we must update to our Hilbert
space context with a quadratic function the particular facts from that development
which will be called upon.

Theorem 6H.1 (optimality and its characterization). For problem (1) under condi-
tion (2), for each v there exists a unique solution x. The solution mapping S : v→ x
is thus single-valued with dom S = X . Moreover, this mapping S is Lipschitz con-
tinuous with constant µ−1, and it is characterized by a variational inequality:

(3) x = S(v) ⇐⇒ − v+Ax+NC(x) 3 0.

Proof. The existence of a solution x for a fixed v comes from the fact that, for each
sufficiently large α ∈ IR the set Cα of x ∈C for which the function being minimized
in (1) has value ≤ α is nonempty, convex, closed and bounded, with the bound
coming from (2). Such a subset of X is weakly compact; hence every minimizing
sequence has a convergent subsequence and each limit of such a subsequence is a
solutions x. The uniqueness of such x follows however from the strong convexity
of the function in question. The characterization of x in (3) is proved exactly as in
the case of X = IRn in 2A.7. The Lipschitz property of S comes out of the same
argument that was used in the second half of the proof of 2F.6, utilizing the strong
monotonicity of A.

As an important consequence of Theorem 6H.1, we get a Hilbert space version
of the projection result in 1D.5 for convex sets in IRn.

Corollary 6H.2 (projections in Hilbert spaces). For a nonempty, closed, convex
set C in a Hilbert space X , there exists for each v ∈ X a unique nearest point x of
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C, called the projection of v on C and denoted by PC(v). The projection mapping
PC : X →C is Lipschitz continuous with constant 1.

Proof. Take A = I in (1), noting that (2) holds then with µ = 1. Problem (1) is
equivalent then to minimizing ||x− v|| over x ∈ C, because the expression being
minimized differs from 1

2 ||x− v||2 only by the constant term 1
2 ||v||2.

In Galerkin’s method, when we get to it, there will be need of comparing solu-
tions to (1) with solutions to other problems for the same v but sets different from
C. In effect, we have to be able to handle the choice of C as another sort of param-
eter. For a start, consider just two different sets, D1 and D2. How might solutions
to the versions of (1) with D1 and D2 in place of C, but with fixed v, relate to each
other? To get anywhere with this we require a joint strong monotonicity condition
extending (2):

(4) 〈x,Ax〉 ≥ µ‖x‖2 for all x ∈ Di−D j and i, j ∈ {1,2}, where µ > 0.

Obviously (4) holds without any fuss over different sets if we simply have A strongly
monotone with constant µ on all of X .

Proposition 6H.3 (solution estimation for varying sets). Consider any nonempty,
closed, convex sets D1 and D2 in X satisfying (4). If x1 and x2 are the solutions of
problem (1) with constraint sets D1 and D2, respectively, in place of C, then

(5) µ‖x1−x2‖2 ≤ 〈Ax1−v,u1−x2〉+ 〈Ax2−v,u2−x1〉 for all u1 ∈D1,u2 ∈D2.

Proof. From (4) we have

(6) µ‖x1− x2‖2 ≤ 〈A(x1− x2),x1− x2〉,

whereas for any u1 ∈ D1 and u2 ∈ D2, (3) gives us

(7) 0≤ 〈Ax1− v,u1− x1〉, 0≤ 〈Ax2− v,u2− x2〉.

Adding the inequalities in (7) to the one in (6) and rearranging the sum, we obtain

µ‖x1− x2‖2 ≤ 〈A(x1− x2),x1− x2〉+ 〈Ax1− v,u1− x1〉+ 〈Ax2− v,u2− x2〉
= 〈Ax1− v,u1− x2〉+ 〈Ax2− v,u2− x1〉,

as claimed in (5).

Having this background at our disposal, we are ready to make progress with our
generalized version of Galerkin’s method. We consider along with C a sequence of
sets Ck ⊂ X for k = 1,2, . . . which, like C, are nonempty, closed and convex. We
suppose that

(8) Ck ⊂Ck+1 ⊂ ·· · ⊂C, with cl [C1∪C2∪·· ·] =C,

and let
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(9) Sk = the solution mapping for (1) with Ck in place of C,

as provided by Theorem 6H.1 through the observation that (2) carries over to any
subset of C. By generalized Galerkin’s sequence associated with (8) for a given v,
we will mean the sequence {x̂k} of solutions x̂k = Sk(v), k = 1,2, . . . .

Theorem 6H.4 (general rate of convergence). Let S be the solution mapping to
(1) as provided by Theorem 6H.1 under condition (2), and let {Ck} be a sequence
of nonempty, closed, convex sets satisfying (8). Then for any v the associated
Galerkin’s sequence {x̂k} = {Sk(v)} converges to x̂ = S(v). In fact, there is a con-
stant c such that

(10) ‖x̂k− x̂‖ ≤ cd(x̂,Ck)
1/2 for all k.

Proof. On the basis of (8), we have dist(x̂,Ck)→ 0. The sequence of projections
x̄k = PCk(x̂) with ||x̄k− x̂|| = d(x̂,Ck), whose existence is guaranteed by 6H.2, con-
verges then to x̂. From 6H.3 applied to D1 = Ck and D2 = C, with x̂k and x̂ in the
place of the x1 and x2 there, and on the other hand u1 = x̄k and u2 = x̂k, we get
µ‖x̂k− x̂‖2 ≤ 〈Ax̂k− v, x̄k− x̂〉 and therefore

(11) µ‖x̂k− x̂‖2 ≤ 〈A(x̂k− x̂)+Ax̂− v, x̄k− x̂〉
≤ (‖A‖‖x̂k− x̂‖+‖A‖‖x̂‖+‖v‖)dist(x̂,Ck).

This quadratic inequality in dk = ‖x̂k− x̂‖ implies that the sequence {dk} is bounded,
say by b. Putting this b in place of ‖x̂k− x̂‖ on the right side of (11), we get a bound
of the form in (10).

Is the square root describing the rate of convergence through the estimate in (10)
exact? The following example shows that this is indeed the case, and no improve-
ment is possible, in general.

Example 6H.5 (counterexample to improving the general estimate). Consider prob-
lem (1) in the case of X = IR2, C =

{
(x1,x2)

∣∣x2 ≤ 0
}

(lower half-plane), v = (0,1)
and A = I, so that the issue revolves around projecting v on C and the solution is
x̂ = (0,0). For each k = 1,2, . . . let ak = (1/k,0) and let Ck consist of the points
x ∈C such that 〈x−ak,v−ak〉 ≤ 0. Then the projection x̂k of v on Ck is ak, and

|x̂k− x̂|= 1/k, d(x̂,Ck) =
1

k
√

1+ k2
.

In this case the ratio |x̂k− x̂|/d(x̂,Ck)
p is unbounded in k for any p > 1/2.

Detail. The fact that the projection of v on Ck is ak comes from the observation
that v− ak ∈ NCk(ak). A similar observation confirms that the specified x̄k is the
projection of x̂ on Ck. The ratio |x̂k− x̂|/d(x̂,Ck)

p can be calculated as k2p−1(1+
1/(k2)p/2, and from that the conclusion is clear that it is bounded with respect to k
if and only if 2− (1/p)≤ 0, or in other words, p≤ 1/2.
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(0,1)

x̂ x
k

^

C
k

Fig. 6.1 Illustration to Example 6H.5.

There is, nevertheless, an important case in which the exponent 1/2 in (10) can
be replaced by 1. This case is featured in the following result:

Theorem 6H.6 (improved rate of convergence for subspaces). Under the conditions
of Theorem 6H.4, if the sets C and Ck are subspaces of X , then there is a constant c
such that

(12) ‖x̂k− x̂‖ ≤ cd(x̂,Ck) for all k.

Proof. In this situation the variational inequality in (3) reduces to the requirement
that Ax− v⊥C. We then have Ax̂− v ∈C⊥ ⊂C⊥k and Ax̂k− v ∈C⊥k , so that A(x̂k−
x̂) ∈C⊥k . Consider now an arbitrary x ∈Ck, noting that since x̂k ∈Ck we also have
x̂k− x ∈Ck. We calculate from (2) that

µ‖x̂k− x̂‖2 ≤ 〈A(x̂k− x̂), x̂k− x̂〉
= 〈A(x̂k− x̂), x̂k− x〉+ 〈A(x̂k− x̂),x− x̂〉
= 〈A(x̂k− x̂),x− x̂〉 ≤ ‖A‖‖x̂k− x̂‖‖x− x̂‖.

This gives us the estimate (12).

The result in 6H.6 corresponds to the classical Galerkin’s method, at least if C is
all of X . We can combine it with the one in 6H.4 as follows.

Corollary 6H.7 (application to intersections with subspaces). Let S be the solution
mapping to (1) as provided by Theorem 6H.1 under condition (2). Let {Xk} be
an increasing sequence of closed subspaces of X such that (8) holds for the sets
Ck = C ∩ Xk. Then for any v the associated Galerkin’s sequence {x̂k} = {Sk(v)}
converges to x̂ = S(v) at the rate indicated in (10), but if C itself is a subspace, it
converges at the rate indicated in (12).

The closure condition in (8), in the case of Ck =C∩Xk, says that dist(x,C∩Xk)→
0 as k→∞ for every x∈C. When the Hilbert space X is separable we may choose the
subspaces Xk by taking a countable dense subset x1,x2, . . . of X and letting Xk be the
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span of x1, . . . ,xk. Because the subspaces are finite-dimensional, Galerkin’s method
in this case can be viewed as a discretization scheme. The property that dist(x,C∩
Xk)→ 0 as k→ ∞ for every x ∈ C is called the consistency of the discretization
scheme. In the following section we will look at the discretization of a specific
variational problem.

6I. Metric Regularity and Optimal Control

For an example which illustrates how the theory of solution mappings can be applied
in infinite dimensions with an eye toward numerical approximations, we turn to a
basic problem in optimal control, which has the form

(1) minimize
∫ 1

0
ϕ(x(t),u(t))dt

subject to

(2) ẋ(t) = g(x(t),u(t)) for a.e. t ∈ [0,1], x(0) = a,

and the constraint that

(3) u(t) ∈U for a.e. t ∈ [0,1].

This concerns the control system given by (2) in which x(t) ∈ IRn is the state at
time t and u(t) is the control exercised at time t. The choice of the control function
u : [0,1]→ IRm yields from the initial state a∈ IRn and the differential equation in (2)
a corresponding state trajectory x : [0,1]→ IRn with derivative ẋ. The set U ⊂ IRm in
(3) from which the values of the control have to be selected is assumed to be convex
and closed. Any feasible control function u : [0,1]→U is required to be Lebesgue
measurable (“a.e.” refers as usual to “almost everywhere” with respect to Lebesgue
measure) and essentially bounded, that is, u belongs to the space L∞(IRm, [0,1]),
which we equip with the standard norm

‖u‖L∞ = esssupt∈[0,1]|u(t)|.

The state trajectory x, which is a solution of the initial value problem (2) for a
given control function u, is regarded as an element of W 1,∞

0 (IRn, [0,1]), which is the
standard notation of the space of Lipschitz continuous functions x over [0,1] with
values in IRn equipped with the norm

‖x‖W 1,∞ = ‖x‖L∞ +‖ẋ‖L∞ .
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We assume that the functions ϕ : IRn+m→ IR and g : IRn+m→ IRn are twice continu-
ously differentiable everywhere.

Without going into much details, we present next a standard fact from the theory
of optimal control2 which describes a set of first-order optimality conditions some-
times referred to as Pontryagin maximum principle. Assume that problem (1) has a
solution (x̄, ū). Then, in terms of the Hamiltonian

H(x,u,ψ) = ϕ(x,u)+ψ
Tg(x,u),

there exists an adjoint variable ψ̄ ∈ W 1,∞(IRn, [0,1]) such that the triple ξ̄ :=
(x̄, ū, ψ̄) is a solution of the following two-point boundary value problem coupled
with a variational inequality:

(4)

 ẋ(t) = g(x(t),u(t)), x(0) = a,
ψ̇(t) = −∇xH(x(t),u(t),ψ(t)), ψ(1) = 0,
0 ∈ ∇uH(x(t),u(t),ψ(t))+NU (u(t)), for a.e. t ∈ [0,1],

where, as usually, NU (u) is the normal cone to the convex and closed set U at the
point u. Introduce the spaces X =W 1,∞(IRn, [0,1])×W 1,∞(IRn, [0,1])×L∞(IRm, [0,1])
and Y = L∞(IRn, [0,1])× L∞(IRn, [0,1])× L∞(IRm, [0,1]) which correspond to the
variable ξ and the mapping in (4). Further, for ξ = (x,u,ψ) considered as a function
on [0,1], let

f (ξ ) =

 ẋ−g(x,u)
ψ̇ +∇xH(x,u,ψ)

∇uH(x,u,ψ)

 and F(ξ ) =

 0
0

NU (u)

 .

Then, with f and F acting from X to Y , the optimality system (4) can be written as
a generalized equation on a function space, of the form

(5) find ξ ∈ X such that f (ξ )+F(ξ ) 3 0Y .

Thus, we come to the realm of generalized equations for the analysis of which we
have already developed various techniques in this book. Note that (5) is not a va-
riational inequality since Y is not the space dual to X , at least. Still, we can employ
regularity properties and the various reincarnations of the implicit function theorem
to estimate the effect of perturbations and approximations on a solution of (5).

In this section we will focus our attention to showing that metric regularity of
the mapping f +F for the optimality systems (4) implies an a priori error estimate
for a discrete approximation to the problem. First, without loss of generality we
assume that in (2) we have a = 0 (a simple change of variables will give us this).
Suppose that the optimality system (4) is solved inexactly by means of a numerical
method applied to a discrete approximation provided by the standard Euler scheme.
Specifically, let N be a natural number, let h = 1/N be the mesh spacing, and let

2 In the following section we derive first-order optimality conditions for a particular optimal control
problem.
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ti = ih, i∈ {0,1, . . . ,N}. Denote by PLN
0 (IR

n, [0,1]) the space of piecewise linear and
continuous functions xN over the grid {ti}with values in IRn and such that xN(0) = 0,
by PLN

1 (IR
n, [0,1]) the space of piecewise linear and continuous functions ψN over

the grid {ti} with values in IRn and such that ψN(1) = 0, and by PCN(IRm, [0,1]) the
space of piecewise constant and continuous from the right functions over the grid
{ti} with values in IRm. Clearly, PLN

0 (IR
n, [0,1]) and PLN

1 (IR
n, [0,1]) are subsets of

W 1,∞(IRn, [0,1]) and PCN(IRm, [0,1]) ⊂ L∞(IRm, [0,1]). Then introduce the products
XN =PLN

0 (IR
n, [0,1])×PLN

1 (IR
n, [0,1])×PCN(IRm, [0,1]) as an approximation space

for the triple (x,ψ,u). We identify x ∈ PLN
0 (IR

n, [0,1]) with the vector (x0, . . . ,xN)
of its values at the mesh points (and similarly for ψ), and u∈ PCN(IRm, [0,1]) – with
the vector (u0, . . . ,uN−1) of the values of u in the mesh subintervals.

Now, suppose that, as a result of the computations, for certain natural N a func-
tion ξ̃ =(xN ,ψN ,uN)∈XN is found that satisfies the discrete-time optimality system

(6)


ẋi

N = g(xi
N ,u

i), x0
N = 0,

ψ̇ i
N = ∇xH(xi

N ,u
i,ψ i+1

N ), ψN
N = 0,

0 ∈ ∇uH(xi
N ,u

i,ψ i
N)+NU (ui)

for i = 0,1, . . . ,N−1, where, since xN and ψN are piecewise linear, we have

ẋi
N =

xi+1
N − xi

N
h

and the same for ψN . The system (6) represents the Euler discretization of the opti-
mality system (4).

Suppose that the mapping f +F in (5) is metrically regular at ξ̄ for 0. Then in
particular, there exist positive scalars a and κ such that

d(ξ̃ ,( f +F)−1(0))≤ κd(0, f (ξ̃ )+F(ξ̃ )) whenever ξ̃ ∈ IBa(x̄),

where the right side of this inequality is the residual associated with the approximate
solution ξ̃ . In our specific case, if the function z̃ ∈ Y is defined as

z̃(t)=

 g(xN(ti),uN(ti))−g(xN(t),uN(t))
∇xH(xN(ti),uN(ti),ψN(ti+1))−∇xH(xN(t),uN(t),ψN(t))
∇uH(xN(ti),uN(ti),ψN(ti))−∇uH(xN(t),uN(t),ψN(t))

 , t ∈ [ti, ti+1),

then we have z̃ ∈ f (ξ̃ )+F(ξ̃ ), and therefore

d(0, f (ξ̃ )+F(ξ̃ ))≤ κ‖z̃‖Y .

Hence, taking into account that

(7)
‖z̃‖Y ≤ max0≤i≤N−1 supti≤t≤ti+1

[ |g(xN(ti),uN(ti))−g(xN(t),uN(ti))|
+|∇xH(xN(ti),uN(ti),ψN(ti+1))−∇xH(xN(t),uN(ti),ψN(t))|
+|∇uH(xN(ti),uN(ti),ψN(ti))−∇uH(xN(t),uN(ti),ψN(t))|] ,
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in order to estimate the residual it is sufficient to find an estimate for the right side
of (7).

Observe that here xN is a piecewise linear function across the grid {ti} with uni-
formly bounded derivative, since both xN and uN are in some L∞ neighborhood of x̄
and ū respectively. Hence, taking into account that the functions g, ∇xH and ∇uH are
continuously differentiable we obtain that the norm of the residual can be estimated
by a constant times the mesh size h. Thus, we come to the following result:

Theorem 6I.1 (a priori error estimate in optimal control). Assume that the mapping
of the optimality system (4) is metrically regular at ξ̄ = (x̄, ū, ψ̄) for 0. Then there
exist constants a and c such that if the distance from a solution ξN = (xN ,uN ,ψN)
of the discretized system (6) to ξ̄ is not more than a, then there exists a solution
ξ̄ N = (x̄N , ūN , ψ̄N) of the continuous system (4) such that

‖x̄N− xN‖W 1,∞ +‖ūN−uN‖L∞ +‖ψ̄N−ψN‖W 1,∞ ≤ ch.

Furthermore, if the mapping of the optimality system (4) is strongly metrically regu-
lar at ξ̄ for 0, then the above claim holds with ξ̄ N = ξ̄ ; that is, if ξN = (xN ,uN ,ψN)
is a sequence of approximate solutions to the discretized system (6) contained in
this ball, then ξN converges to ξ̄ in the norm of X with rate proportional to the mesh
size h.

By following the same line of reasoning, we could also obtain a posteriori error
estimates measuring the distance from a reference solution of the continuous sys-
tem to the set of solution of the discretized system, provided that the mapping of
discretized system (6) is metrically regular, uniformly in N. This would be true for
example when metric regularity is preserved after discrete approximation. But note
that here we approximate not only the mappings involved but also the spaces X and
Y ; specifically, to approximate X we use spaces of piecewise linear functions for
the state and adjoint variable and piecewise constant functions for the control, and
to approximate Y we use spaces of piecewise constant functions. Thus, the issue
comes down to the general question whether the property of metric regularity is in-
herited by a restriction of the mapping on a subspace. It turns out that this is not the
case, as the following counterexample shows.

Example 6I.2. Let X = IR2, Y = IR, f (x1,x2) = x2− x3
1. Here

f−1(y) = {(x1,x2) | x2 = y+ x3
1, x1 ∈ IR}.

The function f is metrically regular at x̄ = (0,0) for ȳ = 0 with κ = 1, since

d(x, f−1(y))≤ |(x1,x2)− (x1,y+ x3
1)|= |y− (x2− x3

1)|= |y− f (x)|.

On the other hand, the restriction of f to X̃ := {(x1,x2) | x2 = 0} is not metrically
regular at x̄1 = 0 for ȳ = 0 because for x ∈ X̃ we have f (x) = −x3

1, hence x1 =

(−y)1/3, which is not Lipschitz at ȳ = 0.
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6J. The Linear-Quadratic Regulator Problem

In this section we continue the theme of optimal control by presenting a more de-
tailed analysis of the effects of perturbations and approximations on solutions of the
so-called linear-quadratic regulator problem. That problem takes the form:

(1) minimize
∫ 1

0

(
1
2
[x(t)TQx(t)+u(t)TRu(t)]+ s(t)Tx(t)− r(t)Tu(t)

)
dt

subject to

(2) ẋ(t) = Ax(t)+Bu(t)+ p(t) for a.e. t ∈ [0,1], x(0) = a,

and the constraint that

(3) u(t) ∈U for a.e. t ∈ [0,1].

This concerns the linear control system governed by (2) in which x(t) ∈ IRn is the
state and u(t) is the control. The matrices A, B, Q and R have dimensions fitting these
circumstances, with Q and R symmetric and positive semidefinite so as to ensure (as
will be seen) that the function being minimized in (1) is convex.

The set U ⊂ IRm from which the values of the control have to be selected from in
(3) is nonempty, convex and compact3. We also assume that the matrix R is positive
definite relative to U−U ; in other words, there exists µ > 0 such that

(4) uTRu≥ µ|u|2 for all u ∈U−U.

Any control function u : [0,1]→U is required to be Lebesgue measurable, and since
it takes values in the bounded set U for a.e. t ∈ [0,1], it is essentially bounded that
is, u ∈ L∞(IRm, [0,1]). But we take the set of feasible control functions to be a larger
subset of L2(IRm, [0,1]) functions, in which space the inner product and the norm are

〈u,v〉=
∫ 1

0
u(t)Tv(t)dt, ‖u‖2 =

√
〈u,u〉.

We follow that Hilbert space pattern throughout, assuming that the function r in (1)
belongs to L2(IRm, [0,1]) while p and s belong to L2(IRn, [0,1]). This is a convenient
compromise which will put us in the framework of quadratic optimization in 6H.

There are two ways of looking at problem (1). We can think of it in terms of min-
imizing over function pairs (u,x) constrained by both (2) and (3), or we can regard
x as a “dependent variable” produced from u through (2) and standard facts about
differential equations, so as to think of the minimization revolving only around the
choice of u. For any u satisfying (3) (and therefore essentially bounded), there is
a unique state trajectory x specified by (2) in the sense of x being an absolutely
continuous function of t and therefore differentiable a.e. Due to the assumption

3 We do not really need U to be bounded, but this assumption simplifies the analysis.
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that p ∈ L2(IRn, [0,1]), the derivative ẋ can then be interpreted as an element of
L2(IRn, [0,1]) as well. Indeed, x is given by the Cauchy formula

(5) x(t) = eAta+
∫ t

0
eA(t−τ)(Bu(τ)+ p(τ))dτ for all t ∈ [0,1].

In particular, we can view it as belonging to the Banach space C(IRn, [0,1]) of con-
tinuous functions from [0,1] to IRn equipped with the norm

‖x‖C = max
0≤t≤1

|x(t)|.

The relation between u and x can be cast in a frame of inputs and outputs. Define
the mapping T : L2(IRn, [0,1])→ L2(IRn, [0,1]) as

(6) (Tw)(t) =
∫ t

0
eA(t−τ)w(τ)dτ for a.e. t ∈ [0,1],

and, on the other hand, let W : L2(IRn, [0,1])→ L2(IRn, [0,1]) be the mapping defined
by

(7) for p ∈ L2(IRn, [0,1]), W (p) is the solution to Ẇ = AW + p, W (0) = a.

Finally, with a slight abuse of notation, denote by B the mapping from L2(IRm, [0,1])
to L2(IRn, [0,1]) associated with the matrix B, that is (Bu)(t) = Bu(t); later we do
the same for the mappings Q and R. Then the formula for x in (5) comes out as

(8) x = (T B)(u)+W (p),

where u is the input, x is the output, and p is a parameter. Note that in this case we
are treating x as an element of L2(IRn, [0,1]) instead of C(IRn, [0,1]). This makes no
real difference but will aid in the analysis.

Exercise 6J.1 (adjoint in the Cauchy formula). Prove that the mapping T defined by
(6) is linear and bounded. Also show that the adjoint (dual) mapping T ∗, satisfying
〈x,Tu〉= 〈T ∗x,u〉, is given by

(T ∗x)(t) =
∫ 1

t
eAT(τ−t)x(τ)dτ for a.e. t ∈ [0,1].

Also show (T B)∗ = B∗T ∗, where B∗ is the mapping acting from L2(IRn, [0,1]) to
L2(IRm, [0,1]) and associated with the transposed matrix BT; that is

((T B)∗x)(t) =
∫ 1

t
BTeAT(τ−t)x(τ)dτ for a.e. t ∈ [0,1].

Guide. Apply the rule for changing the order of integration
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0
x(t)T

∫ t

0
eA(t−τ)w(τ)dτdt =

∫ 1

0

∫ 1

τ

x(t)TeA(t−τ)w(τ)dtdτ,

and interpret what it says.

To shorten notation in what follows, we will just write L2 for both L2(IRm, [0,1])
and L2(IRn, [0,1]), leaving it to the reader to keep in mind which elements lie in IRm

and which lie in IRn.
The change of variables z = x−w with w = W (p) as in (7) gives the following

reformulation of (1)–(3), where the parameter p is transferred to the problem of
minimizing the objective function

(9)
∫ 1

0

(
1
2
[z(t)TQz(t)+u(t)TRu(t)]+(s(t)+QW (p)(t))Tz(t)− r(t)Tu(t)

)
dt

subject to

(10) ż = Az+Bu, z(0) = 0, u(t) ∈U for a.e. t ∈ [0,1].

In (9) we have dropped the constant terms that do not affect the solution. Noting
that z = (T B)(u) and utilizing the adjoint T ∗ of the mapping T , let

(11) V (y) =−r+B∗T ∗(s+QW (p)) for y = (p,s,r),

and define the self-adjoint bounded linear mapping A : L2→ L2 by

(12) A = B∗T ∗QT B+R.

Here, as for the mapping B, we regard Q and R as linear bounded mappings acting
between L2 spaces: for (Ru)(t) = Ru(t), and so forth. Let

(13) C =
{

u ∈ L2 ∣∣u(t) ∈U for a.e. t ∈ [0,1]
}
.

With this notation, problem (9)–(10) can be written in the form treated in 6H:

(14) minimize
1
2
〈u,A u〉+ 〈V (y),u〉 subject to u ∈C.

Exercise 6J.2 (coercivity in control). Prove that the set C in (13) is a closed and
convex subset of L2 and that the mapping A ∈L (L2,L2) in (12) satisfies the con-
dition

〈u,A u〉 ≥ µ‖u‖2
2 for all u ∈C−C,

where µ is the constant in (4).

Applying Theorem 6H.1 in the presence of 6J.2, we obtain a necessary and suf-
ficient condition for the optimality of u in problem (14), namely the variational
inequality
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(15) V (y)+A u+NC(u) 3 0.

For (15), or equivalently for (14) or (1)–(3), we arrive then at the following result of
implicit function type:

Theorem 6J.3 (implicit function theorem for optimal control in L2). Under (4),
the solution mapping S which goes from parameter elements y = (p,s,r) to (u,x)
solving (1)–(3) is single-valued and globally Lipschitz continuous from the space
L2(IRn× IRn× IRm, [0,1]) to the space L2(IRm, [0,1])×C(IRn, [0,1]).

Proof. Because V in (11) is an affine function of y = (p,s,r), we obtain from 6H.1
that for each y problem (14) has a unique solution u(y) and, moreover, the function
y 7→ u(y) is globally Lipschitz continuous in the respective norms. The value u(y)
is the unique optimal control in problem (1)–(3) for y. Taking norms in the Cauchy
formula (5), we see further that for any y = (p,s,r) and y′ = (p′,s′,r′), if x and x′ are
the corresponding solutions of (2) for u(y), p, and u(y′), p′, then, for some constants
c1 and c2, we get

|x(t)− x′(t)| ≤ c1

∫ t

0
(|B||u(y)(τ)−u(y′)(τ)|+ |p(τ)− p′(τ)|)dτ

≤ c2(‖u(y)−u(y′)‖2 +‖p− p′‖2).

Taking the supremum on the left and having in mind that y 7→ u(y) is Lipschitz
continuous, we obtain that the optimal trajectory mapping y 7→ x(y) is Lipschitz
continuous from the L2 space of y to C(IRn, [0,1]). Putting these facts together, we
confirm the claim in the theorem.

The optimal control u whose existence and uniqueness for a given y is asserted in
6J.3 is actually, as an element of L2, an equivalence class of functions differing from
each other only on sets of measure zero in [0,1]. Thus, having specified an optimal
control function u, we may change its values u(t) on a t-set of measure zero without
altering the value of the expression being minimized or affecting optimality. We will
go on to show now that one can pick a particular function from the equivalence class
which has better continuity properties with respect to both time and the parameter
dependence.

For a given control u and parameter y = (p,s,r), let

ψ = T ∗(Qx+ s),

where x solves (8). Then, through the Cauchy formula and 6J.1, ψ is given by

ψ(t) =
∫ 1

t
eAT(τ−t) (Qx(τ)+ s(τ))dτ for all t ∈ [0,1].

Hence, ψ is a continuous function which is differentiable almost everywhere in [0,1]
and its derivative ψ̇ is in L2. Further, taking into account (6) and (8), ψ̇ satisfies

(16) ψ̇(t) =−AT
ψ(t)−Qx(t)− s(t) for a.e. t ∈ [0,1], ψ(1) = 0,
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where x is the solution of (2) for the given u. The function ψ is called the adjoint or
dual trajectory associated with a given control u and its corresponding state trajec-
tory x, and (16) is called the adjoint equation. Bearing in mind the particular form
of V (y) in (11) and that, by definition,

ψ = T ∗(Qx+ s) = T ∗[QT Bu+ s+QW (p)],

we can re-express the variational inequality (15) in terms of ψ as

(17) 〈−r+Ru+B∗ψ,v−u〉 ≥ 0 for all v ∈C,

where B∗ stands for the linear mapping associated with the transpose of the matrix
B. The boundary value problem combining (2) and (16), coupled with the variational
inequality (17), fully characterizes the solution to problem (1)–(3).

We need next a standard fact from Lebesgue integration. For a function ϕ on
[0,1], a point t̂ ∈ (0,1) is said to be a Lebesgue point of ϕ when

lim
ε→0

1
2ε

∫ t̂+ε

t̂−ε

ϕ(τ)dτ = ϕ(t̂).

It is known that when ϕ is integrable on [0,1], its set of Lebesgue points is of full
measure 1.

Now, let u be the optimal control for a particular parameter value y, and let x
and ψ be the associated optimal trajectory and adjoint trajectory, respectively. Let
t̂ ∈ (0,1) be a Lebesgue point of both u and r (the set of such t̂ is of full measure).
Pick any w ∈U , and for 0 < ε < min{t̂,1− t̂} consider the function

ûε(t) =
{

w for t ∈ (t̂− ε, t̂ + ε),
u(t) otherwise.

Then for every sufficiently small ε the function ûε is a feasible control, i.e., belongs
to the set C in (13), and from (17) we obtain∫ t̂+ε

t̂−ε

(−r(τ)+Ru(τ)+BT
ψ(τ))T(w−u(τ))dτ ≥ 0.

Since t̂ is a Lebesgue point of the function under the integral (we know that ψ is
continuous and hence its set of Lebesgue points is the entire interval [0,1]), we can
pass to zero with ε and by taking into account that t̂ is an arbitrary point from a set
of full measure in [0,1] and that w can be any element of U , come to the following
pointwise variational inequality which is required to hold for a.e. t ∈ [0,1]:

(18) (−r(t)+Ru(t)+BT
ψ(t))T(w−u(t))≥ 0 for every w ∈U.

As is easily seen, (18) implies (17) as well, and hence these two variational inequal-
ities are equivalent.
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Summarizing, we can now say that a feasible control u is the solution of (1)–(3)
for a given y=(p,s,r) with corresponding optimal trajectory x and adjoint trajectory
ψ if and only if the triple (u,x,ψ) solves the following boundary value problem
coupled with a pointwise variational inequality:

(19a)
{

ẋ(t) = Ax(t)+Bu(t)+ p(t), x(0) = a,
ψ̇(t) =−ATψ(t)−Qx(t)− s(t), ψ(1) = 0,

(19b) r(t) ∈ Ru(t)+BT
ψ(t)+NU (u(t)) for a.e. t ∈ [0,1].

That is, for an optimal control u and associated optimal state and adjoint trajectories
x and ψ , there exists a set of full measure in [0,1] such that (19b) holds for every t
in this set. Under an additional condition on the function r we obtain the following
result:

Theorem 6J.4 (Lipschitz continuous optimal control). Let the parameter y=(p,s,r)
in (1)–(3) be such that the function r is Lipschitz continuous on [0,1]. Then, from
the equivalence class of optimal control functions for this y, there exists an optimal
control u(y) for which (19b) holds for all t ∈ [0,1] and which is Lipschitz continuous
with respect to t on [0,1]. Moreover, the solution mapping y 7→ u(y) is Lipschitz con-
tinuous from the space L2(IRn× IRn, [0,1])×C(IRm, [0,1]) to the space C(IRm, [0,1]).

Proof. It is clear that the adjoint trajectory ψ is Lipschitz continuous in t on [0,1]
for any feasible control; indeed, it is the solution of the linear differential equation
(16), the right side of which is a function in L2. Let x and ψ be the optimal state and
adjoint trajectories and let u be a function satisfying (19b) for all t ∈ σ where σ is a
set of full measure in [0,1]. For t /∈ σ we define u(t) to be the unique solution of the
following strongly monotone variational inequality in IRn:

(20) q(t) ∈ Ru+NU (u), where q(t) = r(t)−BT
ψ(t).

Then this u is within the equivalence class of optimal controls, and, moreover, the
vector u(t) satisfies (20) for all t ∈ [0,1]. Noting that q is a Lipschitz continuous
function in t on [0,1], we get from 2F.6 that for each fixed t ∈ [0,1] the solution
mapping of (20) is Lipschitz continuous with respect to q(t). Since the composition
of Lipschitz continuous functions is Lipschitz continuous, the particular optimal
control function u which satisfies (19b) for all t ∈ [0,1] is Lipschitz continuous in t
on [0,1].

Theorem 6J.5 (implicit function theorem for optimal control in L∞). The solution
mapping (p,s,r) 7→ (u,x,ψ) of the optimality system (19a,b) is Lipschitz continu-
ous from the space L∞(IRn× IRn× IRm, [0,1]) to the space L∞(IRm, [0,1])×C(IRn×
IRn, [0,1]).

Proof. We already know from 6J.3 that the optimal trajectory mapping y 7→ x(y) is
Lipschitz continuous from L2 into C and hence from L∞ into C too. Using the same
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argument for ψ in (16) we get that y 7→ ψ(y) is Lipschitz continuous from the L2

to C(IRn, [0,1]). But then, according to 2F.6, for every y,y′ ∈ L∞ and almost every
t ∈ [0,1], with the optimal control values u(y)(t) and u(y′)(t) at t being the unique
solutions of (20), we have

|u(y)(t)−u(y′)(t)| ≤ µ
−1 (|r(t)− r′(t)|+ |B||ψ(y)(t)−ψ(y′)(t)|

)
.

By invoking the L∞ norm we get the desired result.

We focus next on the issue of solving problem (1)–(3) numerically. By this we
mean determining the optimal control function u. This is a matter of recovering
a function on [0,1] which is only specified implicitly, in this case by a variatio-
nal problem. Aside from very special cases, it means producing numerically an ac-
ceptable approximation of the desired function u. For simplicity, let us assume that
y = (p,s,r) = 0.

For such an approximation we need to choose a finite-dimensional space of func-
tions on [0,1] within L2. Suppose that the interval [0,1] is divided into N pieces
[ti, ti+1] by equally spaced nodes ti, i = 0,1, . . . ,N, with t0 = 0 and tN = 1, the fixed
mesh size being h = ti− ti−1 = 1/N. To approximate the optimal control function
u that is Lipschitz continuous on [0,1] according to 6J.4, we will employ piecewise
constant functions across the grid {ti} that are continuous from the right at each
ti, i = 0,1, . . . ,N − 1, and from the left at tN = 1. Specifically, for a given N, we
consider the subset of L2 given by{

u
∣∣∣u(t)= u(ti) for t ∈ [ti, ti+1), i= 0,1, . . . ,N−2, u(t)= u(tN−1) for t ∈ [tN−1, tN ]

}
.

In order to fully discretize problem (1)–(3) and transform it into a finite-dimensional
optimization problem, we also need to use finite-dimensional approximations of the
operators of integration and differentiation involved.

Rather than (1)–(3), we now invoke a discretization of the optimality system
(19ab). For solving the differential equations in (19a) we use the simplest Euler
scheme over the mesh {ti}. The Euler scheme applied to (19a), forward for the
state equation and backward for the adjoint equation, combined with restricting the
functional variational inequality (19b) to the nodes of the scheme, results in the
following discrete-time boundary value problem coupled with a finite-dimensional
variational inequality:

(21)


xi+1 = (I +hA)xi +hBui, x0 = a,
ψi = (I +hAT)ψi+1 +hQxi+1, ψN = 0,
0 ∈ Rui +BTψi +NU (ui) for i = 0,1, . . . ,N−1.

There are various numerical techniques for solving problems of this form; here we
shall not discuss this issue.

We will now derive an estimate for the error in approximating the solution of
problem (1)–(3) by use of discretization (21) of the optimality system (19ab).
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We suppose that for each given N we can solve (21) exactly, obtaining vectors
uN

i ∈U , i = 0, . . . ,N− 1, and xN
i ∈ IRn, ψN

i ∈ IRn, i = 0, . . . ,N. For a given N, the
solution (uN ,xN ,ψN) of (21) is identified with a function on [0,1], where xN and
ψN are the piecewise linear and continuous interpolations across the grid {ti} over
[0,1] of (a,xN

1 , . . . ,x
N
N) and (ψN

0 ,ψ
N
1 , . . . ,ψ

N
N−1,0), respectively, and uN is the piece-

wise constant interpolation of (uN
0 ,u

N
1 , . . . ,u

N
N−1) which is continuous from the right

across the grid points ti = ih, i = 0,1, . . . ,N− 1, and from the left at tN = 1. The
functions xN and ψN are piecewise differentiable and their derivatives ẋN and ψ̇N

are piecewise constant functions which are assumed to have the same continuity
properties in t as the control uN . Thus, (uN ,xN ,ψN) is a function defined in the
whole interval [0,1], and it belongs to L2.

Theorem 6J.6 (error estimate for discrete approximation). Consider problem (1)–
(3) with r = 0, s = 0 and p = 0 under condition (4) and let, according to 6J.4,
(u,x,ψ) be the solution of the equivalent optimality system (19ab) for all t ∈ [0,1],
with u Lipschitz continuous in t on [0,1]. Consider also the discretization (21) and,
for N = 1,2, . . . and mesh size h = 1/N, denote by (uN ,xN ,ψN) its solution ex-
tended by interpolation to the interval [0,1] in the manner described above. Then
the following estimate holds:

(22) ‖uN−u‖L∞ +‖xN− x‖C +‖ψN−ψ‖C = O(h).

Proof. For t ∈ [ti, ti+1), i = 0,1, . . . ,N−1, let

pN(t) = A(xN(ti)− xN(t)),
sN(t) = AT(ψN(ti+1)−ψN(t))+Q(xN(ti+1)− xN(t)),
rN(t) =−BT(ψN(ti)−ψN(t)).

By virtue of the control uN being piecewise constant and

ẋN(t) =
xN(ti+1)− xN(ti)

h
, ψ̇

N(t) =
ψN(ti+1)−ψN(ti)

h
for t ∈ [ti, ti+1),

for i = 0,1, . . . ,N− 1, the discretized optimality system (21) can be written as fol-
lows: for all t ∈ [ti, ti+1), i = 0,1, . . . ,N−1, and t = 1,

(23)


ẋN(t) = AxN(t)+BuN(t)+ pN(t), xN(0) = a,
ψ̇N(t) =−ATψN(t)−QxN(t)− sN(t), ψN(1) = 0,
rN(t) ∈ RuN(t)+BTψN(t)+NU (uN(t)).

Observe that system (23) has the same form as (19ab) with a particular choice of
the parameters. Specifically, (uN ,xN ,ψN) is the solution of (19ab) for the parameter
value yN := (pN ,sN ,rN), while (u,x,ψ) is the solution of (19ab) for y = (p,s,r) =
(0,0,0). Then, by the implicit function theorem 6J.5, the solution mapping of (19)
is Lipschitz continuous in the respective norms, so there exists a constant c such that

(24) ‖uN−u‖L∞ +‖xN− x‖C +‖ψN−ψ‖C ≤ c‖yN‖L∞ .
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To finish the proof, we need to show that

(25) ‖yN‖L∞ = max{‖pN‖L∞ ,‖sN‖L∞ ,‖rN‖L∞}= O(h).

For that purpose we employ the following standard result in the theory of difference
equations which we state here without proof:

Lemma 6J.7 (discrete Gronwall lemma). Consider reals αi, i = 0, . . . ,N, which
satisfy

0≤ α0 ≤ a and 0≤ αi+1 ≤ a+b
i

∑
j=0

α j for i = 0, . . . ,N.

Then 0≤ αi ≤ a(1+b)i for i = 0, . . . ,N. Similarly, if

0≤ αN ≤ a and 0≤ αi+1 ≤ a+b
N

∑
j=i+1

α j for i = 0, . . . ,N,

then 0≤ αi ≤ a(1+b)N−i for i = 0, . . . ,N.

Continuing on this basis with the proof of (25), we observe that xN is piecewise
linear across the grid {ti}; clearly

|xN(t)− xN(ti)| ≤ |xN(ti+1)− xN(ti)| for t ∈ [ti, ti+1], i = 0,1, . . . ,N−1.

Then, since all ui are from the compact set U , from the first equation in (21) we get

|pN(t)| ≤ h(c1|xN(ti)|+ c2) for t ∈ [ti, ti+1], i = 0,1, . . . ,N−1,

with some constants c1,c2 independent of N. On the other hand, the first equation
in (21) can be written equivalently as

xN(ti+1) = a+
i

∑
j=1

h(AxN(t j)+BuN(t j)),

and then, by taking norms and applying the direct part of discrete Gronwall lemma
6J.6, we obtain that sup0≤i≤N |xN(ti)| is bounded by a constant which does not de-
pend on N. This gives us error of order O(h) for pN in the maximum norm. By
repeating this argument for the discrete adjoint equation (the second equation in
(21)), but now applying the backward part of 6J.7, we get the same order of magni-
tude for sN and rN . This proves (25) and hence also (22).

Note that the order of the discretization error in (22), O(h), is sharp for the Eu-
ler scheme. Using higher-order schemes may improve the order of approximation,
but this may require better properties in time of the optimal control than Lipschitz
continuity which, as we already know, may be hard to obtain in the presence of
constraints.
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In the proof of 6J.5 we used the combination of the implicit function theo-
rem 6J.4 for the variational system involved and the estimate (25) for the resid-
ual yN = (pN ,sN ,rN) of the approximation scheme. The convergence to zero of the
residual comes out of the approximation scheme and the continuity properties of the
solution of the original problem with respect to time t; in numerical analysis this is
called the consistency of the problem and its approximation. The property emerg-
ing from the implicit function theorem 6J.4, that is, the Lipschitz continuity of the
solution with respect to the residual, is sometimes called stability. Theorem 6J.5
furnishes an illustration of a well-known paradigm in numerical analysis: stability
plus consistency yields convergence.

Having the analysis of the linear-quadratic problem as a basis, we could pro-
ceed to more general nonlinear and nonconvex optimal control problems and obtain
convergence of approximations and error estimates by applying more advanced im-
plicit function theorems using, e.g., linearization of the associated nonlinear opti-
mality systems. However, this would involve more sophisticated techniques which
go beyond the scope of this book, so here is where we stop.
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Commentary

Theorem 6A.2 is from Dontchev, Lewis and Rockafellar [2003], while Theorem
6A.3 was first shown by Lewis [1999]; see also Lewis [2001]. Theorem 6A.7 was
initially proved in Dontchev, Lewis and Rockafellar [2003] by using the character-
ization of the metric regularity of a mapping in terms of the nonsingularity of its
coderivative (see Section 4H) and applying the radius theorem for nonsingularity in
6A.2. The proof given here is from Dontchev, Quincampoix and Zlateva [2006]. For
extensions to infinite-dimensional spaces see Ioffe [2003a,b], Ioffe and Sekiguchi
[2009] and Sekiguchi [2010]. Theorems 6A.8 and 6A.9 are from Dontchev and
Rockafellar [2004].

The material in Section 6B is basically from Dontchev, Lewis and Rockafellar
[2003]. The results in Sections 6C have roots in several papers; see Rockafellar
[1976a,b], Robinson [1994], Dontchev [2000], and Aragón Artacho, Dontchev, and
Geoffroy [2007]. Section 6D is based on Aragón Artacho et al. [2011]. Section 6E
includes results from Dontchev [2013a] and Dontchev and Rockafellar [2013]. Fur-
ther results regarding superlinear convergence of the Broyden update under metric
regularity are presented in Aragón Artacho et al. [2011]. Note that the proof of The-
orem 6F.1 also works for smaller subdifferentials, e.g. for the B-subdifferential the
convex hull of which is the Clarke generalized Jacobian. Proposition 6F.3 can be
traced back to Fabian [1979] if not earlier; it is also present in Ioffe [1981] and in a
more general form in Fabian and Preiss [1987]. The class of semismooth functions
has been introduced by Mifflin [1977]. Starting with the pioneering works by Pang
[1990], Qi and Sun [1993], and Robinson [1994], in the last twenty years there have
been major developments in applying Newton-type methods to nonsmooth equa-
tions and variational problems, exhibited in a large number of papers and in the
books by Klatte and Kummer [2002], Facchinei and Pang [2003], Ito and Kunisch
[2008], and Ulbrich [2011]. Important insights to numerics of quasi-Newton meth-
ods in nonsmooth optimization can be found in Lewis and Overton [2013]. A link
between the of semismooth functions and the semialgebraic functions is established
in Bolte, Daniilidis and Lewis [2009]. Section 6G is based on Dontchev, Krastanov,
Rockafellar and Veliov [2013].

Most of the results in Section 6H can be found in basic texts on variational meth-
ods; for a recent such book see Attouch, Buttazzo and Michaille [2006]. The result
in 6I is from Dontchev and Veliov [2009], for more on metric regularity in optimal
control see Quincampoix and Veliov [2013]. Section 6J presents a simplified version
of a result in Dontchev [1996]; for advanced studies in this area see Malanowski
[2001] and Veliov [2006].
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appelé calcul des limites, in Oeuvres Complétes d’Augustun Cauchy, volume 12,
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de l´ Université de Toulouse, 7, 265–345.

Qi, Li Qun and Jie Sun [1993], A nonsmooth version of Newton’s method, Mathematical
Programming, Ser. A, 58, 353–367.

Quincampoix, M. and V. M. Veliov [2013], Metric regularity and stability of optimal control
problems for linear systems, SIAM Journal on Control and Optimization,
51, 4118–4137.

Ralph, D. [1993], A new proof of Robinson’s homeomorphism theorem for PL-normal maps,
Linear Algebra and Applications, 178, 249–260.

Robinson, S. M. [1972], Normed convex processes, Transactions of the American Mathematical
Society, 174, 127–140.

Robinson, S. M. [1976], Regularity and stability for convex multivalued functions, Mathematics of
Operations Research, 1, 130–143.

Robinson, S. M. [1979], Generalized equations and their solutions. I Basic theory. Point-to-set
maps and mathematical programming, Mathematical Programming Study, 10,
128–141.

Robinson, S. M. [1980], Strongly regular generalized equations, Mathematics of Operations
Research, 5, 43–62.

Robinson, S. M. [1981], Some continuity properties of polyhedral multifunctions, Mathematical
Programming Study, 14, 206–214.

Robinson, S. M. [1984], Local structure of feasible sets in nonlinear programming, Part II:
Nondegeneracy, Mathematical Programming Study, 22, 217–230.

Robinson, S. M. [1991], An implicit-function theorem for a class of nonsmooth functions,
Mathematics of Operations Research, 16, 292–309.

Robinson, S. M. [1992], Normal maps induced by linear transformations, Mathematics of
Operations Research, 17, 691–714.



442 References

Robinson, S. M. [1994], Newton’s method for a class of nonsmooth functions, Set-Valued
Analysis, 2, 291–305.

Robinson, S. M. [2007], Solution continuity in monotone affine variational inequalities,
SIAM Journal on Optimization, 18, 1046-1060.

Robinson, S. M. [2013], Equations on monotone graphs, Mathematical Programming, Ser. A,
141, 49–101.

Rockafellar, R. T. [1967], Monotone processes of convex and concave type, Memoirs of
the American Mathematical Society, 77.

Rockafellar, R. T. [1970], Convex analysis, Princeton University Press.

Rockafellar, R. T. [1974], Conjugate duality and optimization, Conference Board of the
Mathematical Sciences Regional Conference Series in
Applied Mathematics, 16, SIAM.

Rockafellar, R. T. [1976a], Monotone operators and the proximal point algorithm, SIAM Journal
on Control and Optimization, 14, 877–898.

Rockafellar, R. T. [1976b], Augmented Lagrangians and applications of the proximal point
algorithm in convex programming, Mathematics of Operations Research, 1, 97–116.

Rockafellar, R. T. [1985], Lipschitzian properties of multifunctions, Nonlinear Analysis, 9,
867–885.

Rockafellar, R. T. [1989], Proto-differentiability of set-valued mappings and its applications
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adjoint
equation, 426
upper and lower, 283

ample parameterization, 92
Aubin property, 165

of general solution mappings, 174
alternative description, 168
distance function characterization, 169
graphical derivative criterion, 211
partial, 174

Aubin property on a set, 314

calmness
isolated, 193
of polyhedral mappings, 189
partial, 27

Cauchy formula, 423
Clarke generalized Jacobian, 230
Clarke regularity, 221
coderivative, 221
coderivative criterion, 221

for constraint systems, 239
for generalized equations, 225

coercivity, 424
complementarity problem, 70
cone, 68

critical, 105
general normal, 220
normal, 68
polar, 70
recession, 282
tangent, 71
tangent, normal to polyhedral convex set,

104
constraint qualification, 76
constraint system, 182
contracting mapping principle

for composition, 83
contraction mapping principle, 17

for set-valued mappings, 299
control system, 418
convergence

Painlevé–Kuratowski, 141
Pompeiu–Hausdorff, 146
quadratic, 363
set, 140
superlinear, 363

convex programming, 79
convexified graphical derivative criterion, 225
critical face criterion

from coderivative criterion, 251
critical subspace, 107
critical superface, 245
critical superface criterion

from graphical derivative criterion, 248

derivative
convexified graphical, 225
Fréchet, 289
graphical, 205
graphical for a constraint system, 206
graphical for a variational inequality, 207
one-sided directional, 96
strict graphical for a set-valued mapping,

226
strict partial, 37

discrete approximation, 419
discretization, 428
distance, 30

Pompeiu–Hausdorff, 144
to infeasibility, 358

Ekeland variational principle, 213
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partial, 47
Euler scheme, 419
Euler-Newton continuation/path-following,

409
excess, 144

face, 245
first-order approximation, 39

partial, 47
fixed points

estimates, 326
fixed points of composition, 324
function

strictly convex, 72
calm, 25
convex, 72
Lipschitz continuous, 8
monotone, 59
piecewise smooth, 99
positively homogeneous, 95
semidifferentiable, 95
semismooth, 392
strictly differentiable, 34
strongly convex, 72
upper semicontinuous, 7

Galerkin method, 414
generalized equation, 68

derivative criterion, 217
graphical derivative criterion, 211

for isolated calmness, 235
for strong metric subregularity, 234

Hamiltonian, 419
homogenization, 359

implicit function theorem
symmetric, 23

implicit function theorem
for generalized equations, 86
for Newton iteration, 382
for strictly monotone functions, 60
classical (Dini), 20
for generalized equations, 86
for local minima, 131
for stationary points, 129
Goursat, 22
Robinson, 81
Robinson extended beyond differentiability,

83
utilizing semiderivatives, 99
with first-order approximations, 86
with strong metric regularity, 186

implicit mapping theorem

for a constraint system, 237
with graphical derivative, 217
with metric regularity, 179
with strong metric subregularity, 198

inner and outer limits, 140
inverse function theorem

for set-valued mappings, 86
in metric spaces, 304
beyond differentiability, 40
Clarke, 231
classical, 12
for directionally differentiable functions,

339
for local diffeomorphism, 51
for nonsmooth generalized equations, 231
Kummer, 232
symmetric, 24
with strong metric regularity, 186

inverse mapping theorem
with continuous and calm local selections,

332
with metric regularity, 165
with strong metric subregularity, 196

isolated calmness
for complementarity problems, 242
for variational inequalities, 241

Karush–Kuhn–Tucker conditions, 79

Lagrange multiplier rule, 76
lemma

Banach, 44
critical superface, 246
discrete Gronwall, 430
Hoffman, 156
Lim, 327
reduction, 105

linear independence constraint qualification,
133

Linear openness on a set, 315
linear programming, 159
linear-quadratic regulator, 422

Mangasarian–Fromovitz constraint qualifica-
tion, 182

mapping
adjoint, 266
calm, 189
feasible set, 151
horizon, 359
inner semicontinuous, 148
linear, 8
Lipschitz continuous, 154
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optimal set, 151
optimal value, 151
outer Lipschitz continuous, 160
outer Lipschitz continuous polyhedral, 161
outer semicontinuous, 148
Painlevé–Kuratowski continuous, 148
polyhedral, 161
polyhedral convex, 155
Pompeiu–Hausdorff continuous, 149
positively homogeneous, 206
stationary point, 121
sublinear, 279
with closed convex graph, 274

metric regularity, 170
equivalence with the Aubin property, 171
of Newton’s iteration, 376
coderivative criterion, 221
critical superface criterion, 247
equivalence with linear openness, 173
global, 323
graphical derivative criterion, 211
of sublinear mappings, 280
perturbed, 311

metric regularity on a set, 313
metric subregularity, 189

derivative criterion for strong, 234
modulus

calmness, 25
Lipschitz, 29
partial calmness, 28
partial uniform Lipschitz, 36

modulus of metric regularity, 170

Nash equilibrium, 79
necessary condition for optimality, 75
Newton method, 13

quadratic convergence, 373
for generalized equations, 363
inexact, 389
semismooth, 392
superlinear convergence, 364

nonlinear programming, 78
parameterized, 127
second-order optimality, 125
with canonical perturbations, 253

norm
duality, 284
outer and inner, 208
operator, 9

openness, 58
linear, 173

optimal control, 418

error estimate, 421
optimal value, 73
optimization problem, 73

quadratic, 413

parametric robustness, 95
Pontryagin maximum principle, 419
projection, 30
proximal point method, 368

quasi-Newton method, 386

saddle point, 79
second-order optimality on a polyhedral

convex set, 119
selection, 52

implicit, 89
semiconyinuity

characterization, 149
seminorm, 26
set

adsorbing, 274
convex, 30
geometrically derivable, 205
locally closed, 165
polyhedral convex, 103

space
dual, 266
metric, 265

SQP method, 367
stationary points, 120
strong metric regularity, 185

of locally monotone mappings, 187
of KKT mapping, 256
strict derivative criterion, 227
uniform, 405

strong metric subregularity, 193
distance function characterization, 195

strong second order sufficient condition, 133
superface, 245

theorem
extended Lysternik–Graves in metric spaces,

317
Lyusternik–Graves extended in implicit

form, 301
Baire category, 274
Banach open mapping, 267
Bartle–Graves, 329
Brouwer fixed point, 54
Brouwer invariance of domain, 50
correction function, 21
Dennis–Moré, 387
global Lyusternik–Graves, 324
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Hahn–Banach, 284
Hildebrand–Graves, 64
inherited openness, 320
Lyusternik, 289
Lyusternik–Graves extended, 295
metric Lyusternik–Graves in implicit form,

319
Michael selection, 330
Milyutin, 303
Minkowski–Weyl, 104
Nadler, 300
Nash–Moser, 345
nonsmooth Dennis–Moré , 402
parametric Lyusternik–Graves, 308
radius for metric regularity, 353
radius for strong metric regularity, 355

radius for strong metric subregularity, 355
Robinson–Ursescu, 277

two-person zero-sum game, 79

variational inequality, 68
for a Nash equilibrium, 80
for minimization, 74
affine polyhedral, 107
Lagrangian, 78
monotone, 115
solution existence, 114

vector
Lagrange multiplier, 78
normal, 68
regular normal, 220
tangent, 71


