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Abstract

Basic tools in variational analysis, such as geometric approaches to convergence of sequences of
extended-real-valued functions or set-valued mappings, support a theory of generalized differentia-
tion with second-order capabilities. The resulting second-derivative objects are fundamental to the
understanding of how solutions to parameterized problems of optimization behave when parameter
values are shifted.
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1 Introduction

Variational analysis is built on convex analysis but bridges beyond it to nonconvexity, as motivated
especially by applications in optimization. It relies on many of the same ideas that are fundamental
to convex analysis in contrast to classical calculus, like epigraphs of extended-real-valued functions,
but extends the definitions of concepts like tangent cones, normal cones and subgradients so that they
can work effectively with nonconvex sets and functions as well.

Those concepts are essential tools in generalized first-order differentiation. However, variational
analysis is capable also of developing generalized second-order differentiation, which was not fully
possible in the confines of convex analysis even for convex functions. The purpose of this article is to
provide an introductory picture of such developments in the hopes of stimulating further research.

A central theme of variational analysis with deep connections to second-order theory is the study
of perturbations and approximations of solutions to problems of optimization. Understanding pertur-
bations is important to validating stability in mathematical models. Approximations are of course the
key to computations. In standard nonlinear programming, for instance, second-order conditions for
optimality are employed in determining rates of convergence of solution algorithms.

A major difference between variational analysis and classical analysis in dealing with convergence
of approximations is that the approach of variational analysis is far more geometric in its core. Much
of classical analysis focuses on sequences of functions that converge to a limit pointwise uniformly
over some domain. Variational analysis starts instead with sequences of subsets of a vector space that
converge to a limit set with respect to associated distance functions, and it applies that to functions
through their epigraphs to arrive at epiconvergence of sequences of extended-real-valued functions.

In optimization, extended-real-valued functions can represent entire problems of minimization by
the device of assigning ∞ as the penalty for violating contraints, and therefore epiconvergence of
functions can stand for a kind of convergence of problems of optimization. It is known in fact that
this is exactly the right notion to employ when looking for convergence of optimal values and optimal
solutions [7, Chapter 7].

To explore this framework further, consider a function

f : IRn → (−∞,∞], f 6≡ ∞,

its effective domain
dom f = {x ∈ IRn | f(x) <∞} 6= ∅

and its epigraph
epi f = { (x, α) ∈ IRn × IR | f(x) ≤ α},

along with the associated optimization problem

minimize f(x) over all x ∈ IRn. (1)

In this problem no x with f(x) = ∞ can be a candidate for giving the minimum, inasmuch as there
exists at least one x with f(x) <∞. Thus the minimization effectively takes place over the set dom f
instead of all of IRn, and the problem therefore has

feasible solution set: dom f ⊂ IRn,
optimal solution set: argmin f ⊂ IRn,
optimal value: inf f ∈ [−∞,∞).

(2)
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An approximation to this problem would correspond to specifying a different function

g : IRn → (−∞,∞], g 6≡ ∞,

which would replace the elements in (2) by dom g, argmin g and inf g. Certainly we would be interested
in knowing that argmin g and inf g are not too far away from argmin f and inf f , but for feasibility it
may not matter whether the set dom g is nearly the same as dom f . For instance, the infinite penalty
associated with points outside of dom f could be changed to a very high but finite penalty in the
case of the approximate problem, so that dom g would all of IRn. Indeed, such a penalty approach to
constraints is common and practical.

Therefore, in assessing whether the g-problem is “close” to the f -problem it would make no sense
to rely on classical expressions for comparing f and g like sup { |f(x) − g(x)| |x ∈ X} over various
subsets X ⊂ IR. Those expressions would in particular trivialize to ∞ unless X ⊂ dom f ∩ dom g
and thus could not capture relaxations of constraints. The right approach instead is to compare the
epigraphs epi g and epi f as subsets of IRn × IR.

Suppose now that in addition to x = (x1, . . . , xn) there is a parameter vector p = (p1, . . . , pd) on
which the optimization problem depends. This can be accommodated by thinking of a function

f : IRd × IRn → (−∞,∞], f 6≡ ∞,

and the family of optimization problems

minimize f(p, x) over all x ∈ IRn, parameterized by p ∈ IRd. (3)

with associated
feasible solution sets: dom f(p, ·),
optimal solution sets: argmin f(p, ·),
optimal values: inf f(p, ·).

(4)

The behavior of these objects with respect to shifts in p then becomes important. Is it somehow
“continuous” or even “differentiable”?

These are the kinds of questions which variational analysis is well suited to answer, but classical
analysis cannot, and for which convex analysis falls short even when f(p, x) is convex in x. The essential
platform has to be how the epigraph set epi f(p, ·) ⊂ IRn × IR behaves with respect to p. This pushes
to the forefront the challenge of understanding the generalized senses in which a “set-valued mapping”
from p to epi f(p, ·) may be deemed continuous or differentiable.

The same kinds of questions are central to second-order theory, too, as is easy to see. One avenue
towards second-order differentiation of a function f would be try to differentiate its subgradient
mapping ∂f . But that is a set-valued mapping, in general. Another avenue would be to investigate
function expressions corresponding to generalized second-order difference quotients depending on an
ε and determine whether they converge to something as ε tends to 0. But that leads back to the issue
of what would be the appropriate form of convergence for sequences of extended-real-valued functions.

2 Geometric Approaches to Convergence and Approximation

The first step toward progress in gaining fundamental insights into approximations of the kind im-
portant in optimization is getting a good idea of when two closed subsets C and D of IRn should be
considered “close” to each other.
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There is a classical concept, known as the Hausdorff distance between sets, which very well known,
but it can only do a good job when C and D are bounded, hence compact. Something much broader is
needed for our purposes because we will eventually want to apply the ideas to see whether two sets epi f
and epi g are “close” to each other in IRn× IR, and epigraph sets are intrinsically unbounded. (Recall
that the closedness of epi f and epi g corresponds to the functions f and g being lower semicontinuous,
which is a natural property to ask for in the representation of problems of minimization.)

The distance function on IRn for a nonempty closed set C in IRn is defined by

dist(x,C) = inf { |y − x| | y ∈ C}. (5)

It is nonnegative and takes the value 0 at x if and only if x ∈ C (since C is closed). Thus the
correspondence between closed sets and their distance functions is one-to-one. An elementary property
of distance functions is that they are Lipschitz continuous with constant 1:

|dist(x,C)− dist(y, C)| ≤ |y − x| (Euclidean norm).

Definition (set convergence). A sequence of closed subsets Cν ⊂ IRn for ν = 1, 2, . . . converges to a
closed subset C ⊂ IRn when

dist(x,Cν)→ dist(x,C) for all x ∈ IRn as ν →∞,

In this case, because of Lipschitz continuity, the functions dist(·, Cν) actually converge to dist(·, C)
not just pointwise, but uniformly over all bounded subsets of IRn. Classical Hausdorff convergence
would correspond to the distance function convergence being uniform over IRn itself, which for many
purposes is far too restrictive.

This geometric approach can be applied as follows to obtain a distinctly nonclassical concept in
the convergence of functions.

Definition (epi-convergence). A sequence of lower semicontinous functions fν : IRn → (−∞,∞]
converges to a lower semicontinous function f : IRn → (−∞,∞] when the sets epi fν in IRn × IR
converge to the set epi f .

However, there is more. The same approach can be applied also to set-valued mappings. Recall
that a set-valued mapping

S : IRd →→ IRn with graph set gphS = { (p, x) |x ∈ S(p)}

is said to be outer semicontinuous if gphS is a closed subset of IRd × IRn. The effective domain of
S is domS = { p |S(p) 6= ∅, which is the projection of gphS on IRd, while the effective range of S is
rgeS = {x |x ∈ S(p) for some p}. The inverse S−1 has gphS−1 = { (x, p) | (p, x) ∈ gphS}, so that
domS−1 = rgeS and rgeS−1 = domS.

Definition (graphical convergence). A sequence of outer semicontinous set-valued mappings Sν :
IRd →→ IRn converges graphically to an outer semicontinous mapping S : IRd →→ IRn when the sets
gphSν in IRd × IRn converge to the set gphS.

Many rules and criteria are available for working with set convergence (see [7, Chapter 4]), epi-
convergence (see [7, Chapter 7]), and graphical convergence (see [7, Chapter 5]). Rather going into
more details here, our aim is to explain some interesting ways that the ideas can be utilized.

An important class of set-valued mappings for which approximation in the sense of graphical
convergence will be helpful is subgradient mappings. For a function

f : IRn → (−∞,∞], f 6≡ ∞, (6)
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a subgradient at x (in the “regular” sense (cf. [7, Chapter 8]) is a vector v such that

f(y) ≥ f(x) + v·[y − x] + o(|y − x|), (7)

where o(|y − x|) is the traditional notation for an expression whose ratio to |y − x| tends to 0 as y
tends to x. When f is convex, the error term is superfluous and can be omitted. Thus, this definition
equally covers subgradients as introduced originally in convex analysis.

If f is actually differentiable at x, the unique subgradient v is the gradient vector ∇f(x). In
general, though, we have for each x a (possibly empty) set ∂f(x) of subgradients and therefore a
set-valued subgradient mapping

∂f : x 7→ ∂f(x) = set of all subgradients v of f at x, if any. (8)

Whenever we have a sequence of functions fν on IRn we also have an associated sequence of
subgradient mappings ∂fν : IRn →→ IRn. Is there some connection between epi-convergence of the
functions fν and graphical convergence of the mappings ∂fν? The answer is yes, and it is answered
most dramatically in the case of convex functions fν , as follows.

Attouch’s Theorem for convex functions. A sequence of lower semicontinuous convex functions
fν epi-converges to a function f as in (6) if and only if the sequence of subgradient mappings ∂fν

converges graphically to ∂f and, in addition,

∃ (xν , vν)→ (x, v) with vν ∈ ∂fν(xν), v ∈ ∂f(x), fν(xν)→ f(x). (9)

The extra condition (9) has to come in because ∂f determines f only up to some “constant of
integration.” (Passing from the epi-convergence to the graphical convergence automatically yields (9);
the need is only in the other direction.)

A special situation in which (9) can be counted on to be satisfied is when

0 = fν(0) = inf fν , implying also that 0 = f(0) = inf f.

Through convexity, that entails 0 ∈ ∂fν(0) and 0 ∈ ∂f(0), so that (9) holds for (xν , vν) = (0, 0) =
(x, v). We will invoke this case shortly.

Attouch’s theorem [1] is remarkable for its presentation of a beautiful and valuable result which
sharply departs from traditional modes of thinking in mathematics. An extension to a class of non-
convex functions was obtained by Poliquin [4]. Connections with generalized second-derivatives of
extended-real-valued functions will be seen below.

Another surprising fact which underscores the importance of epi-convergence in dealing with se-
quences of convex functions addresses duality. Recall that for a lower semicontinuous convex function
f as in (6) the conjugate function f∗, defined by

f∗(v) = supx { v·x− f(x)}, (10)

belongs to the same category and yields f back as its own conjugate, f∗∗ = f , i.e.,

f(x) = supv { v·x− f∗(v)}. (11)

Moreover x ∈ ∂f∗(v) if and only if v ∈ ∂f(x); in other words the subgradient mappings for these
functions are inverse to each other:

∂f∗ = (∂f)−1, ∂f = (∂f∗)−1. (12)
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Wijsman’s theorem for convex functions. A sequence of lower semicontinuous convex functions
fν epi-converges to a function f as in (6) if and only if the sequence of conjugate convex functions
fν∗ epi-converges to the conjugate function f∗.

In other words, the operation of passing from f to f∗, which is known as the Legendre-Fenchel
transform in convex analysis, is continuous with respect to the topology of epi-convergence. For more
about about Wijsman’s theorem [8] and what it covers, see [7, Chapter 11G].

3 Generalized differentiation via set convergence

Consider now a “problem” of some sort, parameterized by a vector p ∈ IRd, which looks for “solutions”
x ∈ IRn. This could take the form of the optimization in (3)–(4) with S(p) = argmin f(p, ·), but it
might be something else; its formulation does not matter for now. All that matters is that we have a
set-valued solution mapping S : p 7→ S(p).

Our focus is on a particular pair (p̄, x̄) with x̄ ∈ S(p̄). We would like to “quantify” the way that
shifts of p̄ to other parameter vectors p induce shifts from x̄ to other solutions x ∈ S(p). Specifically,
is there a way to think of “differentiating” S in order to get a handle on this?

It is important to realize that, unless S reduces to being single-valued at p̄, the particular x̄ under
consideration in the set S(p̄) must play a role. Generalized differentiation must operate in a manner
that depends only on the local geometry of gphS around the pair (p̄, x̄) ∈ gphS. For this purpose we
look at the second-order difference quotients mappings

∆εS(p̄ | x̄) : p′ 7→ 1

ε

[
S(p̄+ εp′)− x̄

]
for ε > 0. (13)

Definition (proto-differentiability of set-valued mappings). The mapping S : IRd →→ IRn is proto-
differentiable at p̄ for x̄ if the second-order difference quotient mappings ∆εS(p̄ | x̄) converge graphically
as ε → 0. The limit mapping, denoted by DS(p̄ | x̄), is then called the proto-derivative of S at p̄ for
the element x̄ ∈ S(p̄).

In geometric terms, the graph of the mapping ∆εS(p̄ | x̄) is obtained from the graph of S as

gph ∆εS(p̄ | x̄) =
1

ε

[
gphS − (p̄, x̄)

]
for (p̄, x̄) ∈ gphS, (14)

so that the graph of DS(p̄ | x̄) in the limit will be the tangent cone to the graph of S at (p̄, x̄). (The
tangent cone is defined in general as merely an “outer limit,” but here we are insisting on a limit in
the full sense of set-convergence, which requires the “outer limit” to coincide with an associated “inner
limit”; see [7, Chapter 6].)

Criteria for when proto-derivatives are available emerge, as in elementary calculus, from basic
examples combined with rules for dealing with sums, compositions, and the like.

A valuable observation is that proto-differentiability of S at p̄ for x̄ ∈ S(p̄) corresponds to proto-
differentiability of the inverse mapping S−1 at x̄ for p̄ ∈ S−1(x̄) with

D[S−1](x̄ | p̄) = DS(p̄ | x̄)−1. (15)

This holds through the graphical geometry. Reversing the pairs in the graph of a mapping to get its
inverse has no effect on the existence of the graphical limits that underlie proto-differentiability.

The proto-derivative mapping DS(p̄ | x̄) does provide key information about perturbations in the
case of a S being a solution mapping, and ultimately that can be worked out for the optimization in
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(3)–(4). To make the connection, though, some kind of generalized differentiation associated with the
function f in that model must of course be involved, and that has to be a second-order kind.

The immediate agenda is to approach second-order differentiation of a function f , not necessarily
convex, in two ways. The first is through graphical differentiation of the subgradient mapping ∂f and
the second is through epi-convergence of second-order difference quotients of f itself. In both cases
the concepts are tied to a choice of x̄ and a subgradient v̄ of f at x.

Proto-differentiability in the sense of the definition above can be investigated for the set-valued
mapping ∂f , for which the first-order difference quotient mappings are

∆ε[∂f ](x̄ | v̄) : x′ 7→ 1

ε

[
∂f(x̄+ εx′)− v̄

]
with v̄ ∈ ∂f(x̄). (16)

When these mappings converge graphically — to something — that limit mapping is the proto-
derivative of ∂f at x̄ for v̄,

D[∂f ](x̄ | v̄) : IRn →→ IRn. (17)

The combination of “subdifferentiating” f to get ∂f and then “proto-differentiating” ∂f to get
D[∂f ](x̄ | v̄) constitutes some version of second-order differentiation of f , but how does it relate to
ordinary calculus? An example to look at is that of a C2 function f at a point x̄ with v̄ = ∇f(x̄).
It’s easy to see that the proto-derivative mapping then exists and is simply the linear mapping x′ →
∇2f(x̄)x′ given by the Hessian matrix ∇2f(x̄) (formed from the second partial derivatives of f at x̄).
From this angle, we can think of (17) as a “generalized Hessian mapping.”

Turning now to the alternative approach to second-order differentiation, we look at second-order
difference quotients of f having the form

∆2
εf(x̄ | v̄) : x′ 7→ 1

ε2

[
f(x̄+ εx′)− f(x̄)− εx′·v̄

]
with v̄ ∈ ∂f(x̄). (18)

Definition (second-order epi-derivatives). If the second-order difference quotient functions (18) epi-
converge as ε → 0, the limit function, denoted by d2f(x̄ | v̄), is called the second-order epi-derivative
of f at x̄ for v̄.

Again it is good to refer to the example of a C2 function f for insights. There, with v̄ = ∇f(x̄),
we get d2f(x̄ | v̄)(x′) = x′·∇2f(x̄)x′, the quadratic function associated with the Hessian matrix. We
observe that its derivative mapping, x′ 7→ 2∇2f(x̄)x′, is, apart from the factor 2, the same as the
linear mapping that turned out to be D[∂f ](x̄ | v̄).

This powerfully suggests the possibility of a tight relationship holding quite generally between
the two approaches to generalized second-order differation. Supporting evidence comes from the
observation that

∂[∆2
εf(x̄ | v̄)](x′) = 2∆ε[[∂f ](x̄ | v̄)](x′) for all x′, (19)

as follows from the elementary rules for calculating subgradients. Does this relationship persist in
the limit as ε → 0? The issue can be complicated in general, but for convex functions Attouch’s
theorem comes immediately to the rescue in making use of the fact that then the functions ∆2

εf(x̄ | v̄)
are convex with 0 = ∆2

εf(x̄ | v̄)(0) = inf ∆2
εf(x̄ | v̄).

Theorem (second-order equivalence for convex functions). For a lower semicontinuous convex func-
tion f : IRn → (−∞,∞] and a pair (x̄, v̄) with v̄ ∈ ∂f(x̄), the following are equivalent:

(a) The second-order epi-derivative d2f(x̄ | v̄) exists.
(b) The proto-derivative D[∂f ](x̄ | v̄) exists.
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Moreover these derivative objects are related then by

∂[d2f(x̄ | v̄)](x′) = 2D[[∂f ](x̄ | v̄)](x′) for all x′, (20)

A corresponding result is known for nonconvex f having the property, locally with respect to
(x̄, v̄), of being prox-regular , as developed in [5]. That paper also brings to light a large class of
functions, nonconvex as well as convex, for which the second-order epi-derivatives and subgradient
proto-derivatives do surely exist. See also [7, Chapter 13].

Alongside of Attouch’s theorem we can appeal to Wijsman’s theorem in this context through the
fact that, in the case of f convex, the second-order difference quotient function ∆2

εf(x̄ | v̄) is convex as
well, and the conjugate of 1

2∆2
εf(x̄ | v̄) calculates out to be 1

2∆2
εf
∗(v̄ | x̄). This leads to an important

conclusion in the limit as ε→ 0.

Theorem (second-order duality for convex functions). For a lower semicontinuous convex function
f : IRn → (−∞,∞] with conjugate f∗ and a pair (x̄, v̄) with v̄ ∈ ∂f(x̄), hence also x̄ ∈ ∂f∗(v̄), the
following are equivalent:

(a) The second-order epi-derivative d2f(x̄ | v̄) exists.
(b) The second-order epi-derivative d2f∗(v̄ | x̄) exists.

The convex functions 1
2d

2f(x̄ | v̄) and 1
2d

2f∗(v̄ | x̄) are then conjugate to each other. Moreover the
proto-derivative mappings D[∂f ](x̄ | v̄) and D[∂f∗](v̄ | x̄) both exist and are inverse to each other.

The final fact is supported by formula (20) and its counterpart for f∗.

4 Application to shifts of optimal solutions

Let us look now at a special but fundamental set-up in parameterized optimization involving a lower
semicontinuous function

g : IRn → (−∞,∞], g 6≡ ∞, (21)

and a “tilting” vector v ∈ IRn:

minimize g(x)− x·v in x with v as parameter. (22)

This model fits into the general parameterization scheme in (4) with p = v and f(p, x) = g(x)− x·v.
For x to be a locally optimal solution in (22) it is necessary to have v ∈ ∂g(x). On the other hand,

this is sufficient for x to be a globally optimal solution when g is convex. More broadly, in the possible
absence of convexity, points x having v ∈ ∂g(x) can be termed stationary points in the optimization.
From that perspective, we can think of the mapping

S : v 7→ {x | v ∈ ∂g(x)} (23)

as the solution mapping for the stationarity problem in (21), keeping in mind that when g is convex
this is the same the solution mapping with respect to global optimality.

We choose a reference “tilt” v̄ (for instance v̄ = 0), a corresponding “solution” x̄ ∈ S(v̄), and
contemplate gaining information about solution perturbations through the proto-derivative mapping
DS(v̄ | x̄) : IRn →→ IRn if it exists.

The tools that have been laid out can be put to work right away in this situation. Obviously S is
the inverse of the subgradient mapping ∂g:

x ∈ S(v) ⇐⇒ v ∈ ∂g(x). (24)
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Consequently, through the preservation of proto-differentiability in taking inverse, we have that S is
proto-differentiable at v̄ for x̄ if and only if ∂g is proto-differentiable at x̄ for v̄, and then

DS(v̄ | x̄) = [D[∂g](x̄ | v̄)]−1. (25)

In the convex case, which benefits from the theorem presenting the relation in (20), we arrive at
very strong conclusions.

Theorem (tilt perturbations of optimality with convexity). For a lower semicontinuous convex func-
tion g in (21) and the associated solution mapping S for global optimality in (22), given by (23), and
for a tilt vector v̄ and a solution x̄ ∈ S(v̄), the following are equivalent:

(a) The proto-derivative mapping DS(v̄ | x̄) exists.
(b) The second-order epi-derivative d2g(x̄ | v̄) exists.

In that case there is the further equivalence between
(a′) x′ is an element of the set DS(v̄ | x̄)(v′).
(b′) v′ is a subgradient of the function 1

2d
2g(x̄ | v̄) at x′.

In consequence, the vectors x′ in (a′) are the optimal solutions to the convex optimization subproblem:

minimize 1
2d

2g(x̄ | v̄)(x′)− x′·v′ with respect to x′,

so that
DS(v̄ | x̄)(v′) = argminx′

{
1
2d

2g(x̄ | v̄)(x′)− x′·v′
}
. (26)

The remarkable description of solution pertubation vectors x′ as solutions themselves to an opti-
mization problem parameterized by perturbational tilt vectors v′ comes from the observation that the
solutions in (26) are characterized through convexity by v′ ∈ ∂[12d

2g(x̄ | v̄)](x′). On the other hand,
this subgradient mapping can be identified with the right side of (25) through (20) as applied to g.

In line with remarks at the end of the preceding section, an extension of this theorem beyond
convexity, although not with the minimization fact in (26), can be made for functions having the
property of prox-regularity.

Tilt perturbations can be combined with other possibilities for perturbation by adopting the prob-
lem model:

minimize g(u, x)− x·v in x with u and v as parameters. (27)

This corresponds to the earlier model (4) as the case where p = (u, v) and f(p, x) = g(u, x)− x·v. It
may seem unnecessary to have both u and v; why not just fall back on g(u, x) = f(p, x)? The reason
is that in developing the theory at this level one soon sees that tilt parameters must enter indirectly,
if not directly, and that it is more convenient therefore to employ them from the beginning. Results
developed in the (u, v) format can anyway be reduced to results in the u format by fixing v = 0 at the
end.

Research in this general direction, with the goal of understanding when the solution mapping S
in (27) would have a localization that is single-valued and Lipschitz continuous, began in [2]. Some
of the latest developments can be found in [3]. A notable feature of the subject is the important way
that coderivatives of set-valued mappings and in particular subgradient mappings, as opposed to the
graphical derivatives employed here, come into play. Coderivatives correspond, with a twist, to normal
cones to the graphs of mappings in place of the tangent cones that support graphical derivatives.
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