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Abstract

Any real-valued random variable induces a probability distribution on the real line which can
be described by a cumulative distribution function. When the vertical gaps that may occur in
the graph of that function are filled in, one gets a maximal monotone relation which describes the
random variable by its characteristic curve. Maximal monotone relations in the plane are known
in convex analysis to correspond to the subdifferentials of the closed proper convex functions on
the real line. Here that connection is developed in terms of what those convex functions and their
conjugates say about the random variables, and how that information serves in applications to
stochastic optimization.
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1 Distribution Functions and Characteristic Curves

Random variables are central to statistics but vital also in areas of applied mathematics that deal with
stochastic modeling, such as engineering, finance and operations research. Less obvious, however, and
hardly known, are some deep connections with convex analysis. The purpose of this note is to explain
those connections and their implications for computational work. Further details, references, and
proofs of various assertions are provided in [9].

Any random variable X (real-valued) induces a probability distribution on the real line IR through
the rule that the probability probX{I} of an interval I ⊂ IR is the probability of X having outcome
in I. Two random variables X and Y can of course induce the same probability distribution on IR,
probX = probY , without X and Y being identical, because this aspect of them does not reflect the
degree to which they may be independent or correlated. Nonetheless, the induced distributions on IR
are helpful in understanding many features of randomness.

A convenient handle on the probability distribution probX is the cumulative distribution function
FX , defined by

FX(q) = probX{ (−∞, q] } for q ∈ IR. (1)

This is a nondecreasing function from IR into [0, 1] which is right continuous and tends to 1 as x↗∞
and to 0 as x↘ −∞. It completely determines probX . On the other hand, any function from IR to
[0, 1] with the listed properties is probX for some random variable X (far from unique).

Although most of what follows is concerned only with probability distributions on IR in themselves,
apart from a particular X, we maintain X in our notation as a reminder of the context in which the
ideas are to be applied.

Tradition in statistics looks to FX , but it is equally possible to characterize probX in terms of the
function

F−X(q) = probX { (−∞, q)} for q ∈ IR, (2)

which has the same properties except for being left continuous instead of right continuous. Indeed,
FX and F−X are locked together by the limit relations

F−X(q) = lim
q′↗ q

FX(q′), FX(q) = lim
q′↘ q

F−X(q′). (3)

When FX = F−X , the random variable X is said to be continuous, but the extreme opposite case,
where these functions agree except at finitely many points where a “jump” occurs, and are constant
between them, is likewise valuable in corresponding to a random variable X that is discrete.

Despite the fact that standard theory can, and ordinarily does, make do with just FX and ignore
F−X , there is a key reason to pay attention to both and even to go a step further in considering the set

ΓX = { (q, p) |F−X ≤ p ≤ FX(q)} ⊂ IR× IR

as the characteristic curve associated with X. In geometric terms, ΓX is obtained from the graph of
FX (or for that matter F−X) simply by filling in the vertical segments wherever there is a gap caused
by a jump. It, too, completely characterizes the probability distribution probX , but what advantage
does it hold? The advantage is that ΓX directly opens the door to convex analysis by being a maximal
monotone relation in IR× IR.

Much about maximal monotone relations in IR×IR can be found in [6] and [15] The topic was first
studied by G. Minty [3] in the framework of variational principles (i.e., optimization rules) that char-
acterize equilibrium configurations of flows and potentials in general networks — electrical, hydraulic,
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economic and much more. It was taken up soon afterward in the PhD thesis [5] and subsequently
expanded in the book [7].

A subset Γ of IR× IR is said to give a monotone relation when

(q, p) ∈ Γ, (q′, p′) ∈ Γ =⇒ (q′ − q)·(p′ − p) ≥ 0, (4)

or equivalently

(q, p) ∈ Γ, (q′, p′) ∈ Γ =⇒ either (q′, p′) ≥ (q, p) or (q, p) ≥ (q′, p′) (5)

in the coordinatewise partial ordering of IR×IR. (The monotonicity concept in convex analysis extends
to subsets of IRn × IRn through (4), but without equivalence to (5); see [6] and [15].)

A monotone relation Γ in IR × IR is maximal if there does not exist a monotone relation Γ′ in
IR× IR with Γ′ ⊃ Γ and Γ′ 6= Γ. Any monotone relation can be extended to one that is maximal. The
domain and range of a maximal monotone relation, namely the projections

dom Γ = { q | ∃ p with (q, p) ∈ Γ}, rge Γ = { p | ∃ q with (q, p) ∈ Γ}, (6)

are always intervals in IR. In our context of random variables X and their characteristic curves ΓX ,
we are dealing with the class of maximal monotone relations Γ such that

dom Γ = (−∞,∞), (0, 1) ⊂ rge Γ ⊂ [0, 1]. (7)

The main fact about maximal monotone relations Γ ⊂ IR × IR from the perspective of convex
analysis is that they are the graphs of the subdifferentials ∂f of the closed proper convex functions
f on IR. Specifically, Γ is maximal monotone if and only if there is a lower semicontinuous convex
function f : IR→ (−∞,∞], f 6≡ ∞, such that

Γ = { (q, p) | p ∈ ∂f(q)}, (8)

where
∂f(q) = { p | f(q′) ≥ f(q) + p·(q′ − q) ∀q′}, (9)

or in terms of the left and right derivatives f ′− and f ′+,

∂f(q) = { p | f ′−(q) ≤ p ≤ f ′+(q) } (10)

(under the convention that f ′−(q) = −∞ at the left endpoint of dom f and below it, whereas f ′+(q) =
∞ at the right endpoint of dom f and above it). The function f is uniquely determined by Γ up to
an additive constant.

What might this mean for random variables? In that case, since dom ΓX = IR, f is a finite convex
function on IR having F−X and FX as its left and right derivatives f ′− and f ′+.

Statistics is an old subject and convex analysis is getting to be one, so why has this connection
between random variables and convex functions been largely out of sight in the literature? Actually,
in one way, it has long been present, even if unexploited, through the topic of stochastic dominance.

A random variable X is said to exhibit first-order stochastic dominance over a random variable Y ,
in the context of higher outcomes being preferred to lower outcomes, if FX ≤ FY , or in other words,
if for every q ∈ IR the probability of X being ≤ q is no greater than the probability of Y being ≤ q.

In the same context, second-order stochastic dominance corresponds instead to having F
(2)
X ≥ F

(2)
Y ,

where

F
(2)
X (q) =

∫ q

−∞
FX(q′)dq′. (11)
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This integral is sure to be finite as long as E[ |X| ] <∞, which is a restiction we henceforth place on
all the random variables in this note.

Clearly, because FX is nondecreasing, the function F
(2)
X is indeed convex and has F−X and FX as

its left and right derivatives f ′− and f ′+. Furthermore it is nondecreasing and tends to 0 as q↘ −∞
and to ∞ as q↗∞. However, for some purposes, especially in the opposite context where the random
variable X represents a “cost”, so that lower outcomes are preferable to higher outcomes, it may not
be the ideal choice for the convex function associated with X; an adjustment in the additive constant
of integration may be desirable. In that connection our focus will instead be on the superexpectation
function EX , defined by

EX(q) = E[max{X, q}], (12)

which likewise is convex and nondecreasing with the same left and right derivatives, but instead tends

to E[X] as q↘ −∞. This vertical shift from F
(2)
X may seem inconsequential, but the fact that the

size of the shift depends on X rather than being fixed in advance has a significant advantage. We will
return to this close to the end of this note, after other ingredients have been added to the conceptual
mix.

2 Quantiles and Superquantiles

The distribution function FX is not the only important function associated with a random variable
X. Another is the quantile function QX , given by

QX(p) = min{ q |FX(q) ≥ p} for p ∈ [0, 1)
= lowest p such that prob{X > q} ≤ 1− p.

(13)

This is a left-continuous nondecreasing function having QX(0) as the essential infimum of X, possibly
−∞. For our purposes it is appropriately extended from [0, 1) to (−∞,∞) by taking

QX(p) = −∞ when p < 0, QX(p) =∞ when p ≥ 1. (14)

The class of functions arising as QX for some X is then the class of all nondecreasing left-continuous
functions on IR satisfying (14). The right-continuous partner to QX is

Q+

X(p) = lim
p′↘ p

QX(p′). (15)

From either QX or Q+

X the probability distribution probX can be recovered completely.
We can associate maximal monotone relations with quantile functions just as with distribution

functions, essentially by filling in the vertical gaps in their graphs. Specifically, a maximal monotone
relation ∆X is given by

∆X = { (p, q)] ∈ IR× IR |QX(p) ≤ q ≤ Q+

X(p) }. (16)

This is inversely related to the maximal monotone relation ΓX in the sense that

∆X = { (p, q) | (q, p) ∈ ΓX}, ΓX = { (q, p) | (p, q) ∈ ∆X}. (17)

Indeed, in the special case where FX is continuous and everywhere increasing (not just nondecreasing),
so that ΓX contains neither vertical line segments nor horizontal line segments, (17) reduces to QX =
F−1X on (0, 1).

4



In this quantile context, the question of an associated convex function returns in parallel fashion.
Again we have the existence of a closed, proper convex function g : IR → (−∞,∞], g 6≡ ∞, which is
unique up to an additive constant and yields

∆X = gph ∂g = { (p, q) | q ∈ ∂g(p) } = { (p, q) | g′−(p) ≤ q ≤ g′+(p) }. (18)

Then QX is the left derivative g′−, whereas Q+

X is the right derivative g′+. But because of the inverse
relationship between ΓX and ∆X in (17), convex analysis tells us further that, the free additive
constant in g can be coordinated with the one for f in (8) in order to make f and g be conjugate
convex functions in the sense of the Legendre-Fenchel transform:

g(p) = f∗(p) = supq { pq − f(q)}, f(q) = g∗(q) = supp { pq − g(p)}. (19)

With f and g tied together in this way, there is still a degree of freedom; shifting f upward by some
amount corresponds to shifting g downward by that amount, and vice versa. Is there a particularly
advantageous way to exploit that remaining freedom?

It has already been noted that one choice of f is the function F
(2)
X in (11). For that choice, the

conjugate function f∗ has been calculated by Ogryczak and Ruszczynski in [4, Theorem 3.1] (2002)
to be

f∗(p) = F
(−2)
X (p) =

∫ p

0
QX(p′)dp′ − g(p),

which has the well-known Lorenz curve [2] as its graph. The alternative choice of f as the superex-
pectation function EX in (12) yields instead

f∗(p) = E∗X(p) = −(1− p)QX(p)− g(p), (20)

where QX is the superquantile function associated with X, expressed by

QX(p) =


1

1−p
∫ 1
p QX(p′)dp′ for p ∈ (0, 1),

0 for p = 1,
E[X] for p = 0,

(21)

and extended beyond [0, 1] by −∞ to the left and∞ to the right, just like QX above. The superquantile
function QX is continuous and increasing on [0, 1], and QX ≥ QX .

Conjugate duality in the form of (20) was already known in [11] (2000), at least implicitly, as the
basis for passing between “value-at-risk” and “conditional value-at-risk” in assessments of uncertainty.
That will be recounted in the next section. The “superquantial” terminology is more recent, however,
having been proposed in [8] (2010) as better for applications outside of finance, such as engineering
reliability.

3 Connections with Risk and Optimization Under Uncertainty

The usual focus in optimization for reasons of standardization and general exposition is on mini-
mization, instead of maximization, and inequality constraints of type ≤ instead of ≥, although all
situations are ultimately covered anyway through changes of sign. In that environment, quantities to
be minimized, or to be held below some upper bound, can be regarded abstractly as “costs” of some
sort, with ”losses,” “damages,” and “hazard levels” as possible linguistic substitutes.

A typical situation in finance, engineering and many other areas of application involves random
values X representing such “costs,” coming in the future, which can be influenced to some extent, at
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least, by a decision taken in the present. In viewing that decision as a vector u = (u1, . . . , un), say,
we can think of a “cost” random variable X(u) depending on the choice of u from some set U ⊂ IRn

specified by various underlying constraints.
We might like to limit the choice u ∈ U so as to ensure that no outcomes of X(u) exceed a

particular upper bound b. This may be impossible to fulfill, though. Every available u ∈ U may carry
with it some circumstances that violate this, and a compromise of sorts is then essential. The critical
issue is how to articulate, flexibly, a mathematical model for having

X(u) “adequately” ≤ b. (22)

The idea behind a measure of risk , as a functional R that assigns numerical values (possibly ∞)
to random variables, is to convert (22) into an ordinary inequality involving a numerical function
generated from R, namely

fR(u) ≤ b where fR(u) = R(X(u)), (23)

which can then be handled by familiar methodology of optimization.
For instance, the case of R(X) = supX (the essential supremum of a random variable X) would

translate (22) into having X(u) ≤ b with probability 1. On the other hand, the case of R(X) = E[X]
would translate it into requiring that X(u) be ≤ b “on average.”

There are many possibilities for R, but a particularly popular one is to choose a probability level
p ∈ (0, 1) and take R(X) to be the pth quantile QX(p) of the random variable X. This is attractive
because

QX(p) ≤ b ⇐⇒ prob{X ≤ b} ≥ 1− p. (24)

The model (23) then interprets (22) as allowing X(u) to exceed b only with a probability less than
1− p.

Although simple and seemingly very natural, this approach has serious drawbacks. Trouble comes
from the fact that the expression fR(u) = QX(u)(p) can have poor behavior with with respect to
the decision vector u on which the random cost X(u) depends. It might not even be continuous in
u, not to speak of being differentiable, and this can make it difficult to work with in a context of
optimization. For instance, if the setting is that of discrete probability, QX(u) is a step function of
p ∈ [0, 1] described by finitely many jumps, and smooth behavior with respect to shifts in u is out of
question.

Another drawback to quantiles is that in interpreting (22) in terms of the inequality being satified
with a specified probability there is no reflection of how bad the inevitable exceptions to the inequality
may be for the situation being modeled.

A better approach may be to replace quantiles QX(p) by superquantiles QX(p). The superquantile
version of (24) is

QX(p) ≤ b ⇐⇒
{

even in the upper p-tail of the probability distribution
probX on (−∞,∞), one has outcomes X ≤ b “on average.”

(25)

The p-tail distribution associated with X refers to the probability distribution obtained by passing
from the distribution function FX to the truncated distribution function

F p
X(q) =

1

1− p
max{0, FX(q)− p}. (26)

When FX has no jump at q = QX(p), this gives the conditional probability distribution induced by
probX on the interval [QX(p),∞), and then QX(p) is the expectation of X conditional on having
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X coming out at least as high as the quantile QX(p). (When a jump is present, the probability
associated with the interval [QX(p),∞) may be greater than 1− p, and F p

X counters that by “spliting
the probability atom” at q = QX(p) appropriately,) For this reason, the terminology and notation

QX(p) = conditional value-at-risk of X at level p = CVaRp(X) (27)

was introduced in [11] as an extension of the terminology and notation

QX(p) = value-at-risk of X at level p = VaRp(X) (28)

which is widely used for quantiles in finance when X represents potential loss in a portfolio of assets.
Details covering possible jumps in FX , such as the truncated distribution function F p

X in (26), were
provided in the follow-up paper [12]. (As already mentioned, “superquantile” was coined in [8] so that
financial terminology would not be forced on users outside of finance.)

In modeling (22) by (23) in the case of R(X(u)) = QX(u)(p) with p = 0.95, for example, the
condition fR(u) ≤ b comes out as requiring that X(u) be ≤ b “on average even in the worst 5% of
cases.” This is more conservative obviously than the quantile version, which would only require that
X(u) be ≤ b “except in the worst 5% of cases” and take no account of the seriousness of exceptional
cases.

In contrast to the poor mathematical behaviour of QX(u)(p) with respect to u, the superquantile

QX(u)(p) is much nicer. An especially valuable property is the following: if the random variable X(u)
depends convexly on u, in the sense that

X((1− t)u + tu′) ≤ (1− t)X(u) + tX(u′) almost surely for t ∈ (0, 1),

then QX(u)(p) is convex as a function of u. In other words, the superquantile approach is convexity-
preserving , whereas the quantile approach might not even be continuity-preserving. In a vast range
of applications in finance, at least, X(u) depends not just convexly but linearly on u, and there
superquantiles are all the more at home. Measures of risk based on superquantiles instead of quantiles
also possess the property of coherency stressed in the pioneering work of Artzner et al. [1].

This good report about superquantiles could be unconvincing if the impression is held that the
neither the “conditional expectation” description of QX(p) nor the integral formula equivalent to it
in (21) is practical enough for implementation. However, there is yet another formula, first developed
in [11] and extended in [12], which is eminently practical. For p ∈ (0, 1),

QX(p) = min
C∈IR

{
C +

1

1− p
E[ max{0, X − C} ]

}
, (29)

whereas

[QX(p), Q+

X(p)] = argmin
C∈IR

{
C +

1

1− p
E[ max{0, X − C} ]

}
. (30)

In other words, quantile-superquantile pairs can be computed in tandem by solving a one-dimensional
optimization problem involving a simplified expectation expression (with nothing “conditional”).

This means moreover that, in the case of X(u) depending on a decision vector u, the condition
QX(u)(p) ≤ b on u can be replaced by a condition on (u,C) where C is an additional decision variable,
namely

C +
1

1− p
E[ max{0, X − C} ] ≤ b.

More about these features in optimization applications can be found in [11] and [12].
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Returning now to the remarks at the end of the preceding section about conjugates of differ-
ent choices of convex functions associated with the characteristic curve ΓX , we point out that the
minimization formula for Q̄X(p) in (29) is obviously equivalent to the formula for the conjugate super-
expectation function E∗X in (20). In truth, this was the source of the discovery of that minimization
formula in [11].

The general theory of measures of risk R is well developed by now with many contributions, but
much still needs to be explored. A particularly interesting target could be the connections between
the choice of R and the form of generalized regression that might be employed in treating the data
on which the probabilistic underpinnings of an optimization model may depend. This line of research,
initiated in [14], has been pushed further in the broad article [13] and on the other hand with more
intense focus on superquantiles in [9] and [10].

Another topic connecting the convex analysis and duality associated with random variables X
through their characteristic curves ΓX is convergence of random variables. As proved in [9, Theorem
4], convergence in distribution of a sequence {Xk} to X corresponds to graphical convergence of the
corresponding characteristic curves ΓXk

to ΓX . Moreover it is equivalent to having QXk
(p)→ QX(p)

for every p ∈ (0, 1). Graphical convergence as an offshoot of set convergence is developed extensively
in the book [15].
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