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Abstract  Superquantiles (also called conditional values-at-risk) are useful tools in risk mod-
eling and optimization, with expanding roles beyond these areas. This tutorial pro-
vides a broad overview of superquantiles and their versatile applications. We see that

to higher-order superquantiles as well as new measures of risk and error, with impor-
tant applications in risk modeling and generalized regression.

Keywords random variables; quantiles; superquantiles; superexpectations; superdistributions;
conjugate duality; stochastic dominance; measures of risk; value-at-risk; conditional
value-at-risk; generalized regression

1. Introduction

Superquantiles have for some time been recognized as important tools in risk analysis and
stochastic optimization. However, the concept is better known under a variety of names such
as “conditional value-at-risk,” “average value-at-risk,” “tail value-at-risk,” and “expected
shortfall,” with occasional minor variations in definitions. A purpose of this tutorial is to
describe the expanding role of superquantiles beyond the original area of financial engi-
neering (see, e.g., Rockafellar and Uryasev [29, 30], Acerbi and Tasche (1], Féllmer and
Schied [13]), and we therefore adopt an application neutral term already promoted in
Rockafellar and Royset (27, 28], Rockafellar and Uryasev [31], and Rockafellar et al. [33].
The prominence of superquantiles in risk analysis derives from its “coherency” (Artzner
et al. [4]) and “regularity” (Rockafellar and Uryasev [31]) when viewed as a measure of
risk of a random variable. These properties make superquantiles well suited as scalar rep-
resentations of a random variable in risk-averse decision making. Moreover, superquantiles
are computationally attractive because of a trade-off formula that is easily incorporated in
stochastic optimization models. In fact, a superquantile of a random variable is fundamen-
tally more stable under (parametric) perturbation of that variable than corresponding quan-
tiles, failure probabilities, and chance constraints. Stability becomes especially important in

tributional information about a random variable and other approximations. Superquantiles
are therefore widely used in financial engineering (Yamai and Yoshiba [41], Alexander et al.
[2], Wang and Uryasev [39], Balbas et al. [5], Uryasev et al. [37]), but increasingly also in

151



Rockafellar and Royset: Superquantiles
152 Tutorials in Operations Research, © 2013 INFORMS

other application areas such as structural engineering (Rockafellar and Royset [27], Minguez
et al. [20], Haukaas et al. [15]), military operations (Commander et al. [8], Kalinchenko
et al. [16], Molyboha and Zabarankin [21]), natural resources (Yamout et al. [42], Webby
et al. [40]), supply chains (Tomlin [36], Verderame and Floudas [38]), and energy systems
(Carrion et al. [7], Conejo et al. [9]), to mention a few. We refer to Rockafellar [26], Sarykalin
et al. [35], and Krokhmal et al. [19] for earlier reviews of risk measures and superquantiles,
as well as for a more comprehensive list of references.

In this tutorial we briefly summarize the use of superquantiles in risk analysis and opti-
mization, but we go beyond these applications and describe their fundamental role in
characterizing random variables, convergence in distribution, and stochastic dominance.
Superquantiles also play an important role in statistics, where they define a generalized
regression technique that extends traditional quantile regression. Many of the insights come
through convex analysis, which we highlight at numerous occasions.

Section 2 defines superquantiles of random variables and the corresponding distribu-
tion and quantile functions, which are intimately connected with superquantiles. Section 3
describes briefly the use of superquantiles in risk modeling and optimization. Section 4
shows the expanding role of superquantiles in the description of random variables. Section 5
shows that superquantiles generate a distribution function that gives rise to higher-order
superquantiles as well as measures of risk and other quantities. Section 6 utilizes these results
in an application to generalized regression. This tutorial is mainly based on results from
Rockafellar and Royset [28] and Rockafellar et al. (33], with supporting material drawn from
Rockafellar and Uryasev [31].

2. Definitions

A real-valued random variable X is traditionally characterized by its cumulative distribution
function, which is the right-continuous function Fx:R—[0,1] given by

Fx(z) = prob {X < z} for z €R.

An equivalent characterization is in terms of the left-continuous quantile function
Q@x: (0,1) - R expressed as

Q@x(p) =min {z | Fx(z) >p} forpe(0,1). ’ (1)

Consequently, the p-quantile Qx(p) is the lowest z such that prob{X >z} <1-p. Of
course, Qx(p) = Fy Yp) if Fy is strictly increasing such that its inverse exists. Although
Fx and Qx are nondecreasing, they may be discontinuous, as illustrated in Figure 1.

The correspondence between distribution functions and quantile functions is one-to-one,
with Fix recoverable from Qx by the formula

max {p|Qx(p) <z} for z € (inf Qx,supQyx],
Fx(z)=<1 for z >supQy, (2)
0 for z <infQy.

Yet another description of a random variable X comes in terms of the superquantile
function Qx: (0,1) — (—00, 00], with

@ x (p) = expectation in the upper p-tail distribution of X, for pe 0,1).

The expectation here refers to the probability distribution on [Q x (p), 00), which, in the case
of Fix (Qx(p)) = p, is the conditional distribution of X sub ject X > Qx (p), but which slightly
modify that conditional distribution when Fx has a jump at the quantile Qx(p). In the
latter case there is a probability atom at Qx(p) causing the interval [@x(p),0) to have
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FIGURE 1. Distribution function Fx and quantile function Q.
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probability larger than 1 — p and the interval (Qy (p), 00) to have probability smaller than

To take care of the discrepancy, the p-tail distribution is defined in general as having

) = max{0, Fx(z) - p}/(1 —p) as its distribution. This amounts to an appropriate
splitting of a probability atom at Q (p)-

The superquantile function is equivalently given by

1-p.
F/[\’.’{():I:

1
Ux0)= =[xt forpe(o,), 3

This expression highlights a connection between qu
being an “average” of the former. We refer to Rockafellar and Royset [28] for an explanation
of the equivalence between the two formulae; see also Figure 2, where the left-hand side
indicates the p-tail and the right-hand side illustrates the area under the quantile function.
Since Qx is a nondecreasing, left-continuous function with at most a countable number of
jumps, Qy is Lebesgue measurable. Moreover, the integrand in (3) is bounded below by

®@x (p), and therefore the integral is well defined, though the value may be infinity. For p=0
and 1, it is natural to extend the definition by setting

antiles and superquantiles, with the latter

Qx(0)=E[X] and Qy(1)=supX,

yielding a continuous function on 0,1], where the former statement re

quires the expectation
to be well defined and the latter implies the essential supremum. Pr

esently, it may not be

FIGURE 2. The pth quantile and the p-tail.
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clear how the knowledge of Qx provides an equivalent characterization of X to that of Fy
and @ x, but we see in §4 that this is indeed the case.

While the definition of Q x (p) holds for any random variable X and p € (0, 1], it is tailored
to applications where high realizations of X is of particular concern. Such situations may
arise when X describes “cost,” “loss,” or “damage,” and the upper-tail-centered definition
of a superquantile coincides with a risk-averse decision maker’s focus on the upper tail of the
distribution. Of course, a parallel development with an opposite orientation of the random
variable X, focused on profits and gains, is also possible. In that case, one could define
subquantiles as the expectation in the lower p-tail distribution of X. However, we do not
pursue that topic further.

3. Superquantile in Risk Modeling and Optimization

In applications one is often faced with the need to determine whether one random variable is
“adequately” small or, in comparison with another random variable, if it is “better” in some
sense. This situation arises in stochastic optimization where families of parametric random
variables (random functions) are compared with the goal of identifying the parameters
that return the “smallest” random variable. The random variables may represent cost, loss,
and damage associated some future actions, with parameters representing quantities that a
decision maker can select to “shape” the probability of the various outcomes. Superquantiles,
and more generally, risk measures, enable comparison across random variables.

3.1. Risk Measures

A measure of risk is a functional R that assigns to a random variable X a value R(X) in
(—00, 0] as a quantification of the risk in it. The comparison of two random variables X and
Y can then be reduced to that of comparing the real numbers R(X) and R(Y’). Moreover,
the question of X being sufficiently small, say “adequately” no greater than 0, can then be
represented by R(X) < 0. The ill-posed problem of minimizing a parametric random variable
subject to constraints on other parametric random variables being “adequately” small can
then be interpreted as one in terms of risk measures. We refer to Krokhmal et al. [19] and
Rockafellar and Uryasev [31] for detailed surveys of this approach and its connection to
expected utility theory.

There are several natural candidates for risk measures. The choice R(X) = E[X] places the
focus on the “average outcome” and ignores the possible variability of X . For example, a con-
straint R(X) <0 then only ensures that X is no greater than zero on average. A risk-averse
decision maker may steer away from this choice and consider R(X) = E[X] + Ao(X) for
some A >0, where o(X) denotes standard deviation. Then, the interpretation of R(X) <0
is that outcomes of X above zero can only be in the part of the distribution of X lying more
than A standard deviation above the mean, with an obvious parallel to the construction of
confidence intervals in statistics. Another risk measure is to set R(X) =sup X (the essen-
tial supremum of X). Although conservative, this choice may lead to infeasible demands as
R(X) = oo often.

Two more possibilities are based on quantiles and superquantiles, with the former being
closely related to failure probability and chance constraints in stochastic optimization. By
setting R(X) = Qx(p), for some p € (0,1), the relations

Qx(p) <0 <= prob{X <0} >p <= prob{X>0}<1-p

imply that R(X) <0 is equivalent to a chance constraint on X, which is frequently used
in practice. In financial applications, R(X) = Qx(p) is referred to as the value-at-risk of
X at probability level p. The choice R(X) = Qx(p) implies, in view of the definition of
a superquantile, that a requirement R(X) <0 is satisfied if and only if X is on average
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below zero even in its p-tail distribution. In reliability terminology, such a requirement is
equivalent to the buffered failure probability being no greater than 1 — p (Rockafellar and
Royset [27]).

With the abundance of possible risk measures (and we refer to Rockafellar and Uryasev
[31] and references therein for many more), there is a demand for guidance on what would
constitute a good and useful measure of risk. There are two concepts that stand out in this
regards: coherency and regularity. We discuss each in turn.

A measure of risk R is coherent in the sense of Artzner et al. [4] (see also Delbaen [10])
if it satisfies the following axioms:

R(C) =C for constant random variables X =C,

R(X) <R(X') when X < X' almost surely (monotonicity),
R(X +X') <R(X) +R(X') (subadditivity),

R(AX) = AR(X) for A >0 (positive homogeneity).

For the examples above, coherency holds for the choices R(X) = E[X], R(X)=sup X, and
R(X) =Qx(p), but it is absent in general for R(X) = E[X]+ Ao(X) with A > 0 (because the
monotonicity axiom fails) and for R(X) = Qx(p) (because the subadditivity axiom fails).

A measure of risk R is regular in the sense of Rockafellar and Uryasev [31] if it satisfies
the following axioms:

R(C) = C for constant random variables X =C,
R(A1-7)X+7X)<(1-7)R(X)+7R(X’) for all X, X’ and 7€ (0,1) (convexity),
{X|R(X) <C} is closed for all C € R (closedness),

R(X) > E[X] for nonconstant X (aversity).

The third axiom (closedness) requires a topology on the space of random variables under
consideration. Without going into technical details, we simply note that R(X) = Qx(p) is
regular for p € (0,1) when we consider the space of random variables X with E|X| < co
equipped with the L;-norm topology. (This fact follows by the continuity of Qx (p) as a func-
tional on the space of such random variables for p € [0,1); see Theorem 3(a) below.) For the
other examples above, we find that R(X) =sup X and R(X) = E[X] + Ao(X), with A >0,
are regular on the space of random variables X with E[X?] < oo equipped with the Ly-norm
topology. The choice R(X) = E[X] fails the aversity axiom and R(X) = Qx(p) the convex-
ity axiom. We refer to Rockafellar and Uryasev [31] for further details. The coherency and
regularity axioms overlap, but are not equivalent as the above examples illustrate. However,
both notions impose conditions that are practically important in modeling and implemen-
tation, with the superquantile risk measures emerging as both coherent and regular; see, for
example, Artzner et al. [4] and Rockafellar and Uryasev [31] for discussions.

Although the definition of superquantiles may at first indicate difficulties in evaluating
and implementing them in practice, a trade-off formula reduces the task to that of evaluating
expectations and minimizing over a scalar, thereby eliminating that concern Rockafellar and
Uryasev [29, 30]. Specifically,

Qx(p) = min {2+ Vp(X —2)}, where Vy(X) = l%pE[max{O, X, @)

Qx(p) =argmin{z+ V,(X —z)} (left endpoint, if not a singleton). (5)
x

Here, the “argmin,” consisting of the z-values for which the minimum is attained, is, in this
formula, a nonempty, closed, bounded interval that typically reduces to a single point. Inter-
estingly, the corresponding quantile of a superquantile is a byproduct of the minimization.

A consequence of the trade-off formula in stochastic optimization problems with
superquantiles of parametric random variables in constraints and/or objectives is that the
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trade-off formula can be substituted in each instance with an associated auxiliary variable in
the overall minimization. If the random variables depend in a convex manner on the param-
eters, then the resulting expressions remain convex. In the absence of other complications,
this may lead to a convex optimization problem for which efficient algorithms exist.

3.2. Superquantiles and the Newsvendor Problem

Whereas superquantiles are often adopted as a measure of risk when modeling a risk-averse
decision maker, they also arise “naturally” in situations with trade-offs between various
costs. We illustrate such a situation by considering the newsvendor problem.

A newsvendor acquires  newspapers every morning at a unit price ¢, sells them for b a
piece, and salvages each unsold newspaper for a value @ at the end of the day. Naturally,
0 <a <c¢<b. The demand for newspapers is unknown but given by the random variable X.
The newsvendor would like to determine z such that the expected cost is minimized. The
newsvendor’s (random) cost, consisting of initial expense minus income from sales and sal-
vage, is

cz —bmin{X, 2} —amax{0, z — X} = (c—a) [a;+ -cb:—Zmax{O, X —m}} +(a-b)X,

where the latter expression is established by simple algebra. By setting p=(b—c)/(b~a),
we obtain in view of (4) that the minimum expected cost is given by

min Elez — bmin{X, 2} ~ amax{0, z - X}] = (¢~ a)Qx (p) + (a — b)E[X].

The corresponding optimal number of newspaper is Qy (p) by (5), which of course coincides
with the textbook solution for the problem. Interestingly, in this problem the probability
level p of the superquantile is determined by a, b, c. These coefficients thereby impose a
degree of “risk averseness” in some sense on the decision maker.

The above situation generalizes to numerous other contexts with X possibly being a
parametric random variable depending on decision variables u that also must be optimized.
This may lead to minimization,with respect to u, of Q x(u)(p) and other terms. Again, the
value of p may be determined, or at least informed, by cost parameters as in the newsvendor
problem.

4. Superexpectation and Duality

Convex analysis provides deeper insight about superquantile functions and their connections
with distribution and quantile functions. We start by placing Fx and Qy in the context of
monotone relations. Although these functions may have jumps (see Figure 1), the graphs
obtained by filling in the vertical gaps and adding infinite vertical segments at the right
and left ends of the resulting curve for Qx, when the range of X is bounded, are mazimal
monotone relations. We let the filled-in graphs for Fy and Qyx be denoted by I'yv and Ay,
respectively; see Figure 3. These graphs are the reflections of each other across the line T=
p- The relations I'x and Ay identify with subdifferentials of convex functions and therefore
enable us to bring to bear the machinery of convex analysis including conjugate duality. For
the remainder of this section we assume that all random variables X have E |X| < oo.

The distribution function Fy is nondecreasing and right-continuous, but we can also
define a left-continuous counterpart F'; given for each z € R by

Fi(z)= xl/i;‘nz Fx(z").

Then,
Iy ={(z,p) ERxR| Fx(z) <p< Fx(z)}.
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FIGURE 3. Relations 'y and Ax.
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We proceed similarly with the nondecreasing left-continuous function Qx, but first we need
to extend it beyond (0,1) by setting

Qx(1)=lmQx(p),  Qx(p)=00 forp>1,  Qx(p)=—co0 for p<,

which results in a nondecreasing left-continuous function on R. We also define its right-
continuous counterpart Q% by
QY (p)= lim Qx(p')
P'\vp
and find that
Ax={(p,2) eRxR|Qx(p) <z < Q% (p)}.
In view of (1) and (2), Ax = 1"}1 and 'y = A}l; ie.,

(z,p)ely <= (p,x)€Ay.

We recall from convex analysis that a pair of maximal monotone relations that are the
inverses of each other are the graphs of the subdifferentials of two convex functions that
are conjugate to each other; see, for example, Rockafellar and Royset [28] for details. There
is flexibility in the choice of convex functions as knowledge of a subdifferentials of a func-
tion leaves the function determined only up to an additive constant. The consideration of
conjugate pairs of convex functions defined in some way in terms of Fy and Qv is due
to Ogryczak and Ruszczyriski [23, 24, 25]. Whereas they focus on random variables with
a “profit” or “gain” orientation and the lower tail of the distribution of such variables, we
here make choices more natural to the opposite orientation. A shift to a “cost” orientation
is accomplished in Dentcheva and Martinez [11], which led to a development similar to that
below. However, we adopt slightly different choices that coordinate well with superquantiles;
see Rockafellar and Royset [28] for further connections.

We define the superezpectation function Ex: R — R associated with a random variable
X by

oo 1
Ex(r) = Emax{z, X}] = / max{z,z'} dFx (z') =/ max{z,Qx(p)} dp,

oo 0
with the value Ex(z) being termed the superezpectation of X at level z. Here, the last
equality follows from a change-of-variable formula; see, for example, Billingsley [6, Theo-
rem 16.13]. The connection between the superexpectation function Ex and 'y is clear from
the next theorem, where we use the notation 8Ey to denote the subdifferential of Ey and
gph OE the corresponding graph.
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FIGURE 4. Dual Pair Ex and E}.
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Theorem 1. (ROCKAFELLAR AND ROYSET [28, THEOREM 1], CHARACTERIZATION OF
SUPEREXPECTATIONS). The superezpectation function Ex for a random variable X having
E|X| < 00 is a nondecreasing finite convex function on R with the following properties:

(i) Tx =gphdEy.

(i) Fx(z)= right-derivative of Ex at .

(i) Ex(z)—z20, limyy0[Ex(z) — 2] =0, and limy—, _o Ex(z) = E[X].
(iv) For any random variables Xo and X, having E|X,|, E|X,| < oo,

Ex(z) <(1-A)Ex,(z)+ AEx,(z) when X =(1-AN)Xg+AX; with0< A< 1.
Moreover, any convez function f on R with the properties that

flx)—z>0, Ilglgo[f(z) —z] =0, zl&l}loo f(z)= a finite value,

is a superezpectation function for a random variable X having E|X| < co.

The left portion of Figure 4 illustrates the properties in Theorem 1(iii). The additional
convexity property in Theorem 1(iv) is valuable for applications in stochastic optimization,
which often involve random variables X (u) that depend convexly on a parameter vector w.

The connection between the superexpectation function and the superquantile function
emerges from the Legendre-Fenchel transform. We recall that a closed proper! convex func-
tion f on R defines a conjugate function f* on R, through the Legendre-Fenchel transform

f*(p) =Sl;p{fcp—f(w)},

which is also closed, proper, and convex. The next theorem gives an expression for the
conjugate function of Ex and its properties. In essence, the result is established in Ogryczak
and Ruszczyfiski [25], and Dentcheva and Martinez [11], but we follow the notation in
Rockafellar and Royset [28], which also provides an alternative proof.

Theorem 2. (ROCKAFELLAR AND ROYSET [28, THEOREM 2], DUAL OF SUPEREXPEC-
TATIONS). The closed proper convez function E% on R that is conjugate to the superezpec-
tation function Ex for a random variable X with E|X| < co is given by

-(1-p)Qx(p) forpe(0,1),

* (p) = -E[X] for p=0,
X\P/= 0 forp=1,
00 for p¢[0,1].

1 A function f: R — [—o0,00] is closed if it is lower semicontinuous and proper if f(z)> —oo for all z € R
and f(z) < oo for some z € R.
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E% has the following properties:

(1) Ax =gphdFE%.

(i) @x(p) = left-derivative of Ex atp.
(iii) E% is continuous relative to [0,1] with

zl,i/ml(l—p)Q.\'(p)=0, Il)i\r‘r(l)Q_x(P)=E[X]-

Moreover, any function g on R that is finite conver and continuous on (0,1] with g(1) =0,

but g(p) = 0o for p¢ [0,1], is the conjugate of a superezpectation function for some random
variable X .

The right portion of Figure 4 illustrates EY.. We note that the conjugate E% is uniquely
determined by the superquantile function Qx. Not only it but also Ex, Fx, and Qy, along
with 'y and Ay, can be reconstructed from knowledge of @x. Moreover the following

properties of a function g on (0, 1) are necessary and sufficient to have 3= Qx for arandom
variable X with E|X| < co:

(1-p)g(p) is concave in p with li}r}(l —-p)g(p) =0,
P

lim g(p) = a finite value.
p\og(p)

Consequently, the claim in §2 that the superquantile function of a random variable is as
fundamental to a random variable as the distribution and quantile functions is justified.
We also note that since

Qx(p) = —ﬁE} (p)

1
I-p
the trade-off formula (4) is directly recovered. In fact, this insight was the source of the
discovery of that formula.

A simple example may help illustrate the concepts.

st;p{:cp—Ex(:v)} =m}n{x+ E[max{0, X —z}]}, (6)

1-p

Example 1. Let X be exponentially distributed with parameter A > 0. Then the distri-
bution function is Fy(z) =1~ exp(~—Az), the superexpectation function is

T+ (1/A)exp(—Az) for z >0,

Ex(z) =
x(@) {I/A for z <0,

and the conjugate superexpectation function has Ex(p) = (1/X)(p — 1)(1 — log(1 — p)) for
p € [0,1). Quantiles and superquantiles are thus given on (0,1) by

Qx(p)=—(1/N)log(1~p),  Qx(p)=(1/N)[1 - log(1 —p)].
These insights lead to the following bounds on the superquantile function.

Theorem 3. (ROCKAFELLAR AND ROYSET [28, THEOREM 3], SUPERQUANTILE ESTI-
MATES). Forpe [0,1), one has
(i) 1Qx(p) = Qv (p)| <1/(1~p)E|X ~ Y| when E|X| < o0, E|Y|< co.
(ii) E[X] < Qx(p) < E[X] + (1/(VT=p))o(X) when E[X? < 00, o(X) = standard
deviation.

The above development allows for alternative characterizations of the classical notion of
convergence in distribution for a sequence of random variables. Again, the superquantile
function takes on a new role. We recall that a sequence of random variables X}, converges in
distribution to a random variable X when Fx, (z) = Fx(z) at all continuity points z of Fi.
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Theorem 4. (ROCKAFELLAR AND ROYSET (28, THEOREM 4], CHARACTERIZATIONS OF
CONVERGENCE IN DISTRIBUTION). Let X, X} be random variables with E\X|, E|X}| < oo,
k=1,2,.... Then, the following conditions are equivalent:

(i) Xy converges in distribution to X.

(ii) T'x, converges graphically® to T'x.

(i) Ax, converges graphically to Ax.

(iv) Qx,.(p) — Qx(p) at all continuity points p of Qx in (0,1).

)

)

-

(v) Ex,(z)— Ex(z) for allz eR.
(vi) Qx.(p)— Qx(p) for allp€ (0,1).

The everywhere pointwise convergence in (v) and (vi) can be replaced by pointwise con-
vergence on a dense subset or uniform convergence on compact intervals of R and (0, 1),
respectively.

It is apparent from Theorem 4(vi) that a superquantile is stable under perturbations of
the underlying probability distribution. This has importance consequences for optimization
problems with superquantiles of parametric random variables as objective functions and con-
straints. If the superquantiles remain convex and finite as functions of the parameters, then
Theorem 4(vi) ensures epiconvergence of approximations obtained by replacing true proba-
bility distributions with approximating ones. Moreover, optimal solutions of problems with
the approximations will tend to those of the true problems, justifying the use of approximate
probability distributions in applications.

We end this section with a brief discussion of stochastic dominance, which has impor-
tance applications in modeling and stochastic optimization; see, for example, Dentcheva
and Ruszezyniski [12]. Typically, that topic is presented in the context of random variables
with “profit” and “gain” orientation, and therefore, to be consistent with the other parts
of this tutorial, we need to adopt a parallel definition for random variables with a “cost”
orientation. First-order stochastic dominance of X over Y, denoted by X <; Y, is defined as

X<1Y < E[g(X)]<E[g(Y)] for continuous bounded increasing g.
Second-order stochastic dominance, denoted by X <3 Y, means that
X <Y < E[g(X)]<E[g(Y)] for finite convex increasing g.
The latter property is also known as “increasing convex order”; see Miiller and Stoyan [22].
The connections between these notions and distribution, quantile, superexpectation, and

superquantile functions follow next, where we see that the superexpectation function as well
as the superquantile function characterize second-order stochastic dominance.

Theorem 5. (ROCKAFELLAR AND ROYSET [28, THEOREM 8|, STOCHASTIC DoMi-
NANCE). First-order stochastic dominance is characterized by

XY &= Fx2Fy < Qx<Qy.
Second-order stochastic dominance is characterized by

X <Y < Ex<Ey <= Qx<Qy.

2 Graphical convergence here corresponds to the convergence of the corresponding subsets of R? in the sense
of Painlevé—Kuratowski; see Rockafellar and Wets {32, Chapter 4].
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5. Superdistribution and Measures of Regret, Error, and Deviation

A further role of the superquantile function of a random variable is in the construction of a
distribution function of another random variable and higher-order superquantile functions,
with resulting applications in generalized regression and risk analysis. The construction
results in measures of risk, regret, error, and deviation that are connected in a risk quadrangle
described in detail below.

We start with a side-by-side graphical comparison between the superquantile function
Q@x and the quantile function Qx, as in the right portion of Figure 5. We assume that X
s a nonconstant random variable with E[X2] < co. An immediate insight is that Qy is the
inverse of a distribution function Fy (see the left portion of Figure 5) in perfect analogy to
the pairing of Qy and Fy. Specifically,

51 for lim O+ <z<limOv ,
Ry (z) for ng%Q.\ (p)<z lim Qx(p)

Fx(z)={0 for z S}l’i\n}) Qx(p),
A > H ) - .
1 for 2 > ;l;l}‘pi Qx(p)

We call F'y the superdistribution function of X. Specifically, Fx is the distribution function
for an auxiliary random variable X derived from X , and it is given by

X =Qx(Fx(X)).
Consequently, Fy = Fg and

Qx(p) =Qx(p) for pe(0,1). (7)
In view of (3) and (7), we then find that the superquantile function of X is given by
= I , R S
= [ astir =1L [ asa, :
Qs (p) 1_p/,, %) i =1 [ axw)ds (8)

which we refer to as the second-order superquantile function of X and denote it by Qy.
Of course, this process can be repeated with X in the role of X to generate even higher-order
superquantiles.

We note that the assumption of E[X?] < co implies that E |X| < oo through Theorem 3(b)
so that the derivations of §4 hold with X replaced by X. Consequently, in parallel to (6),
we obtain that

Qx(p) = Qx(p) = min {w+ Vp(X ~ )},

- _ 9
Rx(»)=Qs(p) = arg;nin {z+Vp(X —2)}, ©)

FIGURE 5. Superdistribution function Fx and superquantile function Qx.
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where

Vo(X) = ﬁE[max{o,X}]

I

1 o0 _ 1 1 B ) /
——1_]D/_oomax{o,ac}de(a:)——l_p/0 max{0,Q x(p')} dp,

with the last equality following by a change-of-variable formula (see Billingsley [6, Theo-
rem 16.13)) and (7).

The second-order superquantile gives a regular measure of risk, which also leads to mea-
sures of regret, error, and deviation, with further applications in generalized regression and
risk modeling. Before making these claims formal, we introduce the additional concepts.

A measure of deviation is a functional D that assigns to a random variable X a value D(X)
in [0, c0] that quantifies its nonconstancy. It is regular if it is closed and convex (analogously
to the second and third axioms in the regularity condition of §3) and in addition satisfies
the axiom

D(C) =0 for constant random variables X = C, but D(X) > 0 for nonconstant X.

A measure of regret is a functional V that assigns to a random variable X a value V(X) in
(—00,00] that quantifies the perceived displeasure with the mix of possible outcomes for X.
It is regular if it is closed and convex and in addition satisfies the following axioms:

V(0) =0, but V(X) > E[X] when X #0;
for any sequence Xy, lim {V(X;)— E[X;]} =0 implies lim E[X]=0.
k—o0 k—ro0
A measure of error is a functional £ that assigns to a random variable X a value £ (X)in

[0, 00] that quantifies its nonzeroness. It is regular if it is closed and convex and in addition
satisfies the following axioms:

£(0) =0, but £(X) >0 when X #0;
for any sequence Xj, lim £(X}) =0 implies lim E[Xi]=0.
k—oo k—o0
We refer to Rockafellar and Uryasev [31] for examples and discussion of these quantities.

Theorem 6. On the space of random variables X with E[X?] < co and the Ly-norm
topology, for any p € (0,1), the functionals Ry, Dp, Vy, and &,, given by

Rp(X)=Qx(p)  Dy(X) =Ry(X) ~ ELX),
and ) 1
W)= 1 [ max{0.0x(} s )= -EX], (10

are regular measures of risk, deviation, regret, and error, respectively. Moreover, they form
a risk quadrangle in the sense of Rockafellar and Uryasev [31], and thereby (9) and

Qx(p) =argmin {z + V,(X —z)} = argmin£,(X — ) (11)

hold.

Proof. The regularity of R, and Z_)p follows from (8) and the properties of the
superquantile function. The closedness and convexity of V, and &, follow similarly. By Rock-
afellar et al. [33, Proposition 2|, we know that

Ep(X)=0 when X =0,

»(X)>0 when X#0, and
&p(X) = min{1, p/(1~p)} E[X]|.
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Consequently, we find that the remaining axioms required for regularity of V, and c‘fp are
also satisfied.

As a direct consequence of the quadrangle theorem in Rockafellar and Uryasev (31], the
measures of risk, deviation, error, and regret form a risk quadrangle. The trade-off formula
follows by the quadrangle theorem in Rockafellar and Uryasev [31] as well. O

The measure of risk 7?,, is more conservative than the one based on a superquantile in the
sense that R,(X) > Qx(p). Moreover, it mitigates the difficulty a decision maker may have
with selecting an appropriate probability level p for the choice R(X )=Qx(p) by considering
an “average” of superquantiles. The presence of integrals in the expressions for the measures
of risk, deviation, regret, and error may require numerical integration, but this causes little
complication in practice as such one-dimensional integration is easily carried out with high
accuracy; see, for example, §6 and Rockafellar et al. [33]. The measure of error E_p has in
view of (11) significant implications in generalized regression as discussed next.

6. Superquantile Regression

In applications, it may be beneficial to attempt to approximate a random variable Y by
means of an n-dimensional explanatory random vector X that is more accessible in some
sense. This situation naturally leads to least-squares regression and related models that
estimate conditional expectations. Although such models are adequate in many situations,
they fall short in contexts where a decision maker is risk averse, i.e., is more concerned
about upper-tail realizations of Y than average loss, and views errors asymmetrically with
underestimating losses being more detrimental than overestimating. Quantile regression (see
Koenker [17], Koenker and Bassett [18], Gilchrist [14], and references therein) accommodates
risk averseness and an asymmetric view of errors by estimating conditional quantiles at
a certain probability level such as those in the tail of the conditional distribution of Y.
However, with the increasing focus on superquantiles and their desired properties as coherent
and regular measures of risk, we would like to also carry out generalized regression that
is consistent with superquantiles. Theorem 6 provides the framework for such a regression
methodology.

We start by recalling quantile regression. One obtains a p-quantile of a random variable Y,
with E|Y| < oo, by computing

Qy (p) = argmin&, (Y ~y), (12)
Yy

where 1
Ep(Y)= i_—pE[max{Y, 0}] — E[Y].

(These expressions are closely connected to (5); see Rockafellar et al. [33].) Here, we assume
that the argmin is unique for simplicity. In general, the quantile is taken as the left-most
point in the argmin set. The functional &p is a regular measure of error referred to as the
(scaled) Koenker-Bassett error. Although Qy (p) is the “best” scalar representation of Y in
the sense of the Koenker—Bassett error, we need to go beyond the class of constant functions
to utilize the connection with an underlying explanatory random vector X. We focus on
regression functions of the form

f(z)=Co+ (C,h(z)), CoeR,CecR™,

for a given “basis” function h = (h1,ha,. .. hm): R™ — R™. This class satisfies most practical
needs including that of linear regression where m = n and h(z) = z. Consequently, instead
of solving (12), quantile regression centers on finding optimal solutions of the problem

c(,eg,licl‘len'" Ep(Y = [Co +(C, h(X)))),

with the resulting optimal coefficients Cy and C yielding a regression function.
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Since minimizing £,(Y — y) by choice of y € R returns the p-superquantile of Y by The-
orem 6, a parallel development of the previous paragraph leads to superquantile Tegression,
by solving

P c(,e,}%}icuem,,, Ep(Y — [Co + (C, h(X))]).

The remainder of this tutorial summarizes properties of superquantile regression, gives
means of assessing the goodness of fit, and discusses computational strategies for solving P,

6.1. Existence, Uniqueness, and Stability

We start by examining the existence and uniqueness of regression functions obtained from P
and then proceed with studying the stability of such functions under perturbations of the
distribution of (X,Y’). For notational simplicity, we let

Z(Co,C) =Y — (Co +(C, M(X)))

be an error random variable, whose distribution depends on Cy, C, h, and the joint distri-
bution of (X,Y’). Moreover, for any p € [0,1] and random variable X, we let

p(X) = Qx(p)-
We denote by C C R™*! the set of optimal solutions of P and refer to (Co,C)eC as a
regression vector.

In view of the regression theorem in Rockafellar and Uryasev [31] (see also Theorem 3.1
in Rockafellar et al. [34]), we find that a regression vector can equivalently be determined
from the measure of deviation D, by first solving

D: in D,(Z

Anin Dy(Zo(C)),
where Zo(C) =Y — (C, h(X)), to obtain the optimal “slope” coefficients € and then setting
the “intercept” coefficient B ~
Co= QP(ZO(C))-
Clearly, in comparison to P, solving D involves one less optimization variable and also a
simpler objective function; see (10) and (8).
The existence and uniqueness of a regression vector are given by the next theorem.

Theorem 7. (ROCKAFELLAR ET AL. [33, THEOREM 2|, EXISTENCE AND UNIQUENESS
OF REGRESSION VECTOR). If E[Y?], E[hi(X)? <00, i =1,2,...,m, then P is a conver
problem with a set of optimal solutions C that is nonempty, closed, and convex.

(a) C is bounded if and only if the random vector X and the basis function h satisfy the
condition that (C,h(X)) is not constant unless C =0.

(b) 1If, in addition, for every (Co,C),(C§,C’) € R™*1, with C # C', there exists a po €
[0,1) such that

0<4,(Z(Co,C) + Z(Cy,C")) < §p(2(Co, C)) + §p(Z(Cy, C")) (13)
for all p € [po, 1), then C is a singleton.

Although (13) is not always satisfied, we know that if (h(X),Y) is normally distributed
with a positive definite variance-covariance matrix, P has a unique solution, and there-
fore superquantile regression returns a unique regression vector in that case (Rockafellar
et al. [33]).

We next turn to consistency and stability of the regression vector. Of course, the joint
distribution of (X,Y’) is rarely available in practice, and one may need to pass to an approx-
imating empirical distribution generated by a sample. Moreover, perturbations of the “true”
distribution of (X,Y) may occur due to measurement errors in the data and other factors.
We consider these possibilities and let (X*,Y") be a random vector whose joint distribution
approximates that of (X,Y) in some sense. For example, (X*,Y") may be governed by the
empirical distribution generated by an independent and identically distributed sample of size
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v from (X,Y). Presumably, as v — 00, the approximation of (X,Y) by (X¥,Y") improves
as stated formally below. Regardless of the nature of (X",Y"), we define an approximate
error random variable

Z"(Co,C)=Y" — (Co+ (C,h(X"))),

and the corresponding approximate superquantile regression problem

PY: min _ £,(Z%(Cq, C)).
CveR, CeR™ P( ( 0 ))
The next result, which utilizes Theorem 4(vi), shows that as (X”,Y") approximates (X,Y),
a regression vector obtained from PV approximates one from P, which provides the justifi-
cation for basing a regression analysis on P¥.

Theorem 8. (ROCKAFELLAR ET AL. (33, THEOREM 3], STABILITY OF REGRESSION
VECTOR). Suppose that (X", Y"), v=1,2,..., and (X,Y) are n + 1-dimensional random
vectors such that (X¥,Y") converges to (X,Y) in distribution and that the basis function
h is continuous except possibly on a subset S C R™ with Prob(X € S) = 0. Moreover, let
El(hi(X))?], E[Y2), sup, E[(hi(X*))?], sup, E[(Y*)?] <o, i=1,2, .. .

If {( _(’,’,C"’)},‘j":l s a sequence of optimal solutions of P¥, with p € (0,1), then every
accumulation point of that sequence is a regression vector of P.

6.2. Goodness-of-Fit Criterion

Regression modeling must be associated with means of assessing the goodness of fit of a
computed regression vector. In least-squares regression, the frequently used coefficient of

determination is given by the residual sum of squares and the total sum of squares, which
in our notation takes the form

E[Z(Cy,C)Y
Ty e

where 02(Y’) denotes the variance of Y. Although R? can not be relied on exclusively, it
provides an indication of the goodness of fit that is easily extended to the present context
of superquantile regression.

From Example 1’ in Rockafellar and Uryasev [31], we know that the numerator in (14)
is an error measure applied to Z (Co,C) and that it corresponds to the deviation measure
o?(-). Moreover, the minimization of that error of Z(Cp,C) results in the least-squares
regression vector. According to Rockafellar and Uryasev [31], these error and deviation
measures are in correspondence and belong to a risk quadrangle that yields the expectation
as its statistic. This observation motivates us to define a coefficient of determination for
superquantile regression as

R*=1-

5, (C:‘ (Z(C()7 C))

Rz(Co,C) =127/

? Dy(Y)

at probability level p € (0,1). As in the classical case, higher values of Rg are “better,” and
in fact, since P aims to minimize &p(Z(Cy, C)), the goal of superquantile regression is to
find the highest possible value of Rf,. Clearly, though, R;‘; <1, since error and deviation
measures are nonnegative.

6.3. Computational Methods for Superquantile Regression

Although it at first may appear difficult to solve P, several simplification may come into
play. As discussed above, it suffices to solve D, which in fact reduces to a linear program
When the distribution of (X, Y) is given by a normalized counting measure (Rockafellar
et al. [33]). The use of that measure is of course the standard assumption in practice, where a
set of observations of (X, Y'), each assumed equally likely to occur, is usually available. Even
if another discrete measure is assumed, which is relevant when observations are “weighted”
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unevenly, D is easily solved to high accuracy through numerical integration. By replacing
the integral in D with a finite sum using some standard numerical integration scheme, the
problem becomes one of minimizing mixed superquantiles that can be transcribed into a
linear program using standard techniques. Moreover, nonsmooth optimization algorithms for
unconstrained convex problems such as solvers in Portfolio Safeguard (American Optimal
Decisions, Inc. [3]) are available. We refer to Rockafellar et al. [33] for further details and
numerical illustrations.
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