
FULL STABILITY IN FINITE-DIMENSIONAL OPTIMIZATION

B. S. MORDUKHOVICH1, T. T. A. NGHIA2 and R. T. ROCKAFELLAR3

Abstract. The paper is devoted to full stability of optimal solutions in general settings of finite-dimensional opti-
mization with applications to particular models of constrained optimization problems including those of conic and
specifically semidefinite programming. Developing a new technique of variational analysis and generalized differen-
tiation, we derive second-order characterizations of full stability, in both Lipschitzian and Hölderian settings, and
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1 Introduction

The concept of full Lipschitzian stability of local minimizers in general optimization problems was introduced
by Levy, Poliquin and Rockafellar [16] to single out those local solutions, which exhibit “nice” stability
properties under appropriate parameter perturbations. Roughly speaking, the properties postulated in [16]
require that the local minimizer in question does not lose its uniqueness and evolves “proportionally” (in
some Lipschitzian way) with respect to a certain class of two-parametric perturbations; see Section 3 for the
precise formulations. The full stability notion of [16] extended the previous one of tilt stability introduced by
Poliquin and Rockafellar [34], where such a behavior was considered with respect to one-parametric linear/tilt
perturbations. Both stability notions in [16, 34] were largely motivated by their roles in the justification of
numerical algorithms, particularly the stopping criteria, convergence properties, and robustness.

The first second-order characterizations of tilt stability were obtained by Poliquin and Rockafellar [34]
via the second-order subdifferential/generalized Hessian of Mordukhovich [18] in the general framework of
extended-real-valued prox-regular functions and by Bonnans and Shapiro [3] via a certain uniform second-
order growth condition in the framework of conic programs with C2-smooth data. More recent developments
on tilt stability for various classes of optimization problems in both finite and infinite dimensions can be
found in [6, 7, 9, 17, 22, 24, 26, 27, 29].

Much less has been done for full stability. In the pioneering work by Levy, Poliquin and Rockafellar
[16] this notion was characterized in terms of a partial modification of the second-order subdifferential from
[18] for a class of parametrically prox-regular functions in the unconstrained format of optimization with
extended-real-valued objectives. The calculus rules for this partial second-order subdifferential developed
by Mordukhovich and Rockafellar [29] allowed them in the joint work with Sarabi [30] to derive construc-
tive second-order characterizations of fully stable minimizers for various classes of constrained optimization
problems in finite dimensions including those in nonlinear and extended nonlinear programming and math-
ematical programs with polyhedral constraints. Quite recently [25] Mordukhovich and Nghia have obtained
new characterizations of Lipschitzian and Hölderian (see Section 3) full stability in infinite-dimensional
(mainly Hilbert) spaces with applications to nonlinear programming, mathematical programs with poly-
hedric constraints, and optimal control of elliptic equations.
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In this paper we develop a new approach to both Lipschitzian and Hölderian full stability by taking into
account specific features of finite-dimensional spaces and obtain in this way new second-order characteri-
zations of both types of full stability in general nonsmooth optimization settings as well as for particular
classes of constrained optimization problems with C2-smooth data (e.g., for semidefinite programming). Our
approach is significantly different and simpler than that in [16] developed in the Lipschitzian case and allows
us to derive not only qualitative but also quantitative (with precise modulus formulas) characterizations of
full stability in general frameworks. Furthermore, for a large class of mathematical programs with C2-smooth
data (including those of conic programming) satisfying the classical Robinson constraint qualification (RCQ)
we show that the continuity of the stationary mapping in Kojima’s strong stability can be strengthened to
Hölder continuity with order 1

2 by using Hölderian full stability. If in addition the constraint are C2-reducible
and the optimal point is (partially) nondegenerate in the sense of [3], then we establish the equivalence
of Lipschitzian full stability to Robinson’s strong regularity of the associated variational inequality. Using
finally our general results obtained and the recent coderivative calculations by Ding, Sun and Ye [5] gives us
complete characterizations of full stability and related properties for problems of semidefinite programming
expressed entirely in terms of the initial data.

The rest of the paper is organized as follows. Section 2 presents those preliminaries from variational
analysis and generalized differentiation, which are widely used for the statements and proofs of the main
results. In Section 3 we formulate the basic notions of Hölderian and Lipschitzian full stability and focus on
second-order characterizations of the Hölderian version for the general class of parametrically prox-regular
extended-real-valued functions. These characterizations are obtained in terms of a certain second-order
growth condition as well as via second-order subdifferential constructions with precise relationships between
the corresponding moduli. The major results of Section 4 establish various qualitative and quantitative
characterizations of Lipschitzian full stability in the general framework of Section 3. They are expressed in
terms the (partial) second-order subdifferentials and imply, in particular, the aforementioned result of [16]
derived by a different and essentially involved approach. In contrast to [16], our approach does not appeal to
tangential approximations of sets and functions while operating instead with intrinsically nonconvex-valued
normal and coderivative mappings, which satisfy comprehensive calculus rules. This leads us to more direct
and simple proofs with a variety of quantitative and qualitative characterizations of full and tilt stability.

Section 5 addresses the conventional class of C2-smooth parametric optimization problems with con-
straints written in the form g(x, p) ∈ Θ, where Θ is a closed and convex subset of a finite-dimensional
space. Imposing the classical RCQ, we prove that Lipschitzian full stability agrees with Robinson’s strong
regularity provided that Θ is C2-reducible and the optimal solution is nondegenerate. Furthermore, we es-
tablish complete characterizations of all these properties via verifiable conditions involving the second-order
subdifferential (or the generalized Hessian) ∂2δΘ of the indicator function δΘ of Θ. In Section 6 these results
are specified for semidefinite programs, where Θ = Sm+ is the cone of all the m × m symmetric positive
semidefinite matrices and the second-order construction ∂2δΘ is calculated entirely in terms of the program
data. Section 7 contains concluding remarks and discusses some topics of future research.

Our notation is standard in variational analysis and optimization (see, e.g., [20, 38]) except the symbols
specified in the text. Everywhere IRn stands for the n-dimensional Euclidian space with the norm ‖ · ‖ and
the inner product 〈·, ·〉. We denote by IB the closed unit ball in the space in question and by IBη(x) := x+ηIB
the closed ball centered at x with radius η > 0. Given a set-valued mapping F : IRn →→ IRm, the symbol

Lim sup
x→x̄

F (x) :=
{
y ∈ IRm

∣∣∣ ∃ sequences xk → x̄, yk → y such that

yk ∈ F (xk) for all k ∈ IN := {1, 2, . . .}
} (1.1)

signifies the Painlevé-Kuratowski outer limit of F (x) as x→ x̄. For a linear operator/matrix A the notation
A∗ stands for the adjoint operator/matrix transposition.

2 Preliminaries from Variational Analysis

Let f : IRn → IR := (−∞,∞] be an extended-real-valued function, we always assume that f is proper,
i.e., dom f := {x ∈ X| f(x) < ∞} 6= ∅. The regular subdifferential of f at x̄ ∈ dom f (known also as the
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presubdifferential and as the Fréchet or viscosity subdifferential) is

∂̂f(x̄) :=
{
v ∈ IRn

∣∣∣ lim inf
x→x̄

f(x)− f(x̄)− 〈v, x− x̄〉
‖x− x̄‖

≥ 0
}
. (2.1)

The limiting subdifferential (known as the general/basic or Mordukhovich subdifferential) and the singular
subdifferential (known also as the horizon subdifferential) of f at x̄ are defined respectively via (1.1) by

∂f(x̄) := Lim sup

x
f→x̄

∂̂f(x) and ∂∞f(x̄) := Lim sup

x
f→x̄,λ↓0

λ∂̂f(x), (2.2)

where x
f→ x̄ signifies that x→ x̄ with f(x)→ f(x̄). Observe that both regular and limiting subdifferentials

reduce to the subdifferential of convex analysis for convex functions and that ∂∞f(x̄) = {0} when f is locally
Lipschitzian around x̄. The latter condition becomes a characterization of Lipschitzian continuity around x̄
if f is lower semicontinuous (l.s.c.) around x̄.

Given a set Ω ⊂ IRn with its indicator function δΩ(x) equal to 0 for x ∈ Ω and to ∞ otherwise, the
regular and limiting normal cones to Ω at x̄ ∈ Ω are defined via (2.1) and (2.2) by, respectively,

N̂(x̄; Ω) := ∂̂δΩ(x̄) and N(x̄; Ω) := ∂δΩ(x̄) (2.3)

with the notation N̂Ω(x̄) and NΩ(x̄) also used below. The constructions in (2.3) can be rewritten as

N(x̄; Ω) = Lim sup
x

Ω→x̄

N̂(x; Ω) with N̂(x; Ω) =
{
v ∈ IRn

∣∣∣ lim sup
u

Ω→x

〈v, u− x〉
‖u− x‖

≤ 0
}
,

where the symbol x
Ω→ x̄ signifies that x→ x̄ with x ∈ Ω.

Given a set-valued mapping F : IRn →→ IRm, we associate with it the domain and graph by

domF :=
{
x ∈ IRn

∣∣ F (x) 6= ∅
}

and gphF :=
{

(x, y) ∈ IRn × IRm
∣∣ y ∈ F (x)

}
.

The regular (resp. limiting) coderivative of F at (x̄, ȳ) ∈ gphF is defined via (2.3) by

D̂∗F (x̄, ȳ)(w) :=
{
z ∈ IRn| (z,−w) ∈ N̂

(
(x̄, ȳ); gphF

)}
for all w ∈ IRm, (2.4)

D∗F (x̄, ȳ)(w) :=
{
z ∈ IRn

∣∣ (z,−w) ∈ N
(
(x̄, ȳ); gphF

)}
for all w ∈ IRm. (2.5)

If F is single-valued around (x̄, ȳ), we omit ȳ = F (x̄) in the coderivative notation (2.4) and (2.5).
It has been well recognized that the coderivative constructions (2.4) and (2.5) are appropriate tools for

the study and characterizations of well-posedness and stability properties that play a major role in many
(particularly variational) aspects of nonlinear analysis; see, e.g., [20, Chapter 4] and [38, Chapter 9] for more
details. Recall that F : IRn →→ IRm is Lipschitz-like with modulus ` > 0 around (x̄, ȳ) ∈ gphF (known also
as the Aubin or pseudo-Lipschitz property) if there are neighborhoods U of x̄ and V of ȳ such that

F (x) ∩ V ⊂ F (u) + `‖x− u‖IB for all x, u ∈ U. (2.6)

This property is fully characterized by the Mordukhovich criterion from [38, Theorem 9.40] (known also as
the coderivative criterion; see [19, Corollary 5.4]): F is Lipschitz-like (has the Aubin property) around (x̄, ȳ)
if and only if we have the condition

D∗F (x̄, ȳ)(0) = {0} (2.7)

provided that the graph of F is locally closed around (x̄, ȳ).
The main generalized differential constructions used in this paper are second-order subdifferentials (or

generalized Hessians) of extended-real-valued functions defined by the scheme of [18] as a coderivative of a
first-order subgradient mapping. The basic one from [18] is constructed as follows. Given f : IRn → IR, fix
a limiting subgradient v̄ ∈ ∂f(x̄) from (2.2) and define ∂2f(x̄, v̄) : IRn →→ IRn by

∂2f(x̄, v̄)(w) := (D∗∂f)(x̄, v̄)(w), w ∈ IRn, (2.8)
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via the limiting coderivative (2.5) of ∂f . If f is C2-smooth around x̄, we have

∂2f(x̄)(w) =
{
∇2f(x̄)w

}
for all w ∈ IRn,

i.e., the second-order construction (2.8) reduces to the classical (symmetric) Hessian operator. In the general
nonsmooth case the mapping ∂2f(x̄, v̄) is set-valued and positive homogeneous enjoying well-developed
calculus rules, that are mainly based on variational/extremal principles of variational analysis; see, e.g., the
book [20] and more recent papers [21, 29, 32] with the references therein. Various modifications of this
construction and their partial counterparts were considered in [12, 16, 22, 24, 25, 29, 30]. In what follows
we employ the second-order constructions of this type generated by both coderivatives (2.4) and (2.5) of
some partial first-order subgradient/normal cone mappings and prefer using directly the coderivative-of-
subdifferential notation instead of formally introducing such second-order constructions.

Let us next recall significant concepts of prox-regularity and subdifferential continuity of extended-real-
valued functions taken from [16]; cf. also their nonparametric versions in [33, 38]. Given f : IRn × IRd → IR
finite at (x̄, p̄) and given a partial limiting subgradient v̄ ∈ ∂xf(x̄, p̄), where ∂xf stands for the partial
limiting subdifferential of f with respect to x. We say that f is prox-regular in x at x̄ for v̄ with compatible
parameterization by p at p̄ if there are neighborhoods U of x̄, V of v̄, and P of p̄ along with some numbers
ε > 0 and r > 0 such that

f(x, p) ≥ f(u, p) + 〈v, x− u〉 − r
2‖x− u‖

2 for all x ∈ U,
when v ∈ ∂xf(u, p) ∩ V, u ∈ U, p ∈ P, and f(u, p) ≤ f(x̄, p̄) + ε.

(2.9)

Further, f is subdifferentially continuous in x at x̄ for v̄ with compatible parameterization by p at p̄ if the
function (x, p, v) 7→ f(x, p) is continuous relative to gph ∂xf at (x̄, p̄, v̄). We simply call f is parametrically
continuously prox-regular at (x̄, p̄) for v̄ when f is prox-regular and subdifferentially continuous in x at x̄ for v̄
with compatible parameterization by p at p̄. If in addition that the basic constraint qualification formulated
below (3.4) holds at (x̄, p̄), then the graph gph ∂xf is locally closed around (x̄, p̄, v̄); see [16, Proposition 3.2].

In the sequel we also need the following notions of monotonicity related to the limiting subdifferential of
prox-regular functions. The mapping T : IRn →→ IRn is said to be monotone if

〈y − v, x− u〉 ≥ 0 whenever (x, y), (u, v) ∈ gphT.

The mapping T is strongly monotone if its shift T−rI is monotone for some r > 0. We say that T : IRn →→ IRn

is maximally monotone if T = S for any monotone mapping S : IRn →→ IRn with gphT ⊂ gphS. Given
a neighborhood U × V ⊂ IRn × IRn, the mapping T is called to be monotone relative to U × V if its
localization relative to U × V is monotone. Recall also that T̂ is a localization of T relative to U × V if
gph T̂ = gphT ∩ (U × V ). We use notion of a single-valued localization to indicate a localization that is
single-valued on its domain (not necessary being a neighborhood). Finally, T is maximally monotone relative
to U × V if gphT ∩ (U × V ) = gphS ∩ (U × V ) for any monotone mapping S : IRn →→ IRn satisfying the
inclusion gphT ∩ (U × V ) ⊂ gphS.

3 Second-Order Characterizations of Hölderian Full Stability

Here we define the notions of Lipschitzian and Hölderian full stability of local minimizers in the general
setting of extended-real-valued functions and derive second-order characterizations of the Hölderian one.

Given f : IRn × IRd → IR, consider the problem

P minimize f(x, p̄) over x ∈ IRn (3.1)

and its two-parametric perturbations constructed as

P(v, p) minimize f(x, p)− 〈v, x〉 over x ∈ IRn (3.2)

with the basic parameter perturbation p ∈ IRd and the tilt one v ∈ IRn.
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Throughout the paper we always assume that the function f in (3.2) is lower semicontinuous on IRn×IRd.
Given (x̄, p̄) ∈ dom f , (v, p) ∈ IRn × IRd, and γ > 0, associate with these data the following objects:

mγ(v, p) := inf
{
f(x, p)− 〈v, x〉

∣∣ ‖x− x̄‖ ≤ γ},
Mγ(v, p) := argmin

{
f(x, p)− 〈v, x〉

∣∣ ‖x− x̄‖ ≤ γ},
S(v, p) :=

{
x ∈ IRn

∣∣ v ∈ ∂xf(x, p)
}
.

(3.3)

As in [16], we say that the basic constraint qualification (BCQ) holds at (x̄, p̄) if[
(0, q) ∈ ∂∞f(x̄, p̄)

]
=⇒ q = 0. (3.4)

By the Mordukhovich criterion (2.7) this is equivalent to the fact that the set-valued mapping

F : p 7→ epi fp is Lipschitz-like around
(
p̄, (x̄, f(x̄, p̄))

)
, (3.5)

where the notation fp(·) := f(·, p) is employed throughout the whole paper; see, e.g., [38, Proposition 10.16].
The following rather straightforward lemma taken from [16, Proposition 3.1] is a useful consequence of BCQ.

Lemma 3.1 (consequence of BCQ). The validity of BCQ (3.4) ensures the existence of neighborhoods
U of x̄ and P of p̄ along with a number ε > 0 such that

x1 ∈ U, p1, p2 ∈ P
f(x1, p1) ≤ f(x̄, p̄) + ε

}
=⇒ ∃x2 with

{
‖x1 − x2‖ ≤ c‖p1 − p2‖,
f(x2, p2) ≤ f(x1, p1) + c‖p1 − p2‖,

(3.6)

where c > 0 is a modulus of the Lipschitz-like property in (3.5).

Now we are ready to formulate the two main stability properties studied in this paper. The first (Lips-
chitzian) was introduced in [16] with the modulus modification given in [22] while its Hölderian counterpart
has been recently introduced earlier in [25].

Definition 3.2 (Lipschitzian and Hölderian full stability). Given f : IRn × IRd → IR and a point
x̄ ∈ dom f in (3.1) with some nominal basic parameter p̄ ∈ IRd, we say that:

(i) The point x̄ is a Lipschitzian fully stable local minimizer of P(v̄, p̄) in (3.2) corresponding
to p̄ and some tilt parameter v̄ ∈ IRn with a modulus pair (κ, `) ∈ IR2

> := {(a, b) ∈ IR2| a > 0, b > 0} if
there are a number γ > 0 and a neighborhood V × P of (v̄, p̄) such that the mapping (v, p) 7→ Mγ(v, p) is
single-valued on V × P with Mγ(v̄, p̄) = x̄ satisfying the Lipschitz condition

‖Mγ(v1, p1)−Mγ(v2, p2)‖ ≤ κ‖v1 − v2‖+ `‖p1 − p2‖ for all v1, v2 ∈ V, p1, p2 ∈ P (3.7)

and that the function (v, p) 7→ mγ(v, p) is also Lipschitz continuous around (v̄, p̄).
(ii) The point x̄ is a Hölderian fully stable local minimizer of problem P(v̄, p̄) with a modulus

pair (κ, `) ∈ IR2
> if there is a number γ > 0 such that the mapping Mγ is single-valued on some neighborhood

V × P of (v̄, p̄) with Mγ(v̄, p̄) = x̄ and

‖Mγ(v1, p1)−Mγ(v2, p2)‖ ≤ κ‖v1 − v2‖+ `‖p1 − p2‖
1
2 for all v1, v2 ∈ V, p1, p2 ∈ P. (3.8)

It is worth mentioning that we always have v̄ ∈ ∂xf(x̄, p̄) in Definition 3.2 due to the (generalized) Fermat
stationary condition for the local minimizer x̄ in P(v̄, p̄). Observe also that when BCQ (3.4) holds at (x̄, p̄),
the function mγ is locally Lipschitzian automatically provided that Mγ(v̄, p̄) = x̄ for some γ > 0; see [16,
Proposition 3.5]. It happens, in particular, when the parameter p is absent. In this case both stability
properties in Definitions 3.2 reduce to tilt stability of the local minimizer x̄ introduced in [34].

Since BCQ (3.4) is assumed in all the results of the paper and the condition Mγ(v̄, p̄) = x̄ is imposed
in Definition 3.2(i), we will not discuss further the local Lipschitz continuity of mγ but focus on the study
of the Lipschitzian (3.7) and Hölderian (3.8) properties of Mγ when γ > 0 is sufficiently small. It follows
from Theorem 3.4 and Theorem 4.1 given below that these two properties agree when the graphical mapping
p 7→ gph ∂xf(·, p) is Lipschitz-like around (p̄, (x̄, v̄)). However, in the general case the Hölderian full stability
in Definition 3.2 is strictly weaker than the Lipschitzian one and the exponent r = 1

2 for the parameter p in
(3.8) cannot be improved; see the discussion in Section 5.

The rest of this section is devoted to deriving new second-order characterizations of Hölderian full stability.
We begin with formulating the following lemma of convex analysis taken from [16, Lemma 5.2].
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Lemma 3.3 (convex functions with smooth conjugates). Let h : IRn → IR be a convex function such
that its Fenchel conjugate h∗ is differentiable on a certain open set V ⊂ IRn and the gradient mapping ∇h∗
is Lipschitz continuous on V with some constant κ > 0. Let λ > 0 and Vλ := {v ∈ IRn| IBλ(v) ⊂ V }. Then
we have the quadratic growth condition

h(x) ≥ h(u) + 〈v, x− u〉+
1

2κ
‖x− u‖2 whenever v ∈ ∂h(u) ∩ Vλ, ‖x− u‖ ≤ λκ.

Our first major result gives qualitative and quantitative characterizations of Hölderian full stability for
parametrically continuously prox-regular functions via the uniform second-order growth condition formulated
in the following theorem. This condition is an extended version of that from [3, Definition 5.16] introduced
for C2-smooth conic programs with respect to the C2-smooth parametrization; see also Definition 5.1 below.
The proof of implication (ii)=⇒(i) in this result has some similarity with that of [3, Theorem 5.17] for
problem of conic programming. The obtained characterization and the relationship between the moduli in
(i) and (ii) of Theorem 3.4 are improvements of the corresponding results by Mordukhovich and Nghia [25,
Theorem 4.5], which are given in infinite-dimensional spaces. When the parameter p is absent (i.e., we have
the tilt stability setting), this goes back to [24, Theorem 3.2] and partly to [6, Theorem 3.3], where the
relationship between the moduli is not specified.

Theorem 3.4 (Hölderian full stability via uniform second-order growth). Assume that BCQ (3.4)
holds at (x̄, p̄) ∈ dom f and that the function f is parametrically continuously prox-regular at (x̄, p̄) for
v̄ ∈ ∂xf(x̄, p̄). Then the following assertions are equivalent:

(i) The point x̄ is a Hölderian fully stable local minimizer of P(v̄, p̄) with a modulus pair (κ, `) ∈ IR2
>.

(ii) There are neighborhoods U of x̄, V of v̄, and P of p̄ such that the mapping S from (3.3) admits a
single-valued localization ϑ relative to V ×P×U such that for any triple (v, p, u) ∈ gphϑ = gphS∩(V ×P×U)
we have the uniform second-order growth condition

f(x, p) ≥ f(u, p) + 〈v, x− u〉+
1

2κ
‖x− u‖2 whenever x ∈ U. (3.9)

Proof. To justify (i)=⇒(ii), suppose that x̄ is a Hölderian fully stable local minimizer of problem P(v̄, p̄)
with some modulus pair (κ, `) ∈ IR2

>. Thus there is a number γ > 0 such that the mapping Mγ in (3.3)
satisfies (3.8) on some neighborhood V × P of (v̄, p̄) with Mγ(v̄, p̄) = x̄. It follows that

‖Mγ(v, p)− x̄‖ = ‖Mγ(v, p)−Mγ(v̄, p̄)‖ ≤ κ‖v − v̄‖+ `‖p− p̄‖ 1
2 for all (v, p) ∈ V × P.

By shrinking V and P , the latter allows us to suppose that Mγ(V ×P ) ⊂ U with U := int IBγ(x̄). Fix p ∈ P
and observe that M̂p(·) := Mγ(·, p) is monotone. Indeed, for any v1, v2 ∈ IRn we have

〈v1 − v2, M̂p(v1)− M̂p(v2)〉 = 〈v1, M̂p(v1)− M̂p(v2)〉+ 〈v2, M̂p(v2)− M̂p(v1)〉
≥
[
fp
(
M̂p(v1)

)
− fp

(
M̂p(v2)

)]
+
[
fp
(
M̂p(v2)

)
− fp

(
M̂p(v1)

)]
= 0.

Note from (3.8) that M̂p is Lipschitz continuous on V with constant κ, and so it is maximally monotone

relative to V × U (since M̂p : V → U). Consider next the Fenchel conjugate of fp + δIBγ(x̄) given by

gp(v) := (fp + δIBγ(x̄))
∗(v) = sup

x∈IBγ(x̄)

{
〈v, x〉 − fp(x)

}
for all v ∈ IRn,

which is a proper l.s.c. convex function. For any v ∈ V we get from (3.3) the representation gp(v) =

〈v, M̂p(v)〉 − fp(M̂p(v)) and observe that

gp(w)− gp(v) ≥ 〈w, M̂p(v)〉 − fp
(
M̂p(v)

)
−
(
〈v, M̂p(v)〉 − fp

(
M̂p(v))

)
= 〈w − v, M̂p(v)〉, w ∈ IRn.

This ensures that M̂p(v) ∈ ∂gp(v). Since gp is convex, its subdifferential ∂gp is monotone. This together

with the maximal monotonicity of M relative to (V ×U) implies that gph ∂gp∩ (V ×U) = gph M̂p∩ (V ×U),

and thus ∂gp(v) = M̂p(v) for all v ∈ V . Hence ∂gp is single-valued and Lipschitz continuous on V . It thus
follows that gp is differentiable and Lipschitz continuous with constant κ on V .
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Denoting hp := g∗p , we deduce from the biconjugate theorem of convex analysis [38, Theorem 11.1] that
h∗p = gp. Since h∗p is differentiable and Lipschitz continuous with constant κ on V , we can use Lemma 3.3.
Let λ > 0 be so small that IBλ(v̄) ⊂ V . Thus the set Vλ := {v ∈ IRn| IBλ(v) ⊂ V } is a neighborhood of
v̄. Let U1 ⊂ U be some neighborhood of x̄ satisfying ‖x − u‖ ≤ κλ for all x, u ∈ U1. Due to the Hölder
continuity of Mγ in (3.12), we find neighborhoods V1 ⊂ Vλ of v̄ and P1 ⊂ P of p̄ such that

Mγ(v, p) ⊂ U1 whenever (v, p) ∈ V1 × P1.

With u = ∇h∗p(v) = ∇gp(v) = M̂p(v) for all (v, p) ∈ V1 × P1 we have v ∈ ∂hp(u) ∩ Vλ and u ∈ U1. Applying
Lemma 3.3 gives us the estimate

hp(x) ≥ hp(u) + 〈v, x− u〉+
1

2κ
‖x− u‖2 for all x ∈ U1, (u, v) ∈ gph ∂hp ∩ (U1 × V1), p ∈ P1. (3.10)

Given any (v, p) ∈ V1×P1, observe from the Fermat stationary rule for problem P(v, p) at the local min-

imizer M̂p(v) ∈ U1 that (∂hp)
−1(v) = ∇gp(v) = M̂p(v) ∈ (∂fp)

−1(v). Since f is parametrically continuously
prox-regular at (x̄, p̄) for v̄, we assume without loss of generality that

fp(x) ≥ fp(u) + 〈v, x− u〉 − r

2
‖x− u‖2 for all x ∈ U1, (u, p, v) ∈ gph ∂xf ∩ (U1 × P1 × V1) (3.11)

with some r > 0. Fixing p ∈ P1, let Tp be a localization of ∂fp relative to U1 × V1, and let I : IRn → IRn be
the identity mapping. We get from the above inequality that Tp + sI is strongly monotone for any s > r,
which implies that (Tp + sI)−1 is single-valued on its domain.

Define further W := J(U1 × V1) with J(u, v) := (v+ su, u) for all (u, v) ∈ IRn × IRn. This shows that W

is a neighborhood of (v̄ + sx̄, x̄). It is easy to deduce from the inclusion (∂hp)
−1(v) = M̂p(v) ∈ ∂f−1

p (v) as
(v, p) ∈ V1 × P1 the following relationships:

gph (∂hp + sI)−1 ∩W = gph (M̂−1
p + sI)−1 ∩W ⊂ gph (∂fp + sI)−1 ∩W. (3.12)

Claim 1. Let α, β > 0 satisfy IBα(v̄ + sx̄)× IBβ(x̄) ⊂ W and IBβ(x̄) ⊂ U1, and let ` > 0 be taken from
(3.8). Then there are constants ε1, δ1, ν1 > 0 with IBν1

(x̄) ⊂ V1 and( 1

2κ
+
s

2

)−1[
ε1 + (sκ+ 1)ν1 + s`δ

1
2
1

]
+ κν1 + `δ

1
2
1 < β, and ε1 < α (3.13)

such that (∂hp + sI)−1(v) exists and belongs to int IBβ(x̄) for all v ∈ int IBε1(v̄ + sx̄) and p ∈ int IBδ1(p̄).

To justify this claim, take any v ∈ int IBε1(v̄ + sx̄) and p ∈ int IBδ1(p̄). Fix also ũ := Mγ(ṽ, p) with
ṽ ∈ IBν1

(v̄) ⊂ V1. We get from (3.8) and (3.13) that

‖u− x̄‖ ≤ κ‖ṽ − v̄‖+ `‖p− p̄‖ 1
2 ≤ κν1 + `δ

1
2
1 < β, (3.14)

which gives us u ∈ IBβ(x̄) ⊂ U1 and thus (ũ, ṽ) ∈ gph ∂hp ∩ (U1 × V1) as appeared in (3.10). Consider next
the following optimization problem

inf
x∈IBβ(x̄)

{
hp(x) +

s

2
‖x‖2 − 〈v, x〉

}
(3.15)

and suppose that u ∈ IBβ(x̄) ⊂ U1 is a solution to this problem, which always exists due to the l.s.c. property
of the cost function. It follows from (3.15) and (3.10) that

hp(ũ) + s
2‖ũ‖

2 − 〈v, ũ〉 ≥ hp(u) + s
2‖u‖

2 − 〈v, u〉
≥ hp(ũ) + 〈ṽ, u− ũ〉+ 1

2κ‖u− ũ‖
2 + s

2‖u‖
2 − 〈v, u〉,

which implies in turn the relationships(
1

2κ + s
2

)
‖u− ũ‖2 ≤ 〈v − ṽ, u− ũ〉+ s

2‖ũ‖
2 − s

2‖u‖
2 + s

2‖u− ũ‖
2

= 〈v − ṽ − s
2 (u+ ũ) + s

2 (u− ũ), ũ− u〉
= 〈v − ṽ − sũ, u− ũ〉 ≤ ‖v − ṽ − sũ‖ · ‖u− ũ‖.
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This together with (3.14) and (3.13) tells us that

‖u− x̄‖ ≤ ‖u− ũ‖+ ‖ũ− x̄‖ ≤
(

1
2κ + s

2

)−1‖v − ṽ − sũ‖+ ‖ũ− x̄‖
≤
(

1
2κ + s

2

)−1[‖v − v̄ − sū‖+ ‖ṽ − v̄‖+ s‖ũ− ū‖
]

+ ‖ũ− x̄‖
≤
(

1
2κ + s

2

)−1[
ε1 + ν1 + s(κν1 + `δ

1
2
1 )
]

+ κν1 + `δ
1
2
1 < β

Employing the Fermat stationary rule for problem (3.15) and then the subdifferential sum rule, we arrive at

0 ∈ ∂(hp +
s

2
‖ · ‖2 − 〈v, ·〉)(u) ⊂ ∂hp(u) + su− v,

which yields that u ∈ (∂hp + sI)−1(v) and thus completes the proof of the claim.

Pick further any v ∈ int IBε1(v̄+sx̄) and p ∈ int IBδ1(p̄) and get from Claim 1 the existence of u ∈ (∂hp+
sI)−1(v)∩ (int IBβ(x̄)). It follows from the discussion after (3.11) that (∂f + sI)−1(v)∩ (int IBβ(x̄)) is either
singleton or empty. Furthermore, (3.12) tells us that u = (∂hp + sI)−1(v) = (∂f + sI)−1(v) ∩ (int IBβ(x̄)).
Hence we have

gph (∂hp + sI)−1 ∩W1 = gph (∂fp + sI)−1 ∩W1 with W1 := int IBε1(v̄ + sx̄)× int IBβ(x̄),

which implies in turn the equality

gph ∂hp ∩W2 = gph ∂fp ∩W2 with W2 := J−1(W1).

Since W2 is a neighborhood of (x̄, v̄), we find a neighborhood U2 × V2 ⊂W2 ∩ (U1 × V1) of (x̄, v̄) such that

gph∇g−1
p ∩ (U2 × V2) = gph ∂hp ∩ (U2 × V2) = gph ∂fp ∩ (U2 × V2). (3.16)

Define now the mapping ϑ from IRn × IRd into IRn by gphϑ := gphS ∩ (V2 × P1 × U2), where S is taken

from (3.3). Pick any triple (v, p, u) ∈ gphϑ and deduce from (3.16) that u = ∇gp(v) = M̂p(v). Therefore

hp(u) = g∗p(u) = 〈u, v〉 − gp(v) = 〈u, v〉 −
(
〈v, M̂p(v)〉 − fp(M̂p(v))

)
= fp(u).

Combining this with (3.10) gives us for any x ∈ U2 and (v, p, u) ∈ gphϑ that

fp(x) ≥ (fp + δIBγ(x̄))
∗∗(x) = hp(x) ≥ fp(u) + 〈v, x− u〉+

1

2κ
‖x− u‖2,

which readily ensures the single-valuedness of ϑ and inequality (3.9), and thus justifies (ii).

To verify next (ii)=⇒(i) under BCQ (3.4), we shrink neighborhoods U, V, P in (ii) if necessary so that
(3.6) holds on them with some constants ε, c > 0. It is clear from (3.9) that Mγ(v̄, p̄) = x̄ for any γ > 0
satisfying IBγ(x̄) ⊂ U . We split the rest of the proof into the following two claims having their own interest.

Claim 2. We have S(v, p) ∩ U = ϑ(v, p) = Mγ(v, p) for all v ∈ IBδ(v̄) ⊂ V and p ∈ IBδ(p̄) ⊂ P when
δ, γ > 0 are sufficiently small and 2cδ < γ.

To justify it, pick v ∈ IBδ(v̄) and p ∈ IBδ(p̄). By choosing (x1, p1) = (x̄, p̄) and p2 = p in (3.6) we find
x2 = x with ‖x − x̄‖ ≤ c‖p − p̄‖ ≤ cδ < γ such that f(x, p) ≤ f(x̄, p̄) + c‖p − p̄‖ ≤ f(x̄, p̄) + cδ. Take any
u ∈Mγ(v, p), the latter yields

f(x̄, p̄) + cδ ≥ f(x, p) ≥ f(u, p)− 〈v, u− x〉, (3.17)

which implies in turns the estimates

f(u, p) ≤ f(x̄, p̄) + cδ + ‖v‖(‖u− x̄‖+ ‖x− x̄‖) ≤ f(x̄, p̄) + cδ + (‖v̄‖+ δ)(γ + cδ).

Thus f(u, p) ≤ f(x̄, p̄) + ε whenever γ, δ > 0 are sufficiently small. Using (3.6) again (by choosing now
(x1, p1) = (u, p) and p2 = p̄ therein), we find w ∈ IRn such that ‖w − u‖ ≤ c‖p̄ − p‖ ≤ cδ < γ and that
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f(w, p̄) ≤ f(u, p) + c‖p̄− p‖. It follows that ‖w − x̄‖ ≤ ‖w − u‖+ ‖u− x̄‖ ≤ 2γ. Hence w ∈ U when γ > 0
is sufficiently small. This together with (3.9) gives us that

f(u, p) + cδ ≥ f(w, p̄) ≥ f(x̄, p̄) + 〈v̄, w − x̄〉+
1

2κ
‖w − x̄‖2,

which ensures together with (3.17) the estimates

2cδ ≥ −〈v, u− x〉+ 〈v̄, w − x̄〉+
1

2κ
‖w − x̄‖2

≥ −〈v, u− w + x̄− x〉+ 〈v̄ − v, w − x̄〉+
1

2κ
‖w − x̄‖2

≥ −‖v‖(‖u− w‖+ ‖x̄− x‖)− ‖v̄ − v‖‖w − x̄‖+
1

2κ
‖w − x̄‖2

≥ −(‖v̄‖+ δ)(cδ + cδ)− δ‖w − x̄‖+
1

2κ
‖w − x̄‖2.

When δ is sufficiently small, we get from the obtained inequalities that ‖w − x̄‖ < γ − cδ, which gives us in
turn the estimates ‖u− x̄‖ ≤ ‖w − x̄‖+ ‖u− w‖ < γ − cδ + cδ = γ. Since u ∈Mγ(v, p) and u ∈ int IBγ(x̄),
the Fermat rule tells us that v ∈ ∂fp(u), or equivalently u ∈ (∂fp)

−1(v) ∩ U = ϑ(v, p). Note from (3.9) that
if ϑ(v, p) exists, it must be a singleton. It follows that ϑ(v, p) = Mγ(v, p) for all v ∈ IBδ(v̄) and p ∈ IBδ(p̄),
which completes the proof of Claim 2.

Claim 3. We may find δ, γ > 0 with 2cδ < γ sufficiently small such that Claim 2 holds and that there is
a positive number ` for which

‖Mγ(v1, p1)−Mγ(v2, p2)‖ ≤ κ‖v1 − v2‖+ `‖p1 − p2‖
1
2 (3.18)

whenever v1, v2 ∈ V1 := int IBδ(v̄) and p1, p2 ∈ P1 := int IBδ(p̄), where κ > 0 is taken from (3.9).
Indeed, define ui := Mγ(vi, pi) = ϑ(vi, pi), i = 1, 2, which exist as in Claim 2, and get from (3.6) that

there are some xi such that ‖xi− x̄‖ ≤ c‖pi− p̄‖ ≤ cδ < γ and f(xi, pi) ≤ f(x̄, p̄) + c‖pi− p̄‖. It follows that

f(x̄, p̄) + cδ ≥ f(xi, pi) ≥ f(ui, pi) + 〈vi, xi − ui〉 ≥ f(ui, pi)− ‖vi‖‖xi − ui‖
≥ f(ui, pi)− ‖vi‖

(
‖ui − x̄‖+ ‖xi − x̄‖

)
≥ f(ui, pi)− (‖v̄‖+ δ)(γ + cδ),

which yields f(ui, pi) ≤ f(x̄, p̄) + ε for δ, γ > 0 sufficiently small. Employing (3.6) gives us w1, w2 with{
‖u2 − w1‖ ≤ c‖p2 − p1‖ ≤ 2cδ, ‖u1 − w2‖ ≤ c‖p1 − p2‖ ≤ 2cδ
f(w1, p1) ≤ f(u2, p2) + c‖p1 − p2‖, f(w2, p2) ≤ f(u1, p1) + c‖p1 − p2‖.

(3.19)

Hence we deduce the estimate ‖w1 − x̄‖ ≤ ‖u2 − w1‖+ ‖u2 − x̄‖ ≤ 2cδ + γ, which implies that w1 ∈ U and
simultaneously w2 ∈ U when δ and γ are sufficiently small. This together with (3.9) ensures that{

f(w1, p1) ≥ f(u1, p1) + 〈v1, w1 − u1〉+ 1
2κ‖w1 − u1‖2,

f(w2, p2) ≥ f(u2, p2) + 〈v2, w2 − u2〉+ 1
2κ‖w2 − u2‖2.

Summing up these two inequalities and combining it with (3.19) yields

2c‖p1 − p2‖ ≥ 〈v1, w1 − u1〉+
1

2κ
‖w1 − u1‖2 + 〈v2, w2 − u2〉+

1

2κ
‖w2 − u2‖2

≥ 〈v1 − v2, u2 − u1〉+ 〈v1, w1 − u2〉+ 〈v2, w2 − u1〉+
1

2κ
(‖w1 − u2‖ − ‖u1 − u2‖)2

+
1

2κ
(‖w2 − u1‖ − ‖u1 − u2‖)2

≥ −‖v1 − v2‖ · ‖u1 − u2‖ − (‖v̄‖+ δ)‖w1 − u2‖ − (‖v̄‖+ δ)‖w2 − u1‖
− 1

κ
(‖w1 − u2‖+ ‖w2 − u1‖)‖u1 − u2‖+

1

κ
‖u1 − u2‖2

≥ −‖v1 − v2‖ · ‖u1 − u2‖ − (‖v̄‖+ δ)c‖p1 − p2‖ − (‖v̄‖+ δ)c‖p1 − p2‖
− 1

κ
(c‖p1 − p2‖+ c‖p1 − p2‖)‖u1 − u2‖+

1

κ
‖u1 − u2‖2

≥ −
(
‖v1 − v2‖+

2c

κ
‖p1 − p2‖

)
‖u1 − u2‖ − (‖v̄‖+ δ)2c‖p1 − p2‖+

1

κ
‖u1 − u2‖2,
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which implies in turn that

1

κ
‖u1 − u2‖2 −

(
‖v1 − v2‖+

2c

κ
‖p1 − p2‖

)
‖u1 − u2‖ − 2c(‖v̄‖+ δ + 1)‖p1 − p2‖ ≤ 0.

Therefore we arrive at the following estimates:

‖u1 − u2‖ ≤
κ

2

[
‖v1 − v2‖+

2c

κ
‖p1 − p2‖+√(

‖v1 − v2‖+
2c

κ
‖p1 − p2‖

)2
+

8c

κ
(‖v̄‖+ δ + 1)‖p1 − p2‖

]
≤ κ‖v1 − v2‖+ 2c‖p1 − p2‖+

√
2cκ(‖v̄‖+ δ + 1)‖p1 − p2‖

1
2

≤ κ‖v1 − v2‖+ 2c
√

2δ‖p1 − p2‖
1
2 +

√
2cκ(‖v̄‖+ δ + 1)‖p1 − p2‖

1
2

≤ κ‖v1 − v2‖+
(
2c
√

2δ +
√

2cκ(‖v̄‖+ δ + 1)
)
‖p1 − p2‖

1
2 .

This clearly justifies the Hölderian condition (3.18) with

` :=
(
2c
√

2δ +
√

2cκ(‖v̄‖+ δ + 1)
)

and thus completes the proof of Claim 3 and of the whole theorem. 4

Remark 3.5 (specification of the argminimum set). We are going to use several times in the rest of the
paper the following fact proved in Claim 2 above: For any parameter pair (v, p) near (v̄, p̄) and any sufficiently
small number γ > 0 the argminimum set Mγ(v, p) from (3.3) reduces to the single-valued localization ϑ(p, v)
of the partial subdifferential inverse S(v, p) also defined in (3.3) provided that the equivalent conditions in
(i) and (ii) of Theorem 3.4 are satisfied.

The next consequence of Theorem 3.4 shows that Hölderian full stability is equivalent to the Hölderian
continuity of a localization of the mapping S in (3.3), which is closely related to Hölderian continuity in [41]
for the case of variational inequalities.

Corollary 3.6 (Hölderian localization). Assume that BCQ (3.4) holds at (x̄, p̄) ∈ dom f and that f is
parametrically continuously prox-regular at (x̄, p̄) for v̄ ∈ ∂xf(x̄, p̄). The following assertions are equivalent:

(i) The point x̄ is a Hölderian fully stable local minimizer of P(v̄, p̄) with a modulus pair (κ, `) ∈ IR2
>.

(ii) The point x̄ is a local minimizer of P(v̄, p̄) and there exists a neighborhood U×P ×V of (x̄, p̄, v̄) such
that the partial subdifferential inverse mapping S from (3.3) admits a single-valued localization ϑ relative to
V × P × U satisfying the following Hölderian condition:

‖ϑ(v1, p1)− ϑ(v2, p2)‖ ≤ κ‖v1 − v2‖+ `‖p1 − p2‖
1
2 as v1, v2 ∈ V, p1, p2 ∈ P. (3.20)

Proof. When (i) holds, there is some γ > 0 such that x̄ = Mγ(v̄, p̄) by Definition 3.2(ii). Moreover,
Remark 3.5 tells us that ϑ(v, p) = Mγ(v, p) for (v, p) near (v̄, p̄). This together with (3.8) verifies (ii).

Conversely, supposing that (ii) is satisfied gives us some γ > 0 such that x̄ ∈Mγ(v̄, p̄). Then we choose
δ ∈ (0, γ) with IBδ(x̄) ⊂ U and for any x̂ ∈Mδ(v̄, p̄) get x̂ ∈Mγ(v̄, p̄) due to

f(x̂, p̄)− 〈v̄, x̂〉 ≤ f(x̄, p̄)− 〈v̄, x̄〉 ≤ f(x̂, p̄)− 〈v̄, x̂〉.

By the Fermat rule we have v̄ ∈ ∂xf(x̄, p̄) and also v̄ ∈ ∂xf(x̂, p̄). It follows therefore that x̂, x̄ ∈ ϑ(v̄, p̄),
which yields x̂ = x̄ = Mδ(v̄, p̄) by the single-valuedness of ϑ. Employing BCQ and the aforementioned
result from [16, Proposition 3.5] allows us to find neighborhoods V1 ⊂ V of v̄ and P1 ⊂ P of p̄ such that
∅ 6= Mδ(v, p) ⊂ int IBδ(x̄) for all (v, p) ∈ V1×P1. By the Fermat rule again we deduce that Mδ(v, p) ⊂ ϑ(v, p).
Since ϑ is single-valued, this implies that Mδ(v, p) = ϑ(v, p) for all (v, p) ∈ V1×P1. Combining it with (3.20)
verifies (3.8) and thus completes the proof of the corollary. 4

Next we derive a quantitative (with modulus) second-order subdifferential characterization of Hölderian
full stability via the regular coderivative of the limiting subdifferential. The tilt stability (p-independent)
version of this result has been recently established in [24, Theorem 3.4].
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Theorem 3.7 (characterization of Hölderian full stability via the regular coderivative of the
limiting subdifferential). Assume that BCQ (3.4) is satisfied at (x̄, p̄) ∈ dom f and that f is parametrically
continuously prox-regular at (x̄, p̄) for v̄ ∈ ∂xf(x̄, p̄). The following assertions are equivalent:

(i) The point x̄ is a Hölderian fully stable local minimizer of P(v̄, p̄) with a modulus pair (κ, `) ∈ IR2
>.

(ii) There is a constant η > 0 such that for all w ∈ IRn we have

〈z, w〉 ≥ 1

κ
‖w‖2 whenever z ∈ D̂∗∂fp(u, v)(w) with (u, p, v) ∈ gph ∂xf ∩ IBη(x̄, p̄, v̄). (3.21)

Proof. To justify (i)=⇒(ii), find from (i) a constant γ > 0 such that Mγ satisfies the Hölderian condition
(3.8). Theorem 3.4 ensures the existence of a single-valued localization ϑ of S relative to a neighborhood
V × P × U of (v̄, p̄, x̄) satisfying the second-order growth condition (3.9). By Corollary 3.6 we may suppose
that ϑ also satisfies (3.20). Furthermore, it follows from (3.9) that

〈y − v, x− u〉 = 〈y, x− u〉+ 〈v, u− x〉
≥ fp(u)− fp(x) +

1

2κ
‖x− u‖2 + fp(x)− fp(u) +

1

2κ
‖x− u‖2

=
1

κ
‖x− u‖2 for any (x, p, y), (u, p, v) ∈ gph ∂xf ∩ (U × P × V ).

(3.22)

To verify (3.21), pick z ∈ D̂∗∂fp(u, v)(w) with (u, p, v) ∈ gph ∂xf ∩ (U ×P ×V ), w ∈ IRn and get from (2.4)
that for any ε > 0 there is some δ > 0 with IBδ(u, v) ⊂ U × V such that

〈z, x− u〉 − 〈w, y − v〉 ≤ ε
(
‖x− u‖+ ‖y − v‖

)
whenever (x, y) ∈ gph ∂fp ∩ IBδ(u, v). (3.23)

When t > 0 is small enough, define ut := ϑ(vt, p) with vt := v + t(z − 2κ−1w) ∈ V and get from Hölder
continuity of Mγ that (ut, vt) → (u, v) as t ↓ 0. Note that (ut, vt) ∈ gph ∂fp and suppose without loss of
generality that (ut, vt) ∈ IBδ(u, v) for all t > 0. Replacing (x, y) in (3.23) by (ut, vt) and using (3.22) yield

ε
(
‖ut − u‖+ ‖vt − v‖

)
≥ 〈z, ut − u〉 − 〈w, vt − v〉
= 〈t−1(vt − v) + 2κ−1w, ut − u〉 − t〈w, z − 2κ−1w〉
≥ (κt)−1‖ut − u‖2 + 2κ−1〈w, ut − u〉 − t〈w, z − 2κ−1w〉
≥ (κt)−1‖ut − u‖2 − 2κ−1‖w‖ · ‖ut − u‖+ tκ−1‖w‖2 − t〈w, z − κ−1w〉
≥ −t〈w, z − κ−1w〉 = −t〈z, w〉+ tκ−1‖w‖2.

(3.24)

Note from (3.20) that ϑ(·, p) is Lipschitz continuous on V with modulus κ. Thus we have

ε
(
‖ut − u‖+ ‖vt − v‖

)
= ε
(
‖ϑ(vt, p)− ϑ(v, p)‖+ ‖vt − v‖

)
≤ ε
(
κ‖vt − v‖+ ‖vt − v‖

)
= ε(κ+ 1)‖vt − v‖ = ε(κ+ 1)t‖z − 2κ−1w‖,

which together with (3.24) yields 〈z, w〉+ ε(κ+ 1)‖z − 2κ−1w‖ ≥ κ−1‖w‖2, and so 〈z, w〉 ≥ κ−1‖w‖2 while
taking ε ↓ 0. This ensures (3.21) and thus completes the first part of the proof.

To verify now (ii)=⇒(i), assume that BCQ (3.4) holds at (x̄, p̄) and that (3.21) is satisfied with some
numbers η, κ > 0. Since f is parametrically continuously prox-regular at (x̄, p̄) for v̄ ∈ ∂xf(x̄, p̄), there are
r, ε > 0 with ε < η such that

fp(x) ≥ fp(u) + 〈v, x− u〉 − r

2
‖x− u‖2 if x ∈ IBε(x̄), (u, p, v) ∈ gph ∂xf ∩ IBε(x̄, p̄, v̄). (3.25)

For gp(x, p) := f(x, p) + s
2‖x− x̄‖

2 with any s > r as x ∈ IRn, we have ∂gp(x) = ∂fp(x) + s(x− x̄). Define
further W := J

(
IBε(x̄, p̄, v̄)

)
with J(u, p, v) := (u, p, v + s(u− x̄)) for (u, p, v) ∈ IRn × IRd × IRn and observe

that W contains the ball IB2δ(x̄, p̄, v̄) for some δ > 0 sufficiently small. It is easy to deduce from (3.25) that

gp(x) ≥ gp(u) + 〈v, x− u〉+
s− r

2
‖x− u‖2 if x ∈ IBδ(x̄), (u, p, v) ∈ gph ∂xg ∩ IBδ(x̄, p̄, v̄). (3.26)

Furthermore, applying the coderivative sum rule from [20, Theorem 1.62(i)] gives us the inclusion

z − sw ∈ D̂∗∂fp
(
u, v − s(u− x̄)

)
(w) if z ∈ D̂∗∂gp(u, v)(w) with (u, p, v) ∈ gph ∂xg ∩ IBδ(x̄, p̄, v̄).
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Taking into account that (u, p, v − s(u − x̄)) = J−1(u, p, v) ⊂ J−1(W ) = IBε(x̄, p̄, v̄) ⊂ IBη(x̄, p̄, v̄), the
obtained inclusion together with (3.21) implies that 〈z − sw,w〉 ≥ κ−1‖w‖2. Thus

‖z‖ · ‖w‖ ≥ 〈z, w〉 ≥ (s+ κ−1)‖w‖2,

which ensures in turn the estimate

‖z‖ ≥ (s+ κ−1)‖w‖ if z ∈ D̂∗∂gp(u, v)(w) with (u, p, v) ∈ gph ∂xg ∩ IBδ(x̄, p̄, v̄). (3.27)

This allows us to justify in the following claim the second-order growth condition for the shifted function gp.
Claim. When g satisfies (3.26) and (3.27), there is a neighborhood U × P × V of (x̄, p̄, v̄) such that

gp(x) ≥ gp(u) + 〈v, x− u〉+
s+ κ−1

2
‖x− u‖2 if x ∈ U, (u, p, v) ∈ gph ∂xg ∩ (U × P × V ). (3.28)

Indeed, observe that ∂∞g(x̄, p̄) = ∂∞f(x̄, p̄) due to the subdifferential sum rule from [20, Proposi-
tion 1.107(iii)]. Thus the assumed BCQ (3.4) holds also for the function g at (x̄, p̄). Applying Theo-
rem 3.4 to the function g, which satisfies inequality (3.26), gives us some γ, ` > 0 such that the mapping
Mg
γ (v, p) := argmin{g(x, p)− 〈v, x〉| x ∈ IBγ(x̄)} is single-valued and that

‖Mg
γ (v1, p1)−Mg

γ (v2, p2)‖ ≤ 1

s− r
‖v1 − v2‖+ `‖p1 − p2‖

1
2 for all v1, v2 ∈ V1, p1, p2 ∈ P1, (3.29)

where V1 ⊂ IBδ(v̄) and P1 ⊂ IBδ(p̄) are some neighborhoods of v̄ and p̄, respectively. Defining now

Sg(v, p) :=
{
u ∈ IRn

∣∣ v ∈ ∂xg(u, p)
}

for v ∈ IRn, p ∈ IRd

we deduce from Remark 3.5 that Sg admits a single-valued localization ϑg relative to int IBβ(v̄)× int IBβ(p̄)×
int IBγ(x̄) ⊂ V1 × P1 × int IBγ(x̄) for some β ∈ (0, δ) such that ϑg = Mg

γ on int IBβ(v̄)× int IBβ(p̄). Pick any
p ∈ P2 := int IBβ(p̄) and denote ϑgp(·) := ϑg(·, p). Then the mean value inequality from [20, Corollary 3.50]
tells us that

‖〈z, ϑgp(v1)〉 − 〈z, ϑgp(v2)〉‖ ≤ ‖v1 − v2‖ sup
{
‖w‖

∣∣ w ∈ ∂̂〈z, ϑgp(·)〉(v), v ∈ V2

}
(3.30)

whenever z ∈ IB and v1, v2 ∈ V2 := int IB β
2
(v̄). Note that

∂̂〈z, ϑgp(·)〉(v) ⊂ D̂∗ϑgp(v)(z) = D̂∗∂g−1
p (v)(z), z ∈ IB,

which gives us together with (3.27) and (3.30) that

‖ϑgp(v1)− ϑgp(v2)‖ = sup
z∈IB
‖〈z, ϑgp(v1)− ϑgp(v2)〉‖ ≤ (s+ κ−1)−1‖v1 − v2‖, v1, v2 ∈ V2. (3.31)

Since ϑg = Mg
γ on V2 × P2, for any p1, p2 ∈ P2 and v1, v2 ∈ V2 we get from (3.29) and (3.31) that

‖Mg
γ (v1, p1)−Mg

γ (v2, p2)‖ ≤ ‖Mg
γ (v1, p1)−Mg

γ (v2, p1)‖+ ‖Mg
γ (v2, p1)−Mg

γ (v2, p2)‖
≤ (s+ κ−1)−1‖v1 − v2‖+ `‖p1 − p2‖

1
2 .

Employing now Theorem 3.4 allows us to find a neighborhood U × P × V of (x̄, p̄, v̄) such that the growth
condition (3.28) holds. This verifies the Claim.

To complete the proof, it suffices to deduce (3.9) from (3.28). Indeed, since fp(x) = gp(x)− s
2‖x− x̄‖

2,
we have ∂fp(x) = ∂gp(x)− s(x− x̄), which yields

fp(x) ≥ fp(u) + 〈v, x− u〉+
1

2κ
‖x− u‖2 for all (u, p, v) ∈ gph ∂xf ∩ Z, x ∈ U,

where Z := J−1(U × P × V ) is a neighborhood of (x̄, p̄, v̄). This completes the proof of this theorem by
employing once again Theorem 3.4. 4
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4 Second-Order Characterizations of Lipschitzian Full Stability

In this section we study the notion of Lipschitzian full stability with the modulus specification formulated
in Definition 3.2(i). The following theorem characterizes this notion in terms of the uniform second-order
growth condition (3.9) and the second-order subdifferential condition (3.21) with the precise modulus corre-
spondence. In comparison with Theorems 3.4 and 3.7 this result indeed shows that Hölderian full stability
becomes Lipschitzian under the additional condition (4.1) below, which is condition (b) in [16, Theorem 2.3].
By the Mordukhovich criterion (2.7) the latter condition exactly means that G : p 7→ gph ∂xf(·, p) is
Lipschitz-like around the point (p̄, (x̄, v̄)) with v̄ ∈ ∂xf(x̄, p̄); see, e.g., [16, Proposition 4.3].

Theorem 4.1 (second-order characterizations of Lipschitzian vs. Hölderian full stability). As-
sume that BCQ (3.4) holds at (x̄, p̄) ∈ dom f and that f is parametrically continuously prox-regular at (x̄, p̄)
for v̄ ∈ ∂xf(x̄, p̄). Then the following assertions are equivalent:

(i) The point x̄ is a Lipschitzian fully stable local minimizer of P(v̄, p̄) with a modulus pair (κ, `) ∈ IR2
>.

(ii) The uniform second-order growth condition (3.9) holds at (x̄, p̄, v̄) together with the condition

(0, q) ∈ D∗∂xf(x̄, p̄, v̄)(0) =⇒ q = 0. (4.1)

(iii) Both conditions (4.1) and (3.21) are satisfied.

Proof. Implication (iii)=⇒(ii) is straightforward from Theorem 3.4 and Theorem 3.7. To justify impli-
cations (i)=⇒(ii), we only need to prove that (i)=⇒(4.1) due to Theorems 3.4. To proceed, suppose that
x̄ is a Lipschitzian fully stable local minimizer of P(v̄, p̄) and then find a number γ > 0 so small that the
mapping Mγ is single-valued and Lipschitz continuous around (v̄, p̄) with Mγ(v̄, p̄) = x̄. By Remark 3.5
there is a neighborhood U × V × P of (x̄, v̄, p̄) such that Mγ(v, p) = S(v, p) ∩ U for all (v, p) ∈ V × P . This
together with (3.7) implies that the mapping S in (3.3) is Lipschitz-like around (v̄, p̄). The Mordukhovich
criterion (2.7) tells us that D∗S(v̄, p̄, x̄)(0) = (0, 0) ∈ IRn × IRd. Note further from the construction of S
that if (0, q) ∈ D∗∂xf(x̄, p̄, v̄)(0), then (0, q) ∈ D∗S(v̄, p̄, x̄)(0) and so q = 0. This verifies condition (4.1) and
thus completes the proof of the first part of the theorem.

It remains to justify implication (ii)=⇒ (i). Suppose that both the uniform second-order growth condi-
tion (3.9) and the coderivative condition (4.1) holds. By the Mordukhovich criterion (2.7) condition (4.1) is
equivalent to the fact that the mapping G : p 7→ gph ∂xf(·, p) is Lipschitz-like around (p̄, x̄, v̄). Thus there
exist a neighborhood U1 × P1 × V1 ⊂ U × P × V of (x̄, p̄, v̄) and a constant c > 0 such that

G(p1) ∩ (U1 × V1) ⊂ G(p2) + c‖p1 − p2‖IB for all p1, p2 ∈ P1, (4.2)

where U,P, V are taken from (3.9). By Remark 3.5 we assume that gphMγ ∩ (V1×P1×U1) = gphϑ∩ (V1×
P1×U1) for ϑ in (3.9). Picking any (v1, p1, u1), (v2, p2, u2) ∈ gphϑ∩ (V1×P1×U1) = gphS∩ (V1×P1×U1),
and using (4.2) give us a pair (u, v) ∈ G(p2) such that

‖u1 − u‖+ ‖v1 − v‖ ≤ c‖p1 − p2‖, (4.3)

since (u1, v1) ∈ G(p1) ∩ (U1 × V1). Shrinking the neighborhood U1, V1, P1 allows us to get (u, v) ∈ U × V
and deduce from (3.9) that

f(u, p2) ≥ f(u2, p2) + 〈v2, u− u2〉+
1

2κ
‖u− u2‖2,

f(u2, p2) ≥ f(u, p2) + 〈v, u2 − u〉+
1

2κ
‖u2 − u‖2.

Adding these two inequalities shows that

‖v − v2‖ · ‖u− u2‖ ≥ 〈v − v2, u− u2〉 ≥
1

κ
‖u− u2‖2,

which being combined with (4.3) ensures the estimates

‖u1 − u2‖ ≤ ‖u1 − u‖+ ‖u− u2‖ ≤ c‖p1 − p2‖+ κ‖v − v2‖
≤ c‖p1 − p2‖+ κ‖v1 − v2‖+ κ‖v − v1‖
≤ c‖p1 − p2‖+ κ‖v1 − v2‖+ cκ‖p1 − p2‖ = κ‖v1 − v2‖+ c(κ+ 1)‖p1 − p2‖.
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Therefore we arrive at the relationship

‖Mγ(v1, p1)−Mγ(v2, p2)‖ ≤ κ‖v1 − v2‖+ c(κ+ 1)‖p1 − p2‖ for all v1, v2 ∈ V1, p1, p2 ∈ P1.

which confirms the Lipschitz property (3.7) with the modulus pair (κ, c(κ+1)) and thus completes the proof
of implication (ii) =⇒(i) and the whole theorem. 4

As a consequence of Theorem 4.1 we show that Lipschitzian full stability is equivalent to the Lipschitz
continuity of a localization of the mapping S in (3.3). Without considering the modulus pair this result has
been recently established in [30, Theorem 3.5].

Corollary 4.2 (Lipschitzian localization). Assume that BCQ (3.4) holds at (x̄, p̄) ∈ dom f and that f is
parametrically continuously prox-regular at (x̄, p̄) for v̄ ∈ ∂xf(x̄, p̄). The following assertions are equivalent:

(i) The point x̄ is a Lipschitzian fully stable local minimizer of the perturbed problem P(v̄, p̄) with the
modulus pair (κ, `) ∈ IR2

>.
(ii) We have x̄ ∈ Mγ(v̄, p̄) for some γ > 0, and there is a neighborhood U × P × V of (x̄, p̄, v̄) such

that the mapping S from (3.3) admits a single-valued localization ϑ with respect to V × P ×U satisfying the
Lipschitz continuity condition

‖ϑ(v1, p1)− ϑ(v2, p2)‖ ≤ κ‖v1 − v2‖+ `‖p1 − p2‖ for all v1, v2 ∈ V, p1, p2 ∈ P. (4.4)

Proof. The proof is similar to Corollary 3.6 by applying Theorem 4.1 instead of Theorem 3.4. 4

The next approximation lemma is helpful in the proof of the pointwise characterizations of Lipschitzian
full stability established in Theorem 4.4 and Corollary 4.5 below.

Lemma 4.3 (coderivative approximation). Let condition (4.1) hold, and let

‖z‖ ≥ µ‖w‖ whenever (z, q) ∈ D∗∂xf(x̄, p̄, v̄)(w) (4.5)

with some µ > 0. Then for any δ ∈ (0, µ) there exists η > 0 such that

‖z‖ ≥ (µ− δ)‖w‖ whenever z ∈ D̂∗∂fp(u, v)(w) with (u, p, v) ∈ gph ∂xf ∩ IBη(x̄, p̄, v̄). (4.6)

Proof. Assuming (4.5), we first show that for any δ ∈ (0, µ) there is ν > 0 satisfying

‖z‖ ≥ (µ− δ)‖w‖ if (z, q) ∈ D̂∗∂xf(u, p, v)(w) with (u, p, v) ∈ gph ∂xf ∩ IBν(x̄, p̄, v̄). (4.7)

Arguing by contradiction, find sequences (uk, pk, vk)
gph ∂xf−→ (x̄, p̄, v̄) and (zk, qk) ∈ D̂∗∂xf(uk, pk, vk)(wk)

such that ‖zk‖ < (µ−δ)‖wk‖, which clearly implies that wk 6= 0. Denoting z̄k := zk‖wk‖−1, q̄k := qk‖wk‖−1,

and w̄k := wk‖wk‖−1 gives us (z̄k, q̄k) ∈ D̂∗∂xf(uk, pk, vk)(w̄k) as k ∈ IN . Since (4.1) holds, the mapping
G : p 7→ gph ∂xf(·, p) is Lipschitz-like with some modulus ` > 0. Then the result of [20, Theorem 1.43] tells
us that ‖q̄k‖ ≤ `(‖z̄k‖ + ‖w̄k‖) for all k. It follows that ‖w̄k‖ = 1, ‖z̄k‖ ≤ µ − δ, and ‖q̄k‖ ≤ `(µ − δ + 1).
By passing to a subsequence, suppose that (z̄k, q̄k, w̄k) converges to (z̄, q̄, w̄) as k →∞. Hence ‖w̄‖ = 1 and
(z̄, q̄) ∈ D∗∂xf(x̄, p̄, v̄)(w̄) with ‖z̄‖ ≤ (µ− δ), which contradicts (4.5) and thus verifies condition (4.7).

To justify further (4.6), take any z ∈ D̂∗∂fp(u, v)(w) with (u, p, v) ∈ gph ∂xf ∩ IBη(x̄, p̄, v̄) for some

η ∈ (0, ν). Due to the homogeneity of D̂∗ we assume without loss of generality that ‖z‖+‖w‖ ≤ 1
2` . Defining

Ω1 := gphG and Ω2 := {p} × IRn × IRn, observe that (0, z,−w) ∈ N̂((p, u, v); Ω1 ∩ Ω2). It follows from the
fuzzy intersection rule in [20, Lemma 3.1] that for any ε > 0 there are λ ≥ 0, (pi, ui, vi) ∈ Ωi ∩ IBε(p, u, v),

and (qi, zi,−wi) ∈ N̂
(
(pi, ui, vi); Ωi

)
+ εIB as i = 1, 2 such that

λ(0, z,−w) = (q1, z1,−w1) + (q2, z2,−w2) and max
{
λ, ‖(q2, z2,−w2)‖

}
= 1. (4.8)

The construction of Ω2 yields N̂((p2, u2, v2); Ω2) ⊂ IRd × {0} × {0} and thus ‖z2‖ + ‖w2‖ ≤ ε. Moreover,

there is (q̄1, z̄1,−w̄1) ∈ N̂((p1, u1, v1); Ω1) satisfying ‖q1− q̄1‖+‖z1− z̄1‖+‖w1− w̄1‖ ≤ ε. The Lipschitz-like
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property of G with modulus ` ensures by [20, Theorem 1.43] that ‖q̄1‖ ≤ `(‖z̄1‖+ ‖w̄1‖). This together with
(4.8) gives us the relationships

‖q2‖ = ‖q1‖ ≤ ‖q̄1‖+ ε ≤ ε+ `(‖z̄1‖+ ‖w̄1‖) ≤ ε+ `(‖z1‖+ ‖w1‖+ ε)
≤ `(‖λz − z2‖+ ‖λw − w2‖) + (`+ 1)ε ≤ `(λ‖z‖+ ‖z2‖+ λ‖w‖+ ‖w2‖) + (`+ 1)ε

≤ `
(
λ(‖z‖+ ‖w‖) + ε

)
+ (`+ 1)ε ≤ `(‖z‖+ ‖w‖) + (2`+ 1)ε <

1

2
+ (2`+ 1)ε.

When ε > 0 is sufficiently small, we have ‖q2‖ < 1− ε and so ‖(q2, z2,−w2)‖ < 1. It follows from (4.8) that
λ = 1. Combining this with (4.7) and (4.8) implies that

‖z‖ = ‖z1 + z2‖ ≥ ‖z̄1‖ − ‖z̄1 − z1‖ − ‖z2‖ ≥ (µ− δ)‖w̄1‖ − ε− ε
≥ (µ− δ)(‖w‖ − ‖w1 − w̄1‖ − ‖w2‖)− 2ε ≥ (µ− δ)‖w‖ − 2ε(µ− δ)− 2ε.

Letting finally ε ↓ 0 shows that ‖z‖ ≥ (µ− δ)‖w‖ and thus ends the proof of the lemma. 4

Now we are ready to derive the main result of this section that provides a complete pointwise character-
ization of Lipschitzian full stability via the limiting coderivative of the partial subgradient mapping ∂xf . It
not only recovers the qualitative criterion (4.1), (4.10) of full stability from [16, Theorem 2.3] obtained by a
different approach, but also establishes new quantitative information about Lipschitzian moduli.

Theorem 4.4 (pointwise characterization of Lipschitzian fully stable minimizers via the limiting
coderivative of the subdifferential). Suppose that BCQ (3.4) holds at (x̄, p̄) ∈ dom f and that f is
parametrically continuously prox-regular at (x̄, p̄) for v̄ ∈ ∂xf(x̄, p̄). Consider the following statements:

(i) The point x̄ is a Lipschitzian fully stable local minimizer of the unperturbed problem P(v̄, p̄) with a
modulus pair (κ, `) ∈ IR2

>.
(ii) Condition (4.1) is satisfied and there is some µ > 0 such that

〈z, w〉 ≥ µ‖w‖2 whenever (z, q) ∈ D∗∂xf(x̄, p̄, v̄)(w). (4.9)

Then implication (i) =⇒ (ii) holds with µ = κ−1 while implication (ii) =⇒ (i) is satisfied with any κ > µ−1.
Furthermore, the validity of (i) with some modulus pair (κ, `) ∈ IR2

> is equivalent to the fulfillment of
condition (4.1) together with the positive-definiteness condition

〈z, w〉 > 0 whenever (z, q) ∈ D∗∂xf(x̄, p̄, v̄)(w), w 6= 0. (4.10)

Proof. Assuming (i) implies by Theorem 4.1 that both conditions (4.1) and (3.21) hold. Observe that for

any (z, q) ∈ D̂∗∂xf(x, p, v)(w) we have

lim sup

(u1,p1,v1)
gph ∂xf−→ (u,p,v)

〈z, u1 − u〉+ 〈q, p1 − p〉 − 〈w, v1 − v〉
‖u1 − u‖+ ‖p1 − p‖+ ‖v1 − v‖

≤ 0.

Choosing p1 = p in the inequality above gives us z ∈ D̂∗∂fp(x, v)(w). Hence it follows from (3.21) that

〈z, w〉 ≥ κ−1‖w‖2 whenever (z, q) ∈ D̂∗∂xf(u, p, v)(w) with (u, p, v) ∈ gph ∂xf ∩ IBη(x̄, p̄, v̄).

Letting now η ↓ 0 and using definition (2.4), we arrive at (4.9) with µ = κ−1, which verifies (ii).
To justify the converse implication (ii)=⇒(i), we proceed similarly to the proof of (ii)=⇒(i) in Theo-

rem 3.7 with some modifications. Since f parametrically continuously prox-regular at (x̄, p̄, v̄), inequality
(3.25) holds for some r, ε > 0. Defining g(x, p) := f(x, p) + s

2‖x − x̄‖2 for x ∈ IRn, p ∈ IRd with some
fixed s > r, we have ∂xg(x, p) = ∂xf(x, p) + s(x − x̄). Moreover, the quadratic growth condition (3.26)
is satisfied for gp(x) := g(x, p) with some δ > 0. Note further that ∂∞f(x̄, p̄) = ∂∞g(x̄, p̄) and that
D∗∂xg(x̄, p̄, v̄)(w) = D∗∂xf(x̄, p̄, v̄)(w) + (sw, 0) by [20, Theorem 1.62(ii)]. Since BCQ and condition (4.1)
hold for the function f , both these conditions hold at the same point for the function g as well. By Theo-
rem 4.1 condition (3.26) ensures that x̄ is a Lipschitzian fully stable local minimizer of problem P(v̄, p̄) with
replacing f by g.
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It follows from [20, Theorem 1.62(ii)] that the inclusion (z, q) ∈ D∗∂xg(x̄, p̄, v̄)(w) yields (z − sw, q) ∈
D∗∂xf(x̄, p̄, v̄)(w). Furthermore, by (4.9) we have 〈z − sw,w〉 ≥ µ‖w‖2, which implies that

‖z‖ · ‖w‖ ≥ 〈z, w〉 ≥ (s+ µ)‖w‖2.

Lemma 4.3 ensures that for any λ ∈ (0, s+ µ) there is some η > 0 such that

‖z‖ ≥ (s+ µ− λ)‖w‖ whenever z ∈ D̂∗∂gp(u, v)(w) with (u, p, v) ∈ gph ∂xg ∩ IBη(x̄, p̄, v̄).

Since the function g satisfies (3.26) and (3.27), we employ the Claim in the proof of Theorem 3.7 to find
neighborhoods U of x̄, P of p̄, and V of v̄ for which the second-order growth condition

g(x, p) ≥ g(u, p) + 〈v, x− u〉+
s+ µ− λ

2
‖x− u‖2 if x ∈ U, (u, p, v) ∈ gph ∂xg ∩ (U × P × V ).

is satisfied. This implies, with W := J−1(U × P × V ) and J(u, p, v) := (u, p, v + s(u− x̄)), that

f(x, p) ≥ f(u, p) + 〈v, x− u〉+
µ− λ

2
‖x− u‖2 for all x ∈ U1, (u, p, v) ∈ gph ∂xf ∩W. (4.11)

For any κ > µ−1 there exists some λ ∈ (0, s + µ) satisfying κ > (µ − λ)−1 > 0. Theorem 4.1 together
with (4.11) tells us that x̄ is a Lipschitzian fully stable local minimizer of P (v̄, p̄) with the modulus pair
((µ− λ)−1, `) for some ` > 0. This verifies implication (ii)=⇒(i).

Next we prove the equivalence between (i) with some modulus pair (κ, `) ∈ IR2
> and the validity of (4.10)

together with (4.1). Note that (i) readily yields both conditions (4.1) and (4.10) by implication (i)=⇒(ii)
proved above. To justify the converse, observe first that the validity of (4.10) and (4.1) ensures the condition

(0, q) ∈ D∗∂xf(v̄, p̄, x̄)(w) =⇒ (q, w) = 0,

which shows that D∗S(v̄, p̄, x̄)(0) = (0, 0) for the mapping S from (3.3). By the Mordukhovich criterion
(2.7) this tells that S is Lipschitz-like around (v̄, p̄, x̄) with some modulus ` > 0. Moreover, arguing as in the
proof of (ii)=⇒(i) above when µ = 0 shows that for each λ ∈ (0,min{(5`)−1, s}) there are neighborhoods
U1 of x̄ and W1 of (x̄, p̄, v̄) such that condition (4.11) holds with µ = 0. Define h(x, p) := f(x, p) +λ‖x− x̄‖2
with ∂h(x, p) = ∂f(x, p) + 2λ(x − x̄). It is similar to (3.26) that condition (4.11) with µ = 0 implies the
existence of δ > 0 so small that the quadratic growth condition

h(x, p) ≥ h(u, p) + 〈v, x− u〉+
λ

2
‖x− u‖2 if x ∈ IBδ(x̄), (u, p, v) ∈ gph ∂xh ∩ IBδ(x̄, p̄, v̄) (4.12)

is satisfied for h. Observe further that for any (z, q) ∈ D∗∂xh(x̄, p̄, v̄)(w) we get from [20, Theorem 1.62(ii)]

that (z − 2λw, q) ∈ D∗∂xf(x̄, p̄, v̄)(w) whenever w ∈ IRn, which reads as (−w, q) ∈ D̂∗S(v̄, p̄, x̄)(−z + 2λw).
Since the mapping S is Lipschitz-like around (v̄, x̄) with modulus ` > 0, we deduce from [20, Theorem 1.44]
that `‖z − 2λw‖ ≥ ‖w‖+ ‖q‖. This ensures the fulfillment of the inequalities

`‖z‖ ≥ `‖z − 2λw‖ − 2`λ‖w‖ ≥ ‖w‖+ ‖q‖ − 2`λ‖w‖ ≥ (1− 2`λ)(‖w‖+ ‖q‖),

which in turn allow us to arrive at the estimate

‖z‖ ≥ 1− 2`λ

`
‖w‖ for all (z, q) ∈ D∗∂xh(x̄, p̄, v̄)(w).

Employing this inequality together with Lemma 4.3 gives us a number η > 0 such that

‖z‖ ≥ 1− 3`λ

`
‖w‖ whenever z ∈ D̂∗∂hp(u, v)(w) and (u, p, v) ∈ gph ∂xh ∩ IBη(x̄, p̄, v̄).

This together with (4.12) shows that the function h satisfies (3.26) and (3.27). Applying the Claim in the
proof of Theorem 3.7 to h ensures the existence of neighborhoods U2 of x̄, P2 of p̄, and V2 of v̄ such that

h(x, p) ≥ h(u, p) + 〈v, x− u〉+
1− 3`λ

2`
‖x− u‖2 for all x ∈ U2, (u, p, v) ∈ gph ∂xh ∩ (U2 × P2 × V2).
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Since f(x, p) = h(x, p)− λ‖x− x̄‖2 and ∂xf(x, p) = ∂xh(x, p)− 2λ(x− x̄), this easily implies that

f(x, p) ≥ f(u, p) + 〈v, x− u〉+
1− 5`λ

2`
‖x− u‖2 for all x ∈ U2, (u, v) ∈ gph ∂xf ∩W2,

where W2 := J−1
λ (U2 × P2 × V2) and Jλ(u, p, v) := (u, p, v + 2λ(u − x̄)) for all (u, p, v) ∈ IRn × IRd × IRn.

Applying finally Theorem 4.1 with taking into account the choice of λ < (5`)−1 verifies that x̄ is the
Lipschitzian fully stable local minimizer of P(v̄, p̄), which completes the proof of the theorem. 4

The following consequence of Theorem 4.4 is useful for our applications in Section 6.

Corollary 4.5 (another form of the pointwise characterization of Lipschitzian full stability). In
the setting of Theorem 4.4 we have the equivalent statements:

(i) The point x̄ is a Lipschitzian fully stable local minimizer of problem P(v̄, p̄).
(ii) Condition (4.1) is satisfied together with the inequality

inf
{
〈z, w〉

∣∣ (z, q) ∈ D∗∂xf(x̄, p̄, v̄)(w)
}
> 0 for all w 6= 0, (4.13)

where we use the convention that inf ∅ :=∞.

Proof. It is proved in Theorem 4.4 that (i) implies the existence of some µ > 0 for which we have condition
(4.9) that immediately implies (4.13). Conversely, the validity of (4.13) readily yields (4.10). Together with
(4.1) it gives (i) by Theorem 4.4 and thus completes the proof of this corollary. 4

5 Full Stability, Strong Regularity, and Strong Stability in Con-
strained Optimization

This section concerns the study of the corresponding counterparts of both Hölderian and Lipschitzian full
stability of local solutions to the following large class of problems in constrained optimization:

P̂
{

minimize ϕ(x, p̄) subject to x ∈ IRn,
g(x, p̄) ∈ Θ,

(5.1)

where the cost function ϕ : IRn × IRd → IR and the constrained mapping g : IRn × IRd → Y are C2-
smooth around the reference point (x̄, p̄), where Y is a finite-dimensional Euclidean space4, and where Θ
is a closed and convex subset of Y . Besides standard nonlinear programs (NLP), model (5.1) encompasses
various problems of conic programming [3, 23] when the set Θ is a cone, mathematical programs with
polyhedral constraints (MPPC) designated in [30] when Θ is a polyhedral set, etc. It is worth noting that,
despite describing (5.1) in the classical smooth and convex terms, the progress in the study of full stability
and related issues achieved in this and the subsequent sections are based on the results and methods of
nonsmooth variational analysis developed above.

In accordance with the the scheme of Section 3 the two-parameter perturbation of P̂ in (5.1) reads as

P̂(v, p)

{
minimize ϕ(x, p)− 〈v, x〉 subject to x ∈ IRn,
g(x, p) ∈ Θ

(5.2)

for any (v, p) ∈ IRn × IRd. It can be written in the equivalent unconstraint format

P̂(v, p) minimize f(x, p)− 〈v, x〉 with f(x, p) := ϕ(x, p) + δΘ
(
g(x, p)

)
, (x, p) ∈ IRn × IRd. (5.3)

To proceed with the study of full stability and related properties, recall that the Robinson constraint
qualification (RCQ) holds in P̂ at the point x̄ with g(x̄, p̄) ∈ Θ if

0 ∈ int
{
g(x̄, p̄) +∇xg(x̄, p̄)IRn −Θ

}
. (5.4)

4We may write Y = IRs with some s while prefer using the symbol Y in order to cover, e.g., the case of Y = Sm in Section 6.
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As well known, RCQ (5.4) reduces to the classical Mangasarian-Fromovitz constraint qualification (MFCQ)

for NLP problems. If x is a local minimizer of P̂ and RCQ is satisfied at x, then x is the stationary point
meaning that there is some Lagrange multiplier λ ∈ Y ∗, the dual space of Y , such that

0 ∈ ∇xL(x, p̄, λ) and λ ∈ NΘ(g(x, p̄)), (5.5)

where L(·, ·, ·) is the usual Lagrangian function defined by

L(x, p, λ) := ϕ(x, p) + 〈λ, g(x, p)〉 with (x, p) ∈ IRn × IRd and λ ∈ Y ∗. (5.6)

The system in (5.5) can be written as the form of Robinson’s generalized equation (GE) [35]:

0 ∈
[
∇xL(x, p̄, λ)
−g(x, p̄)

]
+

[
0

N−1
Θ (λ)

]
. (5.7)

Note that x is a stationary point of P̂(v, p) if and only if v ∈ ∂xf(x, p) for (x, p) near (x̄, p̄) due to the validity
of RCQ (5.4). Since RCQ is always satisfied in all the results below concerning the stability around (x̄, p̄),
from now on we suppose without loss of generality that the latter equivalence holds for all x.

Let Φ : IRn × IRk → IR and G : IRn × IRk → Y . The pair (Φ(x, q), G(x, q)) provides a C2-smooth
parameterization of (ϕ(x, p̄), g(x, p̄)) at q̄ ∈ IRk if both mappings Φ andG are twice continuously differentiable
with Φ(x, q̄) = ϕ(x, p̄) and G(x, q̄) = g(x, p̄). Consider the following parametric optimization problem:

P̃(q)

{
minimize Φ(x, q) subject to x ∈ IRn,
G(x, q) ∈ Θ.

(5.8)

Observe that problem P̂(v, p) in (5.2) is a special form of P̃(q) when Φ(x, q) = ϕ(x, p)−〈v, p〉 and G(x, q) =
g(x, p) for q = (v, p) ∈ IRn × IRd and q̄ = (0, p̄). The next definition is taken from [3, Definition 5.16].

Definition 5.1 (uniform quadratic growth condition). Let x̄ be a stationary point of problem P̂. The
uniform quadratic growth condition (UQGC) holds at x̄ with respect to a C2-smooth parameterization
(Φ(x, q), G(x, q)) of (ϕ(x, p̄), g(x, p̄)) at some q̄ ∈ IRk if there exist ` > 0 and neighborhoods U of x̄ and Q of

q̄ such that for any q ∈ Q and any stationary x̄(q) ∈ U of P̃(q) we have

Φ(x, q) ≥ Φ
(
x̄(q), q

)
+ `‖x− x̄(q)‖2 for all x ∈ U, G(x, q) ∈ Θ. (5.9)

We say that UQGC (5.9) holds at x̄ if it holds for every C2-smooth parameterization of (ϕ(x, p̄), g(x, p̄)).

Our uniform second-order growth condition (3.9) for the function f(x, p) defined in (5.3) can be viewed as
the above UQGC at x̄ with respect to the C2-smooth parameterization (ϕ(x, p)− 〈v, p〉, g(x, p)). It is shown
in [3, Theorem 5.24] that under RCQ (5.4) the defined UQGC is equivalent to Kojima’s strong stability [15]
formulated in the first part of the following definition taken from [3, Definition 5.33].

Definition 5.2 (strong stability). We say that a stationary point x̄ of problem P̂ is strongly stable
with respect to a C2-smooth parameterization (Φ(x, q), G(x, q)) of (ϕ(x, p̄), g(x, p̄)) at some q̄ if there is a

neighborhood U ×Q of (x̄, q̄) such that whenever q ∈ Q the parametric problem P̃(q) has a unique stationary
point x̄(q) ∈ U for which the mapping q 7→ x̄(q) is continuous on Q. If this holds for any C2-smooth
parameterization of (ϕ(x, p̄), g(x, p̄)), we say that x̄ is strongly stable. In the conditions above the mapping
q 7→ x̄(q) in Lipschitz continuous on Q, we speak about Lipschitzian strong stability of x̄.

Next we show that the continuity of the function x̄(q) in Definition 5.2 can be strengthened to Hölderian

continuity with degree 1
2 provided that x̄ is a local minimizer of problem P̂ under the validity of RCQ

(5.4) at x̄. This Hölder continuity can be treated as a natural counterpart of Hölderian full stability in
the problem under consideration. In the case of NLP (Θ = {0} × IRl−), our result agrees with that by
Gfrerer [11, Corollary 3.2] due to the fact that Kojima’s strong stability is characterized by Robinson’s
strong second-order sufficient condition (SSOSC) [35]. Note further that the Hölder exponent 1

2 is shown to
the best possible for NLP; see the example in [11] modifying the original one from [36]. The construction
of that example also helped us to distinguish between the exact versions of Lipschitzian and Hölderian full
stability from Section 3 in the NLP setting; see [25, Example 4.4].
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Theorem 5.3 (strong stability and Hölder continuity). Let x̄ be a local minimizer of problem P̂, and
suppose that RCQ (5.4) holds at x̄. Then the point x̄ is strongly stable in the sense of Definition 5.2 if and
only if for every C2-smooth parameterization (Φ(x, q), G(x, q)) of (ϕ(x, p̄), g(x, p̄)) at some q̄ ∈ IRk there exist

a neighborhood U ×Q of (x̄, q̄) and a constant κ > 0 such that for every q ∈ Q the parametric problem P̃(q)
has a unique stationary point x̄(q) ∈ U satisfying the Hölder continuity property

‖x̄(q1)− x̄(q2)‖ ≤ κ‖q1 − q2‖
1
2 whenever q1, q2 ∈ Q. (5.10)

Proof. It is obvious that x̄ is strongly stable if the function x̄(q) in Definition 5.2 satisfies the Hölderian
continuity property (5.10). Conversely, suppose that the stationary point x̄ is strongly stable. Take any
C2-smooth parameterization (Φ(x, q), G(x, q)) of (ϕ(x, p̄), g(x, p̄)) at some q̄ ∈ IRk with (x, q) ∈ IRn × IRk.
Define Ψ(x,w) := Φ(x, q)−〈v, x〉 and G(x,w) := G(x, p) with w = (q, v) ∈ IRk×IRn. Note that (Ψ,G) is also
a C2-smooth parameterization of (ϕ(x, p̄), g(x, p̄)) at w̄ := (q̄, 0). Since x̄ is strongly stable, it follows from [3,
Theorem 5.34] that UQGC (5.9) holds at x̄ with respect to the parameterization (Ψ,G). By Definition 5.1
there exist ` > 0 and neighborhoods U of x̄ and W = Q× V of w̄ = (q̄, 0) such that for any (q, v) ∈ Q× V
and any stationary point u ∈ U of the parametric problem P̃(w) we have

Φ(x, q)− 〈v, x〉 ≥ Φ(u, q)− 〈v, u〉+ `‖x− u‖2 whenever x ∈ X, G(x, q) ∈ Θ. (5.11)

Denoting F (x, q) := Φ(x, q) + δΘ(G(x, q)), observe from [16, Proposition 2.2] that this function is parametri-
cally continuously prox-regular at (x̄, q̄) for v̄ = 0 ∈ ∂xF (x̄, p̄) and that BCQ (3.4) holds for this function at
(x̄, q̄) due to the validity of RCQ. Furthermore (5.11) tells us that the uniform second-order growth condition
in (3.9) is satisfied for the function F around (x̄, p̄, 0) ∈ gph ∂xF . Applying Theorem 3.4 and Corollary 3.6
allows us to find (`1, `2) ∈ IR2

> and a neighborhood U1 ×Q1 × V1 ⊂ U ×Q× V of (x̄, q̄, 0) such that for any
(ui, qi, vi) ∈ gph ∂xF ∩ (U1 × P1 × V1) with i = 1, 2 we have

‖u1 − u2‖ ≤ `1‖v1 − v2‖+ `2‖q1 − q2‖
1
2 .

Put v1 = v2 = 0 and note that u1 = x̄(q1) and u2 = x̄(q2), which gives us the estimate

‖x̄(q1)− x̄(q2)‖ ≤ `2‖q1 − q2‖
1
2 for all q1, q2 ∈ Q1.

This ensures (5.10) and thus completes the proof of the theorem. 4

Observe from the proof of Theorem 5.3 that when x̄ is a local minimizer of problem P̂, Kojima’s strong
stability of x̄ implies Hölderian full stability at the same point. However, the converse implication is not
valid even in the NLP setting. Indeed, it is shown by Mordukhovich and Nghia [25] that, under MFCQ
and the well-known constant rank constraint qualification for NLP problems, Hölderian full stability and its
Lipschitzian counterpart are the same due to the validity of (4.1) (see [25, Proposition 5.2]) and can be
characterized by a condition strictly weaker than SSOSC. Since SSOSC is equivalent to strong stability in
this framework, we conclude that Hölderian full stability can not generally imply strong stability.

Another significant notion of variational analysis is Robinson’s strong regularity for generalized equations
introduced by his landmark paper [35]. We formulate it for the generalized equation (5.7) under consideration.

Definition 5.4 (strong regularity). Let (x̄, λ̄) be a solution to the generalized equation (5.7). We say
that (x̄, λ̄) is strongly regular if there exist neighborhoods U of 0 ∈ IRn × Y and V of (x̄, λ̄) ∈ IRn × Y ∗
such that for every δ ∈ U the system

δ ∈
[

0
−g(x̄, p̄)

]
+

[
∇2
xxL(x̄, p̄, λ̄)(x− x̄) +∇xg(x̄, p̄)∗(λ− λ̄)

−∇xg(x̄, p̄)(x− x̄)

]
+

[
0

N−1
Θ (λ)

]
(5.12)

has a unique solution in V denoted by ζ(δ) and that the mapping ζ : U → V is Lipschitz continuous.

It can be deduced from [3, Theorem 5.24] that the strong stability of (x̄, λ̄) in (5.12) above is equivalent
to UQGC (5.9) under the following two assumptions:

(A1) The set Θ is C2-reducible to a closed convex set K at ȳ := g(x̄, p̄), and the reduction is pointed.
This means that there exist a neighborhood W of ȳ and a C2-smooth mapping h : W → IRk such that ∇h(ȳ)
is surjective, Θ ∩W = {y ∈W | h(y) ∈ K}, and the tangent cone TK(h(ȳ)) is pointed.
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(A2) The point (x̄, p̄) is partially nondegenerate for g with respect to Θ, i.e.,

∇xg(x̄, p̄)IRn + lin
(
TΘ

(
g(x̄, p̄))

)
= Y, (5.13)

where lin
(
TΘ(g(x̄, p̄))

)
is the largest linear subspace of the space Y that is contained in the classical tangent

cone TΘ(g(x̄, p̄)) of convex analysis.

Note that the reducibility condition (A1) is satisfied for a great variety of convex sets Θ arising in
important classes of problems in constrained optimization. This includes polyhedral sets [3, Example 3.139],
the second-order (Lorentz, ice-cream) cone [2, Lemma 15], the cone of positive semidefinite symmetric
matrices [3, Example 3.140], etc. In contrast, the nondegeneracy condition (A2) is rather restrictive. In
particular, for NLP problems it reduces to the classical linear independence constraint qualification (LICQ),
in the case of MPPC problems (when Θ is a convex polyhedral) it agrees with the polyhedral constraint
qualification (PCQ) introduced and studied in [30]; see also [3] for the versions of (A2) for other classes of

problems in conic programming. Observe that for the general class of problems P̂ in (5.1) the nondegeneracy
condition (A2) implies the Robinson constraint qualification (5.4) but clearly not vice versa.

Before deriving the main result of this section we present the following lemma, which is based on the
second-order chain rule obtained recently in [21]. This lemma will allow us to make a bridge between general
characterizations of Lipschitzian full stability in Section 4 and their applications to the class of constrained
problem (5.1) with new links to strong stability and strong regularity.

Lemma 5.5 (limiting coderivative of partial subgradient mappings). Let both conditions (A1) and

(A2) be satisfied at x̄, which is a stationary point of problem P̂ from (5.1) in the sense that 0 ∈ ∂xf(x̄, p̄)
the partial subgradient mapping of the function f in (5.3). Then for all w ∈ IRn the limiting coderivative of
the partial subgradient mapping ∂fx(x̄, p̄) is represented by

D∗∂xf(x̄, p̄, 0)(w) =
(
∇2
xxL(x̄, p̄, λ̄)w,∇2

xpL(x̄, p̄, λ̄)w
)

+∇g(x̄, p̄)∗D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)w

)
(5.14)

with ȳ := g(x̄, p̄), where L is the Lagrangian (5.6), and where λ̄ ∈ Y ∗ is a unique solution of the system

∇xg(x̄, p̄)∗λ = −∇xϕ(x̄, p̄) and λ ∈ NΘ(ȳ). (5.15)

Consequently, the coderivative condition (4.1) is satisfied for this function f with v̄ = 0.

Proof. Applying the simple subdifferential sum rule to the function f in (5.3), we get from the stationary
condition 0 ∈ ∂xf(x̄, p̄) that 0 ∈ ∇xϕ(x, p) + ∂xδΘ(g(x, p)). Furthermore, the coderivative sum rule from
[20, Theorem 1.62] and the second-order subdifferential definition (2.8) give us

D∗∂xf(x̄, p̄, 0)(w) =
(
∇2
xxϕ(x̄, p̄)w,∇2

xpϕ(x̄, p̄)w
)

+D∗∂x(δΘ ◦ g)
(
x̄, p̄,−∇xϕ(x̄, p̄)

)
(w) (5.16)

for all w ∈ IRn. The assumed conditions (A1) and (A2) allow us to apply the second-order chain rule from
[21, Theorem 3.6] to the composite function δΘ ◦ g and get in this way the equality

D∗∂x(δΘ ◦ g)
(
x̄, p̄,−∇xϕ(x̄, p̄)

)
(w) =

(
∇2
xx〈λ̄, g〉(x̄, p̄)w,∇2

xp〈λ̄, g〉(x̄, p̄)w
)

+∇g(x̄, p̄)∗D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)w

)
for all w ∈ IRn, where λ̄ solves the KKT system (5.15). This together with (5.16) justifies (5.14).

It remains to verify the validity of (4.1) for the function f with v̄ = 0. To proceed, pick any vector q
with (0, q) ∈ D∗∂xf(x̄, p̄, 0)(0) and get from (5.14) a unique vector λ̄ ∈ Y ∗ satisfying (5.15) such that

(0, q) ∈ ∇g(x̄, p̄)∗D∗NΘ(ȳ, λ̄)(0).

This allows us to find z ∈ D∗NΘ(ȳ, λ̄)(0) satisfying 0 = ∇xg(x̄, p̄)∗z and q = ∇pg(x̄, p̄)∗z. By the inclusion
gphNΘ ⊃ Θ × {0}, we get that z ∈ NΘ(ȳ) from z ∈ D∗NΘ(ȳ, λ̄)(0). Since Θ is a closed convex set, it
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follows that 〈z, y〉 ≤ 0 for all y ∈ lin
(
TΘ(ȳ)

)
⊂ TΘ(ȳ). Due to (5.13) there exist x ∈ IRn and y ∈ lin

(
TΘ(ȳ)

)
satisfying ∇xg(x̄, p̄)x+ y = z. It leads us to

‖z‖2 = 〈z,∇xg(x̄, p̄)x+ y〉 = 〈∇xg(x̄, p̄)∗z, x〉+ 〈z, y〉 ≤ 0 + 0 = 0,

which yields z = 0 and thus q = 0. This justifies (4.1) and completes the proof of the lemma. 4

Now we are ready to characterize Lipschitzian full stability of local minimizers in P̂, which we understand
in the sense of Definition 3.2(i) for problem P̂(0, p̄) in (5.3) with the extended-real-valued objective. The next
major theorem not only provides a constructive second-order characterization of Lipschitzian full stability
in P̂ under assumptions (A1) and (A2) but also establishes its equivalence in this setting to the above
notions of strong regularity and Lipschitzian strong stability and thus characterizes these notions as well.
Note that the equivalence between assertions (iii) and (iv) of this theorem has been recently derived in [27,
Theorem 6.10] for the case of tilt stability in conic programming when the parameter p is absent.

Theorem 5.6 (equivalence between strong regularity and Lipschitzian full and strong stability
for nondegenerate local minimizers and their second-order characterization). Let x̄ be a stationary

point of problem P̂ in (5.1) under the validity of RCQ (5.4), let λ̄ ∈ Y ∗ be the corresponding Lagrange
multiplier from (5.5), and let ȳ := g(x̄, p̄). Assume that the reducibility condition (A1) holds at x̄. Then the
following assertions are equivalent:

(i) The pair (x̄, λ̄) is a strongly regular solution to GE (5.7), and x̄ is a local minimizer of problem P̂.
(ii) The nondegeneracy condition (A2) holds, and the point x̄ is a Lipschitzian strongly stable local

minimizer of problem P̂.
(iii) The nondegeneracy condition (A2) holds, and the point x̄ is a Lipschitzian fully stable local mini-

mizer of problem P̂.
(iv) The nondegeneracy condition (A2) holds together with the second-order subdifferential condition

〈∇2
xxL(x̄, p̄, λ̄)w,w〉+ inf

{
〈z,∇xg(x̄, p̄)w〉

∣∣ z ∈ D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)w

)}
> 0, w 6= 0. (5.17)

Proof. Since x̄ is a stationary point of P̂ at which RCQ (5.4) holds, we deduce from [16, Proposition 2.2]
that the function f in (5.3) is parametrically continuously prox-regular at (x̄, p̄) for 0 ∈ ∂xf(x̄, p̄) and that
BCQ (3.4) holds at (x̄, p̄). Observe that implication (ii)=⇒(i) follows from [3, Theorem 5.35].

To verify next implication (i)=⇒(iii), suppose that the point (x̄, λ̄) is strongly regular for the generalized
equation (5.7) and get from [3, Theorem 5.24] that (A2) and UQGC (5.9) are satisfied at x̄. Defining
Φ(x, q) := ϕ(x, p) − 〈v, p〉 and G(x, q) := g(x, p) with q = (v, p), note that (Φ(x, q), G(x, q)) is a C2-smooth
parameterization of (ϕ(x, p̄), g(x, p̄)) at q̄ := (0, p̄). Then this UQGC allows us to find ` > 0 as well as
neighborhoods V × P of q̄ = (0, p̄) and U of x̄ such that for any q = (v, p) ∈ V × P there is a unique

stationary point x̄(q) ∈ U of problem P̃(q) satisfying

Φ(x, q) ≥ Φ(x̄(q), q) + `‖x− x̄(q)‖2 for all x ∈ U, G(x, q) ∈ Θ. (5.18)

Picking any (u, p, v) ∈ gph ∂xf ∩ (U × P × V ), we have u = x̄(q). It gives us by (5.18) that

ϕ(x, p)− 〈v, x〉 ≥ ϕ(u, p)− 〈v, u〉+ `‖x− u‖2 for all x ∈ U, g(x, p) ∈ Θ.

This clearly implies the inequality

f(x, p) ≥ f(u, p) + 〈v, x− u〉+ `‖x− u‖2 for all x ∈ U,

which ensures in turn the uniform second-order growth condition (3.9). Taking into account that the coderiva-
tive condition (4.1) holds by Lemma 5.5 and then employing Theorem 4.1, we arrive at (iii).

Let us now verify implication (iii)=⇒(iv). Assuming (iii), we deduce inequality (4.13) from Corollary 4.5.
This together with the second-order representation (5.14) from Lemma 5.5 gives us that

0 < inf
{
〈z, w〉| z ∈ ∇2

xxL(x̄, p̄, λ̄)w +∇xg(x̄, p̄)∗D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)w

)}
= 〈∇2

xxL(x̄, p̄, λ̄)w,w〉+ inf
{
〈∇xg(x̄, p̄)∗z, w〉

∣∣ z ∈ D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)w

)}
= 〈∇2

xxL(x̄, p̄, λ̄)w,w〉+ inf
{
〈z,∇xg(x̄, p̄)w〉

∣∣ z ∈ D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)w

)}
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for any w 6= 0, which shows that condition (5.17) in (iv) holds.
To complete the proof of the theorem, it remains to verify implication (iv)=⇒(ii). To this end we suppose

that condition (5.17) holds and take any C2-smooth parameterization (Φ(x, q), G(x, q)) of (ϕ(x, p̄), g(x, p̄)) at
some q̄ ∈ IRk. Observe that ∇xΦ(x̄, q̄) = ∇xϕ(x̄, p̄), ∇2

xxΦ(x̄, q̄) = ∇2
xxϕ(x̄, p̄), ∇xG(x̄, q̄) = ∇xg(x̄, p̄), and

∇2
xxG(x̄, q̄) = ∇2

xxg(x̄, p̄). By replacing ϕ by Φ and g by G, we get both conditions (A1) and (A2) for the
pair (Φ, G) at (x̄, q̄). Letting F (x, q) := Φ(x, q) + δΘ(G(x, q)) and combining (5.17) with the second-order
representation (5.14) from Lemma 5.5 give us that (4.1) is fulfilled for F at (x̄, q̄, 0) and that

inf
{
〈z, w〉

∣∣ (z, q) ∈ D∗∂xF (x̄, q̄, 0)(w)
}
> 0 for all w 6= 0.

Unifying this with Corollary 4.5 and Corollary 4.2 allows us to find a neighborhood (U ×Q× V ) of (x̄, q̄, 0)
and a constant κ > 0 such that the mapping S in (3.3), while replacing f by F therein, admits a localization
ϑ with respect to Q× V × U that satisfies the Lipschitz continuity condition

‖ϑ(v1, q1)− ϑ(v2, q2)‖ ≤ κ
(
‖v1 − v2‖+ ‖q1 − q2‖

)
for all v1, v2 ∈ V and q1, q2 ∈ Q. (5.19)

Define x̄(q) := ϑ(0, q) for all q ∈ Q and observe that x̄(q) is a unique stationary point of problem P̃(q) in
(5.8). Furthermore, for any q1, q2 ∈ Q we get from (5.19) that

‖x̄(q1)− x̄(q2)‖ ≤ κ‖q1 − q2‖,

which ensures the Lipschitz continuity of the function x̄(q) and thus verifies Lipschitzian strong stability in
Definition 5.2. This completes the proof of the theorem. 4

Observe that another characterization of strong regularity from Definition 5.4 for the class of problems
modeled as P̂ in (5.1) via a second-order condition different from (5.17) has been obtained by Bonnans and
Shapiro [3, Theorem 5.64] under a certain “strong extended polyhedricity condition,” which is not assumed
here. Our results in Theorem 5.6 establish the equivalence between all the properties considered there for the
general class of problems P̂ with new second-order characterization (5.17) involving the construction D∗NΘ

for the underlying convex set Θ. Calculating this second-order object for particular cases of Θ, we arrive at
characterizations of the listed properties entirely in terms of the initial data of the mathematical programs.
Let us discuss several remarkable classes in mathematical programming, important from both viewpoints of
optimization theory and applications, in comparison with known results in this direction. Note that for all
the classes discussed below we have the validity of the reducibility condition (A1)

• Nonlinear programming with C2-smooth data (NLP). By using the Mordukhovich criterion (2.7) and the
calculation of the second-order construction D∗NΘ for the orthant Θ = {0}×IRl−, Dontchev and Rockafellar
[8] proved the equivalence of strong regularity to the simultaneous fulfillment of the LICQ and SSOSC
conditions; see also the discussions and references therein on related results in this vein. It has been recently
shown in [30] that condition (5.17) reduces for NLPs to the classical SSOSC being equivalent under the
validity of LICQ to Lipschitzian full stability of local minimizers for nonlinear programs.

• Mathematical programs with polyhedral constraints (MPPC). Based on the second-order calculus rules
from [29] and the coderivative calculations from [8], Mordukhovich, Rockafellar and Sarabi [30] established for
this class of optimization problems (5.1) with a polyhedral set Θ a complete characterization of Lipschitzian
full stability via the polyhedral second-order optimality condition (PSSOC) as well as its equivalence to strong
regularity under the polyhedral constraint qualification, which is an analog of (A2) in the MPPC setting.
The aforementioned PSSOC is a MPCC counterpart of the classical SSOSC obtained in the scheme of (5.17).

• Extended nonlinear programming (ENLP). The same paper [30] presents a second-order characterization
of Lipschitzian full stability for the class of ENLP problems introduced by Rockafellar [37] via a certain
duality representation. The characterization is given in terms of the extended strong second-order optimality
condition, which is an ENLP counterpart of SSOSC obtained in the scheme of (5.17).

• Second-order cone programming (SOCP). This subclass of conic programs corresponds to (5.1), where
Θ is a product of the second-order/Lorentz/ice-cream cones; see [1] for more details and applications. De-
veloping the approach of [30] and invoking the coderivative calculations for the metric projection onto
the second-order cone from Outrata and Sun [32], constructive characterizations of Lipschitzian full stabil-
ity on nondegenerate solutions to SOCPs were established in [28] via an SOCP counterpart of the strong
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second-order sufficient optimality condition employed by Bonnans and Ramı́rez [2] in characterizing strong
regularity.

• Semidefinite programming (SDP). This major class of conic programs, corresponding to (5.1) with
Θ = Sm+ , has been highly recognized in optimization theory and applications; see, e.g., [39, 40] and the
references therein. In [39] Sun obtained a characterization of strong regularity of the GE (5.7) associated
with SDPs via a counterpart of SSOSC in this setting under the nondegeneracy condition (A2). In Section 6
we show that this SDP version of SSOSC is indeed the same as our condition (5.17) and thus derive from
Theorem 5.6 a constructive second-order characterization of full (as well as strong) Lipschitzian stability of
locally optimal solutions to semidefinite programs entirely via the their initial data.

• Other classes of mathematical programs. Besides the classes of mathematical programs listed above,
the second-order construction D∗NΘ in (5.17) has been constructively calculated for the underlying sets Ω
in (5.1), which are not in the discussed forms; see, e.g., [4, 10, 13, 14, 25, 29, 31] and the references therein.
These results can be incorporated in the framework of (5.17) and thus allow us to provide via Theorem 5.6
complete characterizations of the equivalent stability properties (i)–(iii) entirely in terms of initial data of
the corresponding mathematical programs under the nondegeneracy condition (A1).

We conclude this section with a convenient second-order condition ensuring the validity of the equivalent
stability properties in Theorem 5.6 and therefore their implementations for the particular classes of math-
ematical programs discussed above. Note that a related result in this vein for Robinson’s strong regularity
can be extracted from [3, Theorem 5.27 and Corollary 5.29] but under an additional assumption that Y ∗

has a “lattice structure” that is not the case here; cf. [3, Example 3.57].

Corollary 5.7 (sufficient second-order condition for the equivalent stability properties in math-

ematical programming). Let x̄ be a stationary point of problem P̂ in (5.1), and let the conditions (A1)
and (A2) be satisfied. Assume in addition the second-order condition

〈∇2
xxL(x̄, p̄, λ̄)w,w〉 > 0 whenever ∇xg(x̄, p̄)w ∈ domD∗NΘ(g(x̄, p̄), λ̄), w 6= 0, (5.20)

where λ̄ ∈ Y ∗ solves the KKT system in (5.15). Then all the properties (i)–(iii) of Theorem 5.6 hold.

Proof. When z ∈ D∗NΘ(g(x̄, p̄), λ̄)(∇xg(x̄, p̄)w), we have 〈z,∇xg(x̄, p̄)w〉 ≥ 0 by the maximal monotonicity
of NΘ and [34, Theorem 2.1]. This together with (5.20) verifies (5.17) and implies therefore that x̄ is a

Lipschitzian fully stable local minimizer of problem P̂ due to Theorem 5.6. The other stability/regularity
properties of that theorem follows from the established equivalence relationships. 4

6 Applications to Semidefinite Programming

In this section we develop constructive and nontrivial implementations of the results of Theorem 5.6 for
problems of semidefinite programming formulated as follows:

P̆
{

minimize ϕ(x, p̄) subject to x ∈ IRn,
g(x, p̄) ∈ Θ := Sm+ ,

(6.1)

where ϕ : IRn × IRd → IR and g : IRn × IRd → Y := Sm are C2-smooth mappings, where Sm is the space of
m×m symmetric matrices, and where Sm+ is the cone of all the m×m positive semidefinite matrices in Sm.
Note that the cone Sm+ satisfies the reducibility assumption (A1) in Section 5; see, e.g., [3, Example 3.140].
The Robinson constraint qualification (5.4) is written for (6.1) as

0 ∈ int
{
g(x̄, p̄) +∇xg(x̄, p̄)IRn − Sm+

}
(6.2)

and the partial nondegeneracy condition (5.13) reduces to

∇xg(x̄, p̄)IRn + lin
(
TSm+ (g(x̄, p̄))

)
= Sm. (6.3)
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The main goal of this section is to derive a complete characterization of Lipschitzian full stability of local
minimizers for (6.1) entirely in terms of the initial data (ϕ, g, Sm+ ) of this problem.

Let A,B ∈ Sm and λ1(A), . . . , λm(A) be m eigenvalues of the matrix A with λ1(A) ≥ λ2(A) ≥ . . . ≥
λm(A). Denote λ(A) := (λ1(A), . . . , λm(A)) ∈ IRm and by Λ(A) := diag (λ(A)) the diagonal matrix whose
i-th diagonal entry is λi(A). Recall the eigenvalue decomposition of A is given by

A = P

Λα 0 0
0 Λβ 0
0 0 Λγ

P ∗ with P = [Pα Pβ Pγ ], (6.4)

where α := {i| λi(A) > 0}, β := {i| λi(A) = 0}, γ := {i| λi(A) < 0}, and where P is some m×m orthogonal
matrix. Furthermore, we use the Frobenius inner product between A and B defined by

〈A,B〉 := Tr (AB),

where “Tr” denotes the trace of a matrix; thus the norm of A ∈ Sm is ‖A‖ =
√

Tr (AA). With these
constructions it is well known that the dual space of Sm reduces to Sm.

The next condition is taken from Sun [39, Definition 3.2]. Since we use this condition simultaneously with
the nondegeneracy assumption (A2) in Section 5, which guarantees the uniqueness of Lagrange multipliers,
it makes sense to formulate it under (A2) as follows.

Definition 6.1 (strong second-order sufficient condition for SDPs.) Let x̄ be a stationary point of
problem P̆, and let the partial nondegeneracy condition (6.3) be satisfied. We say that the SDP-strong
second-order sufficient condition (SDP-SSOSC) holds at x̄ if

〈∇2
xxL(x̄, p̄, λ̄)w,w〉 − 2〈λ̄, d(w)g(x̄, p̄)†d(w)〉 > 0 for all w ∈ app (λ̄) \ {0}, (6.5)

where λ̄ is the corresponding unique Lagrange multiplier, d(w) := ∇xg(x̄, p̄)w, g(x̄, p̄)† is the Moore-
Penrose pseudoinverse of g(x̄, p̄), and where app (λ̄) is defined by

app (λ̄) :=
{
w ∈ IRn

∣∣ P ∗βd(w)Pγ = 0, P ∗γ d(w)Pγ = 0
}

(6.6)

with the matrix P taken from (6.4) for A = g(x̄, p̄) + λ̄.

As discussed in [39, p. 768], the choice of an orthogonal matrix P satisfying the decomposition (6.4) with
A = g(x̄, p̄) + λ̄ does not affect the set app (λ̄) in (6.6).

The following calculation of the second-order construction D∗NSm+ is a reformulation of the recent result

from Ding, Sun and Ye [5, Theorem 3.1].

Lemma 6.2 (second-order subdifferential calculation for SDPs). For any (X,Y ) ∈ gphNSm+ con-

sider the the eigenvalue decomposition (6.4) of the matrix A = X +Y . Then we have Z ∈ D∗NSp+(X,Y )(D)

if and only if Z = PZ̃P ∗ and D = PD̃P ∗ with

(i) Z̃ =

 0 0 Z̃αγ
0 Z̃ββ Z̃βγ
Z̃γα Z̃γβ Z̃γγ

 and D̃ =

D̃αα D̃αβ D̃αγ

D̃βα D̃ββ 0

D̃γα 0 0

 , (6.7)

(ii) Z̃ββ ∈ D∗NS|β|
+

(0, 0)(D̃ββ) and Σαγ ◦ Z̃αγ − (Eαγ − Σαγ) ◦ D̃αγ = 0, (6.8)

where α, β, γ are taken from (6.4), |β| is the cardinality of the set β, E is a m×m matrix whose all the unit
entries, “◦” is the Hadamard product, and where the matrix Σ is defined by

Σij :=
max{λi(A), 0} −max{λj(A), 0}

λi(A)− λj(A)
, i, j = 1, . . . ,m, (6.9)

with the convention that 0/0 := 1.
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Proof. Note that Z ∈ D∗NSp+(X,Y )(D) if and only if (Z,−D) ∈ NgphNSp
+

(X,Y ). Employing [5, Theo-

rem 3.1] verifies claimed representations in the lemma. 4

The next result is new and plays a crucial role in deriving the main theorem of this section presented
below. This lemma provides a precise calculation of the second-order subdifferential condition (5.17) from
Theorem 5.6 for the SDP model and shows that it reduces to the SDP-SSOSC condition from Definition 6.1.

Lemma 6.3 (second-order subdifferential condition for SDPs). Let x̄ be a stationary point of prob-
lem (6.1), and let λ̄ is a unique Lagrange multiplier of the corresponding KKT system (5.5) under the validity
of the partial nondegeneracy condition (6.3). Then we have domD∗NSm+ (g(x̄, p̄), λ̄)(d(·)) = app (λ̄) and

inf
{
〈Z, d(w)〉

∣∣ Z ∈ D∗NSm+ (g(x̄, p̄), λ̄)(d(w))
}

= −2〈λ̄, d(w)g(x̄, p̄)†d(w)〉 if w ∈ app (λ̄) (6.10)

with d(w) := ∇xg(x̄, p̄)w. Consequently, the second-order subdifferential condition (5.17) from Theorem 5.6
agrees with the SDP-SSOSC condition from Definition 6.1.

Proof. We split the proof of this lemma into following two main steps.

Step 1. We have that domD∗NSm+ (g(x̄, p̄), λ̄)(d(·)) ⊂ app (λ̄) and that the inequality “≥” holds in (6.10).

To show it, pick any w ∈ domD∗NSm+ (g(x̄, p̄), λ̄)(d(·)) and find Z ∈ D∗NSm+ (g(x̄, p̄), λ̄)(d(w)). Let

A := g(x̄, p̄) + λ̄, and let P be an orthogonal matrix satisfying (6.4). With D := d(w) it follows from

Lemma 6.2 that Z = PZ̃P ∗ and D = PD̃P ∗, where Z̃, D̃ are taken from (6.7). We get D̃ = P ∗DP and so

P ∗βDPγ = 0 and P ∗γDPγ = 0,

which verifies that w ∈ app (λ̄) due to its expression in (6.6). It gives us the inclusion domD∗NSm+ (g(x̄, p̄), λ̄)(d(·)) ⊂
app (λ̄). Furthermore, observe from (6.7) that

〈Z,D〉 = Tr (PZ̃∗P ∗PD̃P ∗) = Tr (Z̃∗D̃P ∗P ) = Tr (Z̃∗D̃)

= Tr (Z̃∗γαD̃γα) + Tr (Z̃∗ββD̃ββ) + Tr (Z̃∗αγD̃αγ)

= Tr (Z̃∗ββD̃ββ) + 2Tr (Z̃∗αγD̃αγ).

(6.11)

It follows from (6.9) that for any i ∈ α and j ∈ γ we have Σij = λi(A)
λi(A)−λj(A) , and thus (6.8) implies that

λi(A)

λi(A)− λj(A)
Z̃ij +

λj(A)

λi(A)− λj(A)
D̃ij = 0,

which ensures therefore the equalities

Tr (Z̃∗αγD̃αγ) =
∑

i∈α,j∈γ
Z̃ijD̃ij =

∑
i∈α,j∈γ

−λj(A)

λi(A)
D̃2
ij . (6.12)

By the spectral decomposition (6.4) and the fact that λ̄ ∈ NSm+ (g(x̄, p̄)), which actually means that −λ̄ ∈ Sm+
and 〈λ̄, g(x̄, p̄)〉 = 0, we get the representations

g(x̄, p̄) = P

Λα 0 0
0 0 0
0 0 0

P ∗ and λ̄ = P

0 0 0
0 0 0
0 0 Λγ

P ∗. (6.13)

Hence the Moore-Penrose matrix g(x̄, p̄)† is formulated in this case as

g(x̄, p̄)† = P

Λ−1
α 0 0
0 0 0
0 0 0

P ∗.
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This together with (6.13) gives us that

〈λ, d(w)g(x̄, p̄)†d(w)〉 = Tr

P
0 0 0

0 0 0
0 0 Λγ

P ∗DP

Λ−1
α 0 0
0 0 0
0 0 0

P ∗D


= Tr

D̃
0 0 0

0 0 0
0 0 Λγ

 D̃

Λ−1
α 0 0
0 0 0
0 0 0


= Tr


0 0 D̃αγΛγ

0 0 D̃βγΛγ
0 0 D̃γγΛγ


D̃ααΛ−1

α 0 0

D̃βαΛ−1
α 0 0

D̃γαΛ−1
α 0 0




= Tr
[
D̃αγΛγD̃γαΛ−1

α

]
=

∑
i∈α,j∈γ

λj(A)

λi(A)
D̃2
ij .

We obtain from this representation as well as (6.11) and (6.12) that

〈Z,D〉 = 〈Z̃ββ , D̃ββ〉 − 2〈λ, d(w)g(x̄, p̄)†d(w)〉. (6.14)

Taking into account that the mapping N
S

|β|
+

is maximally monotone, it follows from (6.8) and [34, The-

orem 2.1] that 〈Z̃ββ , D̃ββ〉 ≥ 0. This together with (6.14) verifies the inequality “≥” in (6.10) for any
w ∈ domD∗NSm+ (g(x̄, p̄), λ̄)(d(·)) and thus completes the proof of Step 1.

Step 2. We have that app (λ̄) ⊂ domD∗NSm+ (g(x̄, p̄), λ̄)(d(·)) and that the inequality “≤” holds in (6.10).

To verify this, pick w ∈ app (λ̄) and define D := d(w). It follows from (6.6) that D̃ := P ∗DP is of form

(6.7). Observe from [5, Proposition 3.3], by choosing Ξ1 = E therein, that 0 ∈ D∗N
S

|β|
+

(0, 0)(D̃ββ). By (6.8)

find a matrix Z̃ of form (6.7) satisfying (6.8) and Z̃ββ = 0. With Z := PZ̃P ∗ it follows from Lemma 6.2
that Z ∈ D∗NSm+ (g(x̄, p̄), λ̄)(D). Thus we have w ∈ domD∗NSm+ (g(x̄, p̄), λ)(d(·)) and deduce from (6.14)

that 〈Z,D〉 = −2〈λ, d(w)g(x̄, p̄)†d(w)〉. This also verifies the inequality “≤” in (6.10) and thus completes
the verification of the assertions claimed in Step 2.

Combining finally Step 1 and Step 2 allows us to obtain domD∗NSm+ (g(x̄, p̄), λ̄)(d(·)) = app (λ̄) and

justify equality (6.5). Hence the second-order subdifferential condition (5.17) agrees with the SDP-SSOSC
condition from Definition 6.1, which therefore completes the proof of the lemma. 4

This lemma together with our major results in Theorem 5.6 allows us not only to recover the equivalence
between Robinson’s strong regularity and the SDP-SSOSC condition from [39, Theorem 4.1] but also char-
acterize Lipschitzian full stability and strong stability in the SDP framework. Note that ignoring the basic
parametric perturbation p provides a complete characterization of tilt stability for SDPs entirely via their
initial data, which is also new in the literature.

Theorem 6.4 (second-order characterization of Lipschitzian full stability and equivalent prop-
erties for SDPs). Let x̄ be a stationary point of problem P̆ in (6.1), and let λ̄ be the corresponding Lagrange
multiplier from (5.5) under the validity of RCQ (6.2). The following assertions are equivalent:

(i) The point (x̄, λ̄) is strongly regular for (5.12), and x̄ is a local minimizer of problem P̆.
(ii) The partial nondegeneracy condition (6.3) holds, and the point x̄ is Lipschitzian strongly stable local

minimizer of problem P̆.
(iii) The partial nondegeneracy condition (6.3) holds, and the point x̄ is a Lipschitzian fully stable local

minimizer of problem P̆.
(iv) Both conditions (6.3) and SDP-SSOSC from Definition 6.1 hold.

Proof. It follows directly by combining Theorem 5.6 and Lemma 6.3. 4
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7 Concluding Remarks

This paper demonstrates that full stability of locally optimal solutions, in both Lipschitzian and Hölderian
frameworks, is a meaningful concept of optimization, which admits verifiable characterizations via second-
order constructions of variational analysis in general settings of finite-dimensional optimization with extended-
real-valued objectives. Furthermore, for a broad class of constrained optimization problems with C2-smooth
data, including those of conic programming, Lipschitzian full stability is proved to be equivalent to the well-
recognized properties of strong regularity of the associated generalized equations and Lipschitzian strong
stability of local minimizers provided the validity of the reducibility condition (A1) and the nondegeneracy
condition (A2) formulated in Section 5. As a specific application of our general results, we derive a complete
second-order characterization of the aforementioned equivalent stability properties entirely in terms of the
initial data for the major class of semidefinite programming problems.

Observe that, while (A1) is unconditionally fulfilled for a variety of problems arising in optimization
theory and applications, the nondegeneracy assumption (A2) is rather restrictive corresponding to the
classical LICQ in nonlinear programming. Theorem 5.6 tells us that the nondegeneracy condition is necessary
for the validity for strong regularity in the general framework (5.1) of constrained optimization. This clearly
indicates that full stability is a broader concept that strong regularity even in the most classical settings.

To relax nondegeneracy in the study of (Lipschitzian) full stability for the class of (5.1) and/or its speci-
fications is among the main goals of our future research. Note to this end that quite recently Mordukhovich
and Nghia [25] have obtained a characterization of full stability for nonlinear programs with C2-smooth data
via a new uniform second-order sufficient optimality condition (defined in a neighborhood of the reference
local minimizer) under the validity of both Mangasarian-Fromovitz and constant rank constraint qualifica-
tions; see also [22, 24, 26] for previous developments in this direction dealing with tilt stability of NLPs.
Important and challenging issues are to establish counterparts of these results for more general classes of
mathematical programs and also to derive pointwise second-order conditions for full or tilt stability without
nondegeneracy for the constrained optimization problems under consideration.

References

[1] F. Alizadeh and D. Goldfarb, Second-order cone programming, Math. Program. 95 (2003), 3–51.

[2] J. F. Bonnans and H. Ramı́rez C., Perturbation analysis of second-order cone programmming problems,
Math. Program. 104 (2005), 205–227.

[3] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York,
2000.

[4] G. Colombo, R. Henrion, N. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process,
Dynam. Cont. Disc. Impul. Syst. Ser. B 19 (2012), 117–159.

[5] C. Ding, D. Sun and J. J. Ye, First order optimality conditions for mathematical programs with semidef-
inite cone complementarity constraints, Math. Program., DOI 10.1007/s10107-013-0735-z.

[6] D. Drusvyatskiy and A. S. Lewis, Tilt stability, uniform quadratic growth, and strong metric regularity
of the subdifferential, SIAM J. Optim. 23 (2013), 256–267.

[7] D. Drusvyatskiy, B. S. Mordukhovich and T. T. A. Nghia, Second-order growth, tilt stability, and metric
regularity of the subdifferential, J. Convex Anal. 21 (2014), No. 4.

[8] A. L. Dontchev and R. T. Rockafellar, Characterizations of strong regularity for variational inequalities
over polyhedral convex sets, SIAM J. Optim. 6 (1996), 1087–1105.

[9] A. C. Eberhard and R. Wenczel, A study of tilt-stable optimality and sufficient conditions, Nonlinear
Anal. 75 (2012), 1260–1281.

[10] K. Emich, R. Henrion and W. Römisch, Conditioning of linear-quadratic two-stage stochastic optimiza-
tion problems, Math. Program., DOI 10.1007/s10107-013-0734-0

27
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