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Abstract

Convexity has long had an important role in economic theory, but some recent developments
have featured it all the more in problems of equilibrium. Here the tools of convex analysis are
applied to a basic model of incomplete financial markets in which assets are traded and money can
be lent or borrowed between the present and future. The existence of an equilibrium is established
with techniques that include bounds derived from the duals to problems of utility maximization.
Composite variational inequalities furnish the modeling platform. Models with and without short-
selling are handled, moreover in the absence of any requirement that agents must initially have a
positive amount of every asset, as is typical in equilibrium work in economics.
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1 Introduction

Microeconomics centers largely on models of production and consumption by “agents” who optimize
in accordance with their preferences. It further puts such optimization into models of equilibrium in
which groups of agents compete for resources in markets governed by prices. A key question then is
whether prices exist that can bring the supply and demand for resources into balance.

Convex analysis, with its close ties to optimization, is a natural tool in this subject and has been
employed since the early days of rigorous modern theory [2], [3]. In the landmark 1954 contribution of
Arrow and Debreu [2], for example, consumers maximize quasi-concave utility functions over convex
sets of goods vectors in a nonnegative orthant, subject to budget constraints dictated by their initial
holdings of goods, while producers maximize the value of output minus the cost of input over convex
technology sets of input-output pairs of goods vectors. Markets provide opportunities for the buying
and selling of goods and establishing their value as part of the optimization. Conditions are furnished
which ensure that an equilibrium can be reached in this setting. The equilibrium is not itself a direct
result of optimization, though. Its existence requires a fixed-point argument.

Arrow-Debreu equilibrium takes hold in a single period of time, without past or future, and with
full information. A much bigger challenge lies in properly formulating, and establishing, an equilibrium
when decisions made in the present play out only in the future and require planning for uncertainties
in that future. There may be no agreement on the probabilities of various future states, but an agent’s
preferences can nonetheless subjectively incorporate beliefs and appraisals of the risks in them.

In this article we develop an equilibrium model in which the agents are “financial entities” con-
cerned only with the amounts of money they will be able to secure for use in the present and future.
Utility functions support comparisons that can be the basis of optimization. In optimizing, agents
compete in putting together portfolios comprised of assets that are available in fixed supply in finan-
cial markets. They furthermore can borrow or lend money, or for that matter, just set it aside in the
present for use in the future. However, even with borrowing and lending, the portfolios that can be
created may fall short of covering all possible patterns of payment in the future states, and in that
sense the market would be incomplete. The goal is to demonstrate the existence of asset prices and a
rate of return for lending (and borrowing as its reverse) under which the optimization problems solved
independently by the agents achieve an overall equilibrium.

Arrow [1] in 1953 studied “optimality” in financial markets revolving around assets that pay money
money amounts in various future states, as here, and with agents partaking of a fixed supply of money
in the present. However, in the mainstream financial market literature steming from Radner [14]
in 1972, the agents are consumers of goods who plan for the future by writing contacts with each
other about the future delivery of such goods, with payment in so-called units of account. Trading in
existing stocks and bonds is not covered, and even money as such, is absent (not being admitted as a
“good”). There is no way then to compare the value of goods in the present with the value of goods
in the future.

Furthermore, instead of convex analysis, the methodology of differential topology was employed in
that economics work, as inspired by the tactics of Debreu [4]. Such methodology leads largely to generic
results and could not cope with the ability of an agent to hold nonnegative amounts of various assets in
a portfolio, rather than strictly positive amounts. Specifically, the boundaries of nonnegative orthants,
familiar and welcome to analysis in optimization, are troublesome for the kind of mathematics that
relies always on smooothness. For expositions of this line of research, see Geanakoplos [7], Hens [8],
and Magill and Shafer [13]. Here, our approach to financial equilibrium draws instead on ideas from
a broader effort we have recently made in [11] in order to address these shortcomings, but it focuses
on investment and exhibits novel features.
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On a different track, earlier but likewise with reliance on convex analysis, financial equilibrium in
markets for trading assets was studied in 2007 by Rockafellar, Uryasev and Zabarankin [16]. Non-
negativity of holdings was handled, but probabilities of future states were assumed known, and the
preferences of investors were derived from the means and deviations (possibly nonstandard) of random
pay-offs.

Before our involvement with financial markets, we emphasized convex analysis also in our work
on single-stage models of equilibrium in consumption and production [9], [10]. Those models, as here
and in [11], made strong use of something further which is very close to convex analysis, yet unknown
in most of economics, namely variational inequalities.

Along with contributing new results and insights in the modeling of financial markets, one of our
major aims here, on the side, is explaining to mathematicians this wide, and potentially much larger,
role of convex analysis and its variational analysis extensions in applications to economics.

2 The Equilibrium Model

The future is represented by a finite set of states s = 1, . . . , S. The present is represented by the state
s = 0. Agent i for i = 1, . . . , I has utility ui(mi0,mi1, . . . ,miS) with respect to having money amounts
mis available in the states s = 0, 1, . . . , S. What will be done with that money is not our concern.
Perhaps it will be spent on consumption in goods markets that are not part of this model. The agent
might, for example, be arranging for retirement in an uncertain future while maintaining adequate
funds for the present. Another interpretation could be that the agent is a financial firm making plans
for pay-outs to its owners.

Agent i has an initial money amount m0
i0 > 0 and will get inputs m0

is > 0 also in the future, but
can also take actions to supplement or redistribute these funds. One kind of action involves portfolios
and another is borrowing or lending. There is a financial market in the buying and selling of assets,
which can be held in fractional amounts. The assets could be stocks and bonds or just shares in a
future cash stream coming from a project. Asset j for j = 1, . . . , J yields the money amounts ajs ≥ 0
in the future states s = 1, . . . , S, with ajs > 0 for at least one s.

Initially, agent i possesses the amount x0ij ≥ 0 of asset j but can trade it for a different amount
xij ≥ 0 subject to budget constraints formulated below. The price pj at which asset j is traded
will be determined by equilibrium considerations. An agent thus puts together a portfolio that costs∑J
j=1 xijpj and yields the money amounts

∑J
j=1 xijajs in the future states s. The value of the initial

holdings, namely
∑J
j=1 x

0
ijpj , can help along with the initial money amount m0

i0 in financing this.
In addition, money can be transfered between present and future through borrowing and lending.

Money lent earns a rate of return r ≥ 0, so that in lending an amount yi at time 0 an agent gets back
(1 + r)yi at time 1. Lending an amount of money is tantamount to investing it in a money market.
Borrowing corresponds to yi < 0. Like asset prices, the rate of return r is to be determined through
market equilibrium.

The utility function ui is assumed to be concave and differentiable1 on the positive orthant IR1+S
++

and upper semicontinuous on IR1+S , with its value being −∞ outside of IR1+S
+ (and perhaps at places

on the boundary). It increases on IR1+S
++ with respect to increases in any mis with the others fixed;

all components of the gradient ∇ui(mi0,mi1, . . . ,miS) are assumed to be positive, The max of those
components tending to ∞ as the boundary of IR1+S

+ is approached. Since the components of ∇ui give

1Differentiability could be dropped, with gradients replaced by subgradients, but for that we would need to work in
Section 3 with a more complicated type of variational inequality, as we did in [11].
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the marginal utility (in the present) of money in the various states, this boundary assumption means
that agent i cannot tolerate the vanishing of funds in any state.

Agent optimization problem. Agent i chooses a money vector mi = (mi0,mi1, . . . ,miS) with
mis > 0, a portfolio vector xi = (xi1, . . . , xiJ) with xij ≥ 0, and a lending amount yi (possibly
negative), so as to maximize utility ui(mi) subject to the budget constraints:

mi0 +
∑J
j=1 xijpj + yi ≤ m0

i0 +
∑J
j=1 x

0
ijpj ,

mis ≤ m0
is +

∑J
j=1 xijajs + (1 + r)yi for s = 1, . . . , S.

(1)

An important consideration is “conservation of assets” in the sense that in solving their opti-
mization problems the agents end up just redistributing their holdings. The total

∑I
i=1 xij should

agree with that initial total
∑I
i=1 x

0
ij , which is assumed to be positive for each asset j. Similarly, the

borrowed amounts of money should be covered by the amounts lent, as in the following definition.

Equilibrium definition. Asset prices pj ≥ 0 for j = 1, . . . , J and a rate of return r ≥ 0 furnish an
equilibrium, along with the decision elements mi, xi and yi of the agents i = 1, . . . , S, if

(a) those decision elements solve the agents’ optimization problems,
(b)

∑I
i=1 xij =

∑I
i=1 x

0
ij for j = 1, . . . , J ,

(c)
∑I
i=1 yi = 0 if r > 0, whereas

∑I
i=1 yi ≥ 0 if r = 0.

The provision in (c) means that if no interest is earned on lending—so there is no need for anyone
to pay interest—an agent can essentially lend to itself merely by setting an amount of money aside in
the present for use in the future. Conditions (b) and (c) constitute “clearing” in the asset market and
the money market.

Theorem 1 (existence). Under the stated assumptions, an equilibrium is sure to exist. The asset
prices pj in it must all be positive, and the budget constraints must all hold as equations.

The proof of existence will be carried out in Section 3 by way of a variational inequality rep-
resentation of equilibrium and a series of harmless truncations which make it possible to apply an
existence theorem for solutions to “bounded” variational inequalities. Optimality conditions for the
agents’ problems have a key role in that, as does concavity of the utility functions instead of just
quasiconcavity. The assertions of Theorem 1 beyond existence are immediate from those conditions,
according to the result stated next.

Theorem 2 (optimality). With respect to given asset prices pj ≥ 0 and a return rate r ≥ 0, the
money vector mi = (mi0,mi1, . . . ,miS) with mis > 0, portfolio vector xi = (xi1, . . . , xiJ) with xij ≥ 0
and lending amount yi solve the optimization problem for agent i if and only if they satisfy the budget
constraints (1) as equations and, in terms of the gradient vector

λi = (λi0, λi1, . . . , λiS) = ∇ui(mi0,mi1, . . . ,miS) with λis > 0, (2)

the following conditions are fulfilled, which in particular necessitate pj > 0 for j = 1, . . . , J :

λi0 = (1 + r)(λi1 + · · ·+ λiS),

λi0pj =
∑S
s=1 λisajs for assets j with xij > 0,

λi0pj ≥
∑S
s=1 λisajs for assets j with xij = 0.

(3)

Proof. Because the given money amounts m0
is are all positive, there is a feasible solution to the

optimization problem in which mi lies in the interior of the effective domain of ui, namely mi = m0
i ,
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xi = x0i and yi = 0. Since the budget constraints and the nonnegativity of xi are linear constraints, this
ensures that an optimal solution can be characterized in terms of a saddle point of the corresponding
Lagrangian function, cf. [15, Section 28].

Disregarding (2) temporarily, we can introduce λis as the nonnegative Lagrange multiplier for the
budget inequality constraint in state s, so that the Lagrangian is

Li(mi, xi, yi;λi) = ui(mi) + λi0[m
0
i0 −mi0 +

∑J
j=1(x

0
ij − xij)pj − yi]

+
∑S
s=1 λis[m

0
is −mis +

∑J
j=1 xijajs + (1 + r)yi].

(4)

We are concerned with a saddle point in which maximization occurs in the decision variables and
minimization occurs in the multipliers. The minimization simply requires the budget constraints to
hold. The maximization with respect to mi yields (2) (plus the positivity of each mis) and implies
λis > 0. In the maximization with respect to yi (unconstrained), the first equation in (3) is revealed.
In the maximization with respect to xij ≥ 0, the rest of (3) comes out. Because λis > 0, and each
asset j has at least one payment ajs > 0, we see that (3) forces pj > 0.

Interpretation of optimality. The multiplier λis > 0 gives, through (2), the marginal utility to
agent i of money in state s (as seen from the present). The first condition in (3) tells us that λis < λi0
for s > 0, and moreover that by taking

πis = (1 + r)λis/λi0 for s = 1, . . . , S (5)

we uncover “imputed probabilities” in the decision making of agent i:

πis > 0, πi1 + · · ·+ πiS = 1. (6)

The portfolio conditions in (3) then involve the corresponding “expected” future payouts
∑S
s=1 πisajs

of asset j in the stochastic assessment of agent i. None of asset j will be purchased by agent i if this
imputed valuation is exceeded by (1 + r)pj . That is because (1 + r)pj is the assured future return
obtained by lending out the price amount pj instead of devoting it to asset purchase.

Leeway in stochastic assessments. The imputed probabilities (5)–(6) that the agents i come up
with can differ, but by how much? As just explained, the portfolio conditions in (3) can be described
in “subjective expectation” form as

(1 + r)pj =
∑S
s=1 πisajs for assets j with xij > 0,

(1 + r)pj ≥
∑S
s=1 πisajs for assets j with xij = 0.

(7)

These conditions, relative to an optimal portfolio vector xi, specify a polyhedral subset of the proba-
bility simplex to which the vector πi = (πi1, . . . , πiS) must belong. The dependence on a particular xi
(perhaps not unique in optimality) is illusory, because the same optimality conditions have to work
for all such xi, and by taking convex combinations one can get an xi with the maximal set of positive
components. Anyway, it is clear that with more and more assets j in the market the possibilities for
πi generally get narrower and narrower. Each asset has can reveal more about an agent’s beliefs in
the probabilities of the future states.

This analysis is based on requiring xij ≥ 0 in the agents’ porfolio choices, but it is possible to
relax this to allowing negative amounts xij . This extension, which in financial markets corresponds
to “short-selling,” will be taken up in Section 4.
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3 Variational Inequality Representation and Truncation

Our strategy for establishing the existence of an equilibrium in the circumstances described is to recast
the equilibrium conditions as a finite-dimensional variational inequality, i.e., a condition of the form

−f(w) ∈ ∂g(w)

for a continuous mapping f : IRN → IRN and a closed proper convex function g : IRN → (−∞,∞]. The
special case of an indicator g = δC for a nonempty closed convex set C ⊂ IRN , in which dom g = C,
turns into the normal cone condition

−f(w) ∈ NC(w).

The elementary criterion that can be used for the existence of a solution is the boundedness of the
effective domain of g, or in the geometric case, the boundedness of C; cf. [10], [11]. For variational
inequalities in which the mapping f is monotone (in the sense of Minty), additional criteria can be
brought in, cf. [17, Chapter 12], but such monotonicity will not be available in the application we are
engaged in here.

An important bit of methodology at our disposal is composite structure for a variational inequality.
This refers to the fact that a collection of conditions

−fk(w1, . . . , wM ) ∈ ∂gk(wk) for k = 1, . . . ,M, (8)

with each gk closed proper convex on IRNk and fk a continuous mapping, together comprise a single
variational inequality, namely

−f(w1, . . . , wM ) ∈ ∂g(w1, . . . , wM ) for (w1, . . . , wM ) ∈ IRN1 × · · · × IRNM

with

{
g(w1, . . . , wM ) = g1(w1) + · · ·+ gM (wM ) on IRN with N = N1 + · · ·+NM ,
f(w1, . . . , wM ) = (f1(w1, . . . , wM ), . . . , fM (w1, . . . , wM )) ∈ IRN .

(9)

Here dom g = dom g1 × · · · × dom gM , and its boundedness corresponds to that of every dom gk.
We will take advantage of this structure by interpreting the conditions for equilibrium one by one

as having the form in (8). In a first pass, this is readily accomplished but with sets dom gk that are
unbounded. In a second pass, truncations are introduced to create boundedness. Of course, this has to
be done in such a manner that solutions to the ultimate variational inequality (9) with truncation are
the same as solutions to the original version without truncation. An interesting aspect, promoted by
the utiliy functions being concave instead of merely quasi-concave, is that analysis of the optimization
problem dual to the utility maximization of agent i will yield crucial insights.

A small change of variables will be convenient. Instead of working with yi and r, we can pass to
zi and q, where q is the market discount rate corresponding to the rate of return r:

q = (1 + r)−1, yi = qzi, (10)

with q ∈ (0, 1] in place of r ∈ [0,∞); q = 0 would stand for a “free lunch” in which all agents can
increase future funds at no cost, and (with utility always increasing) their optimization problems
would be unsolvable (and equilibrium could not exist).

Theorem 3 (basic representation). With respect to (10), a price vector p = (p1, . . . , pJ) and a market
discount rate q, together with decision elements mi, xi, zi and multiplier vectors λi for all the agents
i, furnish an equilibrium if and only if

(a) −λi = ∇[−ui](mi),
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(b) mi0 −m0
i0 +

∑J
j=1(xij − x0ij)pj + qzi ∈ N[0,∞)(λi0),

(c) mis −m0
is −

∑J
j=1 xijajs − zi ∈ N[0,∞)(λis) for s > 0,

(d)
∑S
s=1 λisajs − λi0pj ∈ N[0,∞)(xij),

(e) (λi1 + · · ·+ λiS)− qλi0 ∈ N(−∞,∞)(zi),

(f)
∑I
i=1 xij −

∑I
i=1 x

0
ij ∈ N[0,∞)(pj),

(g)
∑I
i=1 zi ∈ N[0,1](q).

Proof. Obviously (a) corresponds to (2) and is equivalent to −λi ∈ ∂(−ui) for the closed proper
convex function −ui on IR1+S . Conditions (b) and (c) express complementary slackness with respect
to Lagrange multipliers in the budget constraints (1). In (d) we have the complementary slackness
of the portfolio conditions in (3), and in (e) a way of writing the initial equation in (3). Altogether,
(a)–(e) express the optimality conditions in Theorem 2, or in other words, part (a) in the definition
of equilibrium. This has the positivity of pj as a consequence, and that allows us to write (b) in
the definition of equilibrium as (f) here. Finally, (c) in the definition of equilibrium is exactly the
complementary slackness condition in (g) here.

The conditions in Theorem 3 add up to a composite variational inequality, as promised, but the
domain is unbounded in every variable except q. Except for zi, we do at least have lower bounds for
all the variables, but that is not enough to enable us to apply the elementary criterion for existence
of a solution. To proceed with that it is crucial to determine upper bounds which can act in tandem
with the lower bounds. We will be helped by fixing some

a > max
s=1,...,S

∑J

j=1
ajs and b > max

j=1,...,J

∑I

i=1
x0ij . (11)

Simple observations will move us toward the more crucial issues in taking advantage of the fact
that (a)–(e), which correspond to the optimality in Theorem 2 for each agent, necessitate pj > 0 and
λis > 0. From pj > 0 we can be sure in (f) that

∑I
i=1 xij =

∑I
i=1 x

0
ij (> 0), so that xij < b for all i and

xi0j > 0 for at least one i0, in which case
∑S
s=1 λi0sajs−λi0pj = 0 in (d). Recalling the interpretation

of that aspect of optimality in terms of imputed probabilities as (1 + r)pj =
∑S
s=1 πi0sajs in (7), we

see that the optimality conditions (a)–(e) holding for all agents i imply

xij ∈ [0, b),
∑J

j=1
xijajs < abJ, pj < a. (12)

Thus, any elements solving the variational inequality comprised of (a)–(g) in Theorem 3 must also
solve the variational inequality comprised of the following list with truncated versions of (d) and (f):

(a′) −λi = ∇[−ui](mi),
(b′) mi0 −m0

i0 +
∑J
j=1(xij − x0ij)pj + qzi ∈ N[0,∞)(λi0),

(c′) mis −m0
is −

∑J
j=1 xijajs − zi ∈ N[0,∞)(λis) for s > 0,

(d′)
∑S
s=1 λisajs − λi0pj ∈ N[0,b](xij),

(e′) λi1 + · · ·+ λiS − qλi0 ∈ N(−∞,∞)(zi),

(f′)
∑I
i=1 xij −

∑I
i=1 x

0
ij ∈ N[0,a](pj),

(g′)
∑I
i=1 zi ∈ N[0,1](q).

Moreover the converse holds as well. If these modified conditions are satisfied, with xij < b always,
there is no difference between the effect of (d′) and (d), so that the bound on pj derived in (12) is
still in place and (f′) reduces to (f). On the other hand, if somehow xi0j0 = b for a particular agent
i0 and asset j0, the corresponding requirement of (d′), expressed in the “expectation” context of (7),
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is (1 + r)pj0 ≤
∑S
s=1 πi0saj0s. Then again pj0 < a, with (f′) again reverting to (f) and implying∑I

i=1 xij0 ≤
∑I
i=1 x

0
ij0

. The latter is incompatible xi0j0 = b.
Therefore the variational inequality specified by (a′)–(g′) has the same solutions (if any) as the

one specified by (a)–(g), entailing (12).

Aiming for additional truncation, we look now at the budget condition (c′), where the expression
on the left has to equal 0 because of λis > 0 in (a′). Since mis > 0, while the portfolio sum is bounded
above by a through (12), we see that

zi > mis −m0
is − abJ. (13)

The budget condition (b′), with the expression on the left side likewise having to equal to 0, can be
added over all agents i to get ∑I

i=1
mi0 + q

∑I

i=1
zi =

∑I

i=1
m0
i0, (14)

where (g′) implies

q
∑I

i=1
zi = max

{
0,
∑I

i=1
zi
}

(15)

Since all money amounts are positive, we deduce from (13), (14) and (15) the existence of c > 0 such
that, with the other conditions in place, necessarily −c < zi < c for all i. We furthermore see then the
existence of an upper bound M on money such that (13) and (14), together now with |zi| < c, ensure
that 0 < mis < M for all i and s. This upper bound can of course be taken high enough that

m0
is < M for all i and s. (16)

This tells us that any solution to the variational inequality for (a′)–(g′) must satisfy the following
conditions in which (a′) and (e′) have been truncated to (a′′) and (e′′):

(a′′) −λi −∇[−ui](mi) ∈ ΠS
s=0N[0,M ](mis),

(b′′) mi0 −m0
i0 +

∑J
j=1(xij − x0ij)pj + qzi ∈ N[0,∞)(λi0),

(c′′) mis −m0
is −

∑J
j=1 xijajs − zi ∈ N[0,∞)(λis) for s > 0,

(d′′)
∑S
s=1 λisajs − λi0pj ∈ N[0,b](xij),

(e′′) λi1 + · · ·+ λiS − qλi0 ∈ N[−c,c](zi),

(f′′)
∑I
i=1 xij − 1 ∈ N[0,a](pj),

(g′′)
∑I
i=1 zi ∈ N[0,1](q),

The additional terms in (a′′) vanish under (16). Moreover (a′′) is identical to −λi ∈ ∂gi(mi) for the
closed proper convex function gi that agrees with −ui when mis ≤M for all s but equals∞ otherwise.
Hence (a′′)–(g′′) do specify a composite variational inequality.

Because the truncations utilized in (a′′) and (e′′) were developed in the background of the other
conditions, which remain unchanged, they must be inactive for solutions to (a′′)–(g′′), and that vari-
ational inequality therefore has the same solution set as the one in Theorem 3.

The important thing to note, in line with our goal of reducing to a variational inequality with
bounded domain in order to obtain the existence of a solution, is that only upper bounds on the
multipliers λis are still missing. To get a handle on that, we argue next that conditions (a′′)–(e′′)
are necessary and sufficient for mi, xi and zi to solve the following modification of the optimization
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problem of agent i under the change of variables in (10):

choose mi, xi, zi to maximize ui(mi) subject to
mis ∈ [0,M ], xij ∈ [0, b], zi ∈ [−c, c], and the constraints

mi0 +
∑J
j=1 xijpj + qzi ≤ m0

i0 +
∑J
j=1 x

0
ijpj ,

mis ≤ m0
is +

∑J
j=1 xijajs + zi for s = 1, . . . , S.

(17)

Indeed, (a′′)–(e′′) describe a saddle point of the modified Lagrangian function

L̃i(mi, xi, zi;λi) = ui(mi) + λi0[m
0
i0 −mi0 +

∑J
j=1(x

0
ij − xij)pj − qzi]

+
∑S
s=1 λis[m

0
is −mis +

∑J
j=1 xijajs + zi].

(18)

with respect to maximizing over mis ∈ [0,M ], xij ∈ [0, b] and zi ∈ [−c, c], while minimizing over
λis ≥ 0. This Lagrangian is concave in the maximization variables and convex (actually affine) in the
minimization variables.

As is well known about saddle points [15, Section 28], the multiplier vectors λi taking part in these
conditions are the solutions to the corresponding Lagrangian dual problem,

minimize φi(λi) subject to λi ≥ 0, where

φi(λi) = max
{
L̃i(mi, xi, zi;λi)

∣∣∣mis ∈ [0,M ], xij ∈ [0, b], zi ∈ [−c, c]
}
.

(19)

The function φi is finite and convex on IR1+S . Because the primal problem has feasible solutions (due
to (16), e.g., mi = m0

i , xi = x0i , zi = 0), and its variables are bounded, a solution to (17) must exist
and yield

[maximum in (17)] = [infimum in (19)]. (20)

It is on this platform that an upper bound on the multipliers will be derived. Note first that

[maximum in (17)] ≤ ui(M,M, . . . ,M), (21)

because utility increases with respect to all components. Choose ε > 0 small enough that

m0
is > ε, m0

is + ε < M, for all s, (22)

through (16), and let

µi = minimum of ui(mi) subject to |mis −m0
is| ≤ ε, (23)

which exists because of the continuity of ui on IR1+S
++ . In restricting the maximization in the definition

of φi(λi) to mis ∈ [m0
is − ε,m0

is + ε] along with xi = x0i and zi = 0, we get

φi(λi) ≥ max
|mij−m0

ij |≤ε
L̃i(mi, x

0
i , 0;λi) ≥ µi + ε

∑S

s=0
|λis|.

The combination of this with (20) and (21) yields for any solution λi to (19) that

µi + ε
∑S

s=0
|λis| ≤ ui(M,M, . . . ,M). (24)

This therefore has to hold for any vector λi appearing together with a solution to (17) in the optimality
conditions (a′′)–(e′′).

9



Completion of the proof of Theorem 1. There is available through (24) an upper bound d such
that necessarily λis < d for s = 0, 1, . . . , S, and even for i = 1, . . . , I, whenever (a′′)–(e′′) hold. This
allows us to replace [0,∞) by [0, d] in (b′′) and (c′′) without shrinking the possibilities for having
a solution to these conditions. With that restriction, and with (f′′) and (g′′) thrown in, we have a
composite variational inequality for which the set of solutions is the same as the set of solutions to
the variational inequality in Theorem 3, which represents equilibrium. Since the modified conditions
have bounded domains, the elementary existence criterion is applicable, and we conclude that the set
of solutions is nonempty. Thus, an equilibrium does exist.

4 Extension to Short-selling

Financial markets can allow the possibility of an agent obtaining a fraction of pj in the present for
promising to pay out the corresponding fraction of the returns ajs in the future. This is called short-
selling and amounts in principle to a contract between two parties, the short-seller and another agent
who advances the money in the present for receiving the pay-outs later. The quantity of asset j
that is short-sold is thereby balanced on the other side, so that from the mathematical point of view,
short-selling is simply the case of allowing xij to be negative with the total

∑I
i=1 xij still maintained.

With this relaxation of nonnegativity in the portfolio constraints in the optimization problems of
the agents, but with everything else the same, we speak of an equilibrium with short-selling. Our goal
now is to prove the following extension of Theorem 3.

Theorem 4 (existence with short-selling). Under the stated assumptions, an equilibrium with short-
selling is likewise sure to exist. Again, the asset prices pj in it must all be positive, and the budget
constraints must all hold as equations.

In constructing the proof of this, the following restriction will help us without actually incurring
any loss of generality:

Nonredundancy assumption. The asset vectors aj = (aj1, . . . , ajS) for j = 1, . . . J along with the
vector (1, . . . , 1) are linearly independent in IRS .

This assumption guarantees that the coefficients xij and zi are uniquely determined in any financial
arrangement that produces

(mi1, . . . ,miS)− (m0
i1, . . . ,m

0
iS) =

∑J

j=1
xij(aj1, . . . , ajS) + zi(1, . . . , 1) (25)

There is no loss of generality because, if there were linear dependence, one or more of the assets j
could be dropped as redundant until a linearly independent set of vectors remained for which the
possibilities achieved on the left side of (25) are the unaffected. Of course, this “nonredundancy”
argument would not be valid in the earlier framework with xij ≥ 0.

What is the effect of relaxing the nonnegativity of xij on the analysis already carred out above?
As far as the optimality conditions for the agents are concerned, the only change is that, instead of
(7), one has

(1 + r)pj =
S∑
s=1

πisajs for all assets j, (26)

with πi = (πi1, . . . , πis) being a “subjective probability” vector having every πis > 0. For the bound
a in (11), this implies

0 < pj < a for j = 1, . . . , J. (27)
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Hence, for a starter, we can take the conditions for a equilibrium with short-selling to be of the form

(aa) −λi = ∇[−ui](mi),
(bb) mi0 −m0

i0 +
∑J
j=1(xij − x0ij)pj + qzi ∈ N[0,∞)(λi0),

(cc) mis −m0
is −

∑J
j=1 xijajs − zi ∈ N[0,∞)(λis) for s > 0,

(dd)
∑S
s=1 λisajs − λi0pj ∈ N(−∞,∞)(xij),

(ee) (λi1 + · · ·+ λiS)− qλi0 ∈ N(−∞,∞)(zi),

(ff)
∑I
i=1 xij −

∑I
i=1 x

0
ij ∈ N[0,a](pj),

(gg)
∑I
i=1 zi ∈ N[0,1](q).

The positivity of pj and the equation form of the budget constraints are implied by this, as before, and
our focus can again be in introducing truncations that leave the set of solutions (if any) unchanged.

Our first step is to argue that conditions (aa), (bb), (cc), (ff) and (gg) force a bound on the elements
mi, xi and zi. Instead of proceeding as before, we employ a recession cone technique. Specifically, we
consider the nonempty closed subset W ⊂ (IR1+S × IRJ × IR)I consisting of all

(mi, xi, zi) for i = 1, . . . , I with mis ≥ 0, such that (ff), (gg), hold for some p, q, and

mi0 −m0
i0 +

∑J
j=1(xij − x0ij)pj + qzi ≤ 0,

mis −m0
is −

∑J
j=1 xijajs − zi ≤ 0 for s > 0,

(28)

and establish its boundedness by demonstrating that its horizon cone W∞ (in the variational analysis
sense) consists only of the zero vector; cf. [17, Theorem 3.5].

Suppose there is an unbounded sequence in W with components (mk
i , x

k
i , z

k
i ) with corresponding

pk and qk, k = 1, 2, . . .:

mk
i0 −m0

i0 +
∑J
j=1(x

k
ij − x0kij )pkj + qkzki ≤ 0, mk

i0 ≥ 0,

mk
is −m0

is −
∑J
j=1 x

k
ijajs − zki ≤ 0, mk

is ≥ 0, for s > 0,∑I
i=1 x

k
ij −

∑I
i=1 x

0k
ij − ∈ N[0,a](p

k
j ),

∑I
i=1 z

k
i ∈ N[0,1](q

k).

(29)

We will show that this leads to a contradiction to our redundancy assumption.
It is possible (by considering norms) to find a sequence of coefficients θk > 0 decreasing to 0 such

that the vector sequence with components θk(mk
i , x

k
i , z

k
i ) is bounded and yet stays outside some neigh-

borhood of the origin. Invoking compactness, we can assume then that θk(mk
i , x

k
i , z

k
i ) → (m∗i , x

∗
i , z
∗
i )

with at least one of these limits not being (0, 0, 0), say for i0. We also can assume pk → p∗ ∈ [0, a]
and qk → q∗ ∈ [0, 1]. In multiplying the conditions in (29) by θk, we see in the limit that

m∗i0 +
∑J
j=1 x

∗
ijp
∗
j + q∗z∗i ≤ 0, m∗i0 ≥ 0,

m∗is −
∑J
j=1 x

∗
ijajs − z∗i ≤ 0, m∗is ≥ 0, for s > 0,∑I

i=1 x
∗
ij ∈ N[0,a](p

∗
j ),

∑I
i=1 z

∗
i ∈ N[0,1](q

∗).

(30)

The third line of (30) entails

p∗j
∑I

i=1
x∗ij = amax

{
0,
∑I

i=1
x∗ij

}
, q∗

I∑
i=1

z∗i = max
{

0,
∑I

i=1
z∗i

}
. (31)

Adding the first inequality in (30) over i and utilizing (31), we get∑I

i=1
m∗i0 + amax

{
0,
∑I

i=1
x∗ij

}
+ max

{
0,
∑I

i=1
z∗i

}
≤ 0, with m∗i0 ≥ 0,

11



with the consequence that

m∗i0 = 0,
∑I

i=1
x∗ij ≤ 0,

∑I

i=1
z∗i ≤ 0. (32)

Adding now the second inequality in (30) over i we get∑I

i=1
m∗is −

∑J

j=1

(∑I

i=1
x∗ij

)
ajs −

∑I

i=1
z∗i ≤ 0, m∗is ≥ 0,

which implies through (32) and the same line of (30) that

m∗is = 0, −
∑J

j=1
x∗ijajs − z∗i = 0.

Then, however we have

(0, . . . , 0) =
∑J

j=1
x∗ijaj + z∗i (1, . . . , 1),

and through the nonredundancy assumption must have x∗ij = 0 and z∗i = 0. This contradicts having
these elements not all being 0, at least for i0.

On the basis of having established the boundedness of W , we are able now to introduce an upper
bound c on |zi|, an upper bound M on mij , again satisfying (16), and an upper bound ξ on |xij |,
such that all elements of W satisfy all these bounds with strict inequality. This permits us to identify
the set of solutions to the variational inequality comprised of (aa)–(gg) with that of the variational
inequality given by

(aa′) −λi −∇[−ui](mi) ∈ ΠS
s=0N[0,M ](mis),

(bb′) mi0 −m0
i0 +

∑J
j=1(xij − x0ij)pj + qzi ∈ N[0,∞)(λi0),

(cc′) mis −m0
is −

∑J
j=1 xijajs − zi ∈ N[0,∞)(λis) for s > 0,

(dd′)
∑S
s=1 λisajs − λi0pj ∈ N[−ξ,ξ](xij),

(ee′) λi1 + · · ·+ λiS − qλi0 ∈ N[−c,c](zi),

(ff′)
∑I
i=1 xij − 1 ∈ N[0,a](pj),

(gg′)
∑I
i=1 zi ∈ N[0,1](q),

From here on, the previous duality argument can be mimicked completely to obtain upper bounds
on the multipliers λis. The additional truncation supported by those bounds brings us finally to a
variational inequality to which the elementary criterion for existence of a solution can be applied.

Concluding remarks. An advantage of variational inequality modeling, as followed here are the
enhanced possibilities for computation. In much of equilibrium theory in economics, computation is
envisioned either in terms of an algorithm for finding a fixed point, or through reduction to a system
of nonlinear equations which can be solved in a classical manner in Newton-like steps. However, the
latter approach, in particular, is not well adapted to handling nonnegativity constraints.

It deserves emphasis also that our purpose here has been not only to contribute to financial theory,
but to illustrate the important ways that convex analysis and its extensions in variational analysis
enter the subject. On the side of financial equilibrium, much more generality is possible in the model.
There can be markets for goods, which are influenced by consumption choices of the agents in the
present and future. Financial instruments in the form of derivatives, involving options on future prices,
can be incorporated as well. This is explained in detail in our paper [11].

As mentioned earlier, it is perfectly possible also to relax the smoothness assumption on the concave
utility functions, but in that case the variational inequality model has to be modified to “functional”
type. That too can be seen in [11].
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