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a b s t r a c t

The paper presents a generalized regression technique centered on a superquantile (also called condi-
tional value-at-risk) that is consistent with that coherent measure of risk and yields more conservatively
fitted curves than classical least-squares and quantile regression. In contrast to other generalized regres-
sion techniques that approximate conditional superquantiles by various combinations of conditional
quantiles, we directly and in perfect analog to classical regression obtain superquantile regression func-
tions as optimal solutions of certain error minimization problems. We show the existence and possible
uniqueness of regression functions, discuss the stability of regression functions under perturbations
and approximation of the underlying data, and propose an extension of the coefficient of determination
R-squared for assessing the goodness of fit. The paper presents two numerical methods for solving the
error minimization problems and illustrates the methodology in several numerical examples in the areas
of uncertainty quantification, reliability engineering, and financial risk management.
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1. Introduction

Analysts and decision makers are often concerned with a ran-
dom variable describing possible ‘cost,’ ‘loss,’ or ‘damage.’ The
interest may be focused on a single ‘system’ or could involve study
and comparison across a multitude of systems and designs. In
either case, it may be beneficial to attempt to approximate such
a loss random variable Y in terms of an n-dimensional explanatory
random vector X that is more accessible in some sense. This situa-
tion naturally leads to least-squares regression and related models
that estimate conditional expectations. While such models are ade-
quate in many situations, they fall short in contexts where a deci-
sion maker is risk averse, i.e., is more concerned about upper-tail
realizations of Y than average loss, and views errors asymmetri-
cally with underestimating losses being more detrimental than
overestimating. We focus on such contexts and therefore maintain
an orientation of Y that implies that high realizations are unfortu-
nate and low realizations are favorable. Of course, a parallel devel-
opment with an opposite orientation of the random variable Y,
focused on profits and gains, and concerns about overestimating
instead of underestimating is also possible but not pursued here.

Quantile regression (see Gilchrist, 2008; Koenker, 2005 and
references therein) accommodates risk-averseness and an
asymmetric view of errors by estimating conditional quantiles at a

certain probability level such as those in the tail of the conditional dis-
tribution of Y. While suitable in some contexts, quantile regression
only deals with the signs of the errors and therefore is overly ‘robust’
in the sense that large portions of a data set can change dramatically
without impacting the best-fitting regression function. A quantile cor-
responds to ‘value-at-risk’ (VaR) in financial terminology and relates
to ‘failure probability’ in engineering terms. Quantile regression in-
forms the decision maker about these quantities conditional on values
of theexplanatory random vector X. However, a quantile isnot a coher-
ent measure of risk in the sense of Artzner, Delbaen, Eber, and Heath
(1999) (see also Delbaen, 2002); it fails to be subadditive. Conse-
quently, a quantile of the sum of two random variables may exceed
the sum of the quantiles of each random variable at the same proba-
bility level, which runs counter to our understanding of what ‘risk’
should express. Moreover, quantiles cause computational challenges
when incorporated into decision optimization problems as objective
function, failure probability constraint, or chance constraint. The use
of quantiles and the closely related failure probabilities is therefore
problematic in risk-averse decision making; see (Artzner et al.,
1999; Krokhmal, Zabarankin, & Uryasev, 2011; Rockafellar & Royset,
2010; Rockafellar & Uryasev, 2000, 2013) for a detailed discussion.

A superquantile of a random variable, also called conditional va-
lue-at-risk, average value-at-risk, and expected shortfall,1 is an
‘average’ of certain quantiles as described further below. It is a
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coherent measure of risk well suited for risk-averse decision making
and optimization; see (Wang & Uryasev, 2007) for its application in
financial engineering, (Kalinchenko, Veremyev, Boginski, Jeffcoat, &
Uryasev, 2011) for military applications, and (Rockafellar & Royset,
2010) for use in reliability engineering. While this risk measure
has reached prominence in risk-averse optimization, there has been
much less work on regression techniques that are consistent in some
sense with it. In this paper, we derive such a superquantile regression
methodology, study its properties, and propose means to assess the
goodness-of-fit. The importance of such a regression methodology
becomes apparent by considering the following two situations.

Suppose that a loss is given by a random variable Y, but our pri-
mary concern is with the conditional loss given that an explanatory
random vector X takes on specific values. We aim to select these
values judiciously in an effort to minimize the conditional loss.
We denote by YðxÞ the conditional random variable Y given that
X ¼ x 2 Rn. Of course, ‘minimizing’ YðxÞ is not well-defined and a
standard approach is to minimize a risk measure of YðxÞ; see for
example (Krokhmal et al., 2011; Rockafellar & Uryasev, 2013). An
attractive choice is to use a superquantile measure of risk, which
as mentioned above is coherent and also computationally
approachable. While in some contexts a superquantile of YðxÞ
can be evaluated easily for any x 2 Rn, there are numerous situa-
tions, especially beyond the financial domain, where only a data
base of realizations of YðxÞ is available for various x. In the latter
situation, there is a need for building an approximating model,
based on the data, for the relevant superquantile of YðxÞ as a func-
tion of x. We refer to this as superquantile tracking. In comparison, if
the goal were to minimize the expectation of YðxÞ, then least-
squares regression would yield a model that approximates that
conditional expectation. Likewise, if the goal were to minimize a
quantile of YðxÞ, quantile regression would provide a model of
the conditional quantile. While these models are valuable for ana-
lysts and decision makers focused on the expectation and quantile
risk measures, they do not provide estimates of conditional super-
quantiles. In essence, the same need for estimating conditional
superquantiles arises in reliability engineering when the goal is
to determine a ‘design’ x with buffered failure probability of YðxÞ
being no larger than a given probability level, which corresponds
to a constraint on a superquantile of YðxÞ (Rockafellar & Royset,
2010).

Another situation arises when the explanatory random vector X
is beyond our direct control, but the dependence between the loss
random variable Y and X makes us hopeful that, for a carefully se-
lected regression function f : Rn ! R, the random variable f ðXÞmay
serve as a surrogate for Y. When the distribution of X is known, at
least approximately, and f has been determined, then the distribu-
tion of f ðXÞ is usually easily accessible. That distribution may then
serve as input to further analysis, simulation, and optimization in
place of the unknown distribution of Y. Such surrogate estimation
may arise in numerous contexts. ‘Factor models’ in financial invest-
ment applications (see for example Conner, 1995; Knight & Satc-
hell, 2005), where Y may be the loss associated with a particular
asset and X a vector describing a small number of macroeconomic
‘factors,’ is a result of surrogate estimation. ‘Uncertainty quantifi-
cation’ (see for example Eldred, Swiler, & Tang, 2011; Lee & Chen,
2009) considers the output of a system described by a random var-
iable Y, for example measuring damage, and estimates its moments
and distribution from observed realizations as well as knowledge
about the distribution of the input to the system characterized
by a random vector X. A main approach here centers on surrogate
estimation with f ðXÞ serving as an estimate of Y. In this situation,
an essential question is what criterion should be used for selecting
f. Clearly, one would like the error random variable Zf :¼ Y � f ðXÞ to
be small in some sense. However, minimizing the mean-squared
error of Zf would not reflect a greater concern about underestimat-

ing Y, i.e., underestimating losses, than overestimating. We may
want to assess the error of Zf in a manner that is ‘consistent’ with
our use of a superquantile as risk measure and weigh large levels of
underestimation more heavily than smaller levels.

In this paper, we develop a ‘generalized’ regression technique
that addresses the issue of superquantile tracking and surrogate
estimation. The technique is an extension of least-squares and
quantile regression, which center on expectations and quantiles,
respectively, to one that focuses on superquantiles.

The foundation of least-squares and quantile regression is the
fact that mean and quantiles minimize the expectation of certain
convex random functions. A natural extension to superquantile
regression could then possibly involve determining a random func-
tion that when minimizing its expectation, we obtain a superquan-
tile. However, such a random function does not exist (Chun,
Shapiro, & Uryasev, 2012; Gneiting, 2011), which has lead to stud-
ies of indirect approaches to superquantile tracking grounded in
quantile regression.

For a random variable with a continuous cumulative distribu-
tion function, a superquantile equals a conditional expectation of
the random variable given realizations no lower than the corre-
sponding quantile. Utilizing this fact, studies have developed ker-
nel-based estimators for the conditional probability density
functions, which are then integrated and inverted to obtain estima-
tors of conditional quantiles. An estimator of the conditional super-
quantile is then finally constructed by integrating the density
estimator over the interval above the quantile (Cai & Wang,
2008; Scaillet, 2005) or forming a sample average (Kato, 2012).
These studies also include asymptotic analysis of the resulting esti-
mators under a series of assumptions, including that the data orig-
inates from certain time series.

A superquantile of a random variable is defined in terms of an
integral of corresponding quantiles with respect to the probability
level. Since the integral is approximated by a weighted sum of
quantiles across different probability levels, an estimator of a con-
ditional superquantile emerges as the sum of conditional quantiles
obtained by quantile regression; see (Leorato, Peracchi, & Tanase,
2012; Peracchi & Tanase, 2008), which also show asymptotic re-
sults under a set of assumptions including the continuous differen-
tiability of the cumulative distribution function of the conditional
random variables. Similarly, (Chun et al., 2012) utilizes the integral
expression for a superquantile, but observes that a weighted sum
of quantiles is an optimal solution of a certain minimization prob-
lem; see (Rockafellar & Uryasev, 2013). Analogously to the situa-
tion in least-squares and quantile regression, an optimization
problem therefore yields an estimator of a conditional superquan-
tile. Though, in contrast to the case of least-squares and quantile
regression, the estimator is ‘biased’ due to the error induced by
replacing an integral by a finite sum. Under a linear model assump-
tion, (Chun et al., 2012) also constructs a conditional superquantile
estimator using an appropriately shifted least-squares regression
curve based on quantile estimates of residuals. In both cases,
asymptotic results are obtained for a homoscedastic linear regres-
sion model. Under the same model, (Trindade, Uryasev, Shapiro, &
Zrazhevsky, 2007) studies ‘constrained’ regression, where the error
random variable Zf ¼ Y � f ðXÞ is minimized in some sense, for
example in terms of least square or absolute deviation, subject to
a constraint that limits a superquantile of Zf . While this approach
does not lead to superquantile regression in the sense we derive
below, it highlights the need for alternative techniques for regres-
sion that incorporate superquantiles in some manner.

The need for moving beyond classical regression centered on
conditional expectations is therefore now well recognized and
has driven even further research towards estimating conditional
distribution function, i.e., ProbðYðxÞ 6 yÞ for all y 2 R, using non-
parametric kernel estimators (see for example Hall & Muller,
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2003) and transformation models (see for example Hothorn, Kneib,
& Buhlmann, in press). Of course, conditional distribution functions
provide the ‘full’ information about YðxÞ including its quantiles and
superquantiles, and therefore also provide a means to inform a
risk-averse decision maker. In this paper, however, we directly fo-
cus on superquantiles, which we believe deserve special attention
due to their prominence in risk analysis.

A framework for ‘generalized’ regression is laid out in Rockafel-
lar, Uryasev, and Zabarankin (2008), Rockafellar and Uryasev
(2013) and regression functions are obtained as optimal solutions
of optimization problems of the form minf EðZf Þ, where E is a mea-
sure of error and f is restricted to a certain class of functions such as
the affine functions. Least-squares regression is obtained by
EðZf Þ ¼ E½Z2

f �, quantile regression with the Koenker–Bassett mea-
sure of error, but many other possibilities exist. While it is not pos-
sible to determine a measure of error that is of the expectation type
and yields a superquantile, in this paper we show that when allow-
ing for a broader class of functionals, a measure of error that gen-
erates a superquantile is indeed available. Such a measure of error
is also hinted at in our recent paper (Rockafellar & Royset, in press),
but the present paper gives the first comprehensive treatment. In
contrast to previous studies towards superquantile tracking, which
utilize indirect approaches and quantile regression, we here offer a
natural extension of least-squares and quantile regression. We re-
place the mean-squares and Koenker–Bassett error measures by a
new error measure, and then simply minimize that error of Zf to
obtain a regression function. Under few assumptions, we establish
the existence of a regression function, discuss its uniqueness, and
examine stability under perturbations of the distribution of ðX;YÞ
for example caused by sampling. We omit a discussion of simple
linear models with independent and identically distributed (i.i.d.)
noise as we believe that there is little need for quantile and super-
quantile regression in such contexts as least-squares regression
with an appropriate shift suffices. In fact, we do not separate mod-
els into (additive) deterministic and stochastic terms. In many
applications, especially in the area of uncertainty quantification,
heteroscedasticity and dependence are prevalent making linear
i.i.d. and additive models of little value.

The main contributions of this paper is the development of a
novel regression technique that naturally extends least-squares
and quantile regression to contexts where one seeks to assess
regression errors not by squaring them, as in the case of least-
squares regression, or by looking at their signs, as in the case of
quantile regression, but by weighing larger levels of underestima-
tion increasingly heavily in a manner consistent with superquan-
tiles. We develop the fundamental theory for the new regression
technique by examining the issues of existence, uniqueness, stabil-
ity, rate of convergence, and goodness of fit.

Section 2 describes measures of regret and error, first in the
context of quantile regression and then for the extension to super-
quantile regression. Section 3 defines superquantile regression as
the minimization of a measure of error, discusses existence and
uniqueness of the regression function, and provides asymptotic re-
sults. Section 4 proposes an approach for assessing the goodness-
of-fit of regression function obtained by superquantile regression.
Section 5 deals with computational methods for superquantile
regression and Section 6 gives illustrative examples.

2. Quantiles, superquantiles, and errors

While our development centers on superquantiles, it is benefi-
cial to maintain a parallel description of quantiles. As we see be-
low, quantile regression, which is achieved by minimizing a
Koenker–Bassett error of the random variable Zf , provides a road
map for the construction of superquantile regression, which is sim-

ply achieved by minimizing another measure of error. We start,
however, with definitions of quantiles, superquantiles, and corre-
sponding measures of regret and error.

2.1. Definitions

For a 2 ½0;1�, the a-quantile of a random variable Y with cumu-
lative distribution function FY is defined as

qaðYÞ :¼minfy 2 RjFY ðyÞP ag:

Its quantiles are as fundamental to Y as the distribution func-
tion, but are problematic to incorporate in risk analysis and optimi-
zation due to their lack of coherency as well as computational
challenges. Superquantiles have more favorable properties. For
a 2 ½0;1Þ, the a-superquantile of a random variable Y is defined as

�qaðYÞ :¼ 1
1� a

Z 1

a
qbðYÞdb: ð1Þ

Since a superquantile is a coherent measure of risk and by the
virtue of being an ‘average’ of quantiles is also more stable than
a quantile in some sense, it is well suited for applications. For
a ¼ 1, we define �qaðYÞ :¼ sup Y (the essential supremum). Since
�q0ðYÞ ¼ E½Y�, we therefore focus on a 2 ð0;1Þ throughout the paper
to avoid distractions by these special cases.

In reliability terminology, quantiles and superquantiles corre-
spond to failure and buffered failure probabilities. The failure prob-
ability of a loss random variable Y is

pðYÞ :¼ ProbðY > 0Þ ¼ 1� FYð0Þ;

which corresponds to

pðYÞ ¼ 1� a with a such that qaðYÞ ¼ 0

if there is no probability atom at zero. Analogously to the latter
expression, the buffered failure probability (see Rockafellar & Royset,
2010) of a loss random variable Y is defined as

�pðYÞ :¼ 1� a with a such that �qaðYÞ ¼ 0: ð2Þ

A requirement that �pðYÞ 6 1� a is therefore equivalent to the con-
straint that �qaðYÞ 6 0. Consequently, in applications with a buffered
failure probability constraint on a (conditional) loss random vari-
able YðxÞ as well as when the goal is to minimize a superquantile
of YðxÞ directly, there are needs for estimating �qaðYðxÞÞ as a function
of x 2 Rn. Quantiles and superquantiles are connected through a
trade-off formula that leads to quantile regression as discussed
next.

2.2. Measures of regret and error in quantile regression

Both a-quantiles and a-superquantiles, a 2 ½0;1Þ, of a loss ran-
dom variable Y are expressed in terms of an optimization problem
involving the quantity

VaðYÞ :¼ 1
1� a

E½maxfY ;0g�; ð3Þ

which is a measure of regret that quantifies the displeasure with
realizations of Y above zero; see (Rockafellar & Uryasev, 2013).
Quantiles and superquantiles then follow as

qaðYÞ 2 argmin
C02R

fC0 þ VaðY � C0Þg ð4Þ

�qaðYÞ ¼min
C02R
fC0 þ VaðY � C0Þg; ð5Þ

where in fact qaðYÞ is the lowest optimal solution if multiple exists.
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The expression for qaðYÞ is the essential building block for quan-
tile regression, but since we ultimately would like to go beyond the
class of constant functions as candidates for a regression function
we need to pass to a measure of error Ea constructed from Va by
setting

EaðYÞ :¼ VaðYÞ � E½Y�

for any loss random variable Y (with E½jYj� <1). A measure of error
quantifies the degree of ‘nonzeroness’ in a random variable; see
(Rockafellar & Uryasev, 2013). Direct application of this definition
and a recognition that a constant term in an objective function is
immaterial with respect to the optimal solution gives that

qaðYÞ 2 argmin
C02R

EaðY � C0Þ ð6Þ

and

EaðYÞ ¼
1

1� a
E½maxfY; 0g� � E½Y �

¼ E
a

1� a
maxfY;0g þmaxf�Y ;0g

h i
is a (scaled) Koenker–Bassett error (Koenker, 2005). Quantile
regression centers on computing this argmin with ‘‘minimizing
the error of Y � C0 over C0 2 R’’ replaced by ‘‘minimizing the error
of Y � f ðXÞ over a class of functions f : Rn ! R’’, often taken to be
the affine functions. We view qaðYÞ as the ‘closest’ scalar to the ran-
dom variable Y under a Koenker–Bassett error.

If our goal simply were to estimate �qaðYÞ of a loss random variable
Y for a given a 2 ð0;1Þ, the above expressions would have sufficed,
possibly passing to an empirical distribution given by a sample if FY

is unknown. In the present context, however, connections with the
underlying explanatory random vector X and the focus on the ‘approx-
imation’ of Y warrants a parallel development to that of quantile
regression centered on a superquantile. In view of the above review
of quantile regression, it is clear that superquantile regression will
involve the minimization of some measure of error that returns the
superquantile as argmin.2 The next subsection develops such a
measure by first constructing a corresponding measure of regret.

2.3. Measures of regret and error in superquantile regression

We start this subsection by establishing the finiteness of a
superquantile under the assumption that the loss random variable
Y has a finite second moment and write Y 2 L2ðXÞ :

¼ fY : X! RjE½Y2� <1g.
We know from Rockafellar and Uryasev (2013) that �qa is a

convex, positively homogenous, monotonic, and averse3 functional
on L2ðXÞ for a 2 ð0;1Þ. From Rockafellar and Royset (in press,
Theorem 3), we also know that it is bounded and we repeat this re-
sult with a new proof. We adopt the notation r2ðYÞ ¼ E½ðY � E½Y �Þ2�.

Proposition 1. For Y 2 L2ðXÞ and a 2 ð0;1Þ one has that

�qaðYÞ 6 E½Y � þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� a
p rðYÞ: ð7Þ

Proof. Suppose that the quantile qaðYÞ, viewed as a function of the
probability level, is continuous at a. Let Ia be the indicator function
of the interval ½qaðYÞ;1Þ with probability 1� a. We then have by
the Schwartz inequality that

ð1� aÞ�qaðY � E½Y �Þ ¼ E½ðY � E½Y�ÞIa� 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðY � E½Y �Þ2�

q ffiffiffiffiffiffiffiffiffi
E½I2

a�
q

¼ rðYÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� a
p

:

Then, since �qaðY � E½Y�Þ ¼ �qaðYÞ � E½Y�, the result follows from
dividing by 1� a. Thus, (7) is valid under the continuity assumption
about the quantile, which is true for all but at most countably many
a. By continuity of both sides of (7) with respect to a, it must then
hold for all a 2 ð0;1Þ. h

The measure of regret that serves in the context of superquan-
tile regression is defined for any loss random variable Y and
a 2 ð0;1Þ as

VaðYÞ :¼ 1
1� a

V0ðYÞ; ð8Þ

where

V0ðYÞ :¼
Z 1

0
maxf0; �qbðYÞgdb: ð9Þ

These expressions appear in Rockafellar and Royset (in press),
where their discovery, which is related to the Hardy–Littlewood
transform, is described. Here, we provide an alternative, direct proof
of how they lead to a superquantile. We start, however, with two
preliminary results and the definition of a corresponding error
measure.

Lemma 1. For Y 2 L2ðXÞ,

V0ðYÞ 6 rðYÞ þmaxf0; E½Y� þ rðYÞg: ð10Þ

Proof. From (7) and (9) we have

V0ðYÞ 6
Z 1

0
maxf0; hYðbÞgdb

for hY ðbÞ ¼ E½Y � þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� b

p rðYÞ: ð11Þ

We consider three cases. In Case 1, we suppose that hYðbÞP 0 for all
b 2 ½0;1�. Then the right hand side of (11) is given byZ 1

0
hY ðbÞdb ¼ E½Y� þ rðYÞ

Z 1

0
ð1� bÞ�1=2db

with
Z 1

0
ð1� bÞ�1=2db ¼ 2: ð12Þ

Therefore, V0ðYÞ 6 E½Y� þ 2rðYÞ in Case 1. In Case 2a, we suppose
that hYðbÞ 6 0 for all b 2 ð0;1Þ. Then obviously V0ðYÞ 6 0. Finally,
in Case 2b, let hY ðbÞ < 0 for some b 2 ð0;1Þ, but not all. Then neces-
sarily rðYÞ > 0 and E½Y� 6 �rðYÞ, and hYðbÞ strictly increases with
respect to b. Let �a be the unique b 2 ð0;1Þ with hYð�aÞ ¼ 0, namely
when

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �a
p

¼ ðrðYÞÞ=ð�E½Y�Þ. Then we have thatZ 1

0
maxf0; hY ðbÞgdb ¼

Z 1

�a
hYðbÞdb

¼ ð1� �aÞE½Y � þ rðYÞ
Z 1

�a
ð1� bÞ�1=2db

¼ ð1� �aÞE½Y � þ 2rðYÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �a
p

¼ rðYÞ2

E½Y�2
E½Y� þ 2rðYÞ rðYÞ�E½Y� ¼

rðYÞ2

�E½Y� 6 rðYÞ:

Thus, in Case 2b we get V0ðYÞ 6 rðYÞ. The conclusion then follows
by putting together the cases. h

We observe that for a 2 ð0;1Þ;Va is a convex, positively homo-
geneous, monotonic, and averse functional on L2ðXÞ, which follows
from the properties of the superquantile (Rockafellar & Uryasev,

2 Classical least-squares regression can be viewed similarly as returning a
(conditional) expectation as argmin when minimizing mean-square measure of error,
i.e., E½Y � ¼ argminC02R E½ðY � C0Þ2�.

3 We recall that a functional F : L2ðXÞ ! R ¼ R [ f�1;1g is averse if FðXÞ > E½X�
for all nonconstant X 2 L2ðXÞ.
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2013), and by the above result it is also finite, and consequently
continuous. A corresponding measure of error is defined for
Y 2 L2ðXÞ by

EaðYÞ :¼ VaðYÞ � E½Y� ð13Þ

and referred to as a superquantile error. Obviously, Ea is also convex
and positively homogeneous. It also satisfies the following properties.

Proposition 2. For any a 2 ð0;1Þ and Y 2 L2ðXÞ, a superquantile
error satisfies

(a) EaðYÞ ¼ 0 when Y � 0,
(b) EaðYÞ > 0 when YX0, and
(c) EaðYÞP minf1;a=ð1� aÞgjE½Y �j.

Proof. Since �qbð0Þ ¼ 0 for all b 2 ½0;1�, (a) follows trivially.
Since Va is averse, we have that for Y 2 L2ðXÞ; EaðYÞ ¼ Va

ðYÞ � E½Y� > E½Y� � E½Y � ¼ 0 when Y is not a constant. To complete
part (b), we therefore only need to consider nonzero constants. If Y
is a positive constant K, then

1
1� a

Z 1

0
maxf0; �qbðYÞgdb� E½Y � >

Z 1

0
maxf0; �qbðYÞgdb� E½Y �

¼ K � E½Y� ¼ 0:

If Y is a negative constant K, then

1
1� a

Z 1

0
maxf0; �qbðYÞgdb� E½Y � ¼ 1

1� a

Z 1

0
maxf0;Kgdb� E½Y�

¼ 0� E½Y� > 0;

which completes part (b).
Since �qbðYÞP E½Y � for all b 2 ½0;1�, we have whenever E½Y�P 0

the bound

1
1� a

Z 1

0
maxf0; �qbðYÞgdb� E½Y�P 1

1� a

Z 1

0

maxf0; E½Y�gdb� E½Y� ¼ a
1� a

E½Y�:

When E½Y � < 0,

1
1� a

Z 1

0
maxf0; �qbðYÞgdb� E½Y�P 1

1� a

Z 1

0

maxf0; E½Y�gdb� E½Y� ¼ �E½Y�:

Part (c) then follows by combining the two results. h

By Proposition 2 and the above discussion, Ea is a regular mea-
sure of error in the sense of Rockafellar and Uryasev (2013).

We are now ready to show that a superquantile is a unique opti-
mal solution of optimization problems involving Va and Ea. As
mentioned, the connection between a superquantile and Va is also
reached in Theorem 7 of Rockafellar and Royset (in press) through
different means. The direct proof in the present paper and the con-
nection with a superquantile error are new.

Theorem 1 (Superquantile as optimal solution). For Y 2 L2ðXÞ and
a 2 ð0;1Þ,

�qaðYÞ ¼ argmin
C02R

fC0 þ VaðY � C0Þg ¼ argmin
C02R

EaðY � C0Þ: ð14Þ

Proof. Let uðCÞ ¼ C þ VaðY � CÞ and wbðCÞ ¼maxf0; �qbðYÞ � Cg.
These are both convex functions of C, and wb is nonincreasing.
We can use the criterion that

C 2 argmin
C

uðCÞ () u0þðCÞP 0;u0�ðCÞ 6 0;

where, because of the monotonicity of wb,

u0þðCÞ ¼ 1þ 1
1� a

Z 1

0
ðwbÞ

0
�ðCÞdb; u0�ðCÞ ¼ 1þ 1

1� a

Z 1

0
ðwbÞ

0
þðCÞdb;

ðwbÞ
0
þðCÞ ¼

�1 if �qbðYÞ > C;

0 if �qbðYÞ 6 C;

�
ðwbÞ

0
�ðCÞ ¼

�1 if �qbðYÞP C;

0 if �qbðYÞ < C:

�

ThereforeZ 1

0
ðwbÞ

0
þðCÞdb ¼

Z 1

0
ðwbÞ

0
�ðCÞdb ¼ �ð1� cÞ for C ¼ �qcðYÞ;

in which case ðwbÞ
0ðCÞ ¼ ðwbÞ

0
þðCÞ ¼ ðwbÞ

0
�ðCÞ ¼ 1� ð1� cÞ=ð1� aÞ.

Thus, ðwbÞ
0ðCÞ ¼ 0 corresponds to C ¼ �qcðYÞ for c ¼ a. Consequently,

the first equality of the theorem holds. The second follows directly
from (13) and the fact that a constant in an objective function is
immaterial with regard to the argmin. h

Being analogous to (4) and (6), the foundations for quantile
regression, the expressions (14) provide the path to superquantile
regression as developed in the remainder of the paper. In fact, The-
orem 1 shows that �qaðYÞ is the uniquely ‘closest’ scalar to Y in the
sense of the superquantile error.

While not the focus here, the optimal value in (14) defines a
measure of risk (see Rockafellar & Royset, in press)

RaðYÞ :¼min
C02R
fC0 þ VaðY � C0Þg ¼ �qaðYÞ þ VaðY � �qaðYÞÞ

for Y 2 L2ðXÞ analogously to �qaðYÞ in (5). A corresponding measure
of deviation, which quantifies the nonconstancy in a random vari-
able, is given by

DaðYÞ :¼ min
C02R

EaðY � C0Þ ¼ RaðYÞ � E½Y�:

We note that parallel to (1) (see Rockafellar & Royset, in press),
RaðYÞ ¼ 1=ð1� aÞ

R 1
a

�qbðYÞdb and, consequently,

DaðYÞ ¼
1

1� a

Z 1

a
�qbðYÞdb� E½Y �:

The measures of regret, error, risk, and deviation Va; Ea;Ra, and
Da;a 2 ð0;1Þ, form a family of risk quadrangles in the sense of Rock-
afellar and Uryasev (2013) that corresponds to the statistic �qa. The
measure of deviation Da plays a central role in the remainder of
the paper as it facilitates simplifications, goodness-of-fit tests, and
computational methods.

3. Superquantile regression

Theorem 1 and the development leading to quantile regression
direct us to a new regression methodology that is centered on a
superquantile error. The next subsection poses the regression
problem, provides its properties, and discusses stability under per-
turbations. The section ends with a discussion of superquantile
tracking.

3.1. Regression problem

While Theorem 1 shows that the ‘best’ scalar approximation of
a random variable Y in the sense of a superquantile error is the cor-
responding superquantile, we now go beyond the class of constant
functions to utilize the connection with an underlying explanatory
random vector X. We focus on regression functions of the form

f ðxÞ ¼ C0 þ hC;hðxÞi; C0 2 R;C 2 Rm;

for a given ‘basis’ function h : Rn ! Rm. This class satisfies most
practical needs including that of linear regression where m ¼ n
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and hðxÞ ¼ x. Extensions beyond this class are also possible but not
dealt with here.

For any h : Rn ! Rm and a 2 ð0;1Þ, we define the superquantile
regression problem

P : min
C02R;C2Rm

EaðZðC0;CÞÞ;

where

ZðC0;CÞ :¼ Y � ðC0 þ hC;hðXÞiÞ

is the error random variable, whose distribution depends on C0;C;h,
and the joint distribution of ðX;YÞ. We denote by C � Rmþ1 the set
of optimal solutions of P and refer to ðC0;CÞ 2 C as a regression
vector.

The objective function EaðZð�; �ÞÞ is well-defined and finite when
the distribution of ðX;YÞ and h is such that ZðC0;CÞ 2 L2ðXÞ for all
C0 2 R;C 2 Rm. A sufficient condition that ensures this property is
that Y ;h1ðXÞ; . . . ;hmðXÞ 2 L2ðXÞ as shown next, where we adopt
the notation

H ¼ hðXÞ; Hi ¼ hiðXÞ; i ¼ 1;2; . . . ;m:

Lemma 2. If Y ;H1; . . . ;Hm 2 L2ðXÞ, then ZðC0;CÞ 2 L2ðXÞ for all
C0 2 R;C 2 Rm.

Proof. Let M <1 be such that E½Y2� 6 M and E½H2
i � 6 M,

i ¼ 1;2; . . . ;m. Since jhC;Hij 6 kCk
Pm

i¼1jHij and hC;Hi2 6 kCk2Pm
i¼1

ðHiÞ2, we find that E½jhC;Hij� 6 kCkmM and E½hC;Hi2� 6 kCk2mM.
Consequently,

E½ðY � C0 � hC;HiÞ2� 6 E½ðY � C0Þ2� þ 2jE½ðY � C0ÞhC;Hi�j
þ E½hC;Hi2� 6 M

þ 2ðkCkm1=2M þ ðM þ jC0jÞkCkmMÞ
þ kCk2mM: � ð15Þ

In surrogate estimation, C0 þ hC;hðXÞi, with ðC0;CÞ 2 C, provides
the best approximation of Y in the sense of a superquantile error.
For example, after having computed ðC0;CÞ, the analysis could pro-
ceed with examining the moments, quantiles, and superquantiles
of C0 þ hC;hðXÞi as surrogates for the corresponding quantities of
Y. If X is Gaussian and h is affine, then C0 þ hC;hðXÞi is a Gaussian
approximation of Y easily examined and utilized in further studies.
It may also be of interest to examine C0 þ hC;hðXÞi under hypothet-
ical distributions of X.

A direct consequence of the Regression Theorem in Rockafellar
and Uryasev (2013) (see also Theorem 3.1 in Rockafellar et al.,
2008) we obtain that a regression vector can equivalently be deter-
mined from a measure of deviation Da.

Proposition 3. Suppose that Y ;H1; . . . ;Hm 2 L2ðXÞ. Then, the set of
regression vectors �C of P is equivalently obtained as

C ¼ fðC0;CÞ 2 Rmþ1jC 2 argmin
C2Rm

DaðZ0ðCÞÞ; C0 ¼ �qaðZ0ðCÞÞg;

where Z0ðCÞ :¼ Y � hC;hðXÞi.
Proposition 3 implies computational advantages as the ðmþ 1Þ-

dimensional optimization problem P is replaced by a problem in m
dimensions with a simpler objective function, which we fully uti-
lize in Sections 5 and 6. Moreover, the result also proves beneficial
in analysis of regression vectors.

The existence of a regression vector is ensured by the next
result, which also provides conditions for uniqueness.

Theorem 2 (Existence and uniqueness of regression vector). If
Y;H1; . . . ;Hm 2 L2ðXÞ, then P is a convex problem with a set of
optimal solutions C that is nonempty, closed, and convex.

(a) C is bounded if and only if the random vector X and the basis
function h satisfy the condition that hC;hðXÞi is not constant
unless C ¼ 0.

(b) If in addition, for every ðC0;CÞ; ðC00;C
0Þ 2 Rmþ1, with C – C0,

there exists a b0 2 ½0;1Þ such that

0 6 �qbðZðC0;CÞ þ ZðC 00;C
0ÞÞ

< �qbðZðC0;CÞÞ þ �qb Z C00;C
0� �� �

ð16Þ

for all b 2 ½b0;1Þ, then C is a singleton.

Proof. Since Y 2 L2ðXÞ implies that EaðYÞ <1 by Lemma 1, we
deduce the two first conclusions from Theorem 3.1 in Rockafellar
et al. (2008). Hence, we only need to show that C is a singleton.

Suppose for the sake of a contradiction that ðC0;CÞ; ðC00;C
0Þ 2 C

and ðC0;CÞ – C00;C
0� �

, with corresponding optimal value n P 0, i.e.,
n ¼ �EaðZðC0;CÞÞ ¼ Ea Z C00;C

0� �� �
. We consider two cases.

First, suppose that n ¼ 0. By Proposition 2, ZðC0;CÞ ¼ Z C00;C
0� �

¼ 0 and consequently

C0 þ hC;Hi ¼ C 00 þ hC
0;Hi;

which implies that hC � C0;Hi ¼ C00 � C0. Under the assumption that
hC; hðXÞi is only constant when C ¼ 0, we must have that C � C0 ¼ 0.
Then, also C00 � C0 ¼ 0 follows, which contradicts the hypothesis
that ðC0; CÞ – ðC00;C

0Þ.
Second, suppose that n > 0. If C ¼ C0, then a direct consequence

of Proposition 3 and the fact that every random variable has a
unique superquantile at each probability level, is that also C0 ¼ C00,
which again contradicts our hypothesis. Consequently, we focus on
the case with C – C0, for which there exists a b0 such that (16)
holds for all b 2 ½b0;1Þ. Trivially, then

max 0; �qb ZðC0;CÞ þ Z C 00;C
0� �� �� �

< maxf0; �qbðZðC0;CÞÞg
þmax 0; �qb Z C00;C

0� �� �� �
for b 2 ½b0;1Þ. If b 2 ð0;1Þ is such that �qb ZðC0;CÞ þ Z C00;C

0� �� �
< 0,

then

max 0; �qb ZðC0;CÞ þ Z C 00;C
0� �� �� �
6 maxf0; �qbðZðC0;CÞÞg
þmax 0; �qb Z C 00; C

0� �� �� �
as the left-hand side vanishes and the right-hand side is nonnega-
tive. Hence,Z 1

0
max 0; �qb ZðC0;CÞ þ Z C 00;C

0� �� �� �
db

<

Z 1

0
maxf0; �qbðZðC0;CÞÞgdbþ

Z 1

0
max 0; �qb Z C 00;C

0� �� �� �
db

and also

EaðZðC0;CÞ þ Z C 00;C
0� �
Þ < EaðZðC0;CÞÞ þ Ea Z C 00;C

0� �� �
: ð17Þ

Let

C000;C
00� �
¼ ð1=2ÞðC0;CÞ þ ð1=2Þ C 00;C

0� �
and therefore

2Z C 000;C
00� �
¼ ZðC0;CÞ þ Z C 00;C

0� �
:

By the optimality of n, the positive homogeneity of Ea, and (17), we
find that

2n 6 2Ea Z C 000;C
00� �� �
¼ Ea 2Z C 000;C

00� �� �
< EaðZðC0;CÞÞ þ Ea Z C 00;C

0� �� �
¼ 2n;
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which cannot hold. In view of this contradiction, the conclusion
follows. h

While Theorem 2 gives a sufficient condition for uniqueness of
the regression vector, in general uniqueness cannot be expected.
For example, suppose that the random vector ðX;YÞ, with X scalar
valued, has the possible and equally likely realizations ð1;1Þ;
ð2;2Þ, and ð3;1Þ. Then, �qbðZ0ðCÞÞ ¼maxf1� C;2� 2C; 1� 3Cg for
b > 2=3 and E½Z0ðCÞ� ¼ 4=3� 2C. It is straightforward to show that
for a > 2=3, any C 2 ½�1;1� minimizes DaðZ0ð�ÞÞ. Consequently, in
view of Proposition 3, any C 2 ½�1;1�, with a corresponding
C0 ¼ maxf1� C;2� 2C;1� 3Cg, minimizes EaðZð�; �ÞÞ for a > 2=3.
The minimum error is 2=3.

A unique regression vector is indeed achieved in the normal
case as stated next.

Proposition 4. Suppose that ðH;YÞ is normally distributed with
positive definite variance–covariance matrix. Then, C is a singleton.

Proof. Let R be the variance–covariance matrix of ðH;YÞ, with
Cholesky decomposition R ¼ LL>. For any b 2 ð0;1Þ and C 2 Rm; Z0

ðCÞ is also normal with mean E½Z0ðCÞ� ¼ heC ; E½ðH;YÞ�i and variance
r2ðZ0ðCÞÞ ¼ heC ;ReCi, where eC ¼ ð�C;1Þ. Thus,

�qbðZ0ðCÞÞ ¼ E½Z0ðCÞ� þ kbrðZ0ðCÞÞ ¼ E½Z0ðCÞ� þ kbkL>eCk;
where kb ¼ /ðU�1ðbÞÞ=ð1� bÞ, with / and U being the standard nor-
mal probability density and cumulative distribution functions,
respectively.

For C;C0 2 Rm, with C – C0, there is no constant k > 0 such that
ð�C;1Þ ¼ kð�C0;1Þ. Let eC ¼ ð�C;1Þ and eC 0 ¼ ð�C0;1Þ. Since R is
positive definite, the upper-triangular matrix L> is unique and full
rank. Consequently, the null space of L> contains only the zero
vector and L>ðeC � keC 0Þ – 0 for all scalars k > 0. Since the triangle
inequality for two vectors holds strictly whenever the two vectors
cannot be expressed as a positive multiple of each other, we
therefore find that

kL>eC þ L>eC 0k < kL>eCk þ kL>eC 0k:
Now suppose for the sake of a contradiction that C;C0 2 Rm both

minimize DaðZ0ð�ÞÞ and attain the minimum value n 2 R, but
C – C0. Let

C 00 ¼ ð1=2ÞC þ ð1=2ÞC 0;eC 00 ¼ ð�C00;1Þ, and ca ¼
R 1
a kbdb=ð1� aÞ > 0. Then,

Da Z0 C00
� �� �

¼ 1
1� a

Z 1

a
�qbðZ0ðC 00ÞÞdb� E½Z0ðC 00Þ� ¼ E½Z0ðC 00Þ�

þ cakL
>eC 00k � E½Z0ðC 00Þ� ¼

ca

2
kL>eC þ L>eC 0k

<
ca

2
ðkL>eCk þ kL>eC 0kÞ

¼ 1
2
ðE½Z0ðCÞ� þ cakL

>eCk � E½Z0ðCÞ�Þ þ
1
2

E½Z0ðC 0Þ�
�

þcakL
>eC 0k � E½Z0ðC 0Þ�

�
¼ 1

2
ðDaðZ0ðCÞÞÞ

þ1
2
ðDaðZ0ðC 0ÞÞÞ ¼

1
2
ðnþ nÞ ¼ n:

However, this contradicts the optimality of C; C0 and we reach the
conclusion. h

We next turn to consistency and stability of the regression vec-
tor. Of course, the joint distribution of ðX;YÞ is rarely available in
practice and one may need to pass to an approximating empirical
distribution generated by a sample. Moreover, perturbations of the
‘true’ distribution of ðX;YÞ may occur due to measurement errors
in the data and other factors. We consider these possibilities and

let ðXm;YmÞ be a random vector whose joint distribution approxi-
mates that of ðX;YÞ in some sense. For example, ðXm;YmÞ may be
governed by the empirical distribution generated by an indepen-
dent and identically distributed sample of size m from ðX;YÞ.
Presumably, as m!1, the approximation of ðX;YÞ by ðXm;YmÞ im-
proves as stated formally below. Regardless of the nature of
ðXm;YmÞ, we define the approximate error random variable

ZmðC0;CÞ :¼ Ym � C0 � hC; hðXmÞi;

and the corresponding approximate superquantile regression problem

Pm : min
C02R;C2Rm

EaðZmðC0;CÞÞ:

The next result shows that as ðXm;YmÞ approximates ðX; YÞ, a regres-
sion vector obtained from Pm approximates one from P, which pro-
vides the justification for basing a regression analysis on Pm. Below,
we let !d denote convergence in distribution and

Hm ¼ hðXmÞ and Hm
i ¼ hiðXmÞ; i ¼ 1;2; . . . m:

Theorem 3. (Stability of regression vector). Suppose that
ðXm;YmÞ; m ¼ 1;2; . . ., and ðX;YÞ are nþ 1-dimensional random vectors
such that ðXm;YmÞ !d ðX;YÞ and that the basis function h is continuous
except possibly on a subset S � Rn with ProbðX 2 SÞ ¼ 0. Moreover, let

Hi;Y 2 L2ðXÞ; supm E Hm
i

� �2�
h i

<1; i ¼ 1;2; . . . ;m, and supm E½ðYmÞ2�
<1.

If Cm
0;C

m
	 �n o1

m¼1
is a sequence of optimal solutions of Pm, with

a 2 ð0;1Þ, then every accumulation point of that sequence is a

regression vector of P.

Proof. Let ðC0;CÞ 2 Rmþ1 be arbitrary. By the continuous mapping
theorem (see for example Theorem 29.2 Billingsley, 1995),

ZmðC0;CÞ ¼ Ym � C0 � hC;hðXmÞi !d ZðC0;CÞ ¼ Y � C0 � hC; hðXÞi:

By the assumed moment conditions, there exists a constant M <1
that bounds from above the terms

max
i

E½jHij�; max
i

E½ðHiÞ2�; sup
m;i

E Hm
i



 

� �
; sup

m;i
E Hm

i

� �2
h i

;

E½jYj�; E½Y2�; sup
m

E½jYmj�; sup
m

E½ðYmÞ2�:

In view of Lemma 2 and its proof, we deduce that

E½ðYm � C0 � hC;HmiÞ2� 6 M þ 2ðkCkm1=2M þ ðM þ jC0jÞkCkmMÞ
þ kCk2mM ð18Þ

for all m. Hence, ZmðC0; CÞ is uniformly integrable (for fixed C0;C) and

E½ZmðC0;CÞ� ! E½ZðC0;CÞ� <1; ð19Þ

see (Billingsley, 1995), Theorem 25.12 and its corollary.
By Rockafellar and Royset (in press, Theorem 4), a sequence of

random variables converges in distribution to a random variable if
and only if the corresponding a-superquantiles, viewed as func-
tions of the probability level a, converge uniformly on every closed
subset of ð0;1Þ. Consequently, �qbðZmðC0;CÞÞ ! �qbðZðC0;CÞÞ uni-
formly in b on closed subsets of ð0;1Þ. Moreover, since the 0-
superquantile coincides with the expectation, (19) implies that
�q0ðZmðC0;CÞÞ ! �q0ðZðC0;CÞÞ also holds. These facts and the obser-
vation that the superquantile of any random variable is continuous
and nondecreasing as a function of the probability level, ensure
that for any � > 0 and d 2 ð0;1Þ, there exists an integer mð�; dÞ such
that for all m P mð�; dÞ,

sup
b2½0;1�d�

j�qbðZmðC0;CÞÞ � �qbðZðC0;CÞÞj 6
�

2ð1� dÞ : ð20Þ
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Then,Z 1�d

0
maxf0;�qbðZmðC0;CÞÞgdb�

Z 1�d

0
maxf0;�qbðZðC0;CÞÞgdb





 



 ð21Þ

6

Z 1�d

0
j�qbðZmðC0;CÞÞ��qbðZðC0;CÞÞjdb ð22Þ

6

Z 1�d

0

�
2ð1�dÞdb¼ �

2
ð23Þ

for all m P mð�; dÞ. Following an argument similar to that in Lemma
1, we find thatZ 1

1�d
maxf0; �qbðZðC0;CÞÞgdb 6 d1=2rðZðC0;CÞÞ

þmaxf0; dE½ZðC0;CÞ�
þ d1=2rðZðC0;CÞÞg: ð24Þ

Moreover, the reasoning that lead to (18) also gives

jE½ZðC0;CÞ�j 6 M þ jC0j þ kCkmM: ð25Þ

These facts show that there exists a positive constant ~M <1 (which
depends on C0 and C) such that jE½ZðC0;CÞ�j;rðZðC0;CÞÞ 6 ~M. Hence,
from (24), we find thatZ 1

1�d
maxf0; �qbðZðC0;CÞÞgdb 6 3 ~Md1=2: ð26Þ

Let � < 12 eM and d� ¼ ð�=ð12 eMÞÞ2. Then, 3 eMd1=2
� ¼ �=4 andZ 1

1�d�

maxf0; �qbðZðC0;CÞÞgdb 6
�
4
: ð27Þ

An identical result holds for ZmðC0;CÞ. Consequently, for all
m P mð�; d�Þ,Z 1

0
maxf0;�qbðZmðC0;CÞÞgdb�

Z 1

0
maxf0;�qbðZðC0;CÞÞgdb





 




6

Z 1�d�

0
maxf0;�qbðZmðC0;CÞÞgdb�

Z 1�d�

0
maxf0;�qbðZðC0;CÞÞgdb





 




þ
Z 1

1�d�

maxf0;�qbðZmðC0;CÞÞgdbþ
Z 1

1�d�

maxf0;�qbðZðC0;CÞÞgdb

6
�
2
þ�

4
þ�

4
¼�:

This fact, (19), and the assumption that ðC0;CÞ is arbitrary, imply
that EaðZmð�; �ÞÞ ! EaðZð�; �ÞÞ pointwise on Rmþ1. Lemma 1 and the
above moment assumptions imply that EaðZmð�; �ÞÞ and EaðZð�; �ÞÞ
are finite-valued functions. They are also convex, which follows di-
rectly from the convexity of Ea on L2ðXÞ and the affine form of Zm

and Z as functions of C0 and C. Consequently, by Theorem 7.17 in
Rockafellar and Wets (1998), EaðZmð�; �ÞÞ epiconverges to EaðZð�; �ÞÞ.
The result then follows from Theorem 7.31 in Rockafellar and Wets
(1998). h

When the approximating problem Pm is constructed using an
independent identically distributed sample of size m from the dis-
tribution of ðX;YÞ, we obtain the following corollary which follows
from the properties of the empirical distribution.

Corollary 1. Suppose that the basis function h is continuous except
possibly on a subset S � Rn with ProbðX 2 SÞ ¼ 0 and that
Hi;Y 2 L2ðXÞ; i ¼ 1;2; . . . ;m. Moreover, let ðXm;YmÞ be distributed
according to the empirical distribution generated by an independent
and identically distributed sample of size m from the distribution of
ðX;YÞ. Then, the conclusion of Theorem 3 holds.

We next examine the rate of convergence of regression vectors
obtained from the approximate problem Pm to those of P correspond-
ing to the ‘true’ distribution. It appears difficult to obtain asymptotic

distribution theory for superquantile regression without additional
assumptions, which among other consequences should ensure un-
ique optimal solutions of P. We prefer another route that leads to a
rate of convergence result under mild assumptions.

Quantification of the stability of the set of optimal solutions of
an optimization problem under perturbations depends on a
‘growth condition’ of the problem, which is difficult to quantify
for P; see Rockafellar and Wets (1998, Section 7J). Consequently,
we focus on the better behaved �-regression vectors of P defined
for � > 0 as

C� :¼ ðC0;�;C�Þ 2 Rmþ1jEaðZðC0;�;C�ÞÞ 6 min
C02R;C2Rm

EaðZðC0;CÞÞ þ �
� 

;

with an analogous definition of the �-regression vectors of Pm de-
noted by Cm

� . The rate with which Cm
� tends to C� depends, naturally,

on the rate with which ðXm;YmÞ, underlying Pm, tends to ðX;YÞ of P in
some sense. Before we make a precise statement, we introduce a
convenient notion of distances between any two nonempty sets
A;B � Rmþ1. For q P 0, let

d̂qðA;BÞ :¼ inffg P 0jA \ qB � Bþ gB;B \ qB � Aþ gBg;

where B is the Euclidean ball in Rmþ1 with unit radius and center at
the origin. Roughly, d̂qðA;BÞ is the smallest amount the sets need to
be ‘enlarged’ to ensure they contain the other one, with an exclusive
focus on points no further from the origin than q. This restriction
facilitates the treatment of unbounded sets.

As we see next, the rate of convergence is directly related to the
rate with which the random vector

Dm :¼ ðHm � H;Ym � YÞ;

describing the approximation error, tends to zero.

Theorem 4. (Rate of convergence of regression vector). Suppose that
ðXm;YmÞ; m ¼ 1;2; . . ., and ðX;YÞ are nþ 1-dimensional random

vectors generating Pm and P, respectively. Moreover, let Hi;Y 2 L2

ðXÞ, supm E Hm
i

� �2
h i

<1; i ¼ 1;2; . . . ;m, and supm E½ðYmÞ2� <1.

Let q0 > 0 be such that q0B \ C – ; and q0B \ Cm – ;.
Then, for q > q0, there exist positive constants k1; k2, and k3

(dependent on q) such that for any � > 0 and m ¼ 1;2; . . .,

d̂q Cm
�;C�

� �
6 1þ4q

�

� �
E½kDmk� k1 max 0;log

1
E½kDmk�

� �� 
þk2

� �
þk3kE½Dm�k

� �
whenever E½kDmk� > 0 and d̂qðCm

�; C�Þ ¼ 0 otherwise.

Proof. By Theorem 3(a) of Rockafellar and Royset (in press), for
b 2 ½0;1Þ,

j�qbðZmðC0;CÞÞ � �qbðZðC0;CÞÞj 6
1

1� b
E½jZmðC0;CÞ � ZðC0;CÞj�

¼ 1
1� b

E½jheC ;Dmij�

6
1

1� b
keCkE½kDmk�; ð28Þ

where eC ¼ ð�C;1Þ. Then, for d 2 ð0;1Þ,Z 1�d

0
maxf0;�qbðZmðC0;CÞÞgdb�

Z 1�d

0
maxf0;�qbðZðC0;CÞÞgdb





 




6

Z 1�d

0

�qbðZmðC0;CÞÞ��qbðZðC0;CÞÞ


 

db

6keCkE½kDmk�
Z 1�d

0

1
1�b

db¼�keCkE½kDmk�logd: ð29Þ
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Let q > q0 and M be an upper bound on first and second moments
of jHij; jHm

i j; jYj, and jYmj as in the proof of Theorem 3. Then, for
kðC0;CÞk 6 q, it follows by (25) that

jE½ZðC0;CÞ�j 6 M þ qþ qmM

and by (15) that

rðZðC0;CÞÞ 6 ðM þ 2ðqm1=2M þ ðM þ qÞqmMÞ þ q2mMÞ1=2
;

with identical bounds for jE½ZmðC0; CÞ�j and rðZmðC0;CÞÞ. Let Mq be
the larger of the two previous right-hand sides.

By (24), analogously to (26), we have that for kðC0;CÞk 6 q,Z 1

1�d
maxf0; �qbðZðC0;CÞÞgdb 6 3Mqd1=2 ð30Þ

and similarly with ZðC0;CÞ replaced by ZmðC0;CÞ.
We also find that for kðC0;CÞk 6 q,

jE½ZmðC0;CÞ� � E½ZðC0;CÞ�j ¼ jheC ; E½Dm�ij 6 keCkkE½Dm�k
6 ð1þ qÞkE½Dm�k: ð31Þ

Then, collecting the results of (29)–(31), we obtain that for
kðC0;CÞk 6 q,

jEaðZmðC0;CÞÞ � EaðZðC0;CÞÞj

6

Z 1

0
maxf0; �qbðZmðC0;CÞÞgdb�

Z 1

0
maxf0; �qbðZðC0; CÞÞgdb





 




þ jE½ZmðC0;CÞ� � E½ZðC0;CÞ�j 6

Z 1�d

0
maxf0; �qbðZmðC0; CÞÞgdb






�
Z 1�d

0
maxf0; �qbðZðC0;CÞÞgdb





þ Z 1

1�d
maxf0; �qbðZmðC0; CÞÞgdb

þ
Z 1

1�d
maxf0; �qbðZðC0;CÞÞgdbþ jE½ZmðC0;CÞ� � E½ZðC0;CÞ�j

6 �ð1þ qÞE½kDmk� log dþ 6Mqd1=2 þ ð1þ qÞkE½Dm�k ð32Þ

We next determine the choice of d 2 ð0;1Þ that minimizes the pre-
vious bound and consider two cases. First, if

0 < kqðE½kDmk�Þ2 < 1;

with

kq :¼ ð2ð1þ qÞ=ð6MqÞÞ2;

then differentiation gives that the bound is minimized with
d ¼ kqðE½kDmk�Þ2. Second, if

kqðE½kDmk�Þ2 P 1;

then

Mq 6 4ð1þ qÞE½kDmk�=6

and the bound

�ð1þ qÞE½kDmk� log dþ 6Mqd1=2 þ ð1þ qÞkE½Dm�k

6 �ð1þ qÞE½kDmk� log dþ 4ð1þ qÞE½kDmk�d1=2 þ ð1þ qÞkE½Dm�k

for any d 2 ð0;1Þ. Consequently, combining the two cases, there ex-
ist constants k1; k2, and k3 (which depend on q), such that for
kðC0;CÞk 6 q,

jEaðZmðC0;CÞÞ � EaðZðC0;CÞÞj

6 k1E½kDmk�max 0; log
1

E½kDmk�

� �� 
þ k2E½kDmk� þ k3kE½Dm�k

6 E½kDmk� k1 max 0; log
1

E½kDmk�

� �� 
þ k2

� �
þ k3kE½Dm�k

Direct application of Example 7.62 and Theorem 7.69 of Rockafellar
and Wets (1998) then yields the conclusion for E½kDmk� > 0, where

the additional coefficient ð1þ 4q=�Þ originates in that theorem. Fi-
nally, if E½kDmk� ¼ 0, then, in view of (28) and the fact that this im-
plies that kE½Dm�k ¼ 0, we find that for kðC0;CÞk 6 q,

jEaðZmðC0;CÞÞ � EaðZðC0;CÞÞj ¼ 0

The final conclusion then follows by again invoking Example 7.62
and Theorem 7.69 of Rockafellar and Wets (1998). h

Theorem 4 shows that the distance between Cm
� and C� is almost

proportional to E½kDmk�, but with a minor correction by a logarith-
mic term. If the approximation ðXm;YmÞ is caused by measurement
errors of magnitude 1=m, i.e., the absolute value of each component
of ðXm � X;Ym � YÞ is no greater than 1=m almost surely, then
E½kDmk� 6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1
p

=m and the expressions can be simplified. For
n > 0, log x 6 xn for sufficiently large x 2 R. Consequently, for any
n 2 ð0;1Þ and sufficiently large m,

d̂qðCm
�; C�Þ 6 1þ 4q

�

� �
k

m1�n
;

where k > 0 can be determined from k1; k2; k3, and m. That is, the
Euclidean distance between an �-regression vector of Pm to one of
P is Oðmn�1Þ for n 2 ð0;1Þ arbitrarily close to zero.

3.2. Superquantile tracking

We next turn to the situation where we seek to estimate �qaðYðxÞÞ
for x 2 Rn, or a subset thereof, with the goal of eventually minimiz-
ing, at least approximately, �qaðYðxÞÞ by a judicious choice of x. Of
course, with incomplete knowledge about the distributions of YðxÞ
this is a difficult task that can be achieved only approximately. For
example, there is no guarantee that a regression function
f ¼ C0 þ hC;hð�Þi, with ðC0;CÞ 2 C obtained by solving P using
a 2 ð0;1Þ, tracks �qaðYðxÞÞ, i.e., f ðxÞ ¼ �qaðYðxÞÞ for all x 2 Rn. The hope
of such ‘exact’ tracking becomes even less realistic when P must be
replaced by an approximation Pm as typically required in practice.
However, ‘local’ tracking is possible, at least approximately, with
an appropriate weighing of the data available as we discuss next.

We consider the situation where there is a sample of YðxÞ for a
set of x, but the sample is not large enough to allow pointwise esti-
mation of �qaðYðxÞÞ for every x of interest. There may even be no x
for which there are multiple samples of YðxÞ. Concentrating on a
particular x̂ 2 Rn, we hope to estimate �qaðYðx̂ÞÞ by using samples
from YðxÞ for x near x̂, weighted appropriately. The weights should
be nonnegative, sum to one, and can be thought of as an artificially
constructed probability distribution associated with the sample.
Specifically, suppose that xi; i ¼ 1; . . . ; m, are the points where the
sample is observed and yi; i ¼ 1; . . . ; m, are the corresponding real-
izations of YðxiÞ. When estimating a superquantile at x̂, we put
more ‘trust’ on sample points taken near x̂ and consequently the
weight of ðxi; yiÞ may be inversely proportional to kxi � x̂k, with
an appropriate adjustment if x̂ coincides with an xi.

A justification for the approach follows directly from Theorem 3
through the next proposition.

Proposition 5. Suppose that the assumptions of Theorem 3 hold and
that the probability distribution of ðX;YÞ is degenerate at x̂ 2 Rnþ1 in
the sense that ProbððX;YÞ 6 ðx; yÞÞ ¼ uðyÞ, for all y 2 R and x P x̂,
where uðyÞ ¼ ProbðYðx̂Þ 6 yÞ, and ProbððX;YÞ 6 ðx; yÞÞ ¼ 0 other-
wise. If Cm

0;C
m

	 �n o1
m¼1

is a sequence of optimal solutions of Pm, with
a 2 ð0;1Þ, then along every convergent subsequence we have that
Cm

0 þ hCm; hðx̂Þi tends to �qaðYðx̂ÞÞ.

Proof. For the given degenerate distribution of
ðX;YÞ;C0 þ hC;hðXÞi ¼ C0 þ hC;hðx̂Þi almost surely. Consequently,
P reduces to the error minimization problem of Theorem 1 and
C0 þ hC;hðx̂Þi ¼ �qaðYðx̂ÞÞ for every ðC0; CÞ 2 C. The conclusion then
follows from Theorem 3. h
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Suppose that the weights of ðxi; yiÞ; i ¼ 1;2; . . . ; m, in the above
construction are chosen to approximate the degenerate distribu-
tion of Proposition 5, for example by setting them inversely pro-
portional to kxi � x̂k. Then, in view of Proposition 5, a solution of
Pm, constructed using those weights as an artificial probability dis-
tribution for ðXm;YmÞ, leads to an approximation of the considered
superquantile at x̂. Of course, this procedure can be repeated for
different points x̂ to generate a ‘global’ assessment of �qaðYðxÞÞ as
a function of x and eventually facilitate optimization over x. More-
over, the process can be repeated with new or augmented sample
points in a straightforward manner. In a situation where a sample
is not fully randomly generated but x-points are determined by an
analyst, the approach may even motivate scattering those points
near a point of interest x̂ instead of concentrating them all at x̂ ex-
actly. The former approach certainly results in a better ‘global’
understanding of a superquantile as a function of x, but may prove
to be a more economical route to estimate a superquantile at x̂ too.
We examine this situation numerically in Section 6.

4. Validation analysis

Regression modeling must be associated with means of assess-
ing the goodness-of-fit of a computed regression vector. In least-
squares regression, the coefficient of determination

R2 ¼ 1� SSRes

SST
;

where SSRes denotes the residual sum of squares and SST the total
sum of squares, provides a means for such an assessment. While
R2 cannot be relied on exclusively, it provides an indication of the
goodness of fit that is easily extended to the present context of
superquantile regression. In our notation,

R2 ¼ 1� E½ZðC0;CÞ2�
r2ðYÞ ; ð33Þ

and similarly when passing to an approximate random vector
ðXm;YmÞ. From Example 1’ in Rockafellar and Uryasev (2013), we
know that the numerator in (33) is an error measure applied to
ZðC0;CÞ and that it corresponds to the deviation measure r2ð�Þ.
Moreover, the minimization of that error of ZðC0; CÞ results in the
least-squares regression vector. According to Rockafellar and Urya-
sev (2013), these error and deviation measures are in correspon-
dence and belong to a ‘risk quadrangle’ that yields the
expectation as its statistic. This observation motivates the following
definition of a coefficient of determination for superquantile regres-
sion model.

Definition 1. In superquantile regression, the coefficient of deter-
mination of a regression vector ðC0;CÞ 2 Rmþ1 is given by

R2
aðC0;CÞ :¼ 1� EaðZðC0;CÞÞ

DaðYÞ
: ð34Þ

In fact, a similar definition can be formulated for any general-
ized regression consisting of minimizing an error of Zf , with then
another measure of error in the numerator and a corresponding
deviation measure, in the sense of Rockafellar and Uryasev
(2013), in the denominator. As in the classical case, higher
values of R2

a are better, at least in some sense. However,
R2

a 6 1, which is apparent from the nonnegativity of the error
and deviation measures. Indeed, P aims to minimize the error
of ZðC0;CÞ by wisely selecting the regression vector ðC0;CÞ and
thereby also maximizes R2

a. The error is ‘normalized’ with the
overall ‘nonconstancy’ in Y as measured by its deviation measure
to more easily allow for comparison of coefficients of determina-
tion across data sets.

It is possible to obtain large coefficients of determination by
adding explanatory terms to a regression model, i.e., increasing
m, but without necessarily achieving a more useful model. Hence,
it is usual in least-squares regression to also evaluate an adjusted
coefficient of determination that penalizes any term added to the
model that does not reduce variability substantially. This quantity
only increases if a new term reduces SSRes=ðm�mÞ as seen by the
definition

R2
Adj ¼ 1� SSRes=ðm�mÞ

SST=ðm� 1Þ ; ð35Þ

where m is the number of observations. Naturally, then, we define an
adjusted coefficient of determination for superquantile regression
similarly in the case where the distribution of ðX;YÞ has a finite sup-
port of cardinality m.

Definition 2. In superquantile regression, the adjusted coefficient
of determination of a regression vector ðC0;CÞ 2 Rmþ1 is given by

R2
a;AdjðC0;CÞ :¼ 1� EaðZðC0;CÞÞ=ðm�mÞ

DaðYÞ=ðm� 1Þ
: ð36Þ

Again, similar expressions are available for other generalized
regression techniques.

5. Computational methods

The computational task of carrying out superquantile regression
consists of solving the convex optimization problem P, or in prac-
tice the approximate problem Pm due to incomplete distributional
information and other sources of approximations. In this section,
we describe convenient means for solving Pm when ðXm;YmÞ has a
discrete joint distribution with m possible realizations. Regardless
of the distribution of ðXm;YmÞ, a reformulation of Pm in terms of
the deviation measure Da is beneficial. In view of Proposition 3,
the task of determining a regression vector ðCm

0;C
mÞ reduces to that

of minimizing Da Zm
0ð�Þ

� �
, setting Cm equal to an optimal solution,

and then setting Cm
0 ¼ �qa Zm

0ðCmÞ
	 �

. Since it is straightforward to
compute every superquantile of a random variable with a discrete
probability distribution, we focus on the minimization problem,
which takes the following form after writing out the expression
for the deviation measure in this case

Dm : min
C2Rm

1
1� a

Z 1

a
�qb Zm

0ðCÞ
� �

db� E Zm
0ðCÞ

� �
:

The next subsections describe two computational methods for solv-
ing Dm when the distribution of ðXm; YmÞ is discrete.

5.1. Analytical integration

While one might at first get the impression that numerical inte-
gration is required in solving Dm, this may not actually be needed
as shown next. Suppose that ðXm;YmÞ has a discrete distribution with
support ðxj; yjÞ; j ¼ 1;2; . . . ; m, and ProbððXm;YmÞ ¼ ðxj; yjÞÞ ¼ 1=m for
j ¼ 1;2; . . . ; m. This is the case typically encountered in applications,
where ðxj; yjÞ; j ¼ 1;2; . . . ; m, is the data assumed to be equally likely
to occur. We then obtain significant simplifications in Dm.

For any fixed C 2 Rm, the cumulative distribution function of
Zm

0ðCÞ is a piecewise constant function with at most m steps. The
range of the distribution function is f0;1=m;2=m; . . . ;1g or a subset
thereof. By partitioning the integral over b in Dm according to this
range, accounting for the fact that the integral starts at a, the prob-
lem can in this case be written as

min
C2Rm

1
1� a

Xm

i¼ma

Z bi

bi�1

�qb Zm
0ðCÞ

� �
db� E Zm

0ðCÞ
� �

; ð37Þ
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where ma :¼ dmae, with dae being the smallest integer no smaller
than a 2 R, bma�1 ¼ a, and bi ¼ i=m, for i ¼ ma; ma þ 1; . . . ; m. In view
of (4) and (5),

�qbðZm
0ðCÞÞ ¼min

Ub2R
Ub þ

1
1� b

E½maxfZm
0ðCÞ � Ub;0g�

¼ qbðZ
m
0ðCÞÞ þ

1
1� b

E max Zm
0ðCÞ � qbðZ

m
0ðCÞÞ;0

� �� �
ð38Þ

for each b 2 ½0;1Þ. However, the special piecewise-constant struc-
ture of the cumulative distribution function of Zm

0ðCÞ implies that
qb Zm

0ðCÞ
� �

is constant as a function of b on ðbi�1;biÞ for every
i ¼ ma; ma þ 1; . . . ; m. Consequently, Ub;b 2 ða;1Þ in (38) can be re-
placed by a finite number of variables so that (37) takes the form

min
C2Rm

1
1� a

Xm

i¼ma

Z bi

bi�1

min
Ui2R

Ui þ
1

1� b
E max Zm

0ðCÞ � Ui; 0
� �� �� �

db

� E Zm
0ðCÞ

� �
:

The last integral simplifies further since for b 2 ðbm�1; bmÞ ¼
ð1� 1=m;1Þ,

�qb Zm
0ðCÞ

� �
¼ MðCÞ :¼ max

j¼1;2;...;m
yj � hC; xji:

Consequently, (37) takes the form

min
C2Rm

1
1� a

Xm�1

i¼ma

Z bi

bi�1

min
Ui2R

Ui þ
1

1� b
E max Zm

0ðCÞ � Ui; 0
� �� �� �

db

þ MðCÞ
mð1� aÞ � E Zm

0ðCÞ
� �

:

The order of minimization is immaterial and we can equivalently
consider

min
C2Rm ;U2Rm�ma

1
1� a

Xm�1

i¼ma

Z bi

bi�1

Ui þ
1

1� b
E max Zm

0ðCÞ � Ui; 0
� �� �� �

db

þ MðCÞ
mð1� aÞ � E½Zm

0ðCÞ�;

where we let U ¼ ðUma ;Umaþ1; . . . ;Um�1Þ. For i ¼ ma; ma þ 1; . . . ; m� 1,
we define

ai :¼
Z bi

bi�1

1
1� b

db ¼ logð1� bi�1Þ � logð1� biÞ:

Using this notation, (37) simplifies further to

min
C2Rm ;U2Rm�ma

1
1� a

Xm�1

i¼ma

ðbi � bi�1ÞUi

þ 1
1� a

Xm�1

i¼ma

E max Zm
0ðCÞ � Ui;0

� �� �
ai þ

MðCÞ
mð1� aÞ � E Zm

0ðCÞ
� �

:

By introducing another set of auxiliary variables and using the stan-
dard transcription technique for handling max-functions, we reach
the linear program

Dm
LP : min

C;U;V ;W

1
1� a

Xm�1

i¼ma

ðbi � bi�1ÞUiþ
1

mð1� aÞ
Xm�1

i¼ma

Xm

j¼1

aiVij

þ 1
mð1� aÞW �

1
m
Xm

j¼1

ðyj � hC; hðxjÞiÞ

s:t: yj � hC;hðxjÞi � Ui 6Vij; i ¼ ma; . . . ; m� 1; j ¼ 1; . . . ; m
0 6Vij; i ¼ ma; . . . ; m� 1; j ¼ 1; . . . ; m

yj � hC;hðxjÞi 6W; j ¼ 1; . . . ; m
C 2Rm

U ¼ ðUma ; . . . ;Um�1Þ 2Rm�ma

V ¼ ðVma ;1; . . . ;Vm�1;mÞ 2Rðm�maÞm

W 2R:

This equivalent reformulation of Dm involves mþ ðm� maÞðmþ 1Þ þ 1
variables and 2ðm� maÞmþ m inequality constraints. While ma ¼ dmae
may be relatively close to m in practice, the linear program could be-
come large-scaled when m is large and decomposition algorithms
may be needed.

Alternatively, we consider next a numerical integration-based
scheme that avoids some auxiliary variables and constraints, and
also handles the situation when the distribution of ðXm;YmÞ is not
uniformly discrete.

5.2. Numerical integration

The integral in Dm is easily approximated by standard numerical
integration schemes. Suppose that the interval ½a;1� is divided into
l subintervals, where a 6 b0 < b1 < � � � < bl�1 < bl 6 1 and
wi P 0; i ¼ 0;1; . . . ;l, are factors specific to the integration
scheme. An approximation of Dm then takes the form

Dm;l : min
C2Rm

1
1� a

Xl
i¼0

wi�qbi
ðZm

0ðCÞÞ � E Zm
0ðCÞ

� �
:

For large l, an optimal solution of Dm;l is close to that of Dm, as seen
next, under conditions that are satisfied by essentially all commonly
used numerical integration schemes.

Proposition 6. Suppose that for any continuous function
g : ½a;1� ! R, a numerical integration scheme with discretization
points a 6 b0 < b1 < � � � < bl�1 < bl 6 1 and factors wi P 0; i ¼ 0;
1; . . . ;l, satisfies

Xl
i¼0

wigðbiÞ �
Z 1

a
gðbÞdb












! 0

as l!1. Let fCm;lg1l¼1 be a sequence of optimal solutions of Dm;l un-
der this numerical integration scheme. Then, every accumulation point
of fCm;lg1l¼1 is an optimal solution of Dm.

Proof. For any C 2 Rm; �qbðZm
0ðCÞÞ is finite and continuous as a func-

tion of b. Consequently, the assumption on the numerical integra-
tion scheme applies and the objective function of Dm;l converges
pointwise to that of Dm, as l!1. The objective functions are also
finite and convex in C, which follows directly from the convexity of
�qa on L2ðXÞ and the affine form of Zm

0 as a function of C. Conse-
quently, by Theorem 7.17 in Rockafellar and Wets (1998), the objec-
tive function of Dm;l epiconverges to that of Dm and the conclusion
follows from Theorem 7.31 in Rockafellar and Wets (1998). h

While specialized solvers such as Portfolio Safeguard (American
Optimal Decisions, Inc., 2011) handle Dm;l directly with little diffi-
culty under many circumstances, the problem is typically non-
smooth and standard nonlinear programming solvers may fail.
However, following a simple reformulation of Dm;l, utilizing (5),
yields the following equivalent linear program, where we assume
for convenience that bl < 1:

min
C;U;V

1
1� a

Xl
i¼0

wi Ui þ
1

1� bi

Xm

j¼1

pjVij

 !
�
Xm

j¼1

pjðyj � hC;hðxjÞiÞ

s:t: yj � hC;hðxjÞi � Ui 6 Vij; i ¼ 0;1; . . . ;l; j ¼ 1; . . . ; m
0 6 Vij; i ¼ 0;1; . . . ;l; j ¼ 1; . . . ; m
C 2 Rm; U ¼ ðU0;U1; . . . ;UlÞ 2 Rlþ1;

V ¼ ðV0;1; . . . ;Vl;mÞ 2 Rðlþ1Þm:

If bl ¼ 1, then a straightforward modification is required based on
the fact that �q1ðZm

0ðCÞÞ ¼maxj¼1;2;...;m yj � hC; xji. The linear program
consists of mþ lþ 1þ mðlþ 1Þ variables and 2mðlþ 1Þ constraints,
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which may be substantially less than what follows from the analyt-
ical integration approach for large m. In practice, we find that a mod-
erately large l suffices as shown next.

6. Numerical examples

In this section, we illustrate superquantile regression in three
numerical examples. The first example is artificially constructed,
with known conditional superquantiles. The second example is
an instance from the uncertainty quantification literature. The
third example arises in investment analysis. Computations are
mostly carried out in Matlab version 7.14 on a 2.26 gigahertz lap-
top with 8.0 gigabytes of RAM using Portfolio Safeguard (American
Optimal Decisions, Inc., 2011) with VAN as the optimization solver
for Dm;l. When solving Dm

LP we employ GAMS version 23.7 with the
CPLEX 12.3 solver on a 4.0 gigabytes, 2.50 gigahertz laptop.

6.1. Example 1: Solutions methods and tracking

We start by considering a loss random variable

Y ¼ X1 þ X2�; almost surely;

where � is a standard normal random variable and X ¼ ðX1;X2Þ is
uniformly distributed on ½�1;1� � ½0;1�, with �;X1, and X2 indepen-
dent. We consider a regression function of the form
f ðxÞ ¼ C0 þ C1x1 þ C2x2 and set a ¼ 0:90.

We first examine the computational effort required to obtain an
approximate regression vector. Table 1 shows computing times for
solving Dm

LP for increasingly larger sample sizes m obtained by inde-
pendent draws from ð�;X1;X2Þ. While the results correspond to
single instances of Dm

LP , the times vary little between two samples
of the same size and the computing times are therefore represen-
tative. As expected from the discussion at the end of Section 5.1,
the computing time grows quickly as the sample size m increases.
In addition to the inconvenience of long computing times, memory
requirements become problematic. Dm

LP has a special structure and
we anticipate significant reduction in computing times and mem-
ory needs resulting from tailored algorithms. However, the devel-
opment of such algorithms is beyond the scope of the paper.

Second, we consider the alternative approach based on solving
Dm;l. While this approach introduces a numerical integration error,
Proposition 6 indicates that the error is negligible for large l. In
fact, as we see next empirically, moderately large l suffices. More-
over, the substantial reduction in problem size, as compared to
that of Dm

LP , reduces computing times dramatically.
Since �qbðZm

0ðCÞÞ may be nonsmooth as a function of b, standard
numerical integration error bounds may not apply. However, since
�qbðZm

0ðCÞÞ is continuous and nondecreasing as a function of b, the use
of left-endpoint and right-endpoint numerical integration rules in
Dm;l provide lower and upper bounds on the optimal value of Dm,
respectively. Table 2 shows solution vectors ðC0;C1;C2Þ for
l ¼ 100;l ¼ 1000, left-endpoint, right-endpoint, and Simpson’s
numerical integration rules, and sample sizes of m ¼ 100 and
m = 10,000. Each solution of Dm;l is obtained quickly, in about 0.5 and
5 seconds form ¼ 100 andm = 10,000, respectively; see the last column
of Table 2. We also show the corresponding coefficient of determina-
tion R2

a for each instance. For m ¼ 100, the solutions and R2
a are insen-

sitive to the numerical integration rule as well as l. The obtained

solutions are essentially identical to the regression vector obtained
from Dm

LP; see Row 8 of Table 2. For l = 10,000, we note some differ-
ences but magnitudes are small. In this case, we are unable to solve
Dm

LP due to its size. We observe that as indicated by the coefficients
of determination, the linear model f ðxÞ ¼ C0 þ C1x1 þ C2x2 does not
fully capture the variability of the data and a study of other models
may be warranted. However, we omit such an investigation and in-
stead turn to superquantile tracking.

Third, we examine conditional values of Y given realizations of
X ¼ ðX1;X2Þ, i.e., superquantile tracking. For x ¼ ðx1; x2Þ,
YðxÞ ¼ Y jX ¼ x is normally distributed with mean x1 and variance
x2

2. Consequently, it is straightforward to compute that
�q0:9ðYðxÞÞ ¼ x1 þ 1:7550x2. Table 2 shows vectors that only track
�q0:9ðYð�ÞÞ approximately, as C0;C1, and C2 deviate from 0, 1, and
1:755, respectively. In fact, there is in general no guarantee that
every regression function f will satisfy f ðxÞ ¼ �qaðYðxÞÞ for all x, even
for large sample sizes. As indicated by Proposition 5, however, a
superquantile of YðxÞ can be estimated by approximating a degener-
ate distribution of ðX;YÞ at x. Table 3 shows such ‘local’ estimates of
�q0:9ðYðxÞÞ near x ¼ ð0:5;0:5Þ. Specifically, using m ¼ 500 we compute
C0, C1, and C2 by solving Dm

LP as above, with X sampled uniformly from
½�1;1� � ½0;1�. We repeat these calculations 10 times with indepen-
dent samples and obtain the aggregated statistics of Column 2 of Ta-
ble 3. The second row gives an approximate 95% confidence interval
for the mean value of C0 þ 0:5C1 þ 0:5C2 across the 10 meta-replica-
tions. The interval contains �q0:9ðYðð0:5;0:5ÞÞÞ ¼ 1:3775, but is some-
what wide. Proposition 5 indicates that sampling from a smaller set
½0:45;0:55� � ½0:45;0:55� will tend to improve the estimate of
�q0:9ðYðð0:5;0:5ÞÞÞ. Column 3 of Table 3 illustrates this effect, by
showing results comparable to those of Column 2 and Row 2, but
for the smaller interval. As expected, the confidence interval for
C0 þ 0:5C1 þ 0:5C2 narrows around the correct value. The last col-
umn shows similar results, but now for sampling of X uniformly on
½0:495;0:505� � ½0:495; 0:505�. The estimate of �q0:9ðYðð0:5;0:5ÞÞÞ im-
proves only marginally, with the residual uncertainty being due to
the inherent variability in the (relatively small) samples. The narrow
sampling interval causes the last estimate to be similar to that ob-
tained by the standard empirical estimate from 500 realization of
Yðð0:5;0:5ÞÞ, which yields the confidence interval ð1:312;1:462Þ.

While sampling on smaller sets gives better local estimates of
�q0:9ðYðxÞÞ, the global picture deteriorates. The last three rows of Ta-
ble 3 show corresponding approximate 95% confidence intervals
for C0;C1, and C2, respectively. While C0 þ C1x1 þ C2x2 generated
by the set ½�1;1� � ½0;1� provides a reasonably good global picture
of �q0:9ðYðxÞÞ, the smaller sets lose that quality as seen from the
wide confidence intervals. In view of the above results, we see that
an analyst that can choose ‘‘design points,’’ i.e., points x at which to
sample YðxÞ, should balance the need for accurate local estimates
with that of global estimates. In fact, even if the primary focus is
on estimating �qaðYðxÞÞ for a given x, as we see in this example, it
may be equally effective to spread the samples of X near x instead
of exactly at x, and then obtain some global information about
�qaðYð�ÞÞ too. Our methodology provides a flexible framework for
estimating �qaðYðxÞÞ even if there is only a small number of realiza-
tion of YðxÞ, or even none, available. The estimates are based on
realization of Yðx0Þ for x0 near x. None of the numerical examples
in this paper include data with more than one realization of YðxÞ
for any x.

Table 1
Computing times (seconds) to solve Dm

LP for increasing sample size in Example 1.

m 100 200 300 400 500 600 700 800 900 1000 1500 2000

Time 0 0 2 6 17 32 45 65 163 174 996 2972
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6.2. Example 2: Uncertainty quantification

The next example arises in uncertainty quantification of a rect-
angular cross section of a short structural column, with depth d
and width w, under uncertain yield stress and uncertain loads,
see (Eldred et al., 2011). Assuming an elastic-perfectly plastic
material, a limit-state function that quantifies a relationship be-
tween loads and capacity is described by the random variable

Y ¼ �1þ 4X1

wd2X3

þ X2
2

w2d2X2
3

; almost surely; ð39Þ

where the bending moment load X1 and the axial load X2 are nor-
mally distributed with mean 2000 and standard deviation 400,
and mean 500 and standard deviation 100, respectively, and the
material’s yield stress X3, is lognormally distributed with parame-
ters 5 and 0.5, with X1;X2, and X3 independent. We observe that
the second term in (39) is the ratio of moment load to the column’s
moment capacity, and the third term is the square of the ratio of the
axial load to the axial capacity. The constant �1 is introduced for
the sake of a translation such that positive realizations of Y repre-
sent ‘failure’ and nonnegative ones correspond to a situation where
load effects remain within the capacity of the column. (We note
that the orientation of the limit-state function is switched com-
pared to that of Eldred et al. (2011) for consistency with our focus
on ‘losses’ instead of ‘gains.’) We set the width w ¼ 3, and the depth
d ¼ 12.

We seek to quantify the ‘uncertainty’ in Y by surrogate estima-
tion. Of course, in this case, this is hardly necessary; direct use of
(39) suffices. However, in practice, an analytic expression for a lim-
it-state function, as in (39), is rarely available. One then proceeds
with determining a regression function f : R3 ! R, based on a sam-
ple of input-output realizations, such that f ðXÞ, with
X ¼ ðX1;X2;X3Þ, approximates Y in some sense. To mimic this situ-
ation, we consider a sample of size 50,000 drawn independently
from X, the corresponding realizations of Y according to (39), and
two forms of the regression function. The first model is linear
and takes the form

f1ðxÞ ¼ C0 þ C1x1 þ C2x2 þ C3x3

and the second one utilizes basis functions h1ðxÞ ¼ x1=x3 and
h2ðxÞ ¼ ðx2=x3Þ2 and is of the form

f2ðxÞ ¼ C0 þ C1x1=x3 þ C2x2
2=x2

3:

In view of (39), we expect f1 to be unable to capture interaction ef-
fects between variables and its explanatory power may be limited.
In contrast, f2 uses the correct basis functions, but even then f2ðXÞ

may deviate from Y due to the finite sample size used to determine
the regression vector. Table 4 confirms this intuition by showing
approximate regression vectors for both models over a range of
probability levels a as well as for the least-squares (LS) regression.
The vectors are obtained in less than 15 seconds by solving Dm;l,
with m = 50,000, l = 1000, and Simpson’s rule. The last column of
Table 4 shows R2

a (classical coefficient of determination according
to (33) in the case of least-squares regression), which is low for f1

and high for f2 as expected.
In uncertainty quantification and elsewhere, surrogate esti-

mates such as f1ðXÞ and f2ðXÞ are important input to further analy-
sis and simulation. Table 5 illustrates the quality of these surrogate
estimates in this regard by showing various statistics of f1ðXÞ and
f2ðXÞ as compared to those of Y. Row 2, Columns 3–10 show esti-
mated mean, standard deviation, superquantiles at 0.75, 0.9, 0.99,
0.999, probability of failure, and buffered probability of failure
(see (2)) of Y, respectively, using a sample size of 107 and standard
estimators. Coefficients of variation for these estimators are rang-
ing, approximately, from 10�5 for the mean to 0:02 for the proba-
bility of failure. Rows 3–6 of Table 5 show similar results, using
the same sample, for f1ðXÞ, with a ¼ 0:999;0:99;0:9, and 0:75,
respectively. We notice that as a increases, f1ðXÞ becomes increas-
ingly conservative. In fact, for a ¼ 0:999; f1ðXÞ is conservative in all
statistics. Superquantile regression with smaller a fails to be con-
servative for some ‘upper-tail’ statistics. Interestingly, f1ðXÞ based
on a is conservative for all superquantiles up to and including �qa

in these tests. These observations indicate that in surrogate estima-
tion the probability level a should be selected in accordance with
the superquantile statistic of interest. We can then expect to obtain
conserve estimates even for relatively poor surrogates. Row 7 of
Table 5 gives corresponding results for f1ðXÞ under the least-
squares regression fit. While this fit provides an accurate estimate
of the mean (see Column 3), the upper-tail behavior is represented
in a nonconservative manner.

Rows 8–12 of Table 5 show comparable results to those above,
but for the f2ðXÞ models. As also indicated in Table 4, f2ðXÞ is a
much better surrogate of Y than f1ðXÞ and essentially all quantities
improve in accuracy. For example, f2ðXÞ based on superquantile
regression overestimates the buffered failure probability only
moderately with a ¼ 0:999, 0:99, and 0:9, and slightly underesti-
mate with a ¼ 0:75; see the last column of Table 5. In contrast,
least-squares regression underestimates the buffered failure prob-
ability substantially even for this supposedly ‘accurate’ model. Of
course, least-squares regression centers on conditional expecta-
tions and as basis for estimating tail behavior may hide potentially
dangerous risks.

6.3. Example 3: Investment analysis

The last example is a case study taken from the ‘‘Style Classifi-
cation with Quantile Regression’’ documentation in Portfolio Safe-
guard (American Optimal Decisions, Inc., 2011) and deals with the
negative return of the Fidelity Magellan Fund as predicted by the
explanatory variables Russell 1000 Growth Index (X1, RLG), Russell

Table 2
Solution vectors, coefficients of determination, and computing times (seconds) for
Example 1 with varying integration rule as well as number of intervals l and
observations m.

Rule m l C0 C1 C2 R2
0:90

Time

Left Endpoint 100 100 0.0630 1.0951 1.5841 0.568 0.07
Left Endpoint 100 1000 0.0630 1.0951 1.5841 0.568 0.79
Right Endpoint 100 100 0.0630 1.0951 1.5841 0.568 0.08
Right Endpoint 100 1000 0.0630 1.0951 1.5841 0.568 0.83
Simpson’s 100 100 0.0630 1.0951 1.5841 0.568 0.09
Simpson’s 100 1000 0.0630 1.0951 1.5841 0.568 0.77
Analytic 100 NA 0.0630 1.0951 1.5841 0.568 0.05

Left Endpoint 10,000 100 0.0835 1.0049 1.6374 0.392 0.58
Left Endpoint 10,000 1000 0.0820 1.0048 1.6423 0.392 5.91
Right Endpoint 10,000 100 0.0799 1.0050 1.6492 0.392 0.56
Right Endpoint 10,000 1000 0.0816 1.0048 1.6435 0.392 5.00
Simpson’s 10,000 100 0.0818 1.0048 1.6429 0.392 0.56
Simpson’s 10,000 1000 0.0818 1.0048 1.6430 0.392 5.27

Table 3
Approximate 95% confidence intervals when tracking �q0:9ðYð�ÞÞ in Example 1 near
x ¼ ð0:5;0:5Þ using shrinking sampling ranges for X. The correct value
�q0:9ðYðð0:5;0:5ÞÞÞ ¼ 1:378.

X range: ½�1;1� � ½0;1� ½0:45;0:55�2 ½0:495;0:505�2

C0 þ 0:5C1 þ 0:5C2 (1.349, 1.575) (1.329, 1.475) (1.330, 1.473)

C0 (0.029, 0.123) (�2.414, 1.784) (�23.715, 18.329)
C1 (0.971, 1.075) (�0.229, 3.597) (�11.063, 25.656)
C2 (1.523, 1.975) (�1.686, 5.186) (�33.916, 35.701)
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1000 Value Index (X2, RLV), Russell Value Index (X3, RUJ), and Rus-
sell 2000 Growth Index (X4, RUO). (We change the orientation from
‘return’ to ‘negative return’ to be consistent with the orientation of
a loss random variable in the present paper.) The indices classify
the style of the fund; see (American Optimal Decisions, Inc.,
2011) for details. There are m ¼ 1264 total observations available.

We start by considering a linear model
f1ðxÞ ¼ C0 þ C1x1 þ C2x2 þ C3x3 þ C4x4 and compare the obtained
approximate regression vectors for least-squares, quantile, and
superquantile regression under a ¼ 0:75 and 0.90, as shown in
Table 6. Dm is solved through Dm;l with Simpson’s rule and l ¼ 1000,
while quantile regression is carried out directly in Portfolio Safe-
guard’s Shell Environment (American Optimal Decisions, Inc.,
2011). Table 6 also shows the coefficients of determination, where
for least-squares regression we use (33). The fits are good and a
majority of the variability in the data is captured. However, the
small values of C4 and also the corresponding p-value from the
least-squares regression point to the possible merit of dropping
X4 (RUO) as explanatory variable. We from now on focus on super-
quantile regression. A new model f2ðxÞ ¼ C0 þ C1x1 þ C2x2 þ C3x3

yields the approximate regression vectors of Table 7, which also

shows the obtained adjusted coefficients of determination R2
a;Adj.

The switch from R2
a to R2

a;Adj enable us to better compare fits across
models with different number of explanatory variables. In compar-
ison, adjusted coefficients of determination for f1, with a ¼ 0:75
and 0.90, are 0.8732 and 0.8719, respectively. Consequently, the
fit improves slightly by dropping X4 (RUO).

We further reduce the model to a single explanatory variable
and examine the four possibilities in Table 8. We find that R2

a;Adj

deteriorates, but only moderately for the model C0 þ C1X1. This
simple model captures much of the variability in the data set. A
somewhat poorer fit is achieved by X2 (RLV), which is illustrated
in Fig. 1 for a ¼ 0:90. That figure also depicts the corresponding
quantile and least-squares regression lines. It is apparent that
superquantile regression provides a distinct perspective from the
other regression techniques of potential significant value to a deci-
sion maker.

Table 4
Approximate regression vectors and coefficients of determination in Example 2 for
varying a and least-squares (LS) regression.

Model a C0 102C1 104C2 104C3 R2
a

f1 0.999 �0.6797 0.0156 7.9000 �9.1100 0.154
f1 0.99 �0.8084 0.0150 3.8000 �8.2700 0.190
f1 0.9 �0.8579 0.0107 1.5900 �7.7000 0.260
f1 0.75 �0.8705 0.0090 1.0800 �7.5900 0.301
f1 LS �0.8827 0.0070 0.5921 �7.7180 0.571⁄

f2 0.999 �1.0457 1.8640 0.0300 NA 0.902
f2 0.99 �1.0450 1.6182 0.0400 NA 0.891
f2 0.9 �1.0308 1.3393 0.0200 NA 0.894
f2 0.75 �1.0261 1.2595 0.0200 NA 0.893
f2 LS �1.0179 1.1315 0.0056 NA 0.979⁄

⁄ The coefficient of determination is determined by (33).

Table 5
Statistics of f1ðXÞ and f2ðXÞ in Example 2 as compared to those of Y. Columns 3–10 show mean, standard deviation, superquantiles at 0.75, 0.9, 0.99, 0.999, probability of failure,
and buffered probability of failure, respectively.

Model a l r �q0:75 �q0:9 �q0:99 �q0:999 103p 103�p

Y NA �0.8436 0.0996 �0.7113 �0.6211 �0.3501 0.0091 0.3575 1.052

f1ðXÞ 0.999 �0.1259 0.1297 0.0305 0.0856 0.1868 0.2635 158.1838 376.995
f1ðXÞ 0.99 �0.4575 0.1027 �0.3370 �0.2963 �0.2225 �0.1669 0 0
f1ðXÞ 0.9 �0.6940 0.0828 �0.6016 �0.5728 �0.5219 �0.4843 0 0
f1ðXÞ 0.75 �0.7641 0.0777 �0.6795 �0.6544 �0.6106 �0.5786 0 0
f1ðXÞ LS �0.8439 0.0748 �0.7653 �0.7439 �0.7077 �0.6819 0 0

f2ðXÞ 0.999 �0.7611 0.1647 �0.5381 �0.3961 �0.0053 0.44953 3.4410 9.713
f2ðXÞ 0.99 �0.7979 0.1431 �0.6042 �0.4808 �0.1413 0.25383 1.4909 4.206
f2ðXÞ 0.9 �0.8263 0.1184 �0.6660 �0.5640 �0.2831 0.04375 0.4702 1.332
f2ðXÞ 0.75 �0.8337 0.1113 �0.6830 �0.5870 �0.3229 �0.0155 0.3194 0.899
f2ðXÞ LS �0.8451 0.1000 �0.7097 �0.6235 �0.3864 �0.1104 0.1539 0.440

Table 6
Approximate regression vectors and R2

a in Example 3 for model f1.

Regression a C0 C1 (RLG) C2 (RLV) C3 (RUJ) C4 (RUO) R2
a

Least-squares NA 0.0010 �0.5089 �0.5180 0.0484 0.0061 0.9824⁄

Quantile 0.75 0.0045 �0.5438 �0.4518 0.0159 0.0173 –
Superquantile 0.75 0.0095 �0.5036 �0.4723 0.0192 0.0009 0.8735
Quantile 0.90 0.0089 �0.5177 �0.4602 0.0156 �0.0001 –
Superquantile 0.90 0.0138 �0.4837 �0.4912 0.0223 �0.0019 0.8722

⁄ Coefficient of determination is determined by (33).

Table 7
Approximate regression vectors and R2

a;Adj in Example 3 for model f2.

Regression a C0 C1 (RLG) C2 (RLV) C3 (RUJ) R2
a;Adj

Superquantile 0.75 0.0095 �0.5028 �0.4728 0.0200 0.8733
Superquantile 0.90 0.0138 �0.4855 �0.4906 0.0210 0.8720

Table 8
Approximate regression vectors and R2

a;Adj in Example 3 for superquantile regression
with single-variable models.

Model a C0 C1 (RLG) C2 (RLV) C3 (RUJ) C4 (RUO) R2
a;Adj

C0 þ C1X1 0.75 0.0137 �0.8228 – – – 0.7380
C0 þ C1X1 0.90 0.0218 �0.8189 – – – 0.7248
C0 þ C2X2 0.75 0.0321 – �1.0668 – – 0.5940
C0 þ C2X2 0.90 0.0475 – �1.0727 – – 0.5702
C0 þ C3X3 0.75 0.0515 – – �0.7745 – 0.4103
C0 þ C3X3 0.90 0.0714 – – �0.6949 – 0.4162
C0 þ C4X4 0.75 0.0344 – – – �0.5498 0.3962
C0 þ C4X4 0.90 0.0512 – – – �0.5145 0.2593
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7. Conclusions

We present a superquantile regression methodology centered
on the minimization of a measure of error analogous to classical
least-squares and quantile regression. We establish the existence
of a regression function, discuss its possible uniqueness, and its
stability under perturbation, for example caused by sample
approximations of a true distribution. A new coefficient of determi-
nation allows us to quantify the goodness of fit. We show that
superquantile regression requires the solution of a linear program,
as in the case of quantile regression, or alternatively of an optimi-
zation problem with superquantile (conditional value-at-risk) con-
straints. Our computational tests demonstrate that superquantile
regression is computationally tractable, provides new insight
about tail-behavior for quantities of interest, and offers a comple-
mentary tool for the risk-averse decision maker.
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Fig. 1. Regression lines in Example 3 for model C0 þ C2X2.
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