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Abstract. This paper is mainly devoted to the study of the so-called full Lipschitzian stability
of local solutions to finite-dimensional parameterized problems of constrained optimization, which
has been well recognized as a very important property from the viewpoints of both optimization
theory and its applications. Based on second-order generalized differential tools of variational anal-
ysis, we obtain necessary and sufficient conditions for fully stable local minimizers in general classes
of constrained optimization problems, including problems of composite optimization, mathemati-
cal programs with polyhedral constraints, as well as problems of extended and classical nonlinear
programming with twice continuously differentiable data.
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1. Introduction. Lipschitzian stability of locally optimal solutions with respect
to small parameter perturbations is undoubtedly important in optimization theory,
allowing us to recognize robust solutions and support computational work from the
viewpoints of justifying numerical algorithms, their convergence properties, stopping
criteria, etc. There are several versions of Lipschitzian stability in optimization; see,
e.g., the books [1, 3, 5, 13, 23] and the references therein. The focus of this paper
is on what is known as full stability of locally optimal solutions introduced by Levy,
Poliquin, and Rockafellar [6]. This notion emerged as a far-going extension of tilt
stability of local minimizers in the sense of Poliquin and Rockafellar [18]; see section 3
below for the precise definitions and more discussions. It seems to us that full stability
is probably the most fundamental stability notion for locally optimal solutions, from
both theoretical and practical points of view, particularly in connection with numerical
methodology and applications [6, 18].

In [6], the authors derived necessary and sufficient conditions for fully stable
minimizers of parameterized optimization problems written in the unconstrained for-
mat with extended-real-valued and prox-regular cost functions. They expressed these
conditions in terms of a partial modification of the second-order subdifferential (or
generalized Hessian) in the sense of Mordukhovich [11], which was previously used
in [18] for characterizations of tilt stability. As mentioned in [6], implementing this
approach in particular classes of constrained optimization problems important for the
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theory and applications requires the developments of second-order subdifferential cal-
culus for the constructions involved, which was challenging and not available at that
time. Such a calculus has been partly developed in the recent paper by Mordukhovich
and Rockafellar [16] with applications to tilt stability therein.

The main goal of this paper is to obtain complete characterizations of full sta-
bility for remarkable classes of constrained optimization problems expressing these
characterizations entirely in terms of the problem data. The classes under consid-
eration include general models given in composite formats of optimization (partic-
ularly with fully amenable compositions), mathematical programs with polyhedral
constraints (MPPC) on function values, problems of the so-called extended non-
linear programming (ENLP), and consequently for classical problems of nonlinear
programming (NLP) with C2 equality and inequality constraints. The key machin-
ery is based on exact (equality type) second-order calculus rules for the aforemen-
tioned constructions taken partly from [16] and also the new ones derived in this
paper.

The rest of the paper is organized as follows. In section 2 we review the basic
generalized differential tools of variational analysis used in formulations and proofs
of the main results. Section 3 presents definitions of full stability and related notions
for optimization problems written in the unconstrained extended-real-valued format.
We discuss the second-order necessary and sufficient conditions for full stability of
local minimizers in this setting [6] and establish relationships between full stability
of local minimizers and the new notion of partial strong metric regularity (PSMR) of
the corresponding subdifferential mappings. Then these conditions are characterized
via a certain uniform second-order growth condition (USOGC), which is important in
what follows.

Section 4 is devoted to deriving exact chain rules for partial second-order subdif-
ferentials of extended-real-valued functions belonging to major classes of fully amenable
compositions with compatible parameterization, which are overwhelmingly encoun-
tered in finite-dimensional variational analysis and parametric optimization. The
pivoting role in these results is played by the second-order qualification condition
(SOQC), which is a partial specification of the basic one introduced and exploited in
[16]. Then these calculus rules and related results from [16] are applied in section 5
to establishing necessary and sufficient conditions for full stability of local minimiz-
ers in fairly general composite models of constrained optimization, particularly those
described by parametrically fully amenable compositions.

Section 6 concerns MPPC models with C2 data and provides, based on the second-
order variational analysis developed in sections 4 and 5, complete characterizations of
full stability of locally optimal solutions to MPPC under various constraint qualifica-
tions. In particular, the polyhedral constraint qualification (PCQ) is formulated in this
section as an implementation of SOQC in MPPC models governed by fully amenable
compositions. It is shown that PCQ is in fact a manifestation of nondegeneracy
in MPPC and agrees with the classical linear independence constraint qualification
(LICQ) for NLP being strictly weaker than the latter for MPPC. In this section we
characterize full stability in MPPC under PCQ via the new polyhedral version of the
strong second-order optimality condition (PSSOC) and also via PSMR and USOGC
under the partial version of the Robinson constraint qualification (RCQ), which re-
duces to the partial version of the Mangasarian–Fromovitz constraint qualification
(MFCQ) in the case of NLP. Another equivalence proved here is between full sta-
bility and Robinson’s strong regularity of the KKT system associated with MPPC
under PCQ.



1812 B. MORDUKHOVICH, R. ROCKAFELLAR, AND M. SARABI

The final section 7 presents a characterization of full stability of locally optimal
solutions to problems of ENLP, which deal with special classes of outer extended-real-
valued functions in composite models of optimization related to Lagrangian duality.
This characterization is obtained via an appropriate extension of the strong second-
order optimality condition (ESSOC) and is based on the complete calculation of the
second-order subdifferential for the so-called dualizing representation in ENLP.

Throughout the paper we use standard notation of variational analysis; cf. [12, 23].
Recall that given a set-valued mapping F : Rn →→ R

m, the symbol

Lim sup
x→x̄

F (x) :=
{
y ∈ R

m
∣∣∣ ∃xk → x̄, ∃ yk → y as k → ∞

with yk ∈ F (xk) for all k ∈ N := {1, 2, . . .}
}(1.1)

signifies the Painlevé–Kuratowski outer limit of F as x → x̄. Given a set Ω ⊂ R
n

and an extended-real-valued function ϕ : Rn → R := (−∞,∞] finite at x̄, the symbols

x
Ω→ x̄ and x

ϕ→ x̄ stand for x → x̄ with x ∈ Ω and for x → x̄ with ϕ(x) → ϕ(x̄),
respectively. As usual, B(x, r) = Br(x) denotes the closed ball of the space in question
centered at x with radius r > 0.

2. Tools of variational analysis. In this section we briefly overview some basic
constructions of generalized differentiation in variational analysis, which are widely
used in what follows. The major focus of this paper is on second-order subdifferen-
tial (or generalized Hessian) constructions for extended-real-valued functions while,
following mainly [12, 23], we start with recalling the corresponding first-order subdif-
ferentials as well as associated objects of variational geometry.

Given ϕ : Rn → R finite at x̄, its regular subdifferential (known also as the pre-
subdifferential and as the Fréchet or viscosity subdifferential) at x̄ is

∂̂ϕ(x̄) :=

{
v ∈ R

n
∣∣∣ lim inf

x→x̄

ϕ(x) − ϕ(x̄)− 〈v, x− x̄〉
‖x− x̄‖ ≥ 0

}
.(2.1)

While ∂̂ϕ(x̄) reduces to a singleton {∇ϕ(x̄)} if ϕ is Fréchet differentiable at x̄ and to
the classical subdifferential of convex analysis if ϕ is convex, the set (2.1) may often be
empty for nonconvex and nonsmooth functions as, e.g., for ϕ(x) = −|x| at x̄ = 0 ∈ R.
Another serious disadvantage of (2.1) is the failure of standard calculus rules inevitably
required in the theory and applications of variational analysis, including those to
optimization and equilibria.

The picture dramatically changes when we perform a limiting procedure over the

mapping x �→ ∂̂ϕ(x) as x
ϕ→ x̄ that leads us to the (basic first-order) subdifferential

of ϕ at x̄ defined by

∂ϕ(x̄) := Lim sup
x

ϕ→x̄

∂̂ϕ(x)(2.2)

and known also as the general, or limiting, or Mordukhovich subdifferential; it was
first introduced in [9] in an equivalent way. In contrast to (2.1), the subgradient set
(2.2) is often nonconvex (e.g., ∂ϕ(0) = {−1, 1} for ϕ(x) = −|x|) while enjoying a full
calculus based on variational/extremal principles, which replace separation arguments
in the absence of convexity.
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We need also another first-order subdifferential construction for ϕ : Rn → R finite
at x̄, which is a complement to (2.2) in the case of non-Lipschitzian functions. The
singular/horizon subdifferential of ϕ at x̄ is defined by

(2.3) ∂∞ϕ(x̄) := Lim sup
x

ϕ→x̄
λ↓0

λ∂̂ϕ(x).

We know that ∂∞ϕ(x̄) = {0} if and only if ϕ is locally Lipschitzian around x̄, provided
that it is lower semicontinuous (l.s.c.) around this point.

Recall further some constructions of variational geometry needed in what follows
and associated with the subdifferential ones defined above. Given a set ∅ �= Ω ⊂ R

n,
consider its indicator function δ(x; Ω) equal to 0 for x ∈ Ω and to ∞ otherwise. For
any fixed x̄ ∈ Ω, the regular normal cone to Ω at x̄ is

N̂(x̄; Ω) := ∂̂δ(x̄; Ω) =

{
v ∈ R

n
∣∣∣ lim sup

x
Ω→x̄

〈v, x − x̄〉
‖x− x̄‖ ≤ 0

}
(2.4)

and the (basic, limiting) normal cone to Ω at x̄ is N(x̄; Ω) := ∂δ(x̄; Ω). It follows
from (2.2) and (2.4) that the normal cone N(x̄; Ω) admits the limiting representation

N(x̄; Ω) = Lim sup
x

Ω→x̄

N̂(x; Ω)(2.5)

via the Painlevé–Kuratowski outer limit (1.1). If Ω is locally closed around x̄, repre-
sentation (2.5) is equivalent to the original definition by Mordukhovich [9]:

N(x̄; Ω) = Lim sup
x→x̄

[
cone

(
x−Π(x; Ω)

)]
,

where Π(x; Ω) stands for the Euclidean projector of x ∈ R
n on Ω and where “cone”

signifies the (nonconvex) conic hull of a set. Observe also the duality/polarity corre-
spondence

N̂(x̄; Ω) = T (x̄; Ω)∗ :=
{
v ∈ R

n
∣∣∣ 〈v, w〉 ≤ 0 for all w ∈ T (x̄; Ω)

}
(2.6)

between the regular normal cone (2.4) and the tangent cone to Ω at x̄ ∈ Ω defined by

T (x̄; Ω) :=
{
w ∈ R

n
∣∣∣ ∃xk

Ω→ x̄, αk ≥ 0 with αk(xk − x̄) → w as k → ∞
}

(2.7)

and known also as the Bouligand–Severi contingent cone to Ω at this point. Note that
the basic normal cone (2.5) cannot be tangentially generated in a polar form (2.6),
since it is intrinsically nonconvex, while the polar T ∗ to any set T is always convex.
In what follows we may also use the subindex set notation like NΩ(x̄), TΩ(x̄), etc., for
the constructions involved.

Given further a mapping F : Rn →→ R
m, define its coderivative [10] at (x̄, ȳ) ∈

gphF by

(2.8) D∗F (x̄, ȳ)(v) :=
{
u ∈ R

n
∣∣ (u,−v) ∈ N

(
(x̄, ȳ); gphF

)}
, v ∈ R

m,

via the normal cone (2.5) to the graph gphF . The set-valued mapping D∗F (x̄, ȳ) :
R

m →→ R
n is clearly positive-homogeneous; Moreover, if the mapping F : Rn → R

m
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is single-valued (then we omit ȳ = F (x̄) in the coderivative notation) and strictly
differentiable at x̄ (which is automatic when it is C1 around this point), then the
coderivative (2.8) is also single-valued and reduces to the adjoint derivative operator

(2.9) D∗F (x̄)(v) =
{
∇F (x̄)∗v

}
, v ∈ R

m,

with the operator symbol ∗ on the right-hand side of (2.9) standing for the matrix
transposition in finite dimensions. It is worth noting that the coderivative values in
(2.8) are often nonconvex sets due to the intrinsic nonconvexity of the normal cone
on the right-hand side therein. Observe furthermore that this nonconvex normal cone
is taken to a graphical set. Thus its convexification in (2.8), which reduces to the
convexified/Clarke normal cone to the set in question, creates serious trouble; see
Rockafellar [21] and Mordukhovich [12, subsection 3.2.4] for more details.

Coming back to extended-real-valued functions, let us present their second-order
subdifferential constructions, which are at the heart of the variational techniques
developed in this paper. Given ϕ : Rn → R finite at x̄, pick a subgradient ȳ ∈
∂ϕ(x̄) and, following Mordukhovich [11], introduce the second-order subdifferential
(or generalized Hessian) of ϕ at x̄ relative to ȳ by

(2.10) ∂2ϕ(x̄, ȳ)(u) := (D∗∂ϕ)(x̄, ȳ)(u), u ∈ R
n,

via the coderivative (2.8) of the first-order subdifferential mapping (2.2). Observe
that for ϕ ∈ C2 with the (symmetric) Hessian matrix ∇2ϕ(x̄) we have

∂2ϕ(x̄)(u) =
{
∇2ϕ(x̄)u

}
for all u ∈ R

n.

Referring the reader to the book [12] and the recent paper [16] (as well as the bibli-
ographies therein) for the theory and applications of the second-order subdifferential
(2.10), from now on we focus on an appropriate partial counterpart of (2.10) for
functions ϕ : Rn × R

d → R of two variables (x,w) ∈ R
n × R

d. Consider the partial
first-order subgradient mapping

(2.11) ∂xϕ(x,w) :=
{
set of subgradients v of ϕw := ϕ(·, w) at x

}
= ∂ϕw(x),

take (x̄, w̄) with ϕ(x̄, w̄) < ∞, and define the extended partial second-order subdiffer-
ential of ϕ with respect to x at (x̄, w̄) relative to some ȳ ∈ ∂xϕ(x̄, w̄) by

(2.12) ∂̃2
xϕ(x̄, w̄, ȳ)(u) := (D∗∂xϕ)(x̄, w̄, ȳ)(u), u ∈ R

n.

This second-order construction was first employed by Levy, Poliquin, and Rockafellar
[6] for characterizing full stability of extended-real-valued functions in the uncon-
strained format of optimization; see section 3. Some amount of calculus for (2.12)
has been recently developed in the aforementioned paper by Mordukhovich and Rock-
afellar [16], while more calculus results are given in section 4 below. Note that the
second-order construction (2.12) is different from the standard partial second-order
subdifferential

∂2
xϕ(x̄, w̄, ȳ)(u) := (D∗∂ϕw̄)(x̄, ȳ)(u) = ∂2ϕw̄(x̄, ȳ)(u), u ∈ R

n,

of ϕ = ϕ(x,w) with respect to x at (x̄, w̄) relative to ȳ ∈ ∂xϕ(x̄, w̄), even in the
classical C2 setting. Indeed, for such functions ϕ with ȳ = ∇xϕ(x̄, w̄) we have

∂2
xϕ(x̄, w̄)(u) =

{
∇2

xxϕ(x̄, w̄)u
}
, while(2.13)

∂̃2
xϕ(x̄, w̄)(u) = {(∇2

xxϕ(x̄, w̄)u,∇2
xwϕ(x̄, w̄)u)} for all u ∈ R

n.
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3. Full stability and strong regularity in unconstrained format. Let
ϕ : Rn × R

d → R = (−∞,∞] be a proper extended-real-valued function of two vari-
ables (x,w) ∈ R

n × R
d. Throughout the paper we assume, unless otherwise stated,

that ϕ is l.s.c. around the reference points of its effective domain

domϕ := {(x,w) ∈ R
n × R

d| ϕ(x,w) < ∞}.

Following Levy, Poliquin, and Rockafellar [6], consider the two-parametric uncon-
strained problem of minimizing the perturbed function ϕ defined by

(3.1) minimize ϕ(x,w) − 〈v, x〉 over x ∈ R
n

and label it as P(w, v). In this parameterized optimization problem, the vector w ∈ R
d

signifies general parameter perturbations (called basic perturbations in [6]), while the
linear parametric shift of the objective with v ∈ R

n in (3.1) represents the so-called
tilt perturbations.

Our primary goal is to investigate the following fairly general type of quantita-
tive/Lipschitzian stability of local minimizers for the parameterized family P(w, v)
of the optimization problems (3.1) with respect to parameter perturbations (w, v)
varying around the given nominal parameter value (w̄, v̄) corresponding to the un-
perturbed problem P(w̄, v̄). Feasible solutions to P(w, v) are the points x ∈ R

n such
that the function value ϕ(x,w) is finite.

Let x̄ be a feasible solution to the unperturbed problem P(w̄, v̄). For any number
ν > 0 we consider the (local) optimal value function

(3.2) mν(w, v) := inf
‖x−x̄‖≤ν

{
ϕ(x,w) − 〈v, x〉

}
, (w, v) ∈ R

d × R
n,

for the perturbed optimization problem (3.1) and then the corresponding parametric
family of optimal solution sets to (3.1) given by

(3.3) Mν(w, v) := argmin‖x−x̄‖≤ν

{
ϕ(x,w) − 〈v, x〉

}
, (w, v) ∈ R

d × R
n.

A point x̄ is said to be a locally optimal solution to P(w̄, v̄) if x̄ ∈ Mν(w̄, v̄) for some
small ν > 0.

The main focus of this paper is the following notion of Lipschitzian stability for
locally optimal solutions to the unperturbed problem P(w̄, v̄) introduced in [6].

Definition 3.1 (full stability). A point x̄ is a fully stable locally optimal
solution to problem P(w̄, v̄) if there exist a number ν > 0 and neighborhoods W
of w̄ and V of v̄ such that the mapping (w, v) �→ Mν(w, v) is single-valued and
Lipschitz continuous with Mν(w̄, v̄) = {x̄} and the function (w, v) �→ mν(w, v) is
likewise Lipschitz continuous on W × V .

Tilt stability of local minimizers x̄ introduced earlier by Poliquin and Rockafel-
lar [18] corresponds to Definition 3.1 under the fixed basic parameter w = w̄, i.e.,
it imposes single-valued Lipschitzian behavior of v → Mν(w̄, v) with respect to tilt
perturbations v in (3.1). Observe that in this case the Lipschitz continuity of the
optimal value functions mν(w̄, v) is automatic in the finite-dimensional setting under
consideration, since it follows from (3.2) that mν(w̄, v) is finite and concave in v.
Note also that the idea of considering stability from the viewpoint of single-valued
Lipschitzian behavior goes back to Robinson [20], being mainly motivated by appli-
cations to numerical algorithms in optimization.
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To formulate the main result of [6] on characterizing full stability of local min-
imizers in problem P(w̄, v̄) with an extended-real-valued ϕ in finite dimensions, we
need to recall the following important notions of variational analysis; cf. [6, 17, 23] for
more details. An l.s.c. function ϕ(x,w) is prox-regular in x at x̄ for v̄ with compatible
parameterization by w at w̄ if v̄ ∈ ∂xϕ(x̄, w̄) and there exist neighborhoods U of x̄,
W of w̄, and V of v̄ together with numbers ε > 0 and γ ≥ 0 such that

ϕ(u,w) ≥ ϕ(x,w) + 〈v, u− x〉 − γ

2
‖u− x‖2 for all u ∈ U

when v ∈ ∂xϕ(x,w) ∩ V, x ∈ U, w ∈ W, ϕ(x,w) ≤ ϕ(x̄, w̄) + ε.
(3.4)

Furthermore, ϕ(x,w) is called subdifferentially continuous at (x̄, w̄, v̄) if it is contin-
uous as a function of (x,w, v) on the partial subdifferential graph gph ∂xϕ at this
point. If both these properties hold simultaneously, we say that ϕ is continuously
prox-regular in x at x̄ for v̄ with compatible parameterization by w at w̄ or simply
that this function is parametrically continuously prox-regular at (x̄, w̄, v̄).

It is known from [6] that the class of parametrically continuously prox-regular
functions ϕ : Rn × R

d → R at (x̄, w̄, v̄) with v̄ ∈ ∂xϕ(x̄, w̄) is fairly large, including,
in particular, all extended-real-valued functions ϕ(x,w) that are strongly amenable in
x at x̄ with compatible parametrization by w at w̄ in the following sense: There are
h : Rn×R

d → R
m and θ : Rm → R such that ϕ(x,w) = θ(h(x,w)) and h is C2 around

(x̄, w̄), while θ is convex, proper, l.s.c., and finite at h(x̄, w̄) under the first-order
qualification condition

∂∞θ
(
h(x̄, w̄)

)
∩ ker∇xh(x̄, w̄)

∗ = {0}.(3.5)

The parametric continuous prox-regularity of such functions is proved in [6, Proposi-
tion 2.2], where it is shown in addition that the parametric strong amenability of ϕ
formulated above ensures the validity of the basic constraint qualification:

(3.6) (0, q) ∈ ∂∞ϕ(x̄, w̄) =⇒ q = 0.

The strong amenability property and its parametric expansion hold not only in the
obvious cases of C2 and convex functions but in dramatically larger frameworks typ-
ically encountered in finite-dimensional variational analysis and optimization; see
[7, 6, 18, 23].

The main result of [6, Theorem 2.3] is as follows.
Theorem 3.2 (characterization of full stability in unconstrained extended-real-

valued format). Let x̄ be a feasible solution to the unperturbed problem P(w̄, v̄) in (3.1)
at which the first-order necessary optimality condition v̄ ∈ ∂xϕ(x̄, w̄) and the basic
constraint qualification (3.6) are satisfied. Assume in addition that ϕ is parametrically
continuously prox-regular at (x̄, w̄, v̄). Then x̄ is a fully stable locally optimal solution
to P(x̄, w̄) if and only if the second-order conditions

(0, q) ∈ ∂̃2
xϕ(x̄, w̄, v̄)(0) =⇒ q = 0,(3.7)

[(p, q) ∈ ∂̃2
xϕ(x̄, w̄, v̄)(u), u �= 0] =⇒ 〈p, u〉 > 0(3.8)

hold via the extended second-order subdifferential mapping (2.12).
In the subsequent sections of the paper we employ Theorem 3.2 to obtain verifiable

necessary and sufficient conditions for full stability of local minimizers in favorable
classes of constrained optimization problems in terms of the problem data. Achieving
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it requires the implementation and development of second-order subdifferential calcu-
lus as well as precise calculating the partial second-order subdifferential constructions
for the corresponding functions involved.

We proceed in this section with establishing useful relationships between full
stability of local minimizers in the unconstrained format of (3.1) with an extended-
real-valued function ϕ(x,w) and an appropriate version of the so-called strong metric
regularity of the partial subdifferential mapping ∂xϕ. Recall [3] that a set-valued
mapping F : Rn →→ R

m is strongly metrically regular at (x̄, ȳ) ∈ gphF if the inverse
mapping F−1 admits a Lipschitzian single-valued localization around (x̄, ȳ), i.e., there
are neighborhood U of x̄ and V of ȳ and a single-valued Lipschitz continuous mapping
f : V → U such that f(ȳ) = x̄ and F−1(y) ∩ U = {f(y)} for all y ∈ V . This notion
is an abstract version of Robinson’s strong regularity for variational inequalities and
NLP problems [20]; see more discussions in section 6.

Close relationships (equivalences under appropriate constraint qualifications) be-
tween tilt stability and strong regularity have been recently established by Mor-
dukhovich and Rockafellar [16] and Mordukhovich and Outrata [14] in the framework
of NLP and by Lewis and Zhang [8] and Drusvyatskiy and Lewis [4] via strong metric
regularity of subdifferential mappings for extended-real-valued objective functions in
the general unconstrained format of nonparametric optimization. Based on [6], we
now extend the latter results to the parametric framework of (3.1) while establish-
ing the equivalence between full stability of locally optimal solutions to (3.1) and an
appropriate notion of PSMR for the corresponding partial subdifferential mapping of
the function ϕ(x,w) therein. We also establish characterizations of these notions via
a certain partial second-order growth condition.

Given a function ϕ : Rn × R
d → R, consider its partial first-order subdifferential

mapping ∂xϕ : Rn × R
d → R

n and define the partial inverse of ∂xϕ by

(3.9) Sϕ(w, v) :=
{
x ∈ R

n| v ∈ ∂xϕ(x,w)},

where the subdifferential is understood in the basic sense (2.2).
Definition 3.3 (PSMR). Given (x̄, w̄) ∈ domϕ and v̄ ∈ ∂xϕ(x̄, w̄), we say

that the partial subdifferential mapping ∂xϕ : Rn × R
d →→ R

n is PSMR at (x̄, w̄, v̄) if
its partial inverse (3.9) admits a Lipschitzian single-valued localization around this
point.

Note that the notion introduced in Definition 3.3 is different from the (total)
strong metric regularity of ∂xϕ at (x̄, w̄, v̄) discussed above, since it concerns
Lipschitzian localizations of the partial inverse Sϕ instead of the inverse mapping
(∂xϕ)

−1.
Theorem 3.4 (full stability versus PSMR). Given a function ϕ : Rn × R

d → R

with (x̄, w̄) ∈ domϕ, consider the unperturbed problem P(w̄, v̄) in (3.1) with some
v̄ ∈ ∂xϕ(x̄, w̄) and let x̄ be a locally optimal solution to P(w̄, v̄), i.e., x̄ ∈ Mν(w̄, v̄)
for some number ν > 0 in (3.3). Assume that the basic constraint qualification (3.6)
is satisfied at (x̄, w̄). The following assertions hold:

(i) If ∂xϕ is PSMR at (x̄, w̄, v̄), then x̄ is a fully stable local minimizer for P(w̄, v̄)
and the function ϕ is prox-regular in x at x̄ with compatible parameterization
by w at w̄.

(ii) Conversely, if ϕ is parametrically continuously prox-regular at (x̄, w̄, v̄) and if
x̄ is a fully stable local minimizer for P(w̄, v̄), then ∂xϕ is PSMR at (x̄, w̄, v̄).

Proof. To justify assertion (i), assume that the partial subdifferential mapping
∂xϕ is PSMR at (x̄, w̄, v̄) and fix the number ν > 0 from the formulation of the
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theorem. Then it follows from Definition 3.3 that there exist neighborhoods U of x̄,
V of v̄, and W of w̄ such that for all (w, v) ∈ W × V the localization Sϕ(w, v) ∩ U is
single-valued. Without loss of generality suppose Bν(x̄) ⊂ U . We claim that

Mν(w̄, v̄) = {x̄}.

Indeed, by the stationary condition in (3.1) and the assumed PSMR property we have

(3.10) ϕ0(x̄, w̄)− 〈v̄, x̄〉 < ϕ0(x, w̄)− 〈v̄, x〉 for all x ∈ intBν(x̄).

If there is x̃ ∈ Mν(w̄, v̄) with x̃ �= x̄ and ‖x̃ − x̄‖ = ν, then replacing Mν(w̄, v̄) by
Mν/2(w̄, v̄) gives us Mν/2(w̄, v̄) = {x̄}. Thus we can suppose that Mν(w̄, v̄) = {x̄}.
Invoking now the basic constraint qualification (3.6) and employing [6, Proposition 3.5]
ensure the Lipschitz continuity around (w̄, v̄) of the optimal value function mν from
(3.2) and allow us to find η > 0 with

Mν(w, v) ⊂ intBν(x̄) whenever (w, v) ∈ intBη(w̄)× intBη(v̄).

Thus we have under the assumptions made that

(3.11) Mν(w, v) ⊂ Sϕ(w, v) ∩ intBν(x̄) for all (w, v) ∈ intBη(w̄)× intBη(v̄),

which in fact holds as equality by the single-valuedness of the right-hand side and
the nonemptiness of the left-hand one, implying hence that Mν is single-valued and
Lipschitz continuous around (w̄, v̄). This means that x̄ is a fully stable local minimizer
of P(w̄, v̄) by Definition 3.1.

To complete the proof of assertion (i), it remains to justify the claimed parametric
prox-regularity of ϕ at (x̄, w̄). Take any x ∈ intBν(x̄), w ∈ intBη(w̄), and v ∈
∂xϕ(x,w) ∩ intBη(v̄) with the positive numbers ν, η found above. Then x ∈ Mν(w, v)
by the equality in (3.11), and thus we get from the construction of Mν in (3.3) that

ϕ(u,w) ≥ ϕ(x,w) + 〈v, u− x〉 whenever u ∈ intBν(x̄),

which obviously implies by (3.4) the desired parametric prox-regularity of ϕ.
To justify assertion (ii), observe that it follows from the second part of [6, Theo-

rem 2.3] that (3.11) holds as equality with some numbers ν, η > 0 provided that ϕ is
parametrically continuously prox-regular at (x̄, w̄, v̄). Since x̄ is now assumed to be
a fully stable local minimizer in P(w̄, v̄), this ensures the single-valued Lipschitzian
localization of Sϕ around (w̄, v̄, x̄) and thus justifies the PSMR property of the partial
subdifferential mapping ∂xϕ at (x̄, w̄, v̄).

Next we derive necessary and sufficient conditions for PSMR from Definition 3.3
and full stability properties in the case of general extended-real-valued functions via
a partial version of the so-called uniform second-order (quadratic) growth condition.

Definition 3.5 (USOGC). Given ϕ : Rn × R
d → R finite at (x̄, w̄) and given

a partial subgradient v̄ ∈ ∂xϕ(x̄, w̄), we say that the USOGC holds for ϕ at (x̄, w̄, v̄)
if there exist a constant η > 0 and neighborhoods U of x̄, W of w̄, and V of v̄ such
that for any (w, v) ∈ W × V there is a point xwv ∈ U (necessarily unique) satisfying
v ∈ ∂xϕ(xwv, w) and

(3.12) ϕ(u,w) ≥ ϕ(xwv, w) + 〈v, u − xwv〉+ η‖u− xwv‖2 whenever u ∈ U.

Note that for problems of conic programming with C2 data this notion appeared in
a different, while equivalent, form in [1, Definition 5.16] as the “uniform second-order



FULL STABILITY IN OPTIMIZATION 1819

(quadratic) growth condition with respect to the C2-smooth parameterization.” Its
version “with respect to the tilt parameterization” was employed in [1, Theorem 5.36]
for characterizing tilt-stable minimizers of conic programs and then in [8, Theorem 6.3]
and [4, Theorem 3.3] in more general settings of extended-real-valued functions.

Let us employ USOGC from Definition 3.5 to characterize the fully stable local
minimizer of P(w̄, v̄). To achieve this goal, we use the following lemma obtained in
[6, Lemma 5.2].

Lemma 3.6 (uniform second-order growth for convex functions). Let f : Rn → R

be a proper, l.s.c., and convex function whose conjugate f∗ is differentiable on intBν(v̄)
for some v̄ ∈ R

n and ν > 0, and let the gradient of f∗ be Lipschitz continuous on
intBν(v̄) with constant σ > 0. Then for any (x, v) ∈ (gph ∂f)∩ [intBσν

4
(x̄)× intB ν

2
(v̄)]

with x̄ := ∇f∗(v̄) we have

(3.13) f(u) ≥ f(x) + 〈v, u − x〉+ 1

2σ
‖u− x‖2 whenever u ∈ Bσν

4
(x̄).

Proof. Consider the open set O := {v ∈ R
n| B ν

2
(v) ⊂ intBν(v̄)}. Then by [6,

Lemma 5.2] for all v ∈ ∂f(x) ∩O we get the estimate

f(u) ≥ f(x) + 〈v, u− x〉+ 1

2σ
‖u− x‖2 whenever ‖u− x‖ ≤ νσ

2
,

which implies (3.13) for the corresponding pairs (x, v).
Recall that a mapping T : Rn →→ R

n is locally maximal monotone around (x̄, v̄)
if there exist neighborhoods U × V of (x̄, v̄) such that every monotone mapping S :
R

n →→ R
n with (gphT )∩(U×V ) ⊂ gphS satisfies (gphT )∩(U×V ) = (gphS)∩(U×V ).

Theorem 3.7 (relationships between full stability and uniform second-order
growth). Let ϕ : Rn × R

d → R be l.s.c. with v̄ ∈ ∂xϕ(x̄, w̄) for some (x̄, w̄) ∈ domϕ.
The following assertions hold:

(i) If x̄ is a fully stable local minimizer of the unperturbed problem P(w̄, v̄) in
(3.1) and the basic constraint qualification (3.6) is satisfied at (x̄, w̄), then the
USOGC of Definition 3.5 holds at (x̄, w̄, v̄).

(ii) Conversely, assume that ϕ is parametrically continuously prox-regular at
(x̄, w̄, v̄) and that the USOGC holds at this point with the mapping (w, v) �→
xwv in Definition 3.5 being locally Lipschitzian around (w̄, v̄). Then ∂xϕ is
PSMR at (x̄, w̄, v̄).

Proof. To justify (i), let x̄ be a fully stable locally optimal solution to problem
P(w̄, v̄). Then there is a number ν > 0 such that the mapping (w, v) �→ Mν(w, v)
from (3.3) is single-valued and Lipschitz continuous on intBν(w̄)× intBν(v̄) with some
constant σ > 0. For any fixed w ∈ intBν(w̄) consider the function ϕw(·) = ϕ(·, w)
and define

ϕ̄w := ϕw + δBν(x̄), gw := ϕ̄∗
w, and hw := g∗w.

We easily get from (3.3) and the definition of gw that

Mν(w, v) = argminx∈Bν(x̄)

{
ϕ(x,w) − 〈v, x〉

}
∈ ∂gw(v) for v ∈ intBν(v̄).(3.14)

Indeed, it follows from the constructions above that the function gw is convex and is
expressed as

gw(v) = argmaxx∈Bν(x̄)

{
〈v, x〉 − ϕw(x)

}
.
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This readily implies the relationships

gw(v
′)− gw(v) ≥ 〈v′,Mν(w, v)〉 − ϕw(Mν(w, v)) − 〈v,Mν(w, v)〉 + ϕw(Mν(w, v))

= 〈v′ − v,Mν(w, v)〉 for all v′ ∈ R
n,

which yields that (3.14) holds. Consider further the mapping Tw(·) := Mν(w, ·) and
show that it is monotone on intBν(v̄). To check it, pick xi ∈ Tw(vi) with vi ∈ intBν(v̄)
as i = 1, 2 and get from (3.14) that

〈x1 − x2, v1 − v2〉 = 〈x1, v1〉 − 〈x2, v1〉 − 〈x1, v2〉+ 〈x2, v2〉
=
[
gw(v1)− 〈x2, v1〉+ ϕw(x2)

]
+
[
gw(v2)− 〈x1, v2〉+ ϕw(x1)

]
≥ 0.

Since Tw is (Lipschitz) continuous, it is locally maximal monotone around (v̄, x̄) rel-
ative to intBν(v̄) × intBν(x̄); see [23, Example 12.7]. Remembering next that the
subdifferential mappings for convex functions are also maximal monotone, we con-
clude from (3.14) that

∂gw(v) = Tw(v) for all v ∈ intBν(v̄).

Thus gw is Fréchet differentiable on intBν(v̄) and its gradient mapping ∇gw is
Lipschitz continuous with constant σ on this set. Now we are in a position of ap-
plying Lemma 3.6 to the function f := hw with h∗

w = g∗∗w = gw. This gives us the
estimate

hw(u) ≥ hw(x) + 〈v, u − x〉+ 1

2σ
‖u− x‖2 whenever u ∈ intBσν

4
(x̄)(3.15)

for all (x, v) ∈ (gph ∂hw) ∩ [intBσν
4
(x̄) × intB ν

2
(v̄)]. Observe that since the Lipschitz

constant σ does not depend on the w, the estimate in (3.15) is uniform with respect
to w in the selected neighborhood of w̄. Also we can assume without loss of generality
that intBσν

4
(x̄) ⊂ intBν(x̄).

Take now x ∈ (∂hw)
−1(v) = ∂gw(v) = Tw(v) and get from the single-valuedness

of the set Tw(v) by its construction above that

hw(Tw(v)) = hw(x) = ϕw(x) = ϕ(x,w).

This allows us to deduce from (3.15) that

ϕ(u,w) ≥ ϕ(x,w) + 〈v, u− x〉 + 1

2σ
‖u− x‖2(3.16)

whenever (x, v) ∈ (gph ∂hw) ∩ [intBσν
4
(x̄)× intB ν

2
(v̄)] and u ∈ intBσν

4
(x̄).

To conclude the proof of assertion (i), we need to justify the possibility of replacing
the set gph∂hw by that of gph∂ϕw in estimate (3.16). Remember that (gph ∂ϕw) ∩
[intBσν

4
(x̄)×intB ν

2
(v̄)] = (gph ∂Tw)∩[intBσν

4
(x̄)×intB ν

2
(v̄)]. Take (x, v) ∈ (gph ∂ϕw)∩

[intBσν
4
(x̄)× intB ν

2
(v̄)]. This ensures therefore that

x = Tw(v) = ∂gw(v) = (∂hw)
−1(v),

and so (x, v) ∈ (gph ∂hw) ∩ [intBσν
4
(x̄) × intB ν

2
(v̄)]. Since x̄ is a fully stable local

minimizer of (3.1), it follows that x̄ ∈ Mγ(w̄, v̄) for some γ < σν
4 . Taking into account

the basic constraint qualification (3.6) together with [6, Proposition 3.5] gives us
Mγ(w, v) ∈ intBγ(x̄) for any (w, v) ∈ intBγ(w̄) × intBγ(v̄). Thus for any (w, v) ∈
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intBγ(w̄) × intBγ(v̄) we can find xwv = Mγ(w, v) ∈ intBγ(x̄) such that (3.16) holds.
This justifies the validity of the USOGC for ϕ at (x̄, w̄, v̄) and hence ends the proof
of (i).

Next we justify assertion (ii) observing by Theorem 3.4 that it suffices to show
that the mapping ∂xϕ is PSMR at (x̄, w̄, v̄) under the assumptions made. To proceed,
fix the neighborhoods U of x̄, W of w̄, and V of v̄ for which the second-order growth
condition (3.12) holds and thus gives us the single-valued and Lipschitz continuous
mapping s : W × V → U defined by s(w, v) := xwv. Denote Tw(·) := s(w, ·) and
pick any vectors vi ∈ T−1

w (xi) with vi ∈ V and xi ∈ U for i = 1, 2. By (3.12) with
η = (2σ)−1 for some σ > 0 we get the estimates

ϕ(x2, w) ≥ ϕ(x1, w) + 〈v1, x2 − x1〉+
1

2σ
‖x2 − x1‖2,

ϕ(x1, w) ≥ ϕ(x2, w) + 〈v2, x1 − x2〉+
1

2σ
‖x2 − x1‖2,

which tell us that the mapping T−1
w is locally strongly monotone with constant σ−1;

see [23, Definition 12.53]. Hence Tw is locally monotone relative to V and U and in
fact is locally maximal monotone relative to V ×U due to its continuity. Note that if
(v, x) ∈ gphTw, then v ∈ ∂ϕw(x).

Let Fw : Rn →→ R
n be the mapping for which gphF−1

w is the intersection of
gph ∂ϕw and U × V . We have gphTw ⊂ gphFw and thus the inclusions

(3.17) T−1
w (x) ⊂ F−1

w (x) ⊂ ∂ϕw(x) whenever x ∈ U.

It follows from the parametric continuous prox-regularity of ϕ that the mapping ∂ϕw

are locally hypomonotone whenever w ∈ W with the same constant γ > 0 from (3.4),
and so the mapping F−1

w + tI is locally strongly monotone with constant t − γ for
any fixed t > γ; see [23, Example 12.28]. Since T−1

w is locally strongly monotone with
constant σ−1, we keep this property for the mapping T−1

w + tI with constant σ−1 + t.
Hence the mappings (F−1

w +tI)−1 and (T−1
w +tI)−1 are single-valued on their domains.

Furthermore, it follows from (3.17) that gph (T−1
w + tI)−1 ⊂ gph (F−1

w + tI)−1. Now
we claim that

(3.18) Tw(v) = Fw(v) ∈ U for any w ∈ W and v ∈ V.

To justify this, by using (3.17) we get Tw(v) ⊂ Fw(v) for all v ∈ V . To prove the
reverse inclusion, let R be the maximal extension of Tw. Since the mapping Tw is
locally maximal monotone relative to V ×U , we have (gphTw)∩ (V ×U) = (gphR)∩
(V × U). Denote O := Jt(V × U) with the bilinear mapping Jt(v, u) := (v + tu, u)
and observe that O is a neighborhood of (v̄ + tx̄, x̄). It is easy to see that

(3.19) (gph (T−1
w + tI)−1) ∩O = (gph (R−1 + tI)−1) ∩O ⊂ (gph (F−1

w + tI)−1) ∩O.

Pick (u, v) ∈ U × V such that u ∈ Fw(v). This tells us that (v+ tu, u) ∈ (gph (F−1
w +

tI)−1)∩O. Employing Minty’s theorem [23, Theorem 12.12] for the maximal mono-
tone mapping R, we have dom (R−1+tI)−1) = R

n, which says that (R−1+tI)−1)(v+
tu) �= ∅. Taking into account that the mapping (F−1

w + tI)−1 is single-valued on its
domain and applying (3.19) ensure that u = (F−1

w +tI)−1)(v+tu) = (R−1+tI)−1)(v+
tu). This implies that u = (T−1

w + tI)−1)(v + tu) due to (3.19), which justifies the
reverse inclusion. Recalling finally definition (3.9) of the partial inverse Sϕ, we easily
deduce from (3.18) that

Sϕ(w, v) ∩ U = {s(w, v)} whenever (w, v) ∈ W × V



1822 B. MORDUKHOVICH, R. ROCKAFELLAR, AND M. SARABI

for the mapping s defined at the beginning of the proof of (ii). This means that s is
a Lipschitzian single-valued localization of Sϕ, and thus ∂xϕ is PSMR at (x̄, w̄, v̄) by
Definition 3.3.

The only assumption that seems to be restrictive in Theorem 3.7 is the Lipschitz
continuity of the mapping (w, v) �→ xwv. We show in section 6 that it holds for a
broad class of MPPC under the classical Robinson qualification condition.

4. Exact second-order chain rules for partial subdifferentials. This sec-
tion is devoted to deriving exact (i.e., the equality-type) chain rules for the extended
partial second-order subdifferential (2.12) of parametric compositions given in the
form

(4.1) ϕ(x,w) = (θ ◦ h)(x,w) := θ(h(x,w)) with x ∈ R
n and w ∈ R

d,

where h : Rn × R
d → R

m and θ : Rm → R finite at z̄ := h(x̄, w̄). Let v̄ ∈ ∂xϕ(x̄, w̄)
be a first-order partial subgradient, which is fixed in what follows. Assuming that
the mapping h is continuously differentiable around (x̄, w̄) and its derivative ∇h with
respect to both variable (x,w) is strictly differentiable at this point and then imposing
the full rank condition

(4.2) rank∇xh(x̄, w̄) = m

on the corresponding partial Jacobian matrix, the exact second-order chain rule

∂̃2
xϕ(x̄, w̄, v̄)(u) =

(
∇2

xx〈ȳ, h〉(x̄, w̄)u,∇2
xw〈ȳ, h〉(x̄, w̄)u

)
(4.3)

+
(
∇xh(x̄, w̄),∇wh(x̄, w̄)

)∗
∂2θ(z̄, ȳ)(∇xh(x̄, w̄)u)

is proved [16, Theorem 3.1], where u is any vector from R
n, while ȳ is a unique vector

satisfying

(4.4) ȳ ∈ ∂θ(z̄) and ∇xh(x̄, w̄)
∗ȳ = v̄.

Our goal in this section is to justify the exact second-order chain rule (4.3) for
particular classes of outer functions θ in compositions (4.1) without imposing the full
rank condition (4.2). In this way we extend the corresponding results of [16] obtained
for the full second-order subdifferential (2.10) to its partial counterpart (2.12).

Recall [7] that an extended-real-valued function ϕ(x,w) on R
n × R

d is fully
amenable in x at x̄ with compatible parameterization by w at w̄ if it is strongly
amenable with compatible parameterization in the sense above (see the discussion
before Theorem 3.2), while the outer function θ in its composite representation (4.1)
can be chosen as piecewise linear-quadratic, i.e., its graph is the union of finitely many
polyhedral sets; see [23, Chapter 13] for more details.

To proceed with deriving the exact second-order chain rule (4.3) for particular
classes of fully amenable compositions with compatible parameterization (4.1), we
define the set

(4.5) M(x̄, w̄, v̄) :=
{
y ∈ R

m
∣∣∣ y ∈ ∂θ(z̄) with ∇xh(x̄, w̄)

∗y = v̄
}

in the notation above. This set is obviously a singleton if the full rank condition (4.2)
holds, which is not assumed anymore. Denote by S(z) a subspace of Rm parallel
to the affine hull aff ∂θ(z) of the subdifferential ∂θ(z). It follows from the proof of
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[16, Theorem 4.1] that if ϕ in (4.1) is fully amenable in x at x̄ with compatible
parameterization by w at w̄, then for any sufficiently small neighborhood O of z̄ there
are finitely many subspaces S(z) such that

(4.6) ∂2θ(z̄, y)(0) =
⋃
z∈O

S(z) whenever y ∈ M(x̄, w̄, v̄).

Consider now a subclass of fully amenable compositions (4.1) with compatible
parameterization, where the outer function θ is (convex) piecewise linear, i.e., its
epigraph is a polyhedral set; see [23, Theorem 2.49] for this equivalent description.
The next theorem establishes the validity of the exact second-order subdifferential
chain rule (4.3) for such fully amenable compositions without imposing the full rank
condition (4.2).

Theorem 4.1 (exact second-order chain rule for parametric compositions with
piecewise linear outer functions). Let ϕ in (4.1) be fully amenable in x at x̄ with
compatible parameterization by w at w̄, where the outer function θ is piecewise linear.
Then for any v̄ ∈ ∂xϕ(x̄, w̄) we have

(4.7) ∂2θ(z̄, ȳ)(0) = S(z̄) whenever ȳ ∈ M(x̄, w̄, v̄)

with z̄ = h(x̄, w̄). Furthermore, imposing the SOQC

(4.8) ∂2θ
(
z̄, ȳ)(0) ∩ ker∇xh(x̄, w̄)

∗ = {0}

ensures that M(x̄, w̄, v̄) in (4.5) is in fact a singleton {ȳ} and the second-order chain
rule (4.3) holds.

Proof. Fix a neighborhood O of z̄ such that representation (4.6) holds with the
subgradient v̄ ∈ ∂xϕ(x̄, w̄) fixed above. It follows easily from the piecewise linearity
of θ that ∂θ(z) ⊂ ∂θ(z̄) for all z ∈ O. This implies that S(z) ⊂ S(z̄) for such
vectors z, and thus representation (4.6) reduces to (4.7). Let us deduce from (4.7)
and (4.8) that the set M(x̄, w̄, v̄) from (4.5) is a singleton {ȳ}. Indeed, picking any
y1, y2 ∈ M(x̄, w̄, v̄) gives us that y1, y2 ∈ ∂θ(z̄) and that y1 − y2 ∈ ker∇xh(x̄, w̄)

∗.
Since S(z̄) is the subspace parallel to aff ∂θ(z̄), we get y1−y2 ∈ S(z̄), and thus y1 = y2
by (4.7) and the second-order qualification condition (4.8). Denoting now L := S(z̄)
summarizes the situation above as follows:

(4.9) L ∩ ker∇xh(x̄, w̄)
∗ = {0} with S(z) ⊂ L for all z ∈ O.

To proceed further, let dimL =: s ≤ m and observe that for s = m the first
relationship in (4.9) yields the full rank condition (4.2), and thus the exact second-
order chain rule (4.3) follows in this case from [16, Theorem 3.1]. It remains to
consider the case of s < m and proceed similarly to the proof of [16, Lemma 4.2
and Theorem 4.3] with the corresponding modifications and details presented here for
completeness and the reader’s convenience.

In this case we denote byA the matrix of a linear isometry fromR
m into Rs×R

m−s

under which A∗L = R
s×{0}. Observe the composite representation ϕ = ϑ◦P , where

P := A−1h and ϑ := θA. The first-order chain rule of convex analysis gives us

(4.10) ∇xP (x,w) = A−1∇xh(x,w) and ∂ϑ(z′) = A∗∂θ(z) with Az′ = z.

Since S(z) is the subspace parallel to aff ∂θ(z), for each z ∈ O there is a vector bz ∈ R
m

such that S(z) = aff ∂θ(z) + bz. This ensures that
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(4.11)
v = (v1, . . . , vm) ∈ ∂ϑ(z′) = A∗∂θ(z) ⊂ A∗∂θ(z̄)

⊂ A∗L−A∗bz̄ ⊂ R
s × {0} −A∗bz̄.

Consider first the case of bz̄ = 0 above. Then it follows directly from the
relationships in (4.11) and (4.9) that vs+1 = · · · = vm = 0. Representing now
P (x,w) = (p1(x,w), . . . , pm(x,w)) and using the full amenability of ϕ, we have

(4.12) y ∈ ∂ϕ(x,w) ⇐⇒

⎧⎪⎨⎪⎩
∃ v ∈ ∂ϑ(P (x,w)) such that

y = ∇xP (x,w)∗v =

s∑
i=1

∇xpi(x,w)
∗vi.

This means that in analyzing the subgradient mapping ∂ϕ locally via ϑ and P it is
possible to pass without loss of generality to the submatrix P0(x,w) := (p1(x,w), . . . ,
ps(x,w)). Let us now show that rank∇xP0(x̄, w̄) = s. Indeed, consider the equation

(4.13) ∇xP0(x̄, w̄)
∗u = 0

from which we deduce the equalities

∇xh(x,w)
∗(A−1)∗(u, 0) = ∇xP (x̄, w̄)∗(u, 0) = 0.

Since (u, 0) ∈ R
s × {0}, it follows from the kernel condition in (4.9) that u = 0,

and hence (4.13) has only the trivial solution, which means that rank
∇xP0(x̄, w̄) = s. By this we reduce the situation in the proof of the theorem in
the case of bz̄ = 0 under consideration to the full rank condition relative to the sub-
matrix ∇xP0(x̄, w̄) and thus can apply again the exact second-order chain rule from
[16, Theorem 3.1].

Next we consider the remaining case of b := bz̄ �= 0 in (4.11). Defining now
the bar functions θ(z) := θ(z) − 〈b, z〉 and ϕ := θ ◦ h, observe that they are in the
previous case setting; thus we have the exact second-order chain rule (4.3) for ϕ. To
get the result for the original composition ϕ, we begin with the elementary first-order
subdifferential sum rule written as

∂xϕ(x̄, w̄) = ∂xϕ(x̄, w̄)−∇xh(x̄, w̄)
∗b.

Thus for any ṽ ∈ ∂xϕ(x̄, w̄) there is a subgradient v̄ ∈ ∂xϕ(x̄, w̄) such that ṽ =
v̄−∇xh(x̄, w̄)

∗b, and so ȳ ∈ ∂θ(x̄, w̄) with ṽ = ∇xh(x̄, w̄)
∗(ȳ−b). This implies that v̄ =

∇xh(x̄, w̄)
∗ȳ. Employing further the coderivative sum rule from [12, Theorem 1.62]

correspondingly modified for the extended partial subdifferential (2.12) and taking
into account this subdifferential representation for C2 functions (2.13), we get the
expression

(4.14) ∂̃2
xϕ(x̄, w̄, ṽ)(u) = ∂̃2

xϕ(x̄, w̄, v̄)(u)−
(
∇2

xx〈b, h〉(x̄, w̄)u,∇2
xw〈b, h〉(x̄, w̄)u

)
.

On the other hand, by the justified second-order chain rule (4.3) for ϕ in this setting
we have

∂̃2
xϕ(x̄, w̄, ṽ)(u) =

(
∇2

xx〈ȳ − b, h〉(x̄, w̄)u,∇2
xw〈ȳ − b, h〉(x̄, w̄)u

)
(4.15)

+
(
∇xh(x̄, w̄),∇wh(x̄, w̄)

)∗
∂2θ(z̄, ȳ − b)(∇xh(x̄, w̄)u)
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whenever u ∈ R
n. Substituting finally the obvious relationship

∂2θ(z̄, ȳ − b)(u) = ∂2θ(z̄, ȳ)(u), u ∈ R
n,

into (4.14) and (4.15), we arrive at the second-order chain rule (4.3) for the compo-
sition ϕ under consideration in the case of b �= 0 and thus complete the proof of the
theorem.

Next we consider a major subclass of piecewise linear-quadratic outer functions
in parametric fully amenable compositions given by

(4.16) θ(z) = sup
p∈P

{
〈p, z〉 − 1

2 〈p,Qp〉
}
,

where P ⊂ R
m is a nonempty polyhedral set and where Q ∈ R

m×m is a symmetric
positive-semidefinite matrix ensuring the convexity of (4.16). It has been well rec-
ognized that extended-real-valued functions of type (4.16) play a significant role in
many aspects of variational analysis, particularly in setting up “penalty expressions”
in composite formats of optimization; see [22, 23].

Recall further the classical notion of openness for mappings h between topological
spaces: h is open at ū if for any neighborhood U of ū there is some neighborhood V
of h(ū) such that V ⊂ h(U). It is well known that the openness property is essentially
less demanding than its linear counterpart (openness at a linear rate) around the
reference point, which is characterized for smooth mappings by the surjectivity/full
rank of their derivatives; see [12, 23]. Note to this end that considering smooth
mappings h : Rn × R

d → R
m of two variables between finite-dimensional spaces, the

linear openness of h around (x̄, w̄) is equivalent to full rank of the total Jacobian
∇h(x̄, w̄), which is obviously a less restrictive condition than the full rank requirement
(4.2) on the partial Jacobian at this point.

The next theorem establishes the exact second-order chain rule for parametric
fully amenable compositions with outer functions (4.16). It extends to the parametric
case the second-order chain rule from [16, Theorem 4.5] while giving a new proof even
in the nonparametric setting.

Theorem 4.2 (exact second-order chain rule for a major subclass of parametric
fully amenable compositions). Let the composition ϕ in (4.1) be fully amenable in x
at x̄ with compatible parameterization by w at w̄, where the outer function θ belongs
to class (4.16). Assume that Q is positive-definite and that h : Rn×R

d → R
m is open

at (x̄, w̄). Then for any partial subgradient v̄ ∈ ∂xϕ(x̄, w̄) the set M(x̄, w̄, v̄) in (4.5)
is a singleton {ȳ} and the second-order chain rule (4.3) holds.

Proof. First we show that the positive-definiteness of Q ensures that the sub-
differential mapping z �→ ∂θ(z) is single-valued and Lipschitz continuous around z̄.
Indeed, it follows from [16, Lemma 4.4] that

(4.17) ∂2θ(z̄, y)(0) = {0} for any y ∈ ∂θ(z̄),

which implies by (4.6) that S(z) = {0} whenever z is sufficiently close to z̄ and the
validity of the second-order qualification condition (4.8). This justifies the single-
valuedness of the subdifferential mapping z �→ ∂θ(z) = ∇θ(z) around z̄ and ensures,
in particular, that M(x̄, w̄, v̄) =: {ȳ}. Moreover, by the underlying relationship (4.17)
and definition (2.10) of the second-order subdifferential we have

{0} = ∂2θ(z̄, ȳ)(0) = (D∗∂θ)(z̄, ȳ)(0) with ȳ = ∇θ(z̄),
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and hence the Mordukhovich criterion [23, Theorem 9.40] tells us that the mapping
z �→ ∇θ(z) is in fact locally Lipschitzian around z̄.

Observe further that the inclusion ⊂ in (4.3) is established in [16, Theorem 3.3]
in a more general setting. To justify the opposite inclusion ⊃ in (4.3), take any (x̃, w̃)
near to (x̄, w̄), denote z̃ := h(x̃, w̃) and ỹ := ∇θ(z̃), and then show that

∂̂〈u,∇xϕ〉(x̃, w̃) ⊃
(
∇2

xx〈ỹ, h〉(x̃, w̃)u,∇2
xw〈ỹ, h〉(x̃, w̃)u

)
(4.18)

+
(
∇xh(x̃, w̃),∇wh(x̃, w̃)

)∗
∂̂〈∇xh(x̄, w̄)u,∇θ〉(z̃)

for all u ∈ R
n. Indeed, picking any p ∈ ∂̂〈∇xh(x̄, w̄)u,∇θ〉(z̃) and fixing an arbitrary

number γ > 0, we get the estimate

〈p, z − z̃〉 − 〈∇xh(x̄, w̄)u,∇θ(z)−∇θ(z̃)〉
≤ γ(‖z − z̃‖+ ‖〈∇xh(x̄, w̄)u,∇θ(z)−∇θ(z̃)〉‖)
≤ (� + �2‖∇xh(x̄, w̄)u‖)γ(‖x− x̃‖+ ‖w − w̃‖),

where (x,w) is sufficiently close to (x̃, w̃), z = h(x,w), and � is a common local
Lipschitz constant for h, ∇h, and ∇θ. With no loss of generality, suppose that
‖x̄− x̃‖+ ‖w̄− w̃‖ < γ and ‖x− x̃‖+ ‖w− w̃‖ < 1. Then elementary transformations
give us the relationships

〈∇xh(x̄, w̄)u,∇θ(z)−∇θ(z̃)〉
= 〈u, (∇xh(x̄, w̄)−∇xh(x̃, w̃))

∗(∇θ(z)−∇θ(z̃))〉
+ 〈u,∇xh(x̃, w̃)

∗(∇θ(z)−∇θ(z̃))〉
≤ ‖u‖�3(‖x̄− x̃‖+ ‖w̄ − w̃‖)(‖x− x̃‖+ ‖w − w̃‖)
+ 〈u,∇xϕ(x,w) −∇xϕ(x̃, w̃)〉
+ 〈u, (∇xh(x̃, w̃)−∇xh(x,w))

∗∇θ(z̃)〉
+ 〈u, (∇xh(x̃, w̃)−∇xh(x,w))

∗(∇θ(z)−∇θ(z̃))〉
≤ ‖u‖�3γ(‖x− x̃‖+ ‖w − w̃‖) + 〈u,∇xϕ(x,w) −∇xϕ(x̃, w̃)〉
+ 〈(∇2

xx〈ỹ, h〉(x̃, w̃)u,∇2
xw〈ỹ, h〉(x̃, w̃)u), (x̃− x, w̃ − w)〉

+ γ(‖x− x̃‖+ ‖w − w̃‖) + �3‖u‖γ(‖x− x̃‖+ ‖w − w̃‖)
= 〈u,∇xϕ(x,w) −∇xϕ(x̃, w̃)〉+ μγ(‖x− x̃‖+ ‖w − w̃‖)

+
〈(

∇2
xx〈ỹ, h〉(x̃, w̃)u,∇2

xw〈ỹ, h〉(x̃, w̃)u
)
, (x̃− x, w̃ − w)

〉
,

where μ := 2‖u‖�3 + 1 and ỹ = ∇θ(z̃). Similar arguments ensure that

〈∇xh(x̃, w̃)
∗q,∇wh(x̃, w̃)

∗q), (x − x̃, w − w̃)〉 ≤ 〈q, z − z̃〉+ γ(‖x− x̃‖+ ‖w − w̃‖)

for any q ∈ ∂̂〈∇xh(x̄, w̄)u,∇θ〉(z̃) and all pairs (x,w) sufficiently close to (x̃, w̃).
Combining the above estimates gives us〈

(∇xh(x̃, w̃)
∗w,∇wh(x̃, w̃)

∗w)

+
(
∇2

xx〈ỹ, h〉(x̃, w̃)u,∇2
xw〈ỹ, h〉(x̃, w̃)u

)
, (x− x̃, w − w̃)

〉
− 〈u,∇xϕ(x,w) −∇xϕ(x̃, w̃)〉 ≤ γ

(
μ+ 2 + �2‖∇h(x̄, w̄)u‖

)(
‖x− x̃‖

+ ‖w − w̃‖+ ‖∇xϕ(x,w) −∇xϕ(x̃, w̃)‖
)
,
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which ensures (4.18) by taking into account construction (2.1) of the regular subdif-
ferential.

To justify the desired limiting version of (4.18), we proceed as follows. Take any
vector

q ∈ ∂2θ(z̄, ȳ)(∇xh(x̄, w̄)u) = ∂〈∇xh(x̄, w̄)u,∇θ〉(z̄)

with u ∈ R
n and by definition (2.2) find sequences zk → z̄ and qk → q as k → ∞

such that qk ∈ ∂̂〈∇xh(x̄, w̄)u,∇θ〉(zk) for all k ∈ N. By the assumed openness of h at
(x̄, w̄) there are sequences (xk, wk) → (x̄, w̄) with zk = h(xk, wk). Substituting finally
(xk, wk) = (x̃, w̃) into (4.18) and passing to the limit as k → ∞ complete the proof
of the theorem.

5. Full stability in composite models of optimization. In this section we
apply the developed second-order calculus rules to derive necessary and sufficient
conditions for full stability in composite models of optimization written in the form
(5.1)
minimize ϕ(x) := ϕ0(x) + θ(ϕ1(x), . . . , ϕm(x)) = ϕ0(x) + θ(Φ(x)) over x ∈ R

n,

where ϕ0 : R
n → R, θ : Rm → R, and Φ(x) := (ϕ1(x), . . . , ϕm(x)) is a mapping from

R
n to R

m. Written in the unconstrained form, problem (5.1) is actually a problem of
constrained optimization with the cost function ϕ0 and the set of feasible solutions
given by

X := {x ∈ R
n| (ϕ1(x), . . . , ϕm(x)) ∈ Z} with Z := {z ∈ R

m| θ(z) < ∞}.

Observe that the results presented in this section for problem (5.1) can be easily trans-
ferred to problem of this type with additional geometric constraints given by x ∈ Ω
via a polyhedral set Ω ⊂ R

n. Indeed the only change needed to be done is replacing
the mapping Φ in (5.1) by x �→ (x, ϕ1(x), . . . , ϕm(x)) and the set Z above by the
convex polyhedron Ω × Z. As discussed in [22, 23], the composite format (5.1) is
a general and convenient framework, from both theoretical and computational view-
points, to accommodate a variety of particular models in constrained optimization.
Note that conventional nonlinear programs with s inequality constraints and m − s
equality constraints can be written in the form

(5.2) minimize ϕ0(x) + δZ(Φ(x)) over x ∈ R
n

via the indicator functions of the set Z = R
s
−×{0}m−s. Extended versions of nonlinear

programs are studied in sections 6 and 7 below.
Following the scheme of section 3, consider now the fully perturbed versionP(w, v)

of (5.1) with two parameters (w, v) ∈ R
d × R

n standing, respectively, for basic and
tilt perturbations:
(5.3)
minimize ϕ(x,w) − 〈v, x〉 over x ∈ R

n with ϕ(x,w) := ϕ0(x,w) + (θ ◦ Φ)(x,w)

and Φ(x,w) = (ϕ1(x,w), . . . , ϕm(x,w)) defined on R
n×R

d. Our first characterization
of full stability in (5.2) utilizes the exact chain rule (4.3) for the extended second-order
subdifferential obtained in [16, Theorem 3.1] under the full rank condition (4.2) on Φ =
h. For simplicity we suppose that all the functions ϕi for i = 0, . . . ,m are C2 around
the reference points, although it is sufficient to assume that ϕi are merely smooth with
strictly differentiable derivatives. Observe also that such properties are sometimes
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needed only partially with respect to the decision variable x; see the formulations
and proofs below. It is worth noting that in the next theorem we use the second-
order subdifferential of θ = θ(z) and the special form (2.13) of the extended partial
second-order subdifferential for the C2 functions ϕi = ϕi(x,w).

Theorem 5.1 (characterizing fully stable local minimizers for composite prob-
lems under full rank condition). Let x̄ be a feasible solution to the unperturbed problem
P(w̄, v̄) in (5.3) with some w̄ ∈ R

d and v̄ ∈ ∂xϕ(x̄, w̄), where ϕ0,Φ ∈ C2 around (x̄, w̄)
under the validity of the full rank condition

(5.4) rank∇xΦ(x̄, w̄) = m.

Assume further that the outer function θ is continuously prox-regular at z̄ := Φ(x̄, w̄)
for the unique vector ȳ satisfying the relationships

(5.5) ∇xΦ(x̄, w̄)
∗ȳ = v̄ −∇xϕ0(x̄, w̄) and ȳ ∈ ∂θ(z̄).

Then x̄ is a fully stable local minimizer for P(w̄, v̄) if and only if we have the impli-
cation

(5.6) [(p, q) ∈ T (x̄, w̄, v̄)(u), u �= 0] =⇒ 〈p, u〉 > 0

for the set-valued mapping T (x̄, w̄, v̄) : Rn →→ R
n × R

d defined by

T (x̄, w̄, v̄)(u)

:=
(
∇2

xxϕ0(x̄, w̄)u,∇2
xwϕ0(x̄, w̄)u

)
+
(
∇2

xx〈ȳ,Φ〉(x̄, w̄)u,∇2
xw〈ȳ,Φ〉(x̄, w̄)u

)
+
(
∇xΦ(x̄, w̄),∇wΦ(x̄, w̄)

)∗
∂2θ(z̄, ȳ)(∇xΦ(x̄, w̄)u), u ∈ R

n.

Proof. We apply the characterization of full stability from Theorem 3.2 to the
function ϕ(x,w) in (5.3). Observe first that the condition v̄ ∈ ∂xϕ(x̄, w̄) on the tilt
perturbation can be equivalently written as

(5.7) v̄ ∈ ∂xϕ0(x̄, w̄) +∇xΦ(x̄, w̄)
∗∂θ(z̄).

Indeed, this follows from first-order rules for ϕ in (5.3) under the full rank assumption
on ∇xΦ(x̄, w̄); see, e.g., [12, Propositions 1.107(ii) and 1.112(i)]. Employing further
the calculus of prox-regularity from [19, Theorems 2.1 and 2.2], which can be easily
extended to the parametric case under consideration, allows us to conclude that the
composite function ϕ is parametrically continuously prox-regular at (x̄, w̄, v̄).

Let us show next that the basic constraint qualification (3.6) is automatically
satisfied, under the assumptions made, for the function ϕ given in (5.3). Indeed, by
the smoothness of ϕ0 the constraint qualification (3.6) is clearly equivalent to

(5.8) (0, q) ∈ ∂∞(θ ◦ Φ)(x̄, w̄) =⇒ q = 0.

Employing in (5.8) the chain rule for (2.3) from [12, Proposition 1.107(ii)] reduces it
to the implication[

∇xΦ(x̄, w̄)
∗p = 0, ∇wΦ(x̄, w̄)

∗p = q, p ∈ ∂∞θ(z̄)
]
=⇒ q = 0,

which obviously holds due to the full rank condition (5.4).
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Now we are ready to apply the characterization of full stability from Theorem 3.2
to the function ϕ in (5.3). Let us first check that condition (3.7) is automatically
satisfied in the setting under consideration. To proceed, apply to this composite
function ϕ the second-order sum rule from [12, Proposition 1.121] and then the second-
order chain rule from [16, Theorem 3.1], which tell us that (3.7) is equivalent to[

(0, q) ∈
(
∇xΦ(x̄, w̄),∇wΦ(x̄, w̄)

)∗
∂2θ(z̄, ȳ)(0)

]
=⇒ q = 0,

where the uniqueness of the vector ȳ satisfying (5.5) follows from the full rank condi-
tion (5.4). The last implication can be rewritten as[

∇xΦ(x̄, w̄)
∗p = 0, ∇wΦ(x̄, w̄)

∗p = q, p ∈ ∂2θ(z̄, ȳ)(0)
]
=⇒ q = 0,

which surely holds by the full rank of ∇xΦ(x̄, w̄) in (5.4). To complete the proof of
the theorem, it remains finally to observe that condition (3.8) in Theorem 3.2 reduces
to that of (5.6) imposed in this theorem due to the aforementioned second-order sum
and chain rules from [12, Proposition 1.121] and [16, Theorem 3.1] applied to the
function ϕ in (5.3).

Note that the case of only the tilt perturbations in (5.3), i.e., when ϕ0 and Φ
do not depend on w therein, Theorem 5.1 reduces to the characterization of tilt-
stable minimizers for (5.1) obtained in [16, Theorem 5.1]. The next result gives
characterizations of fully stable locally optimal solutions to P(w̄, v̄) in (5.3) for two
major classes of parametrically amenable composition in (5.3) that are derived on the
basis of the new second-order chain rules from section 4 and extend the corresponding
characterizations of tilt stability obtained in [16, Theorem 5.4].

Theorem 5.2 (characterizations of full stability in optimization problems de-
scribed by parametrically fully amenable compositions). Let x̄ be a feasible solution
to the unperturbed problem P(w̄, v̄) in (5.3) with some w̄ ∈ R

d and v̄ ∈ ∂xϕ(x̄, w̄).
Assume that ϕ0 ∈ C2 around (x̄, w̄) and that the composition θ ◦ Φ is fully amenable
in x at x̄ with compatible parameterization by w at w̄ and with the outer function θ
of one of the following types:

(a) either θ is piecewise linear,
(b) or θ is of class (4.16) under the assumptions of Theorem 4.2.

Suppose also in case (a) that the second-order qualification condition (4.8) holds with
h = Φ, where ȳ is the unique vector satisfying (5.5). Then x̄ is fully stable local min-
imizer of P(w̄, v̄) if and only if condition (5.6) is satisfied for the set-valued mapping
T (x̄, w̄, v̄) defined in Theorem 5.1, where the second-order subdifferential ∂2θ(z̄, ȳ) is
calculated by the corresponding formulas in [16].

Proof. As mentioned in section 3, the assumed parametric amenability of θ ◦
Φ implies the parametric continuous prox-regularity of this composition at (x̄, w̄, v̄)
and the validity of the basic constraint qualification (5.8). These properties stay for
the function ϕ in (5.3) while adding the C2 function ϕ0 to the composition θ ◦ Φ;
cf. [19, Theorem 2.2]. Observe further that the partial subgradient v̄ ∈ ∂xϕ(x̄, w̄)
satisfies inclusion (5.7) by the first-order chain rule from [12, Corollary 3.43] and [23,
Theorem 10.6] held under the qualification condition (3.5) with h = Φ for amenable
compositions. Moreover, the uniqueness of ȳ satisfying (5.5) in cases (a) and (b) is
proved in Theorems 4.1 and 4.2, respectively.

To now apply Theorem 3.2 to the composite function (5.3) in the settings under
consideration, we argue similarly to the proof of Theorem 5.1 that (3.7) is satisfied
in these frameworks due to the second-order qualification condition (4.8) with h = Φ.
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Employing finally in (5.3) the exact second-order sum rule and chain rule from [12,
Proposition 1.121] as well as the above Theorems 4.1 and 4.2 allows us to conclude
that condition (3.8) is equivalent to (5.6) for the underlying operator T (x̄, w̄, v̄). This
justifies full stability of x̄ under the assumptions made and thus completes the proof
of the theorem.

6. Full stability and strong regularity for mathematical programs with
polyhedral constraints. This section mainly concerns the study of full stability
and strong regularity for local optimal solutions to MPPC by which we understand
constrained optimization problems of the following type:

(6.1) minimize ϕ0(x) subject to Φ(x) = (ϕ1(x), . . . , ϕm(x)) ∈ Z,

where Z ⊂ R
m is a convex polyhedron given by

(6.2) Z := {z ∈ R
m| 〈aj , z〉 ≤ bj for all j = 1, . . . , l}

with fixed vectors aj ∈ R
m and numbers bj ∈ R as l ∈ N, and where all the functions

ϕi, i = 0, . . . ,m, are C2 around the reference points. Similarly to the discussion at
the beginning of section 5, it is easy to observe that the results of this section can be
transferred to MPPC models with additional geometric constraints given by x ∈ Ω
via a convex polyhedron Ω ⊂ R

n.

We can clearly rewrite problem (6.1) in extended-real-valued form (5.1) with
θ = δZ , or equivalently as (5.2). Note that conventional problems of NLP{

minimize ϕ0(x) subject to ϕi(x) ≤ 0, i = 1, . . . , s,
and ϕi(x) = 0, i = s+ 1, . . . ,m,

(6.3)

can be written in form (6.1) with the polyhedral set Z in (6.2) generated by bj = 0
and

aj =

{
ej for j = 1, . . . ,m,
−ej−m+s for j = m+ 1, . . . , 2m− s,

(6.4)

where each ej ∈ R
m is a unit vector the jth component of which is 1, while the others

are 0.

To study full stability of local minimizers in (6.1), consider the two-parametric
version P(w, v) of this problem that can be written as

(6.5) minimize ϕ0(x,w) + δZ(Φ(x,w)) − 〈v, x〉 over x ∈ R
n

with Φ(x,w) := (ϕ1(x,w), . . . , ϕm(x,w)). Let x̄ be a feasible solution to the un-
perturbed problem P(w̄, v̄) corresponding to the nominal parameter pair (w̄, v̄) with
w̄ ∈ R

d, Φ(x̄, w̄) ∈ Z, and v̄ ∈ ∂xϕ(x̄, w̄), where

(6.6) ϕ(x,w) := ϕ0(x,w) + δZ(Φ(x,w)).

First we address relationships between full stability of local minimizers for MPPC
and the corresponding specification of the PSMR property of the partial subdifferential
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mapping ∂xϕ for ϕ defined in (6.6). Recall [1, Definition 2.86] that the RCQ with
respect to x holds at (x̄, w̄) with Φ(x̄, w̄) ∈ Z in (6.1) if we have the inclusion

(6.7) 0 ∈ int
{
Φ(x̄, w̄) +∇xΦ(x̄, w̄)R

n − Z
}
.

It is well known that this condition can be equivalently described as

NZ(Φ(x̄, w̄)) ∩ ker∇xΦ(x̄, w̄)
∗ = {0},(6.8)

which obviously reduces to the MFCQ with respect to x for NLP. The following result
establishes the equivalence between full stability of local minimizers for MPCC and
the elaborated PSMR condition for such problems under RCQ.

Proposition 6.1 (equivalence between full stability of local minimizers and
PSMR for MPPC under RCQ). Let Φ(x̄, w̄) ∈ Z for MPPC (6.1), and let RCQ
(6.7) hold at (x̄, w̄). Then x̄ is a fully stable locally optimal solution to P(w̄, v̄) in
(6.5) with v̄ satisfying

(6.9) v̄ ∈ ∇xϕ0(x̄, w̄) +∇xΦ(x̄, w̄)
∗NZ(Φ(x̄, w̄))

if and only if x̄ ∈ Mν(w̄, v̄) for some ν > 0 and the subgradient mapping ∂xϕ for ϕ
from (6.6) is PSMR at (x̄, w̄, v̄), where the partial inverse mapping (3.9) is equivalently
represented locally around (x̄, w̄, v̄) as

(6.10) Sϕ(w, v) =
{
x ∈ R

n
∣∣∣ v ∈ ∇xϕ0(x,w) +∇xΦ(x,w)

∗NZ(Φ(x,w))
}
.

Proof. Note (see, e.g., [23, Exercises 8.14 and 10.26]) that the convexity of Z and
the validity of RCQ at (x̄, w̄) in the equivalent form (6.8) ensure the exact first-order
subdifferential chain rule

∂xδZ(Φ(x̄, w̄)) = ∇xΦ(x̄, w̄)
∗NZ(Φ(x̄, w̄)).

Combining it with the elementary sum rule in (6.6) gives us the representation

∂xϕ(x̄, w̄) = ∇xϕ0(x̄, w̄) +∇xΦ(x̄, w̄)
∗NZ(Φ(x̄, w̄)),(6.11)

which holds also for (x,w) around (w̄, v̄). This allows us to describe the stationary
condition v̄ ∈ ∂xϕ(x̄, w̄) in the form (6.9) and also justifies the equivalent form (6.10)
of the partial inverse (3.9) under RCQ.

Now we employ Theorem 3.4 for (6.6). It follows from [6, Proposition 2.2] that
condition (3.6) holds automatically under the assumed RCQ, which justifies the suf-
ficiency part of the proposition.

To obtain the converse implication of the theorem, we use again [23, Proposi-
tion 2.2], which ensures the parametric continuous prox-regularity of ϕ at (x̄, w̄, v̄)
under RCQ. It remains to employ the partial subdifferential representation (6.11) to
complete the proof.

For our further considerations, recall the following well-known formula (see, e.g.,
[3, Theorem 2E.3]) for the normal cone to the polyhedral set Z at Φ(x̄, w̄):
(6.12)

NZ(Φ(x̄, w̄)) =

⎧⎨⎩
l∑

j=1

μjaj

∣∣∣ μj ≥ 0 for j ∈ I(Φ(x̄, w̄)), μj = 0 for j �∈ I(Φ(x̄, w̄))

⎫⎬⎭ ,
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where I(z) := {i ∈ {1, . . . , l}| 〈aj , z〉 = bj} signifies the set of active indices in the
polyhedral description (6.2). The associate description of the tangent cone to Z at
Φ(x̄, w̄) is

(6.13) TZ(Φ(x̄, w̄)) =
{
z ∈ R

m
∣∣∣ 〈aj , z〉 ≤ 0 for j ∈ I(Φ(x̄, w̄))

}
.

Since our analysis is local, we suppose without loss of generality that all the inequal-
ity constraints in (6.1) with the polyhedral set Z in (6.2) are active at (x̄, w̄), i.e.,
I(Φ(x̄, w̄)) = {1, . . . , l}.

Now we formulate yet another constraint qualification in MPPC crucial for the
subsequent characterization of fully stable locally optimal solutions to (6.1) with the
polyhedral constraint set (6.2) and establish its relationship with Robinson’s strong
regularity.

Definition 6.2 (polyhedral constraint qualification). Let Φ(x̄, w̄) ∈ Z for the
polyhedral set Z from (6.2). We say that the PCQ holds at (x̄, w̄) if

(6.14)
{
z ∈ R

m
∣∣∣ 〈aj , z〉 = 0 for all j = 1, . . . , l

}⊥
∩ ker∇xΦ(x̄, w̄)

∗ = {0}.

It is worth mentioning that by [23, Lemma 6.45] condition (6.14) can be rephrased
as

(6.15) span
{
aj

∣∣∣ j = 1, . . . , l
}
∩ ker∇xΦ(x̄, w̄)

∗ = {0}.

Furthermore, it is not hard to check that for NLP (6.3) with the generating vectors
aj given in (6.4) the introduced PCQ reduces, by taking into account that all the
inequality constraints are active, to the classical LICQ with respect to the decision
variable x: the partial gradients of the constraint functions at the reference point

(6.16) ∇xϕ1(x̄, w̄), . . . ,∇xϕm(x̄, w̄) are linearly independent.

Of course, LICQ (6.16) ensures the validity of PCQ from Definition 6.2 in the general
MPCC setting. We show in what follows that the usage of PCQ allows us to obtain
strictly better results in comparison with those (also new), which hold under LICQ in
the MPPC framework.

As can be seen from the proof of our major characterizations of full stability
in MPPC given in Theorem 6.6, PCQ (6.14) is generated by (actually equivalent
to) the second-order qualification condition (4.8) ensuring the validity of the exact
second-order chain rule of Theorem 4.1 in the MPCC framework. Prior to deriving
characterizations of fully stable local minimizers of MPPC under PCQ, let us discuss
its relationship with RCQ, nondegenerate points, and its role in describing the KKT
variational system associated with MPPC. Following the pattern of [1, Definition 4.70]
and taking into account that the polyhedral set Z in (6.2) is C∞-reducible to the
positive orthant Rl

+ at any z̄ ∈ Z (see [1, Example 3.139]), we say that x̄ ∈ R
n is a

nondegenerate point of the mapping Φ with respect to the parameter w̄ if

(6.17) ∇xΦ(x̄, w̄)R
n + lin

{
TC(Φ(x̄, w̄))

}
= R

m,

where TC(z̄) is the tangent cone at z̄ ∈ C to the set

(6.18) C := {z ∈ R
m| 〈aj , z〉 = bj for all aj ∈ M},
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linΩ stands for the largest linear subspace contained in Ω, and M is the maximal
set of independent vectors in {aj| j = 1, . . . , l}. In what follows we use the standard
Lagrangian function defined by

(6.19) L(x,w, λ) := ϕ0(x,w) +
m∑
i=1

λiϕi(x,w) with λ = (λ1, . . . , λm) ∈ R
m.

Proposition 6.3 (relationships for PCQ). Let (x̄, w̄) be such that Φ(x̄, w̄) ∈ Z
in the framework of MPPC (6.1) with Z from (6.2). Then we have the following
assertions:

(i) PCQ holds at (x̄, w̄) if and only if x̄ is a nondegenerate point of Φ with respect
to w̄.

(ii) For any v̄ satisfying (6.9) we have that the KKT system

∇xL(x̄, w̄, λ̄) = ∇xϕ0(x̄, w̄) +
m∑
i=1

λ̄i∇xϕi(x̄, w̄)

= ∇xϕ0(x̄, w̄) +∇xΦ(x̄, w̄)
∗λ̄ = v̄

(6.20)

admits the unique Lagrange multiplier λ̄ = (λ̄1, . . . , λ̄m) ∈ NZ((Φ(x̄, w̄)).
(iii) PCQ (6.14) always implies RCQ (6.7) at the same point.
Proof. To justify (i), observe that the tangent cone to C in (6.18) is actually a

subspace given by

TC(z̄) =
{
z ∈ R

m
∣∣ 〈aj , z〉 = 0 for all aj ∈ M

}
=
{
z ∈ R

m
∣∣ 〈aj , z〉 = 0 for all j = 1, . . . , l

}
.

Then taking the orthogonal complement of both sides in (6.17), we arrive at the
equivalent PCQ condition (6.14) and thus show that assertion (i) holds.

To verify (ii), let λ1 and λ2 be two Lagrange multipliers satisfying (6.20). This
gives us

(6.21) λ1 − λ2 ∈ ker∇xΦ(x̄, w̄)
∗.

It easily follows from the construction of the set C in (6.18) that

(6.22) aj ∈ C⊥ for all j = 1, . . . , l.

By λ1, λ2 ∈ NZ(Φ(x̄, w̄)) and the normal cone representation (6.12) we get from (6.22)
that λ1 − λ2 ∈ C⊥, which tells us that λ1 = λ2 due to PCQ (6.14) and thus justifies
assertion (ii).

To proceed finally with the proof of (iii), assume that PCQ holds and then verify
the validity of RCQ in the equivalent form (6.8). Let ȳ be an element in the left-hand
side of (6.8). Employing again the normal cone representation (6.12) gives us numbers

μj ≥ 0 for j = 1, . . . , l such that ȳ =
∑l

j=1 μjaj . Then (6.22) ensures that ȳ belongs
to left-hand side of (6.14). Now using PCQ (6.14) tells us that ȳ = 0, and thus RCQ
(6.7) is satisfied, which completes the proof of the proposition.

Note that PCQ (6.14) can be equivalently written as

span{NZ(Φ(x̄, w̄))} ∩ ker∇xΦ(x̄, w̄)
∗ = {0},

which makes it easy to observe that PCQ is robust with respect to small perturbations
(x,w) of (x̄, w̄) and then allow us to conclude by Proposition 6.3(ii) that for any triples
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(x,w, v) sufficiently close to (x̄, w̄, v̄) and satisfying in (6.20) the corresponding set of
Lagrange multipliers is a singleton.

Definition 6.4 (PSSOC). Let λ̄ ∈ R
m be a vector of Lagrange multipliers in

MPPC. We say that the PSSOC holds at (x̄, w̄, v̄, λ̄) with v̄ satisfying (6.9) if

(6.23) 〈u,∇2
xxL(x̄, w̄, λ̄)u〉 > 0 for all 0 �= u ∈ SZ

via the Lagrangian function (6.19), where the subspace SZ is defined as

(6.24) SZ := {u ∈ R
n| 〈aj ,∇xΦ(x̄, w̄)u〉 = 0 whenever j ∈ I1(λ̄)}.

Our next goal is to characterize full stability of local minimizers for MPPC and
the equivalent PSMR property of ∂xϕ under RCQ in terms of the corresponding
MPPC specification of USOGC from Definition 3.5 formulated as follows: Given
ϕ : Rn × R

d → R in (6.6) with Φ(x̄, w̄) ∈ Z and given v̄ ∈ ∂xϕ(x̄, w̄), we say that the
MPPC USOGC holds for Φ at (x̄, w̄, v̄) if there exist η > 0 and neighborhoods U of
x̄, W of w̄, and V of v̄ such that for any (w, v) ∈ W × V there is a point xwv ∈ U
satisfying v ∈ ∂xϕ(xwv , w) and

(6.25) ϕ0(u,w) ≥ ϕ0(xwv, w) + 〈v, u− xwv〉+ η‖u− xwv‖2 for u ∈ U, Φ(u,w) ∈ Z.

Theorem 6.5 (characterizing full stability in MPPC via USOGC under PCQ).

Let (x̄, w̄) be such that Φ(x̄, w̄) ∈ Z, let PCQ (6.14) hold at (x̄, w̄), and let v̄ be taken
from (6.9). Then x̄ is a fully stable local minimizer of P(w̄, v̄) in (6.5) if and only if
USOGC (6.25) is satisfied at (x̄, w̄, v̄).

Proof. The necessity part of the theorem follows from Theorem 3.7(i) by taking
into representation (6.11) valid under PCQ. We now verify the sufficiency part by em-
ploying Proposition 6.1 and showing that the assumed PCQ condition ensures in the
MPPC framework that (6.10) admits a Lipschitzian single-valued localization around
(v̄, w̄). Indeed, we prove that the mapping (w, v) �→ xwv is a Lipschitzian single-
valued localization of (6.10) around (v̄, w̄). To justify this, observe that employing
USOGC (6.25) ensures the existence of positive numbers ν and η = 1

2σ for which the
second-order growth condition (6.25) holds with U := intBν(x̄), W := intBν(w̄), and
V := intBν(v̄). It easily follows from (6.25) that for all (w, v) ∈ W ×V the point xwv

is a unique minimizer of the cost function in (6.5) over x ∈ clU = Bν(x̄).
As mentioned in the proof of Proposition 6.1, the function ϕ in (6.6) is para-

metrically continuously prox-regular at (x̄, w̄, v̄) under RCQ. Furthermore, it fol-
lows from [6, Proposition 3.5] that we can suppose without loss of generality that
xwv ∈ intB ν

2
(x̄). Observe further that a close look at the proof of Theorem 5.1 re-

veals that implication (3.7) holds under the assumed PCQ condition. Employing now
[6, Propositions 3.2 and 4.3] tells us the mapping

Θ(w) := gph ∂ϕw =gph∂xϕ(·, w)=
{
(x,∇xϕ0(x,w)+∇xΦ(x,w)

∗λ)
∣∣ λ ∈ NZ(φ(x,w))

}
has the Aubin/Lipschitz-like property around (w̄, x̄, v̄) due to the Mordukhovich cri-
terion of [23, Theorem 9.40]. This means that there is k > 0 such that

(6.26) Θ(w) ∩ (U × V ) ⊂ Θ(w′) + k‖w − w′‖B1(0)× B1(0) for all w,w′ ∈ W.

Let us now show that the mapping (w, v) �→ xwv is Lipschitz continuous around
(w̄, v̄). To proceed, take w1, w2 ∈ W and v1, v2 ∈ V and observe that USOGC (6.25)
ensures the existence of unique minimizers xw1v1 , xw2v2 ∈ intB ν

2
(x̄). This implies that
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(xw1v1 , v1) ∈ Θ(w1) and (xw2v2 , v2) ∈ Θ(w2). Since furthermore (xw2v2 , v2) ∈ U × V ,
(6.26) gives us a pair (x̃, ṽ) ∈ Θ(w1) such that

(6.27) ‖xw2v2 − x̃‖+ ‖v2 − ṽ‖ ≤ k‖w1 − w2‖.

It allows us to suppose that (xw2v2 , v2) ∈ U×V ; otherwise we can shrink the neighbor-
hoods above. Using this together with USOGC (6.25) gives us that Mν(w1, ṽ) = {x̃}.
Implementing now USOGC (6.25) with the constant η = (2σ)−1, we arrive at

ϕ0(xw1v1 , w1) ≥ ϕ0(x̃, w1) + 〈ṽ, xw1v1 − x̃〉+ 1

2σ
‖xw1v1 − x̃‖2,

ϕ0(x̃, w1) ≥ ϕ0(xw1v1 , w1) + 〈v1, x̃− xw1v1〉+
1

2σ
‖xw1v1 − x̃‖2,

which implies in turn the estimate

‖xw1v1 − x̃‖ ≤ σ‖ṽ − v1‖(6.28)

≤ σ‖ṽ − v2‖+ σ‖v2 − v1‖
≤ σk‖w1 − w2‖+ σ‖v2 − v1‖.

Combining finally (6.27) and (6.28), we conclude that

‖xw1v1 − xw2v2‖ ≤ ‖x̃− xw2v2‖+ ‖xw1v1 − x̃‖
≤ β(‖w1 − w2‖+ ‖v1 − v2‖),

where β := k(σ + 1). This justifies the required Lipschitz continuity of the mapping
(w, v) �→ xwv around (w̄, v̄) and thus completes the proof of the theorem.

The normal cone description (6.12) allows us to find {μ̄j | j = 1, . . . , l} such that

(6.29) λ̄ =

l∑
j=1

μ̄jaj with μ̄j ≥ 0 as j = 1, . . . , l.

Based on (6.29), consider the two index sets corresponding to the vector λ̄ in (6.29),

(6.30) I1(λ̄) :=
{
j ∈ {1, . . . , l}

∣∣∣ μ̄j > 0
}

and I2(λ̄) :=
{
j ∈ {1, . . . , l}

∣∣∣ μ̄j = 0
}
,

and introduce the following polyhedral second-order optimality condition for MPPC.
Note that in the classical NLP case (6.3) corresponding to (6.4) the PSSOC from

Definition 6.4 reduces to the partial version of the well-recognized in NLP strong
second-order sufficient optimality condition (SSOSC) introduced by Robinson [20],
i.e.,

{
〈u,∇2

xxL(x̄, w̄, λ̄)u〉 > 0 whenever u ∈ R
n such that 〈∇xϕi(x̄, w̄), u〉 = 0

for all i = s+ 1, . . . ,m and i ∈ {1, . . . , s} with λ̄i > 0.

(6.31)

The next major result provides a complete characterization of fully stable local
minimizers for problem P(w̄, v̄) in (6.5) under PCQ via PSSOC from Definition 6.4
expressed entirely in terms of the problem data at the reference solution point.

Theorem 6.6 (characterization of full stability in MPPC via PSSOC under
PCQ). Let x̄ be a feasible solution to problem P(w̄, v̄) in (6.5) for some w̄ ∈ R

d

and v̄ from (6.9). Assume that PCQ (6.14) is satisfied at (x̄, w̄). Then we have the
following assertions:
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(i) If x̄ is a fully stable locally optimal solution to P(w̄, v̄), then PSSOC from Def-
inition 6.4 holds at (x̄, w̄, v̄, λ̄) with the unique multiplier vector
λ̄ ∈ NZ(Φ(x̄, w̄)) satisfying (6.20).

(ii) Conversely, the validity of PSSOC at (x̄, w̄, v̄, λ̄) with λ̄ ∈ NZ(Φ(x̄, w̄)) satis-
fying (6.20) ensures that x̄ is a fully stable locally optimal solution to P(w̄, v̄)
in (6.5).

Proof. Let (x̄, w̄) be such that Φ(x̄, w̄) ∈ Z. First we show that PCQ (6.14) is
equivalent to the second-order qualification condition (4.8) in the framework of MPPC
(6.1). Represent problem P(w̄, v̄) in the composite form (6.5) with θ = δZ and observe
by the piecewise linearity of δZ that we are in the setting of Theorem 5.2(a), where
the second-order qualification condition (4.8) is written as

(6.32) ∂2δZ(z̄, λ̄)(0) ∩ ker∇xΦ(x̄, w̄)
∗ = {0},

z̄ = Φ(x̄, w̄), and λ̄ ∈ NZ(Φ(x̄, w̄)) is the unique vector satisfying (6.20); this follows
from Proposition 6.3(ii). Consider now the critical cone

(6.33) K := TZ(z̄) ∩ λ̄⊥ =
{
z ∈ TZ(z̄)

∣∣∣ 〈λ̄, z〉 = 0
}

to Z at z̄ generated by the tangent cone (6.13) and the Lagrange multiplier λ̄. By
the proof of [2, Theorem 2] (see also [18, Proposition 4.4]) we have

q ∈ ∂2δZ(z̄, λ̄)(0) ⇐⇒

⎧⎨⎩
there exist closed faces
K1 and K2 of K with K1 ⊂ K2,
0 ∈ K1 −K2, q ∈ (K2 −K1)

∗,
(6.34)

where the closed face C ⊂ K of the polyhedral cone (6.33) is defined by

C := {z ∈ K| 〈z, y〉 = 0} for some y ∈ K∗

via the polar cone K∗ in question. Picking any z ∈ K and using (6.13) give us

〈aj , z〉 ≤ 0 for all j = 1, . . . , l,

which implies in turn by formula (6.29) that
∑l

j=1 μ̄j〈aj , z〉 = 0. This provides
therefore the convenient critical cone representation

(6.35) K =
{
z ∈ R

m
∣∣∣ 〈aj , z〉 = 0 for j ∈ I1(λ̄) and 〈aj , z〉 ≤ 0 for j ∈ I2(λ̄)

}
via the index sets (6.30). It follows directly from representation (6.35) that

(6.36) K ∩ (−K) = {z ∈ R
m| 〈aj , z〉 = 0 for all j = 1, . . . , l},

which readily implies the polar representation

(6.37) (K2 −K1)
∗ = (K ∩ (−K))∗ = (K ∩ (−K))⊥ with K1 = K2 = K ∩ (−K).

By formula (6.34) for ∂2δZ(z̄, λ̄) with u = 0 we have the inclusion

∂2δZ(z̄, λ̄)(0) ⊃ (K ∩ (−K))⊥.

To get further the opposite inclusion ⊂ therein, take any q ∈ ∂2δZ(z̄, λ̄)(0) and by
representation (6.34) find some closed faces K1 and K2 of the critical cone K such
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that K1 ⊂ K2, 0 ∈ K1−K2, and also q ∈ (K2−K1)
∗. Since K ∩ (−K) is the smallest

closed face of the critical cone K, we get that K ∩ (−K) ⊂ K1, K ∩ (−K) ⊂ K2, and
hence

[K ∩ (−K)]− [K ∩ (−K)] ⊂ K2 −K1,

which shows us together with (6.37) that

q ∈ (K2 −K1)
∗ ⊂ (K ∩ (−K))⊥ and thus ∂2δZ(z̄, λ̄)(0) ⊂ (K ∩ (−K))⊥.

Combining this with the inclusion ⊃ proved above ensures the equality

(6.38) ∂2δZ(z̄, λ̄)(0) = (K ∩ (−K))⊥.

Substituting it into (6.32), we arrive at the polyhedral constraint qualification (6.14),
which is thus equivalent to the second-order qualification condition (4.8) in the MPPC
framework. Theorem 5.2(i) tells us that condition (5.6) is necessary and sufficient for
full stability of the given local minimizer x̄ in P(w̄, v̄), where the mapping T (x̄, w̄, v̄)
is defined in Theorem 5.1.

After these preparations, we proceed with the justification of assertion (i) of the
theorem. Since a fully stable local minimizer for P(w̄, v̄) is obviously a usual local
minimizer for this problem, it follows from the first-order necessary optimality condi-
tions for P(w̄, v̄) under PCQ (6.14) that there is a unique vector λ̄ ∈ NZ((Φ(x̄, w̄))
satisfying (6.20). It is clear that all the assumptions of Theorem 5.2(i) are satisfied
in our MPPC setting under the imposed PCQ.

Consider the set-valued mapping T (x̄, w̄, v̄) = (T1(x̄, w̄, v̄), T2(x̄, w̄, v̄)) : Rn →→ R
2n

given by {
T1(x̄, w̄, v̄)(u) = ∇2

xxL(x̄, w̄, λ̄)u+∇xΦ(x̄, w̄)
∗∂2δZ(z̄, λ̄)(∇xΦ(x̄, w̄)u),

T2(x̄, w̄, v̄)(u) = ∇2
xwL(x̄, w̄, λ̄)u+∇wΦ(x̄, w̄)

∗∂2δZ(z̄, λ̄)(∇xΦ(x̄, w̄)u)
(6.39)

for all u ∈ R
n, where z̄ := Φ(x̄, w̄). Theorem 5.2(i) tells us that condition (5.6) holds

for the mapping T (x̄, w̄, v̄) in (6.39). This means that

〈p, u〉 > 0 whenever p ∈ ∇2
xxL(x̄, w̄, λ̄)u+∇xΦ(x̄, w̄)

∗δ2Z(z̄, λ̄)(∇xΦ(x̄, w̄)u), u �= 0,

which is equivalent to the relationship

(6.40) 〈u,∇2
xxL(x̄, w̄, λ̄)u〉+ 〈q,∇xΦ(x̄, w̄)u〉 > 0

for all q ∈ ∂2δZ(z̄, λ̄)(∇xΦ(x̄, w̄)u) with u �= 0. To complete the proof of (i), we
need to show that (6.40) implies the validity of PSSOC at (x̄, w̄, v̄, λ̄), which requires
calculating the second-order subdifferential ∂2δZ(z̄, λ̄)(∇xΦ(x̄, w̄)u). Consider again
the critical cone (6.33). Similarly to (6.34) we have

q ∈ ∂2δZ(z̄, λ̄)(∇xΦ(x̄, w̄)u) ⇐⇒

⎧⎨⎩
there exist closed faces
K1 and K2 of K with K1 ⊂ K2,
∇xΦ(x̄, z̄)u ∈ K1 −K2, q ∈ (K2 −K1)

∗.

(6.41)

Taking two closed faces K1 and K2 of K and using (6.35) ensure that

(6.42) 〈aj , z〉 = 0 for all z ∈ K1 −K2 and j ∈ I1(λ̄).
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Now fix 0 �= u ∈ SZ and pick any q ∈ ∂2δZ(z̄, λ̄)(∇xΦ(x̄, w̄)u) generated by the vector
u under consideration. Then by (6.41) we find closed faces K1 ⊂ K2 of K such that

∇xΦ(x̄, w̄)u ∈ K1 −K2 and q ∈ (K2 −K1)
∗,

which yields by (6.42) the relationship

(6.43) 〈aj ,∇xΦ(x̄, w̄)u〉 = 0 for j ∈ I1(λ̄).

Define next the vector q̃ ∈ R
m by the summation

q̃ :=
∑

j∈I1(λ̄)

aj

and observe by (6.42) that q̃ ∈ (K2 −K1)
∗ whenever K1 and K2 are from (6.34). It

yields

q̃ ∈ ∂2δZ(z̄, λ̄)(∇xΦ(x̄, w̄)u) and 〈q̃,∇xΦ(x̄, w̄)u〉 = 0.

Letting now q := q̃ in (6.40) gives us that 〈u,∇2
xxL(x̄, w̄, λ̄)u)〉 > 0. This verifies

PSSOC at (x̄, w̄, v̄, λ̄) from Definition 6.4 and completes the proof of assertion (i).
To justify the converse assertion (ii), assume that PSSOC holds at (x̄, w̄, v̄, λ̄) with

the multiplier λ̄ ∈ NZ(Φ(x̄, w̄)) satisfying (6.20) under the validity of PCQ (6.14) at
(x̄, w̄). To show that x̄ is a fully stable locally optimal solution to problem P(w̄, v̄)
in (6.5), we need to check the validity of the second-order condition (5.6) for the
mapping T (x̄, w̄, v̄) defined in (6.39). To proceed, take arbitrary vectors u �= 0 and
q ∈ Q := ∂2δZ(z̄, λ̄)(∇xΦ(x̄, w̄)u). Employing again (6.41) tells us that there are two
closed faces K1 ⊂ K2 of the critical cone K such that

∇xΦ(x̄, w̄)u ∈ K1 −K2 and q ∈ (K2 −K1)
∗,

which ensures the inequality

(6.44) 〈q,∇xΦ(x̄, w̄)〉 ≥ 0.

It follows from (6.43) that u ∈ SZ in (6.24). Finally using (6.44) together with (6.23)
yields

〈u,∇2
xxL(x̄, w̄, λ̄)u〉+ 〈q,∇xΦ(x̄, w̄)u〉 ≥ 〈u,∇2

xxL(x̄, w̄, λ̄)u〉+ 0
= 〈u,∇2

xxL(x̄, w̄, λ̄)u〉 > 0,

which implies (6.40) and shows therefore that condition (5.6) holds for the data of
(6.5). Thus we get that x̄ is a fully stable local minimizer of P(w̄, v̄) and we complete
the proof of the theorem.

The following corollary of Theorem 6.6 is a new result that provides a character-
ization of tilt stability in the general framework of MPPC (6.1).

Corollary 6.7 (characterization of tilt stability in MPPC via PSSOC under
PCQ). Let x̄ be a feasible solution to problem P(v̄) in (6.5) with ϕi = ϕi(x) for all
i = 0, . . . ,m, and let v̄ satisfy (6.9). Assume that PCQ (6.14) is satisfied at this point.
Then we have the following assertions:

(i) If x̄ is a tilt-stable local minimizer of P(v̄), then PSSOC from Definition 6.4
holds at (x̄, v̄, λ̄), where Φ = Φ(x̄) and L = L(x̄, λ̄) with the unique multiplier
λ̄ ∈ NZ(Φ(x̄)) that is determined from the relationships in (6.20).
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(ii) Conversely, the validity of PSSOC at (x̄, v̄, λ̄) with λ̄ ∈ NZ(Φ(x̄)) satisfying
(6.20) ensures that x̄ is a tilt-stable local minimizer of the unperturbed problem
P(v̄).

Proof. The proof immediately follows from Theorem 6.6 and the definition of tilt
stability.

In the case of the conventional NLP (6.3) corresponding to the choice of aj in (6.4)
the characterization of tilt stability in Corollary 6.7 goes back to [16, Theorem 5.2].

The second corollary of Theorem 6.6 presented below gives a complete charac-
terization, entirely in terms of the problem data, of full stability of locally optimal
solutions to nonlinear programs described by C2 functions. This is a new result in
classical NLP.

Corollary 6.8 (characterization of full stability in NLP via partial SSOSC
under LICQ). Let x̄ be a feasible solution to problem P(w̄, v̄) corresponding to NLP
in (6.3) with some vectors w̄ ∈ R

d and v̄ ∈ R
n from (6.9). Assume that LICQ

(6.16) holds at (x̄, w̄). Then x̄ is a fully stable local minimizer for P(w̄, v̄) if and only
if the partial SSOSC (6.31) holds at (x̄, w̄, v̄, λ̄) with the unique Lagrange multiplier
λ̄ = (λ̄1, . . . , λ̄m) ∈ R

s
+ × R

m−s satisfying (6.20).
Proof. The proof follows directly from Theorem 6.6 with Z specified in (6.4)

due to the facts discussed above that PCQ reduces to LICQ and PSSOC reduces to
SSOSC in NLP models.

As mentioned above, the PCQ condition reduces to LICQ in the case of NLP, in
fact, even if

span
{
aj
∣∣ j = 1, . . . , l

}
= R

n.

Furthermore, since LICQ implies PCQ in the general MPPC framework, the results
of Theorem 6.6 and Corollary 6.7 definitely hold for full and tilt stability in MPPC
with the replacement of PCQ by LICQ. However, the following example shows that
in other MPPC settings the imposed PCQ may be satisfied and thus ensures the
required stability while LICQ fails. This occurs even in the case of tilt stability.

Example 6.9 (tilt stability for MPPC without LICQ). It is sufficient to present
an example of the constraint system Φ(x) ∈ Z in (6.1) with a convex polyhedron Z
of type (6.2) for which the qualification condition (6.14) is satisfied at some x̄ while
the Jacobian matrix ∇Φ(x̄) is not of full rank. Then it is easy to find a cost function
ϕ0 = ϕ(x) such that x̄ is a local minimizer for the corresponding MPPC (6.1). To
proceed, construct the mapping Φ = (ϕ1, ϕ2, ϕ3) : R

3 → R
3 with x = (x1, x2, x3) ∈ R

3

by

ϕ1(x) := x1 + x2, ϕ2(x) := x1 + x3, ϕ3(x) := x2
1 + x2

2 + x2
3

and consider the convex polyhedron Z ⊂ R
3 in (6.2) formed by

a1 = (1, 1, 0) and a2 = (1, 0, 1) with b1 = b2 = 0.

It follows from the proof of Theorem 6.6 that

dim(K ∩ (−K)) = dim{z ∈ R
3| 〈aj , z〉 = 0 for i = 1, 2} = 1.

Since a1 and a2 are linearly independent in R
3 and dim(K ∩ (−K))⊥ = 2, we get that

∂2δZ(Φ(0), λ̄)(0) = (K ∩ (−K))⊥ = span{a1, a2} = span{(1, 1, 0), (1, 0, 1)}
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for each λ̄ ∈ NZ(0, 0, 0). On the other hand, direct calculations show that

∇Φ(0, 0, 0)∗ =

⎛⎝ ∇ϕ1(0, 0, 0)
∇ϕ2(0, 0, 0)
∇ϕ3(0, 0, 0)

⎞⎠∗

=

⎛⎝ 1 1 0
1 0 1
0 0 0

⎞⎠∗

=

⎛⎝ 1 1 0
1 0 0
0 1 0

⎞⎠ ,

which yields that Im∇Φ(0, 0, 0)∗ = span{(1, 0, 0), (0, 1, 0)} and hence ker∇Φ(0, 0, 0)∗ =
span{(0, 0, 1)}. Thus we have the relationships

∂2δZ(Φ(0), λ̄)(0) ∩ ker∇Φ(0, 0, 0)∗ = span{(1, 1, 0), (1, 0, 1)} ∩ span{(0, 0, 1)}
= {(0, 0, 0)}.

Therefore PCQ (6.14) holds while rank∇Φ(0, 0, 0) = 2, and hence LICQ (6.16) is not
satisfied.

Finally in this section, we establish relationships between full stability of local
minimizers for MPPC and Robinson’s notion of strong regularity for the associated
parametric KKT system (6.45) involving Lagrange multipliers. Following the idea of
[20], we say that the canonically perturbed KKT system

(6.45) −v +∇xL(x,w, λ) = 0, λ ∈ NZ(Φ(x,w))

is strongly regular at (w̄, v̄, x̄, λ) if its solution map SKKT : (w, v) �→ (x, λ) is single-
valued and Lipschitz continuous when (w, v, x, λ) varies around (w̄, v̄, x̄, λ̄); see [1, 2, 9]
for more details.

The equivalence between tilt stability and strong regularity in NLP first derived
in [16, Corollary 5.3] and then in [14, Corollary 3.7] with different proofs. In what
follows we extend this equivalence to full stability of general MPPC (and hence NLP)
models by replacing LICQ by PCQ in the MPPC setting.

Theorem 6.10 (equivalence between full stability and strong regularity for MPPC
under PCQ). Let Φ(x̄, w̄) ∈ Z. Then x̄ is a fully stable locally optimal solution to
problem P(w̄, v̄) from (6.5) with v̄ satisfying (6.9) and PCQ (6.14) holds at (x̄, w̄) if
and only if x̄ ∈ Mν(w̄, v̄) for some ν > 0 and the KKT system (6.45) is strongly
regular at (w̄, v̄, x̄, λ̄), where λ̄ is the unique solution to (6.45) corresponding to the
triple (x̄, w̄, v̄).

Proof. Assume first that the KKT system (6.45) is strongly regular at (w̄, v̄, x̄, λ̄).
It follows from the necessity part of [1, Theorem 5.24] that the nondegeneracy condi-
tion (6.17) is satisfied. Employing this together with Proposition 6.3(i) gives us PCQ
(6.14). Let us now show that the partial subdifferential mapping ∂xϕ for ϕ in (6.6)
is PSMR at (x̄, w̄, v̄). Then, by taking into account that PCQ implies RCQ (6.7) due
to Proposition 6.3(iii), we can conclude from Proposition 6.1 that x̄ is a fully stable
local minimizer of the unperturbed problem P(w̄, v̄) in (6.5).

To proceed, find by the assumed strong regularity of (6.45) a number ν > 0 such
that for all (w, v) ∈ intBν(w̄) × intBν(v̄) the mapping SKKT : (w, v) �→ (xwv, λwv)
is locally single-valued and Lipschitz continuous with constant � > 0. Consider the
neighborhoods U := intB2�ν(x̄), W := intBν(w̄), and V := intBν(v̄) in Definition 3.3
of PSMR for ϕ in (6.6). It follows from the aforementioned properties of SKKT that
the localization of the partial inverse Sϕ in (6.10) relative to W × V and U is single-
valued and Lipschitz continuous. Hence the mapping ∂xϕ from (6.11) is PSMR at
(x̄, w̄, v̄), which therefore justifies the “if” part of the theorem.

To prove the converse implication of the theorem, let x̄ be a fully stable lo-
cally optimal solution to P(w̄, v̄) in (6.5). It follows from Proposition 6.3(ii) that
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the assumed PCQ (6.14) gives the single-valuedness of the mapping SKKT on some
neighborhoods W × V of (w̄, v̄), and so it remains to justify the Lipschitz continuity
of SKKT : (w, v) �→ (xwv, λwv). In fact it is shown in the proof of Theorem 6.5 that
the mapping (w, v) �→ xwv is Lipschitz continuous around (w̄, v̄) with constant � > 0.
Let us now check that the mapping (w, v) �→ λwv is Lipschitz continuous around
(w̄, v̄) as well. Since RCQ (6.7) holds due to PCQ (6.14), the Lagrange multipliers
λwv in (6.45) are uniformly bounded (w, v) sufficiently close to (w̄, v̄). Without loss
of generality suppose that there is ρ < ∞ such that

‖λwv‖ ≤ ρ for all (w, v) ∈ W × V.

Take arbitrary vectors w1, w2 ∈ W and v1, v2 ∈ V and suppose that � > 0 is the
Lipschitz constant for the mapping ∇xϕ and ∇xΦ as well. By (6.45) we have the
equality

∇xΦ(xw2v2 , w2)
∗(λw2v2 − λw1v1) =

(
∇xΦ(xw1v1 , w1)−∇xΦ(xw2v2 , w2)

)∗
λw1v1

(6.46)

+∇xϕ0(xw1v1 , w1)−∇xϕ0(xw2v2 , w2) + v2 − v1.

Remember from the proof of Theorem 4.1 that there is a linear isometry A from R
m

into R
s × R

m−s under which A∗L = R
s × {0} with L = S(Φ(x̄, w̄)) and s = dimL,

where S(Φ(x̄, w̄)) is the subspace parallel to affNZ(Φ(x̄, w̄)). Consider the composite
representation δZ ◦ Φ = ϑ ◦ P with P := A−1Φ and ϑ := δZA. Similarly to (4.10) we
get the calculations

(6.47) ∇xP (x,w) = A−1∇xΦ(x,w) and ∂ϑ(z′) = A∗NZ(z) with Az′ = z.

Employing (6.47) gives us the inclusions

(6.48) ζ1 = (ζ11, . . . , ζ1m) ∈ ∂ϑ(z′1) and ζ2 = (ζ21, . . . , ζ2m) ∈ ∂ϑ(z′2)

with Az′1 = Φ(xw1v1 , w1) and Az′2 = Φ(xw2v2 , w2) such that

(6.49) ζ1 = A∗λw1v1 and ζ2 = A∗λw2v2 .

Using (6.46) together with (6.49) leads us to the equality

∇xP (xw2v2 , w2)
∗(ζ2 − ζ1) =

(
∇xΦ(xw1v1 , w1)−∇xΦ(xw2v2 , w2)

)∗
λw1v1

+∇xϕ0(xw1v1 , w1)−∇xϕ0(xw2v2 , w2) + v2 − v1.

(6.50)

By the subdifferential representation (4.12) we have

∇xP (xw2v2 , w2)
∗(ζ2 − ζ1) =

s∑
i=1

∇xP (xw2v2 , w2)
∗(ζ2i − ζ1i)

= ∇xP0(xw2v2 , w2)
∗(ζ′2 − ζ′1),

(6.51)

where P0 is defined as in the proof of Theorem 4.1 and where ζ′1 = (ζ11, . . . , ζ1s) and
ζ′2 = (ζ21, . . . , ζ2s).

It follows from the proof of Theorem 4.1 that rank∇xP0(x̄, w̄) = s. Let us show
now that we can always reduce the situation to the square case of s = n. Indeed,
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if s < n we introduce a linear transformation P̃ : Rn × R
d → R

n−s such that the
mapping

P (x,w) := (P0(x,w), P̃ (x,w)) : Rn × R
d −→ R

n

has full rank. This can be done, e.g., by choosing an orthogonal basis {b1, . . . , bn−s}
in the (n − s)-dimensional space {u ∈ Rn| ∇xP0(x̄, w̄)u = 0} and then letting

P̃ (x,w) := (〈b1, x〉, . . . , 〈bn−s, x〉). Furthermore, define ϑ(z, q) := ϑ(z) for all z ∈ R
m

and q ∈ R
n−m and let z := (P0(x,w), 〈b1, x〉, . . . , 〈bm−s, x〉). Employing the elemen-

tary subdifferential chain rule gives us

∂x(ϑ ◦ P )(x,w) = ∇xP (x,w)∗∂ϑ(P (x,w))(6.52)

= (∇xP0(x,w)
∗, b1, . . . , bn−s)(∂ϑ(z), 0

n−m)

= (∇xP0(x,w)
∗, b1, . . . , bm−s)∂ϑ(z).

By the proof of Theorem 4.1 we have ∂ϑ(z) ⊂ R
s×{0}m−s, which allows us to repre-

sent ζ1 = (ζ′1, 0
m−s) and ζ2 = (ζ′2, 0

m−s). Using this together with (6.52) and (6.51)
ensures the existence of ζ′′1 ∈ ∂ϑ(z′′1 ) and ζ′′2 ∈ ∂ϑ(z′′2 ) such that z′′1 = P (xw1v1 , w1),
z′′2 = P (xw2v2 , w2), and

∇xP0(xw2v2 , w2)
∗(ζ′2 − ζ′1) = (∇xP0(xw2v2 , w2)

∗, b1, . . . , bm−s)(ζ2 − ζ1)
= ∇xP (xw2v2 , w2)

∗(ζ′′2 − ζ′′1 ),

and so we get ζ′′1 = (ζ1, 0
n−m) and ζ′′2 = (ζ2, 0

n−m). Substituting (6.51) into (6.50)
and invoking the classical inverse function theorem for the mapping P invertible in x
give us the estimates

‖ζ′′2 − ζ′′1 ‖ ≤ ‖
(
∇xP (xw2v2 , w2)

∗
)−1

‖
(
‖∇xΦ(xw1v1 , w1)−∇xΦ(xw2v2 , w2)‖ · ‖λw1v1‖

+ ‖∇xϕ0(xw1v1 , w1)−∇xϕ0(xw2v2 , w2)‖+ ‖v2 − v1‖
)

≤ γ
[
ρ�
(
‖xw2v2 − xw1v1‖+ ‖w2 − w1‖

)
+ �
(
‖xw2v2 − xw1v1‖+ ‖w2 − w1‖

)
+ ‖v2 − v1‖

]
,

(6.53)

where γ > 0 is the upper bound of ‖(∇xP (x,w)∗)−1‖ for all the pairs (x,w) sufficiently
close to (x̄, w̄). Also the equalities in (6.49) imply the relationship

(6.54) ‖λw2v2 − λw1v1‖ ≤ ‖(A∗)−1‖ · ‖ζ2 − ζ1‖ = ‖(A∗)−1‖ · ‖ζ′′2 − ζ′′1 ‖.

Finally taking into account the local Lipschitz continuity of the mapping (w, v) �→
xwv together with the estimates in (6.53) and (6.54), we conclude that the mapping
(w, v) �→ λwv is Lipschitz continuous around (w̄, v̄) as well. This completes the proof
of the theorem.

The equivalence results obtained in Theorems 6.5 and 6.10 allow us to employ the
PSSOC characterization of full stability in Theorem 6.6 to establish new necessary
and sufficient conditions for PSMR of ∂xϕ in (6.11) and Robinson’s strong regularity
of the KKT system (6.45) under PCQ.

Corollary 6.11 (characterizing PSMR and strong regularity in MPPC under
PCQ). Let Φ(x̄, w̄) ∈ Z for MPPC in (6.1), let PCQ (6.14) hold at (x̄, w̄), let v̄ be
taken from (6.9), and let λ̄ ∈ NZ(Φ(x̄, w̄)) be a unique multiplier satisfying (6.20).
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Then the validity of PSSOC at (x̄, w̄, v̄, λ̄) from Definition 6.4 is necessary and suffi-
cient for the PSMR property of ∂xϕ at (x̄, w̄, v̄) with ϕ from (6.6) as well as for strong
regularity of the KKT system (6.45) at (w̄, v̄, x̄, λ̄).

Proof. The conclusion follows immediately by combining the characterization of
Theorem 6.6 with the equivalences in Theorems 6.5 and 6.10.

Note that for the classical problems of NLP the result of Corollary 6.11 concern-
ing strong regularity under LICQ is well known in mathematical programming; see
[1, 2] and the references therein. It is equally well recognized that strong regularity of
the KKT system associated with NLP implies LICQ. The following example largely
related to Example 6.9 shows that in the MPPC case we do not have LICQ as a con-
sequence of strong regularity. Note to this end that, as follows from Proposition 6.3(i)
and the necessity part of [1, Theorem 5.24], strong regularity does imply PCQ.

Example 6.12 (strong regularity in MPPC without LICQ). Consider the con-
straint mapping Φ(x) =

(
ϕ1(x), ϕ2(x), ϕ3(x)

)
: R3 → R

3 with x = (x1, x2, x3) ∈ R
3

and the convex polyhedron Z defined as in Example 6.9. Take further the cost function

(6.55) ϕ0(x) := x2
1 + x2

2 + x2
3 − x1 − x2

and show first that x̄ := (0, 0, 0) is a tilt-stable local minimizer of the correspond-
ing unperturbed problem P(v̄). Using the calculations in Example 6.9, we get the
equation

∇ϕ0(x̄) +∇Φ(x̄)∗λ̄ = v̄,

which for the vector of Lagrange multipliers λ̄ = (λ̄1, λ̄2, λ̄3) is written as

(6.56)

⎛⎝ 1 1 0
1 0 1
0 0 0

⎞⎠∗⎛⎝ λ̄1

λ̄2

λ̄3

⎞⎠ =

⎛⎝ 1
1
0

⎞⎠ .

The solution of this equation is λ̄ = (1, 0, λ̄3), where λ̄3 is an arbitrary real number.
Since we have the additional condition λ̄ ∈ NZ(Φ(x̄)), where the normal cone is
calculated by

NZ(Φ(x̄)) =
{
μ1a1 + μ2a2

∣∣ μ1, μ2 ≥ 0
}
,

we have the unique Lagrange multiplier λ̄ with λ̄3 = 1. Let us now check the validity
of PSSOC at (x̄, v̄, λ̄). To proceed, observe that the subspace SZ from (6.24) reduces
in this case to

SZ =
{
u := (u1, u2, u3)| u1 + u2 = 0

}
,

while the Hessian of the Lagrangian function is

∇2L(x̄, λ̄) = ∇2ϕ0(x̄) + λ̄1∇2ϕ1(x̄) + λ̄2∇2ϕ2(x̄) + λ̄3∇2ϕ3(x̄)
= 2I + 0 + 0 + 2I = 4I,

(6.57)

where I stands for the 3 × 3 identity matrix. Employing (6.57) justifies the validity
of PSSOC due to

〈u,∇2L(x̄, λ̄)u〉 = 4‖u‖2 > 0 whenever 0 �= u ∈ SZ .

It is shown in Example 6.9 that PCQ holds in this setting, and thus Theorem 6.6 tells
us that x̄ is a tilt-stable local minimizer of P(v̄). Finally, Theorem 6.10 ensures strong
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regularity of the KKT system (6.45) at (v̄, x̄, λ̄), while we know from Example 6.9 that
LICQ is not satisfied for P(v̄) at this point.

Summarizing the results obtained above for full stability of local minimizers in
the context of MPPC, we see that its PSSOC characterization and the equivalence to
Robinson’s strong regularity require PCQ, while its USOGC characterization and the
equivalence to PSMR hold under the less restrictive RCQ, which reduces to MFCQ
in the case of NLP. These relationships are depicted in the following diagram, where
FS and SR stand for full stability and strong regularity, respectively, while the other
abbreviations have been defined above.

7. Full stability in ENLP. The last section is devoted to full stability of op-
timization problems written in the composite format (5.1) with the outer function
θ : Rm → R defined by

(7.1) θ(z) := sup
p∈P

{
〈p, z〉 − ϑ(p)

}
,

where ϑ : Rm → R is a smooth function convex on the polyhedral set ∅ �= P ⊂ R
m

given by

(7.2) P :=
{
p ∈ R

m
∣∣∣ 〈aj , p〉 ≤ bj for all j = 1, . . . , l

}
with fixed vectors aj ∈ R

m and numbers bj ∈ R as l ∈ N. We see that θ in (7.1) is
convex, proper, and l.s.c. Note that the function θ from (4.16) is a special case of (7.1)
with ϑ(p) = 1

2 〈p,Qp〉, where Q is a symmetric and positive-semidefinite matrix. Note
also that standard NLP problems can be modeled in the ENLP form with ϑ(p) = 0;
see [22].

Composite optimization problems of type (5.1) with functions θ given by (7.1) are
introduced by Rockafellar [22] (see also [23]) under the name of ENLP. It is argued
in [22, 23] that model (4.1) with term (7.1) provides a very convenient framework
for developing both theoretical and computational aspects of optimization in broad
classes of constrained problems, including stochastic programming, robust optimiza-
tion, etc. The special expression (7.1) for the extended-real-valued function θ, known
as a dualizing representation, is significant with respect to the theory and applications
of Lagrange multipliers in ENLP.

As in section 6, we denote by I(p) the set of active indices j ∈ {1, . . . , l} in the
polyhedral description (7.2) at p ∈ P (i.e., such j that 〈aj , p〉 = bj) and we have the
following representation of the normal cone to the convex polyhedron P at the given
point p̄ ∈ P :
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(7.3) NP (p̄) =

⎧⎨⎩
l∑

j=1

μjaj

∣∣∣ μj ≥ 0 for j ∈ I(p̄) and μj = 0 for j �∈ I(p̄)

⎫⎬⎭ .

The next results, which is of its own interest, provides the exact calculation of
the second-order subdifferential for the function θ defined in (7.1). It extends to the
case of general convex and C2 functions ϑ in (7.1) the one from [16, Lemma 4.4] for
quadratic functions.

Proposition 7.1 (calculation of the second-order subdifferential for dualizing
representations). Let θ be an extended-real-valued function defined in (7.1) under the
assumptions above, and let z̄ ∈ dom θ. Pick some p̄ ∈ ∂θ(z̄) and suppose that ϑ is
C2 around p̄. Then we have the following formula for calculating the second-order
subdifferential of θ at (z̄, p̄):

(7.4) q ∈ ∂2θ(z̄, p̄)(u) ⇐⇒
{

there exist closed faces K1 and K2 of K with
K1 ⊂ K2, q ∈ K2 −K1, ∇2ϑ(p̄)∗q − u ∈ (K2 −K1)

∗

for all u ∈ R
m, where K = TP (p̄) ∩ (z̄ − ∇ϑ(p̄))⊥ is the corresponding critical cone

with the tangent cone TP (p̄) to the convex polyhedron (7.2) at p̄ ∈ P computed by

(7.5) TP (p̄) =
{
p ∈ R

m
∣∣∣ 〈aj , p〉 ≤ 0 for all i ∈ I(p̄)

}
.

Proof. It follows from the form of the dualizing representation θ in (7.1) and the
definition of conjugate functions in convex analysis that

(7.6) θ∗(p) = ϑ(p) + δP (p), p ∈ R
m,

where θ∗ is the convex conjugate function of θ and where δP is the indicator function
of the polyhedron P ; see, e.g., [22, Proposition 1]. Since ∂θ∗ = (∂θ)−1, we have

(7.7) q ∈ ∂2θ(z̄, p̄)(u) ⇐⇒ −u ∈ ∂2θ∗(p̄, z̄)(−q) whenever u, q ∈ R
m.

Furthermore, it follows from [23, Proposition 11.3] and representation (7.6) that

(7.8) ∂θ(z) = argmaxp∈P

{
〈z, p〉 − ϑ(p)

}
, z ∈ R

m.

Basic convex analysis tells us that the maximum of the concave function 〈z, p〉−ϑ(p)
over the convex set P is attained at p ∈ P if and only if z − ∇ϑ(p) ∈ NP (p). This
yields by (7.8) that

(7.9) ∂θ∗(p) = (∂θ)−1(p) = ∇ϑ(p) +NP (p), p ∈ P,

and hence z̄ ∈ ∂θ∗(p̄) ⇐⇒ [z̄−∇ϑ(p̄) ∈ NP (p̄)]. Taking into account definition (2.10)
of the second-order subdifferential and applying the coderivative sum rule from [12,
Theorem 1.62] to the sum in (7.9), we get the expression

∂2θ∗(p̄, z̄)(−q) = D∗NP (p̄, z̄ −∇ϑ(p̄))(−q)−∇2ϑ(p̄)∗q, q ∈ R
m,

where the last term on the right-hand side is due to (2.11) with the symmetric Hessian
∇2ϑ(p̄) for the C2 function ϑ. This ensures the following description of the second-
order subdifferential of the conjugate function θ∗ to the dualizing representation:

−u ∈ ∂2θ∗(p̄, z̄)(−q) ⇐⇒ [∇2ϑ(p̄)∗q − u ∈ ∂2δP (p̄, z̄ −∇ϑ(p̄))(−q)].
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Employing finally the calculation of ∂2δP obtained in (6.34) and using relationship
(7.7), we arrive at the second-order subdifferential representation (7.4), where the
tangent cone formula (7.5) follows from [3, Theorem 2E.3]. This completes the proof
of the proposition.

To study full stability of local minimizers in the framework of ENLP, consider the
two-parametric problem P(w, v) written as{

minimize ϕ(x,w) − 〈v, x〉 over x ∈ R
n with

ϕ(x,w) := ϕ0(x,w) + θ(Φ(x,w)), θ(z) := sup
p∈P

{
〈p, z〉 − ϑ(p)

}
,(7.10)

Φ(x,w) := (ϕ1(x,w), . . . , ϕm(x,w)), and the polyhedral set P defined in (7.2). We
keep the assumptions of Proposition 7.1 regarding the function ϑ in (7.10) and suppose
in what follows that all the functions ϕ0, . . . , ϕm are C2 around the reference point
(x̄, w̄). We also impose the LICQ condition (6.16) at (x̄, w̄), which amounts to the full
rank of the partial Jacobian ∇xΦ(x̄, w̄). Under the imposed LICQ, the stationarity
condition v̄ ∈ ∂xϕ(x̄, w̄) on the tilt perturbation v̄ in (7.10) is equivalent (by the
first-order subdifferential sum and chain rules from [12, 23]) to

(7.11) v̄ ∈ ∇xϕ0(x̄, w̄) +∇xΦ(x̄, w̄)
∗∂θ(Φ(x̄, w̄)).

Define further the extended Lagrangian function for the perturbed ENLP (7.10) by

(7.12) L(x,w, p) := ϕ0(x,w) + Φ(x,w)∗p− ϑ(p) with p ∈ R
m,

where the vector p = (p1, . . . , pm) signifies Lagrange multipliers. The following defini-
tion is the ENLP counterpart of the classical SSOSC (6.31) in nonlinear programming.

Definition 7.2 (extended strong second-order optimality condition). Let p̄ ∈
R

m be a vector of Lagrange multipliers in ENLP. We say that the ESSOC holds at
(x̄, w̄, v̄, p̄) in problem P(w̄, v̄) from (7.10) with v̄ satisfying (7.11) if

(7.13) 〈u,∇2
xxL(x̄, w̄, p̄)u〉 > 0 for all 0 �= u ∈ S,

where the subspace S ⊂ R
n is given by

(7.14) S :=
{
u ∈ R

n
∣∣∣ ∇xΦ(x̄, w̄)u ∈ {p ∈ R

m| 〈aj , p〉 = 0 for all j = 1, . . . , l}⊥
}
.

As we mentioned in (6.15), employing [23, Lemma 6.45], S can be expressed as

(7.15) S :=
{
u ∈ R

n
∣∣∣ ∇xΦ(x̄, w̄)u ∈ span{aj ∈ R

m| j = 1, . . . , l}}.

Now we are ready to formulate and prove the main result of this section on character-
izing full stability of local minimizers in ENLP via ESSOC from Definition 7.2. Recall
that standard NLP problems can be modeled in the ENLP form with ϑ(p) = 0, and
thus the next theorem is an extension of [16, Theorem 5.2].

Theorem 7.3 (characterizing full stability of locally optimal solutions to ENLP
via ESSOC). Let x̄ be a feasible solution to problem P(w̄, v̄) in (7.10) for some w̄ ∈ R

d

and v̄ satisfying (7.11). Assume that LICQ (6.16) holds at (x̄, w̄) and determine the
unique vector p̄ ∈ R

m of Lagrange multiplies from

∇xΦ(x̄, w̄)
∗p̄ = v̄ −∇xϕ0(x̄, w̄).(7.16)

Then we have the following assertions:
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(i) If x̄ is a fully stable locally optimal solution to P(w̄, v̄), then ESSOC holds at
(x̄, w̄, v̄, p̄).

(ii) Conversely, the validity of ESSOC at (x̄, w̄, v̄, p̄) with ∇2ϑ(p̄) = 0 yields that
x̄ is a fully stable locally optimal solution to problem P(w̄, v̄).

Proof. Observe first that since the assumed LICQ amounts to the full rank of the
partial Jacobian ∇xΦ(x̄, w̄), (7.16) for p̄ admits a unique solution if any.

To prove (i), we take into account that every fully stable locally optimal solution to
P(w̄, v̄) is a usual local minimizer for this problem and, applying the classical station-
ary conditions in (7.10) to x̄, ensure the existence of the (unique) Lagrange multiplier
p̄ ∈ ∇xΦ(x̄, w̄)

∗∂θ(Φ(x̄, w̄)) satisfying (7.16). Since the function θ from (7.1) is proper,
l.s.c., and convex, it is continuously prox-regular at z̄ (see [23, Example 13.30]), and
hence we can apply Theorem 5.1 to problem P(w̄, v̄) from (7.10). The aforementioned
theorem formulated via the data of problem (7.10) ensures the validity of condition
(5.6) for the set-valued mapping T (x̄, w̄, v̄) = (T1(x̄, w̄, v̄), T2(x̄, w̄, v̄)) : Rn →→ R

2n

with Ti(x̄, w̄, v̄), i = 1, 2, defined by{
T1(x̄, w̄, v̄)(u) := ∇2

xxL(x̄, w̄, p̄)u+∇xΦ(x̄, w̄)
∗∂2θ(z̄, p̄)(∇xΦ(x̄, w̄)u),

T2(x̄, w̄, v̄)(u) := ∇2
xwL(x̄, w̄, p̄)u+∇wΦ(x̄, ū)

∗∂2θ(z̄, p̄)(∇xΦ(x̄, w̄)u)
(7.17)

via the extended Lagrangian (7.12). To justify assertion (i) of this theorem, we need
to show that condition (5.6) for the mapping T (x̄, w̄, v̄) given in (7.17) implies the
fulfillment of ESSOC from Definition 7.2. In the notation above, condition (5.6)
amounts to saying that
(7.18)

〈u,∇2
xxL(x̄, w̄, p̄)u〉+ 〈q,∇xΦ(x̄, w̄)u〉 > 0 if q ∈ ∂2θ(z̄, p̄)(∇xΦ(x̄, w̄)u), u �= 0.

Employing Proposition 7.1 to calculate the second-order subdifferential ∂2θ(z̄, p̄) ×
(∇xΦ(x̄, w̄)u), we get

q ∈ ∂2θ(z̄, p̄)(∇xΦ(x̄, w̄)u) ⇐⇒

⎧⎨⎩
there exist closed faces K1 and K2

of K with K1 ⊂ K2, q ∈ K2 −K1,
∇2ϑ(p̄)∗q −∇xΦ(x̄, w̄)u ∈ (K2 −K1)

∗
(7.19)

with the critical cone K = TP (p̄) ∩ (z̄ −∇ϑ(p̄))⊥. Fix 0 �= u ∈ S in (7.15) and pick
q ∈ ∂2θ(z̄, p̄)(∇xΦ(x̄, w̄)u). It follows from (7.15) that

∇xΦ(x̄, w̄)u ∈
{
p ∈ R

m
∣∣∣ 〈aj , p〉 = 0 for all j = 1, . . . , l

}⊥
.

Similarly to the proof of Theorem 6.6 we observe the representations

K ∩ (−K) =
{
p ∈ R

m| 〈aj , p〉 = 0 for all j = 1, . . . , l
}

and(
[K ∩ (−K)]− [K ∩ (−K)]

)∗
= (K ∩ (−K))⊥,

which immediately imply the inclusions

(7.20) 0 ∈ [K∩(−K)]−[K∩(−K)] and−∇xΦ(x̄, w̄)u ∈
(
[K∩(−K)]−[K∩(−K)]

)∗
.

Combining these inclusions with (7.19) shows that

0 ∈ ∂2θ(z̄, p̄)(∇xΦ(x̄, w̄)u) for all 0 �= u ∈ S
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with z̄ := Φ(x̄, w̄). Letting now q = 0 in (7.18) gives us inequality (7.13) from
Definition 7.2, and hence the desired ESSOC at (x̄, w̄, v̄, p̄) is satisfied, which justifies
assertion (i).

To prove the converse assertion (ii), assume that ESSOC holds at (x̄, w̄, v̄, p̄) and
that ∇2ϑ(p̄) = 0. Let us show that condition (7.18) holds, which thus tells us that x̄
is a fully stable local minimizer for P(w̄, v̄) in (7.10) by Theorem 5.1 and the consid-
erations above. To proceed, fix 0 �= u ∈ R

n and pick any q ∈ ∂2θ(z̄, p̄)(∇xΦ(x̄, w̄)u).
Employing (7.19) with ∇2ϑ(p̄) = 0 gives us two closed faces K1 ⊂ K2 of the critical
cone K defined above such that

q ∈ K2 −K1, −∇xΦ(x̄, w̄)u ∈ (K2 −K1)
∗, and thus(7.21)

〈q,∇xΦ(x̄, w̄)u〉 ≥ 0 for all q ∈ ∂2θ(z̄, p̄)(∇xΦ(x̄, w̄)u).(7.22)

Since K ∩ (−K) is the smallest closed face of K, we have

(K2 −K1)
∗ ⊂

(
[K ∩ (−K)]− [K ∩ (−K)]

)∗
= (K ∩ (−K))⊥.

This ensures by (7.21) that −∇xΦ(x̄, w̄)u ∈ (K ∩ (−K))⊥ and hence shows by (7.15)
that u ∈ S. Finally, using (7.22) together with (7.13) gives us the relationships

〈u,∇2
xxL(x̄, w̄, p̄)u〉+ 〈q,∇xΦ(x̄, w̄)u〉≥ 〈u,∇2

xxL(x̄, w̄, p̄)u〉+ 0
= 〈u,∇2

xxL(x̄, w̄, ¯̄p)u〉 > 0,

which justify (7.18) and thus complete the proof of the theorem.
Remark 7.4 (ENLP without LICQ). If the function θ in the ENLP model under

consideration is of the piecewise linear-quadratic form (4.16) with a symmetric and
positive-definite matrix Q and if the mapping Φ is open at (x̄, w̄), then applying The-
orem 5.2(b) allows us to characterize fully stable local minimizers of (7.10) similarly
to Theorem 7.3 but without LICQ (6.16). It follows from the proof of Theorem 7.3 by
replacing the application of Theorem 5.1 therein with that of Theorem 5.2 in case (b).

Remark 7.5 (some open questions). The condition∇2(ϑ(p̄) = 0 in Theorem 7.3(ii),
which obviously does not hold for quadratic functions ϑ(p) = 〈p,Qp〉, Q �= 0, is defi-
nitely restrictive, while it is essential in the proof of Theorem 7.3. The removal of it
is an issue for our future research. We also plan to develop similar characterizations
of full stability for remarkable classes of problems in conic programming. For tilt
stability some results in this direction have been recently obtained in [15].
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