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SECOND-ORDER SUBDIFFERENTIAL CALCULUS WITH
APPLICATIONS TO TILT STABILITY IN OPTIMIZATION∗
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Abstract. This paper concerns the second-order generalized differentiation theory of variational
analysis and new applications of this theory to some problems of constrained optimization in finite-
dimensional spaces. The main focus is the so-called (full and partial) second-order subdifferentials
of extended-real-valued functions, which are dual-type constructions generated by coderivatives of
first-order subdifferential mappings. We develop an extended second-order subdifferential calculus
and analyze the basic second-order qualification condition ensuring the fulfillment of the principal
second-order chain rule for strongly and fully amenable compositions. We also calculate the second-
order subdifferentials for some major classes of piecewise linear-quadratic functions. These results
are applied to the study of tilt stability of local minimizers for important classes of problems in
constrained optimization that include, in particular, problems of nonlinear programming and certain
classes of extended nonlinear programs described in composite terms.
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1. Introduction. Variational analysis has been recognized as a fruitful area of
mathematics, which primarily deals with optimization-related problems while also
applying variational principles and techniques to a broad spectrum of problems that
may not be of a variational nature. We refer the reader to the books by Borwein and
Zhu [4], Mordukhovich [31, 32], Rockafellar and Wets [49], and the references therein
for the major results of variational analysis and its numerous applications.

Nonsmooth functions, sets with nonsmooth boundaries, and set-valued map-
pings naturally and frequently appear in the framework of variational theory and
its applications via using variational principles and techniques, even for problems
with smooth initial data. Thus tools of generalized differentiation play a crucial
role in many aspects of variational analysis and optimization; see, e.g., the books
[4, 8, 12, 19, 31, 32, 49, 50] and the references thererin.

Over the years, the first-order subdifferential theory of variational analysis has
been well developed and understood in both finite-dimensional and infinite-dimensional
settings; see [4, 31, 49] and the commentaries therein. In contrast, the second-order
theory still requires much further development and implementation, although many
second-order generalized differential constructions have been suggested and success-
fully applied to various optimization, sensitivity, and related problems; see, e.g., the
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books [3, 31, 49] summarizing mainstream developments and trends in the second-
order theory and its applications.

As is well known, there are two generally independent approaches to second-order
differentiation in classical analysis. One of them is based on the Taylor expansion,
while the other defines the second derivative of a function as the derivative of its
first-order derivative.

In this paper we develop the latter “derivative-of-derivative” approach to the
second-order generalized differentiation of extended-real-valued functions ϕ : Rn →
R := (−∞,∞] finite at the reference points. The dual-space route in this vein sug-
gested by Mordukhovich [26] is to treat a (first-order) subdifferential ∂ϕ of ϕ as a
set-valued analogue of the classical derivative for nonsmooth functions and then to
define a second-order subdifferential ∂2ϕ of ϕ via a coderivative D∗∂ϕ of the sub-
gradient mapping ∂ϕ; see section 2 for more details. This second-order construction
was originally motivated by applications to sensitivity analysis of variational systems
[26, 29] inspired by the coderivative characterization of Lipschitzian stability [26, 27],
but then the second-order subdifferential and its modification were successfully em-
ployed in the study of a broad spectrum of other important issues in variational
analysis and its applications; see, e.g., [1, 5, 11, 10, 13, 14, 15, 17, 19, 20, 21, 31, 32,
33, 34, 38, 39, 40, 43, 54, 55] and the references therein. We specifically mention a
significant result by Poliquin and Rockafellar [43], who established a full characteri-
zation of tilt-stable local minimizers of functions as the positive-definiteness of their
second-order subdifferential mapping. For C2 functions, the latter criterion reduces
to the positive-definiteness of the classical Hessian matrix—a well-known sufficient
condition for the standard optimality in unconstrained problems, which happens to
be necessary and sufficient for tilt-stable local minimizers [43]. We also refer the
reader to the recent papers by Chieu and coworkers [5, 6] providing complete char-
acterizations of convexity and strong convexity of nonsmooth (in the second order)
functions via positive-semidefiniteness and definiteness of their second-order subd-
ifferentials ∂2ϕ. Related characterizations of monotonicity and submonotonicity of
continuous mappings can be found in [7].

Needless to say, efficient implementations and potential extensions of the latter
result to constrained optimization problems, as well as any other valuable applications
of the aforementioned second-order subdifferential construction and its modifications,
largely depend on the possibility to develop a fairly rich second-order subdifferen-
tial calculus and on precisely calculating such constructions for attractive classes of
nonsmooth functions overwhelmingly encountered in variational analysis and opti-
mization. A certain amount of useful second-order calculus rules were developed in
[20, 28, 30, 31, 33, 34, 36, 39]. On the other hand, precisely calculating the second-
order subdifferential entirely in terms of the initial data was effected for the following
major classes of extended-real-valued functions particularly important in various ap-
plications:

• For indicator functions of convex polyhedra and related settings, it was initiated
by Dontchev and Rockafellar [11] and then developed in [2, 14, 15, 17, 18, 37, 44, 52]
for more involved frameworks. The obtained calculations played a crucial role in
deriving [11] verifiable characterizations of the Robinson strong regularity [45] for
variational inequalities over (convex) polyhedral sets as well as their specifications
for complementarity problems and the associated Karush–Kuhn–Tucker (KKT) con-
ditions for nonlinear programs with C2 data. Further results in this vein on Lips-
chitzian stability of parametric variational systems were given in [2, 14, 37, 44, 53] and
other publications in both finite and infinite dimensions. Applications to stationarity
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conditions for stochastic equilibrium problems with equilibrium constraints in elec-
tricity spot market modeling were developed by Henrion and Römisch [17].

• For the so-called separable piecewise C2 functions, it was done by Mordukhovich
and Outrata [33]; see also [5] for further developments. It provided the basis for
the efficient sensitivity analysis [33] of mathematical programs with equilibrium con-
straints (MPECs) including practical ones that arose in applications to certain con-
tact problems of continuum mechanics. Similar calculations were applied in [1] for the
qualitative stability analysis of nonmonotone variational inclusions with applications
to practical models in electronics.

• For indicator functions to smooth nonpolyhedral inequality systems, it was done
by Henrion, Outrata, and Surowiec [15] by employing and developing the transfor-
mation formulas from [33]. Then these calculations were applied in [16, 51] to de-
riving stationarity conditions for equilibrium problems with equilibrium constraints
(EPECs), in both deterministic and stochastic frameworks, and to EPEC models of
oligopolistic competition in electricity spot markets.

• For classes of functions associated with metric projection onto the second-
order/Lorentz cone, it was done by Outrata and Sun [40]. The obtained calculations
were applied in [40] to the study of Lipschitzian stability of parameterized second-
order cone complementarity problems and to deriving optimality conditions for math-
ematical programs with second-order cone complementarity constraints. These results
and calculations were further developed by Outrata and Ramı́rez [39] to completely
characterize the Aubin/Lipschitz-like property of canonically perturbed KKT systems
related to the second-order cone programs and to establish the equivalence of the latter
property to the Robinson strong regularity in second-order cone programming.

• For the indicator function of the convex cone of n × n positive, symmetric,
and semidefinite matrices, it was done by Ding, Sun, and Ye in [10]. The results
obtained were applied in [10] to deriving various stationarity conditions for a class
of mathematical programs with semidefinite cone complementarity constraints, which
can be treated as a matrix counterpart of MPECs.

• For a particular class of functions arising in optimal control of the Moreau
sweeping process, is was done in the paper by Colombo et al. [9]. These calculations
played a significant role in deriving constructive optimality conditions for discontinu-
ous differential inclusions generated by the sweeping process and have great potential
for further applications.

Now we briefly describe the main goals and achievements of this paper. Our pri-
mary attention is focused on the following major issues new in second-order variational
analysis:

• Developing refined second-order chain rules of the equality and inclusion (outer/
upper estimate) types for the aforementioned second-order subdifferential and its
partial modifications.

• Analyzing the basic second-order qualification condition ensuring the fulfillment
of the extended second-order chain rules for strongly amenable compositions.

• Calculating precisely the second-order subdifferentials for some major classes of
fully amenable compositions.

• Applying the obtained calculus and computational results to deriving neces-
sary optimality conditions as well as to establishing complete characterizations of tilt-
stable minimizers for broad classes of constrained optimization problems, including
those in nonlinear programming (NLP) and extended nonlinear programming (ENLP)
described via amenable compositions.
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The rest of the paper is organized as follows. section 2 contains basic definitions
and brief discussions of the first-order and second-order generalized differential con-
structions studied and used in the paper. We also review there some preliminary
results widely employed in what follows.

In section 3 we deal with second-order chain rules of the equality and inclusion
types for the basic second-order subdifferential and its partial counterparts. The
equality-type results are established under the full rank condition on the Jacobian
matrix of the inner mapping of the composition. Without imposing the latter as-
sumption, we develop a new quadratic penalty approach that allows us to derive
inclusion-type second-order chain rules for a broad class of strongly amenable compo-
sitions valid under certain second-order qualification conditions. The latter chain rules
generally provide merely outer estimates of the second-order subgradient sets for com-
positions: we present an example showing that the chain rule inclusion may be strict
even for linear inner mappings and piecewise linear outer functions in fully amenable
compositions.

Section 4 is devoted to deriving exact (equality-type) second-order chain rules
for major classes of fully amenable compositions without imposing the full rank as-
sumption. Our approach is mainly based on precisely calculating the second-order
subdifferential for piecewise linear quadratic functions (which is important for its own
sake) and on a detailed analysis of the basic second-order qualification condition de-
veloped in section 3. In particular, we show that this condition reduces locally to the
full rank requirement on the inner mapping Jacobian matrix if the outer function is
piecewise linear.

The concluding section 5 concerns applications of the chain rules and calculation
results developed in the previous sections to the study of tilt-stable local minimizers for
some classes of constrained optimization problems represented in composite formats,
which are convenient for developing both theoretical and computational aspects of op-
timization. Such classes include, besides standard nonlinear programs broader models
of the so-called extended nonlinear programming (ENLP). Based on the second-order
sum and chain rules with equalities, we derive complete characterizations of tilt-stable
local minimizers for important problems of constrained optimization. The results
obtained show, in particular, that for a general class of NLP problems, the well-
recognized strong second-order optimality condition is necessary and sufficient for tilt
stability of local minimizers, which therefore is equivalent to the Robinson strong reg-
ularity of the associated variational inequalities in such settings. Furthermore, the
calculus rules derived in this paper for partial second-order subdifferentials lead us
also to characterizations of full stability in optimization (see Remark 5.6), while a
detailed elaboration of this approach is a subject of our ongoing research.

Although a number of the results obtained in this paper hold in (or can be natu-
rally extended to) infinite-dimensional spaces, for definiteness we confine ourselves to
the finite-dimensional setting. Throughout the paper we use standard notation of vari-
ational analysis; cf. [31, 49]. Recall that, given a set-valued mapping F : Rn →→ R

m,
the symbol

Lim sup
x→x̄

F (x) :=
{
y ∈ R

m
∣∣∣∃xk → x̄, ∃ yk → y as k → ∞
with yk ∈ F (xk) for all k ∈ IN := {1, 2, . . .}

}(1.1)

signifies the Painlevé–Kuratowski outer/upper limit of F as x → x̄. Given a set Ω ⊂ R
n

and an extended-real-valued function ϕ : Rn → R finite at x̄, the symbols x
Ω→ x̄ and
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x
ϕ→ x̄ stand for x → x̄ with x ∈ Ω and for x → x̄ with ϕ(x) → ϕ(x̄), respectively.

As usual, IB(x, r) denotes the closed ball of the space in question centered at x with
radius r > 0.

2. Basic definitions and preliminaries. In this section we define and briefly
discuss the basic generalized differential constructions of our study and review some
preliminaries widely used in what follows; see [31, 49] for more details.

Let ϕ : Rn → R be an extended-real-valued function finite at x̄. The regular
subdifferential (known also as the presubdifferential and as the Fréchet or viscosity
subdifferential) of ϕ at x̄ is

∂̂ϕ(x̄) :=
{
v ∈ R

n
∣∣∣ lim infx→x̄

ϕ(x) − ϕ(x̄)− 〈v, x− x̄〉
‖x− x̄‖ ≥ 0

}
.(2.1)

Each v ∈ ∂̂ϕ(x̄) is a regular subgradient of ϕ at x̄. While ∂̂ϕ(x̄) reduces to a singleton
{∇ϕ(x̄)} if ϕ is Fréchet differentiable at x̄ with the gradient ∇ϕ(x̄), and reduces to
the classical subdifferential of convex analysis if ϕ is convex, the set (2.1) may often
be empty for nonconvex and nonsmooth functions such as, e.g., for ϕ(x) = −|x| at
x̄ = 0 ∈ R. Another serious disadvantage of the subdifferential construction (2.1) is
the failure of standard calculus rules inevitably required in the theory and applications
of variational analysis and optimization. In particular, the inclusion (outer estimate)

sum rule ∂̂(ϕ1 +ϕ2)(x̄) ⊂ ∂̂ϕ1(x̄)+ ∂̂ϕ2(x̄) does not hold for the simplest nonsmooth
functions ϕ1(x) = |x| and ϕ2(x) = −|x| at x̄ = 0 ∈ R.

The picture dramatically changes when we employ a limiting “robust regular-
ization” procedure over the subgradient mapping ∂̂ϕ(·) that leads us to the (basic
first-order) subdifferential of ϕ at x̄ defined by

∂ϕ(x̄) := Lim sup
x

ϕ→x̄

∂̂ϕ(x)(2.2)

and known also as the general, or limiting, or Mordukhovich subdifferential; it was
first introduced in [24] in an equivalent way. Each v ∈ ∂ϕ(x̄) is called a (basic)
subgradient of ϕ at x̄. Thus, by taking into account definition (1.1) of Lim sup and

the notation x
ϕ→ x̄, we represent the basic subgradients v ∈ ∂ϕ(x̄) as follows:

There are sequences xk → x̄ with ϕ(xk) → ϕ(x̄) and vk ∈ ∂̂ϕ(xk) with vk → v.

In contrast to (2.1), the subgradient set (2.2) is generally nonconvex (e.g., ∂ϕ(0) =
{−1, 1} for ϕ(x) = −|x|) while enjoying comprehensive calculus rules (“full calculus”);
this is based on variational/extremal principles, which replace separation arguments
in the absence of convexity. Moreover, the basic subdifferential (2.2) is the smallest
among any axiomatically defined subgradient sets satisfying certain natural require-
ments; see [35, Theorem 9.7].

In what follows, we also need another subdifferential construction effective for
non-Lipschitzian extended-real-valued functions. Given ϕ : Rn → R finite at x̄, the
singular/horizon subdifferential ∂∞ϕ(x̄) of ϕ at x̄ is defined by

(2.3) ∂∞ϕ(x̄) := Lim sup
x

ϕ→x̄
λ↓0

λ∂̂ϕ(x).

If the function ϕ is lower semicontinuous (l.s.c.) around x̄, then ∂∞ϕ(x̄) = {0} if and
only if ϕ is locally Lipschitzian around this point.
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Given further a nonempty subset Ω ⊂ R
n, consider its indicator function δ(x; Ω)

equal to 0 for x ∈ Ω and to ∞ otherwise. For any fixed x̄ ∈ Ω, define the regular
normal cone to Ω at x̄ by

N̂(x̄; Ω) := ∂̂δ(x̄; Ω) =
{
v ∈ R

n
∣∣∣ Lim sup

x
Ω→x̄

〈v, x− x̄〉
‖x− x̄‖ ≤ 0

}
(2.4)

and similarly the (basic, limiting) normal cone to Ω at x̄ by N(x̄; Ω) := ∂δ(x̄; Ω).
It follows from (2.2) and (2.4) that the normal cone N(x̄; Ω) admits the limiting
representation

N(x̄; Ω) = Lim sup
x

Ω→x̄

N̂(x; Ω),(2.5)

meaning that the basic normals v ∈ N(x̄; Ω) are those vectors v ∈ R
n for which there

are sequences xk → x̄ and vk → v with xk ∈ Ω and vk ∈ N̂(xk; Ω), k ∈ IN . If Ω is
locally closed around x̄, (2.5) is equivalent to the original definition by Mordukhovich
[24]:

N(x̄; Ω) = Lim sup
x→x̄

[
cone
(
x−Π(x; Ω)

)]
,

where Π(x; Ω) signifies the Euclidean projector of x ∈ R
n on the set Ω, and where

“cone” stands for the conic hull of a set.
There is the duality/polarity correspondence

N̂(x̄; Ω) = T (x̄; Ω)∗ :=
{
v ∈ R

n
∣∣∣ 〈v, w〉 ≤ 0 for all w ∈ T (x̄; Ω)

}
(2.6)

between the regular normal cone (2.4) and the tangent cone to Ω at x̄ ∈ Ω defined by

T (x̄; Ω) :=
{
w ∈ R

n
∣∣∣ ∃xk

Ω→ x̄, αk ≥ 0 with αk(xk − x̄) → w as k → ∞
}

(2.7)

and known also as the Bouligand–Severi contingent cone to Ω at this point. Note that
the basic normal cone (2.5) cannot be tangentially generated in a polar form (2.6) by
using some set of tangents, since it is intrinsically nonconvex, while the polar T ∗ to
any set T is automatically convex. In what follows, we may also use the subindex set
notation like NΩ(x̄), TΩ(x̄), etc. for the constructions involved.

It is worth observing that the convex closure

N(x̄; Ω) := clcoN(x̄; Ω)(2.8)

of (2.5), known as the Clarke/convexified normal cone to Ω at x̄ (see [8]), may dra-
matically enlarge the set of basic normals (2.5). Indeed, it is proved by Rockafellar
[47] that for every vector function f : Rn → R

m locally Lipschitzian around x̄ the
convexified normal cone (2.8) to the graph of f at (x̄, f(x̄)) is in fact a linear subspace
of dimension d ≥ m in R

n × R
m, where the equality d = m holds if and only if the

function f is strictly differentiable at x̄ with the derivative (Jacobian matrix) denoted
for simplicity by ∇f(x̄), i.e.,

lim
x,u→x̄

f(x)− f(u)−∇f(x̄)(x− u)

‖x− u‖ = 0,
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which is automatic when f is C1 around x̄. In particular, this implies thatN((x̄, f(x̄));
gph f) is the whole space R

n × R
m whenever f is nonsmooth around x̄, n = 1, and

m ≥ 1. Moreover, the aforementioned results were discovered by Rockafellar [47] not
only for graphs of locally Lipschitzian functions, but also for the so-called Lipschitzian
manifolds (or graphically Lipschitzian sets), which are locally homeomorphic to graphs
of Lipschitzian vector functions. The latter class includes graphs of maximal monotone
relations and subdifferential mappings for convex, saddle, lower-C2, and more general
prox-regular functions typically encountered in variational analysis and optimization.
In fact such graphical sets play a crucial role in the coderivative and second-order
subdifferential constructions studied in this paper.

Given a set-valued mapping F : Rn →→ R
m, define its coderivative at (x̄, ȳ) ∈ gphF

by [25]

(2.9) D∗F (x̄, ȳ)(v) :=
{
u ∈ R

n
∣∣ (u,−v) ∈ N

(
(x̄, ȳ); gphF

)}
, v ∈ R

m,

via the normal cone (2.5) to the graph gphF . Clearly the mapping D∗F (x̄, ȳ) :
R

m →→ R
n is positive-homogeneous; it reduces to the adjoint derivative

(2.10) D∗F (x̄)(v) =
{∇F (x̄)∗v

}
, v ∈ R

m,

where ∗ stands for the matrix transposition, if F is single-valued (then we omit
ȳ = F (x̄) in the coderivative notation) and strictly differentiable at x̄. Note that
the coderivative values in (2.9) are often nonconvex sets due to the nonconvexity of
the normal cone on the right-hand side. Furthermore, the latter cone is taken to
a graphical set, and thus its convexification in (2.9) may create serious trouble; see
above.

The main construction studied in the paper was introduced in [26] as follows.
Definition 2.1 (second-order subdifferential). Let the function ϕ : Rn → R be

finite at x̄, and let ȳ ∈ ∂ϕ(x̄) be a basic first-order subgradient of ϕ at x̄. Then the
second-order subdifferential of ϕ at x̄ relative to ȳ is defined by

(2.11) ∂2ϕ(x̄, ȳ)(u) := (D∗∂ϕ)(x̄, ȳ)(u), u ∈ R
n,

via the coderivative (2.9) of the first-order subdifferential mapping (2.2).
Observe that if ϕ ∈ C2 around x̄ (in fact, it is merely continuously differentiable

around x̄ with the strict differentiable first-order derivative at this point), then

∂2ϕ(x̄)(u) =
{∇2ϕ(x̄)u

}
, u ∈ R

n,

where ∇2ϕ(x̄) is the (symmetric) Hessian of ϕ at x̄. Sometimes the second-order
construction (2.11) is called the “generalized Hessian” of ϕ at the reference point [43].
Note also that for the so-called C1,1 functions (i.e., continuously differentiable ones
with locally Lipschitzian derivatives around x̄; another notation is C1+), we have the
representation

∂2ϕ(x̄)(u) = ∂〈u,∇ϕ〉(x̄), u ∈ R
n,

via the first-order subdifferential (2.2) of the derivative scalarization 〈u,∇ϕ〉(x) :=
〈u,∇ϕ(x)〉 as x ∈ R

n; see [31, Proposition 1.120]. It is worth emphasizing that the
second-order subdifferential (2.11) as well as the generating coderivative and first-
order subdifferential mappings are dual-space intrinsically nonconvex constructions,
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which cannot correspond by duality to any derivative-like objects in primal spaces
studied, e.g., in [3, 49].

Following the scheme of Definition 2.1 and keeping the coderivative (2.9) as the
underlying element of our approach while using different first-order subdifferentials
in (2.11), we may define a variety of second-order constructions of type (2.11). In
particular, for functions ϕ : Rn×R

d → R of (x,w) ∈ R
n×R

d there are two reasonable
ways of introducing partial second-order subdifferentials; cf. [21]. To proceed, define
the partial first-order subgradient mapping ∂xϕ : Rn × R

d →→ R
n by

∂xϕ(x,w) :=
{
set of subgradients v of ϕw := ϕ(·, w) at x

}
= ∂ϕw(x).

Then given (x̄, w̄) and ȳ ∈ ∂xϕ(x̄, w̄), define the partial second-order subdifferential of
ϕ with respect to x at (x̄, w̄) relative to ȳ by

(2.12) ∂2
xϕ(x̄, w̄, ȳ)(u) := (D∗∂ϕw̄)(x̄, ȳ)(u) = ∂2ϕw̄(x̄, ȳ)(u), u ∈ R

n,

with ϕw̄(x) = ϕ(x, w̄). On the other hand, we can define the extended partial second-
order subdifferential of ϕ with respect to x at (x̄, w̄) relative to ȳ by

(2.13) ∂̃2
xϕ(x̄, w̄, ȳ)(u) := (D∗∂xϕ)(x̄, w̄, ȳ)(u), u ∈ R

n.

As argued in [21], constructions (2.12) and (2.13) are not the same even in the case
of C2 functions when (2.12) reduces to ∇2

xxϕ(x̄, w̄)(u), while (2.13) comes out as
(∇2

xxϕ(x̄, w̄)u,∇2
xwϕ(x̄, w̄)u). This happens due to the involvement of w → w̄ in

the limiting procedure to define the extended partial second-order subdifferential set
∂̃2
xϕ(x̄, w̄, ȳ)(u), which is hence larger than (2.12). Note that both partial second-

order constructions (2.12) and (2.13) are proved to be useful in applications; see, e.g.,
[20, 21] for more details.

It has been well recognized and documented (see, e.g., [4, 31, 32, 49, 50] and
the references therein) that the first-order limiting constructions (2.2), (2.5), and
(2.9) enjoy full calculi, which are crucial for their numerous applications. Based on
definitions (2.11) of the second-order subdifferential and its partial counterparts (2.12)
and (2.13), it is natural to try to combine calculus results for first-order subgradients
with those for coderivatives to arrive at the corresponding second-order calculus rules.
However, there are nontrivial complications when proceeding in this way due to the
fact that general results of the first-order subdifferential calculus hold as inclusions
while the coderivative operation (2.9) does not generally preserve them. Thus the
initial requirement arises on selecting classes of functions for which calculus rules for
first-order subgradients hold as equalities. Proceeding in this direction, a number
of second-order calculus rules have been established in [20, 28, 30, 31, 33, 34, 36,
39] for full, while not for partial, second-order subdifferentials in finite and infinite
dimensions.

In the next section we obtain new second-order chain rules applied to full and par-
tial second-order subdifferentials and develop, in particular, a direct approach based
on quadratic penalties to derive general results for strongly amenable compositions.

3. General second-order subdifferential chain rules. Given a vector func-
tion h : Rn × R

d → R
m with m ≤ n and a proper extended-real-valued function

θ : Rm → R, consider the composition

(3.1) ϕ(x,w) = (θ ◦ h)(x,w) := θ
(
h(x,w)

)
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with x ∈ R
n and w ∈ R

d. Our first theorem provides exact formulas for calculating
the partial second-order subdifferentials (2.12) and (2.13) of composition (3.1) under
the full rank condition on the partial derivative (Jacobian matrix) ∇xh(x̄, w̄) at the
reference point.

Theorem 3.1 (exact second-order chain rules with full rank condition). Given
a point (x̄, w̄) ∈ R

n × R
d, suppose that θ in (3.1) is finite at z̄ := h(x̄, w̄), that

h(·, w̄) : Rn → R
m is continuously differentiable around x̄ with the full row rank con-

dition

(3.2) rank∇xh(x̄, w̄) = m,

and that the mapping ∇xh(·, w̄) : Rn → R
m is strictly differentiable at x̄. Pick any

ȳ ∈ ∂xϕ(x̄, w̄) and denote by v̄ a unique vector satisfying the relationships

v̄ ∈ ∂θ(z̄) and ∇xh(x̄, w̄)
∗v̄ = ȳ.

Then we have the chain rule equality for the partial second-order subdifferential (2.12):
(3.3)
∂2
xϕ(x̄, w̄, ȳ)(u) = ∇2

xx〈v̄, h〉(x̄, w̄)u+∇xh(x̄, w̄)
∗∂2θ(z̄, v̄)(∇xh(x̄, w̄)u), u ∈ R

n.

If in addition the mapping h : Rn × R
d → R

m is continuously differentiable around
(x̄, w̄) and its derivative ∇h : Rn × R

d → R
m is strictly differentiable at (x̄, w̄), then

we have

∂̃2
xϕ(x̄, w̄, ȳ)(u) =

(
∇2

xx〈v̄, h〉(x̄, w̄)u,∇2
xw〈v̄, h〉(x̄, w̄)u

)
(3.4)

+
(
∇xh(x̄, w̄),∇wh(x̄, w̄)

)∗
∂2θ(z̄, v̄)(∇xh(x̄, w̄)u)

whenever u ∈ R
n for the extended partial second-order subdifferential (2.13).

Proof. We derive the chain rule (3.4) for the extended partial second-order sub-
differential; the proof of (3.3) is just a simplification of the one given below.

On the first-order subdifferential level we have from [31, Proposition 1.112] under
the assumptions made (and from [49, Exercise 10.7] under some additional assump-
tions) that there is a neighborhood U of (x̄, w̄) such that

∂xϕ(x,w) =
{
y ∈ R

n
∣∣∣ ∃ v ∈ ∂θ

(
h(x,w)

)
with ∇xh(x,w)

∗v = y
}

for all (x,w) ∈ U.

For any fixed ȳ ∈ ∂xϕ(x̄, w̄), this gives us locally around (x̄, w̄, ȳ) the graph represen-
tation

(3.5)
gph∂xϕ =

{
(x,w, y) ∈ R

n × R
d × R

n
∣∣∣ ∃ (p, v) ∈ gph ∂θ such that

h(x,w) = p, ∇xh(x,w)
∗v = y
}
.

Consider now the following two possible cases in the graph representation (3.5):
(i) the “square” case when m = n, and (ii) the “general” case when m < n.

In the square case (i) we have by the full rank condition (3.2) that the matrix
∇xh(x,w) is invertible for (x,w) near (x̄, w̄), and hence (3.5) can be rewritten as

(3.6) gph ∂xϕ =
{
(x,w, y) ∈ R

n × R
d × R

n
∣∣∣ f(x,w, y) ∈ gph∂θ

}
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via the mapping f : Rn × R
d × R

n → R
2n given by

(3.7) f(x,w, y) :=
(
h(x,w), (∇xh(x,w)

∗)−1y
)

for (x,w, y) near (x̄, w̄, ȳ).

In other words, representation (3.6) can be expressed via the preimage/inverse image
of the set gph ∂θ under the mapping f as follows:

(3.8) gph∂xϕ = f−1
(
gph∂θ
)
.

Since ∇xh is assumed to be strictly differentiable at (x̄, w̄), the mapping f in (3.7)
is strictly differentiable at (x̄, w̄, ȳ) and, by (3.2) with m = n, its Jacobian matrix
∇f(x̄, w̄, ȳ) has full row rank 2n. Employing [31, Theorem 1.17] to (3.8) gives us

(3.9) N
(
(x̄, w̄, ȳ); gph ∂xϕ

)
= ∇f(x̄, w̄, ȳ)∗N

(
f(x̄, w̄, ȳ); gph ∂θ

)
.

Now we calculate the derivative/Jacobian matrix of f at (x̄, w̄, ȳ) by using the
particular structure of f in (3.7), the classical chain rule, and the well-known Leach
inverse function theorem for strictly differentiable mappings; see, e.g., [12, 31]. Define
the mappings f1 : R

n ×R
d ×R

n → R
n and f2 : R

n ×R
d ×R

n → R
n with f = (f1, f2)

by f1(x,w, y) := h(x,w) and

f2(x,w, y) := (∇xh(x,w)
−1)∗y for (x,w, y) ∈ R

n × R
d × R

n.

It is clear that ∇f1(x̄, w̄, ȳ) = (∇h(x̄, w̄), 0), while for calculating ∇f2(x̄, w̄, ȳ) we
introduce two auxiliary mappings g : Rn ×R

d ×R
n → R

n and q : Rn ×R
d ×R

n → R

by

g(x,w, p) := ∇xh(x,w)
∗p and q(x,w, p) := 〈p, h(x,w)〉 for (x,w, p) ∈ R

n × R
d × R

n.

Note that g(x,w, p) = ∇qx(x,w, p)
∗ and that g(x,w, f2(x,w, y)) − y = 0. Differenti-

ating the latter equality gives us

(3.10) ∇xg(x,w, f2(x,w, y)) +∇pg(x,w, f2(x,w, y))∇xf2(x,w, y) = 0.

Observing further that ∇xg(x,w, p) = ∇x(∇xq(x,w, p))
∗ = ∇2

xxq(x,w, p), we get
from (3.10) and the definitions above that the equation

∇2
xx〈(∇xh(x,w)

−1)∗y, h(x,w)〉 +∇xh(x,w)
∗∇f2(x,w, y) = 0

is satisfied, which implies in turn the representation of the partial derivative

(3.11) ∇xf2(x,w, y) = −(∇xh(x,w)
−1)∗ · ∇2

xx〈(∇xh(x,w)
−1)∗y, h(x,w)〉.

Similarly we have the following representation of the other partial derivative of f2:

(3.12) ∇wf2(x,w, y) = −(∇xh(x,w)
−1)∗ · ∇2

xw〈(∇xh(x,w)
−1)∗y, h(x,w)〉.

Taking into account that ∇yf2(x,w, y) = (∇xh(x,w)
−1)∗ gives us finally

∇f(x̄, w̄, ȳ) =

[ ∇xh(x̄, w̄) ∇wh(x̄, w̄) 0
∇xf2(x̄, w̄, ȳ) ∇wf2(x̄, w̄, ȳ) (∇xh(x̄, w̄)

−1)∗

]
,(3.13)

where ∇xf2(x̄, w̄, ȳ) and ∇wf2(x̄, w̄, ȳ) are as calculated in (3.11) and (3.12), respec-
tively. The second-order chain rule (3.4) in the square case (i) follows now from
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substituting (3.13) into (3.9) and then by using the definitions of the constructions
involved and elementary transformations.

It remains to consider the general case (ii) with m < n. This case can be reduced

to the previous one by introducing a linear mapping h̃ : Rn × R
d → R

n−m such that
the mapping

h(x,w) :=
(
h(x,w), h̃(x,w)) from R

n × R
d to R

n

has full rank. It can be done, e.g., by choosing a basis {a1, . . . , an−m} for the (n−m)-
dimensional spaces {u ∈ R

n| ∇hx(x̄, w̄)u = 0} and letting h(x,w) := (h(x,w),
〈a1, x〉, . . . , 〈an−m, x〉); cf. [49, Exercise 6.7] for a first-order setting. Then viewing
ϕ as θ ◦ h with θ(z, p) := θ(z) for all z ∈ R

m and p ∈ R
n−m reduces (ii) to (i) and

thus completes the proof of the theorem.
Some remarks on the results related to those obtained in Theorem 3.1 are in

order.
Remark 3.2 (discussions on second-order chain rules with full rank/surjectivity

conditions). Previously known second-order chain rules of type (3.3) were derived
for the full second-order subdifferential (2.11), where condition (3.2) was written as
rank∇h(x̄) = m. To the best of our knowledge, the first result in this direction
was obtained in [33, Theorem 3.4] with the inclusion “⊂” in (3.3). Various infinite-
dimensional extensions of (3.3) in the inclusion and equality forms were derived in [30,
36] and [31, Theorem 1.127] by imposing the surjectivity condition on the derivative
∇h(x̄) as the counterpart of (3.2) in infinite-dimensional spaces. The most recent
second-order subdifferential chain rule for (2.11) was derived in [39, Theorem 7] in
the framework of cone programming with C2-reducible constraints [3] under a certain
nondegeneracy qualification condition. Observe finally that the proof of equality (3.4)
given above in case (i) corresponding to the invertible partial derivative ∇xh(x̄, w̄)
holds in any Banach space, while the device in case (ii) is finite-dimensional.

Next we explore the possibility of deriving second-order chain rules for (3.1) when
the rank condition (3.2) may not be satisfied. This can be done for broad classes of
amenable functions defined in the way originated in [41], which are overwhelmingly
encountered in finite-dimensional parametric optimization. Recall [22] that a proper
function ϕ : Rn ×R

d → R is strongly amenable in x at x̄ with compatible parameteri-
zation in w at w̄ if there is a neighborhood V of (x̄, w̄) on which ϕ is represented in
the composition form (3.1), where h is of class C2, while θ is a proper, l.s.c., convex
function such that the first-order qualification condition

(3.14) ∂∞θ
(
h(x̄, w̄)

) ∩ ker∇xh(x̄, w̄)
∗ = {0}

involving the singular subdifferential (2.3) is satisfied. The latter qualification condi-
tion automatically holds if either θ is locally Lipschitzian around h(x̄, w̄) or the full
rank condition (3.2) is fulfilled, since it is equivalent to

ker∇xh(x̄, w̄)
∗ :=
{
v ∈ R

n
∣∣ 0 = ∇xh(x̄, w̄)

∗v} = {0}.
Properties of strongly amenable compositions ϕ(x) = θ(h(x)) and related functions
are largely investigated in [41, 42, 49]; most of them hold also for strongly amenable
compositions (3.1) with compatible parameterization [21, 22]. Strong amenability
is a property that bridges the gap between smoothness and convexity while at the
same time covering a great many of the functions that are of interest as the essential
objective in minimization problems; see [49] for more details.
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The next theorem establishes second-order subdifferential chain rules of the in-
clusion type for strongly amenable compositions with no full rank requirement (3.2).

Theorem 3.3 (second-order chain rules for strongly amenable compositions).
Let ϕ : Rn ×R

d → R be strongly amenable in x at x̄ with compatible parameterization
in w at w̄, and let ȳ ∈ ∂xϕ(x̄, w̄). Denote z̄ := h(x̄, w̄) and consider the nonempty set

M(x̄, w̄, ȳ) :=
{
v ∈ R

m
∣∣∣ v ∈ ∂θ(z̄) with ∇xh(x̄, w̄)

∗v = ȳ
}
.

Assume the fulfillment of the second-order qualification condition:

∂2θ(z̄; v)(0) ∩ ker∇xh(x̄, w̄)
∗ = {0} for all v ∈ M(x̄, w̄, ȳ).(3.15)

Then we have the following chain rules for the partial second-order subdifferentials
(2.12) and (2.13), respectively, valued for all u ∈ R

n:

∂2
xϕ(x̄, w̄, ȳ)(u) ⊂

⋃
v∈M(x̄,w̄,ȳ)

∇2
xx〈v, h〉(x̄, w̄)u +∇xh(x̄, w̄)

∗∂2θ(z̄, v)(∇xh(x̄, w̄)u),

(3.16)

∂̃2
xϕ(x̄, w̄, ȳ)(u) ⊂

⋃
v∈M(x̄,w̄,ȳ)

(
∇2

xx〈v, h〉(x̄, w̄)u,∇2
xw〈v, h〉(x̄, w̄)u

)(3.17)

+
(
∇xh(x̄, w̄)

∗∂2θ(z̄, v)(∇xh(x̄, w̄)u),∇wh(x̄, w̄)
∗∂2θ(z̄, v)(∇xh(x̄, w̄)u)

)
.

Proof. For brevity and simplicity of the arguments and notation, we present
a detailed proof just for the full second-order subdifferential (2.11) of the strongly
amenable nonparameterized compositions ϕ(x) = θ(h(x)), in which case both formu-
las (3.16) and (3.17) reduce to

(3.18) ∂2ϕ(x̄, ȳ)(u) ⊂
⋃

v∈∂θ(z̄)
∇h(x̄)∗v=ȳ

(
∇2〈v, h〉(x̄)u+∇h(x̄)∗∂2θ(z̄, v)(∇h(x̄)u)

)

with z̄ = h(x̄) under the basic second-order qualification condition

(3.19) ∂2θ(z̄, v)(0) ∩ ker∇h(x̄)∗ = {0} whenever v ∈ ∂θ(z̄) and ∇h(x̄)∗v = ȳ.

The reader can readily check that the method of quadratic penalties developed below
works perfectly for the case of partial second-order subdifferentials to produce the
chain rule inclusions (3.16) and (3.17) under the “partial” second-order qualification
condition (3.15).

We begin with observing that the first-order chain rule

(3.20) ∂ϕ(x) = ∇h(x)∗∂θ(h(x)) whenever x ∈ U

holds as equality for strongly amenable compositions on some neighborhood U of x̄.
Indeed, it follows from the more general chain rule of [31, Theorem 3.41(iii)] due to
(2.10) and the particular properties of strongly amenable functions summarized in
[49, Exercise 10.25].

Now we proceed with calculating the second-order subdifferential ∂2ϕ(x̄, ȳ) for
the given first-order subgradient ȳ ∈ ∂ϕ(x̄). The definitions in (2.1), (2.9), and (2.5)



SECOND-ORDER SUBDIFFERENTIAL CALCULUS 965

suggest calculating the regular normal cone N̂((x, y); Ω) to the subdifferential graph
Ω := gph∂ϕ of ϕ at points (x, y) ∈ gph ∂ϕ near (x̄, ȳ) and then passing to the limit
therein as (x, y) → (x̄, ȳ). To simplify notation, let us focus first on calculating

N̂((x̄, ȳ); Ω) for the graphical set Ω. Developing a variational approach to subdiffer-
ential calculus and employing the smooth variational description of regular normals
from [49, Theorem 6.11] and [31, Theorem 1.30], we have that (ω,−ξ) ∈ N̂((x̄, ȳ); Ω)
if and only if there is a smooth function ϑ : Rn × R

n → R such that

(3.21) argmin(x,y)∈Ω ϑ(x, y) = {(x̄, ȳ)} and ∇ϑ(x̄, ȳ) = (−ω, ξ).

Using the first-order chain rule formula (3.20) allows us to transform the minimization
problem in (3.21) into the following:{

minimize ϑ(x,∇h(x)∗v) over all
x ∈ R

n, (z, v) ∈ gph ∂θ with h(x)− z = 0.
(3.22)

We know from (3.21) that (x, z, v) is an optimal solution to (3.22) if and only if

(3.23) x = x̄, z = z̄ and ∇h(x̄)∗v = ȳ,

which is therefore the unique optimal solution to this problem. Denote G := gph ∂θ
and observe that this set is closed due to the convexity and lower semicontinuity of θ.
Observe further that the mapping M : Ω →→ R

m defined on the set Ω = gph ∂ϕ with
the values

M(x, y) :=
{
v ∈ ∂θ(h(x))

∣∣∣ ∇h(x)∗v = y
}

(3.24)

is uniformly bounded near (x̄, ȳ). This can be easily verified, arguing by contradiction
due to the qualification condition (3.14) in the definition of amenable functions.

By the aforementioned uniform boundedness of (3.24), we find s, r > 0 such that
the inclusion M(x, y) ⊂ IBs(0) holds for all (x, y) ∈ IBr(x̄, ȳ). Taking any sequence
εk ↓ 0 as k → ∞, consider the family of quadratic penalty problems{

minimize ϑ(x,∇h(x)∗v) + 1
2εk

‖h(x)− z‖2
over all (x, v) ∈ IBr(x̄)× IB2s(0) and (z, v) ∈ G.

(3.25)

It is easy to see that the level set of each problem (3.25) is bounded. Thus this
problem admits optimal solutions (xk, zk, vk). To show that the triples (xk, zk, vk)
are uniformly bounded as k ∈ IN , it suffices to check the boundedness of the sequence
{zk}; indeed, this follows from

‖zk‖ ≤ ‖h(xk)− zk‖+ ‖h(xk)‖

≤
√
2εk

[
ϑ(x̄,∇h(x̄)∗v̄)− ϑ

(
xk,∇h(xk)∗vk

)]
+ ‖h(xk)‖

≤
√
2εk

[
ϑ(x̄,∇h(x̄)∗v̄)−min(x,v)∈IBr(x̄)×IBs(0) ϑ

(
x,∇h(x)∗v

)]
+maxx∈IBr(x̄) ‖h(x)‖, k ∈ IN.

By passing to a subsequence of (xk, zk, vk) and taking into account the uniqueness of
solution (3.23) to the unperturbed problem (3.22), we get

(3.26) xk → x̄, zk → z̄ and yk := ∇h(xk)
∗vk → ∇h(x̄)∗v̄ = ȳ
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with (z̄, v̄) ∈ G and (xk, vk) ∈ int
(
IBr(x̄) × IB2s(0)

)
for all k sufficiently large. Now,

applying the first-order necessary optimality conditions from [49, Theorem 6.12] to
the solution (xk, zk, vk) of the penalized problem (3.25) with a smooth cost function
and a geometric constraint gives us

∇x

[
ϑ
(
x,∇h(x)∗vk

)
+

1

2εk
‖h(x)− zk‖2

]∣∣∣
x=xk

= 0,

−∇z,v

[
ϑ
(
xk,∇h(xk)

∗v
)
+

1

2εk
‖h(xk)− z‖2

]∣∣∣
(z,v)=(zk,vk)

∈ N̂((zk, vk);G)

for all k ∈ IN . Denoting pk := [h(xk)− zk]/εk, these conditions calculate out to

∇xϑ(xk, yk) +∇2〈vk, h〉(xk)∇yϑ(xk, yk) +∇〈pk, h〉(xk) = 0,(3.27) (
pk,−∇h(xk)∇yϑ(xk, yk)

)
∈ N̂((zk, vk);G).(3.28)

By passing above to subsequences as k → ∞ if needed, we can reduce the situation
to considering one of the following two cases:

Case 1: {pk} converges to some p̄.
Case 2: pk → ∞ while {pk/‖pk‖} converges to some p̄ �= 0.
In Case 1 it follows from (3.26), (3.27), and (3.28) that

∇xϑ(x̄, ȳ) +∇2〈v̄, h〉(x̄)∇yϑ(x̄, ȳ) +∇〈p̄, h〉(x̄) = 0,(3.29) (
p̄,−∇h(x̄)∇yϑ(x̄, ȳ)

)
∈ N((z̄, v̄);G),(3.30)

where ∇xϑ(x̄, ȳ) = −ω and ∇yϑ(x̄, ȳ) = ξ by the second equality in (3.21).
In Case 2 by, first dividing both parts of (3.27) and (3.28) by ‖pk‖ and then

passing to the limit therein as k → ∞, we get that

(3.31) ∇h(x̄)∗p̄ = 0 and (p̄, 0) ∈ N((z̄, v̄);G) with ‖p̄‖ = 1.

Thus, by taking into account our choice of (ω,−ξ) ∈ N̂((x̄, ȳ); Ω) and the construction
of M in (3.24), we deduce from (3.29)–(3.31) the existence of v̄ ∈ M(x̄, ȳ) and p̄
satisfying either (3.29) and (3.30) or (3.31). Since the arguments above equally hold
for every point (x, y) ∈ gph ∂ϕ near (x̄, ȳ), they ensure the following description of
the regular normal cone to Ω = gphϕ at points (x, y) ∈ Ω in a neighborhood of the
reference one (x̄, ȳ), where G = gph ∂θ:

(3.32)

⎡
⎢⎢⎢⎢⎢⎢⎣

(ω,−ξ) ∈ N̂((x, y); Ω) =⇒ ∃ v ∈ M(x, y), p ∈ R
m such that

either

{
ω = ∇2〈v, h〉(x)ξ +∇h(x)∗p
with (p,−∇h(x)ξ) ∈ N((h(x), v);G)

or ∇h(x)∗p = 0 with (p, 0) ∈ N((h(x), v);G), ‖p‖ = 1.

Next we take any basic normal (ω,−ξ) ∈ N((x̄, ȳ); Ω) (not just a regular one) and
by (2.5) find sequences (xk, yk) → (x̄, ȳ) and (ωk,−ξk) → (ω,−ξ) as k → ∞ satisfying

(xk, yk) ∈ Ω and (ωk,−ξk) ∈ N̂((xk, yk); Ω) for all k ∈ IN.

Employing the description of regular normals (3.32) ensures the existence of vk ∈
M(xk, yk) and pk ∈ R

m such that the either/or alternative in (3.32) holds for each
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k ∈ IN . Due to the established local boundedness of the mapping M , suppose, with
no loss of generality, that

vk → v as k → ∞ for some v ∈ M(x̄, ȳ).

By a further passage to subsequences, we can reduce the situation to where just one
of the “either/or” parts of the alternative in (3.32) holds for all k. Consider first the
“or” part of this alternative, i.e., the validity of

∇h(xk)
∗pk = 0 with (pk, 0) ∈ N((h(xk), vk);G), ‖pk‖ = 1 for all k.

In this case the sequence {pk} has a cluster point p. Thus we get

(3.33) ∇h(x̄)∗p = 0 with (p, 0) ∈ N((h(x̄), v);G), ‖p‖ = 1, and v ∈ M(x̄, ȳ)

by passing to the limit as k → ∞ and by taking into account the continuity of f and
∇h, as well as the robustness property

N(ū;G) = Lim sup
u

G→ū

N(u;G)

of the normal cone (2.5), which follows from its definition in finite dimensions.
When the “either” part holds, we proceed similarly to Cases 1 and 2 above. In

the first case there is p ∈ R
m such that pk → p. Then the passage to the limit in

(3.34) ωk = ∇2〈vk, h〉(xk)ξk +∇h(xk)
∗pk, (pk,−∇h(xk)ξk) ∈ N((h(xk), vk);G),

with taking into account the continuity assumptions and the convergence above, leads
to

(3.35) ω = ∇2〈v, h〉(x̄)ξ +∇h(x̄)∗p, (p,−∇h(x̄)ξ) ∈ N((h(x̄), v);G).

In the remaining case we have ‖pk‖ → ∞ and thus find p such that pk/‖pk‖ → p with
‖p‖ = 1. Divide now both sides of (3.34) by ‖pk‖ for any large k and take the limit
therein as k → ∞. Then we again arrive at (3.33). Unifying (3.33) and (3.35) gives
the description of basic normals to Ω = gph ∂ϕ via the following alternative:

(3.36)

⎡
⎢⎢⎢⎢⎢⎢⎣

(ω,−ξ) ∈ N((x̄, ȳ); Ω) =⇒ ∃ v ∈ M(x̄, ȳ), p ∈ R
m such that

either

{
ω = ∇2〈v, h〉(x̄)ξ +∇h(x̄)∗p
with (p,−∇h(x̄)ξ) ∈ N((h(x̄), v);G)

or ∇h(x̄)∗p = 0 with (p, 0) ∈ N((h(x̄), v);G), ‖p‖ = 1.

Recalling the notation introduced in the theorem and in the definitions of the con-
structions used, we see that the “either” part of (3.36) amounts to the second-order
subdifferential inclusion (3.18), while the “or” part of (3.36) means the negation of
the basic second-order qualification condition (3.19). Thus the assumed fulfillment
of (3.19) shows that the “or” part of (3.36) does not hold, which justifies the validity
of the second-order chain rule (3.18).

By repeating finally the arguments above while taking into account that the
partial counterparts of the first-order chain rule equality (3.20) are satisfied due to the
results of [21, Proposition 3.4] (see also [49, Corollary 10.11] and [31, Corollary 3.44]
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in more general settings), we get the partial second-order subdifferential chain rules
(3.16) and (3.17) under the partial second-order qualification condition (3.15).

Remark 3.4 (second-order chain rules with inclusions). A chain rule in form
(3.16) for the full second-order subgradient sets of strongly amenable compositions
with compatible parameterization in finite dimensions was derived in [20] under
the second-order subdifferential condition of type (3.15) with ∇h(x̄, w̄) replacing
∇xh(x̄, w̄). The proof in [20] was based on applying a coderivative chain rule to
full first-order subdifferential mappings. A similar approach was employed in [30]
and [31, Theorem 3.74] to derive second-order chain rules of type (3.18) in infinite
dimensions under an appropriate infinite-dimensional counterpart of the second-order
qualification condition (3.19). Although the results of [30, 31] are applied to a more
general class of subdifferential regular functions θ in (3.18), they require a number of
additional assumptions in both finite and infinite dimensions. Finally, we mention a
second-order chain rule of the inclusion type (3.18) obtained in [34, Theorem 3.1] for a
special kind of strongly amenable composition with the indicator function θ = δ(·; Θ)
of a set Θ in finite dimensions, which does not generally require the fulfillment of the
second-order qualification condition (3.19) while imposing instead a certain calmness
assumption on some auxiliary multifunction. The latter holds, in particular, in the
case of polyhedral sets Θ due to seminal results of [46].

Next we show that the second-order chain rule formula (3.18), and hence those in
(3.16) and (3.17), cannot be generally used for the precise calculation of the second-
order subdifferentials for strongly amenable compositions: the inclusion therein may
be strict even for fairly simple functions θ and h in ϕ = θ ◦ h without a kind of full
rank condition.

Example 3.5 (strict inclusion in the second-order chain rule formula). The in-
clusion in (3.18) can be strict even when h is linear, while θ is piecewise linear and
convex. Moreover, the set on the right-hand side of (3.18) can be nonempty when the
set on the left-hand side is empty.

Proof. Let the functions h : R2 → R
4 and θ : R4 → R be given by

h(x1, x2) := (x1,−x1, x2,−x2) = Ax with A :=

⎡
⎢⎢⎣

1 0
−1 0
0 1
0 − 1

⎤
⎥⎥⎦ ,

θ(z1, z2, z3, z4) := max
{
z1, z2, z3, z4

}
= σM (z),

where M := {v = (v1, v2, v3, v4) ∈ R
4| vi ≥ 0,

∑4
i=1 vi = 1} is the unit simplex

in R
4, and where σΩ stands for the support function of the set Ω. Considering the

composition ϕ(x) := θ(h(x)) on R
2, observe that it can be represented as

(3.37) ϕ(x) = σB(x) for B :=
{
(y1, y2) ∈ R

2
∣∣∣ |y1|+ |y2| ≤ 1

}
.

Note that the outer function θ in the strongly amenable (in fact fully amenable) com-
position θ◦h is convex piecewise linear in the terminology of [49]; it can be equivalently
described by [49, Theorem 2.49] as a function with the polyhedral epigraph.

Using the explicit form (3.37) of ϕ allows us to compute its second-order subdif-
ferential ∂2ϕ(x̄, ȳ) with x̄ = (0, 0) and ȳ = (0, 0) directly by Definition 2.1. Indeed,
we get from (3.37) that ∂ϕ(x̄) = B, and hence ȳ ∈ int ∂ϕ(x̄). This tells us that

(3.38) ∂2ϕ(x̄, ȳ)(u) =

{
R

2 if u = (0, 0),
∅ if u �= (0, 0).
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On the other hand, formula (3.18) reads as the inclusion ∂2ϕ(x̄, ȳ)(u) ⊂ Q(u) with

Q(u) :=
⋃{

A∗∂2θ(0, v)(Au)
∣∣∣ v ∈ M, A∗v = 0

}
.

Take ū = (0, 1), and v̄ = (1/2, 1/2, 0, 0) and then check that Aū = (0, 0, 1,−1), v̄ ∈ M ,
and A∗v̄ = 0. This ensures the converse inclusion

Q(ū) ⊃ A∗∂2θ(0, v̄)(Aū),

which shows that we have Q(ū) �= ∅ provided that ∂2θ(0, v̄)(Aū) �= ∅. To check the
latter, recall the representation of the outer function θ = σM = δ∗M via the indicator
function δM = δ(·;M) of M . Thus we get the description

ω ∈ ∂2θ(0, v̄)(Aū) ⇐⇒ −Aū ∈ ∂2δM (v̄, 0)(−ω).

Since the set M is a convex polyhedron, an exact formula for ∂2δM (0, v̄) is available
from [11].

In order to state this formula, we need to deal with the critical cone for a convex
polyhedron Ω at x ∈ Ω with respect to p ∈ ∂δΩ(x) = NΩ(x); this is a polyhedral cone
defined by

K(x, p) :=
{
w ∈ TΩ(x)

∣∣ w ⊥ p
}
,

where TΩ(x) is the tangent cone (2.7) to Ω at x. Recall that a closed face C of a
polyhedral cone K is a polyhedral cone of the form

C :=
{
x ∈ K| x ⊥ v} for some v ∈ K∗,

where K∗ denotes the polar of the cone K. By the proof of [11, Theorem 2] (see also
[43, Proposition 4.4]) we have the following description of the second-order subdiffer-
ential of the indicator function for a convex polyhedron:

(3.39) w ∈ ∂2δΩ(x, p)(u) ⇐⇒
{
there exist closed faces C1 ⊂ C2 of K(x, p)
with u ∈ C1 − C2, w ∈ (C2 − C1)

∗.

Applying this to our setting with the simplex Ω = M , we get the critical cone

K = TM (v̄) ∩ 0⊥ = TM (v̄) =
{
(ω1, ω2, ω3, ω4)

∣∣∣∣ ω1 + ω2 = 0
ω3 ≥ 0, ω4 ≥ 0

}
.

It follows from the second-order subdifferential formula (3.39) that

−Aū ∈ ∂2δM (v̄, 0)(−ω) ⇐⇒
{
there exist closed faces C1 ⊂ C2 of K
with ω ∈ C2 − C1, −Aū ∈ (C2 − C1)

∗.

Observe that the closed faces of K have the form

{(ω1, ω2)| ω1 + ω2 = 0} × I × J, where I, J can be either R+ or {0}.

Denoting L := {(ω1, ω2)| ω1 + ω2 = 0}, we deduce from above the following possibili-
ties:

C1 −C2 = L× (I1 − I2)× (J1 − J2) and (C1 −C2)
∗ = L⊥ × (I1 − I2)

∗ × (J1 − J2)
∗,
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where I1 − I2 and J1 − J2 can be R, R+, and {0} while, respectively, (I1 − I2)
∗ and

(J1 − J2)
∗ can be {0}, R−, and R. Setting now (I1 − I2)

∗ = R− and (J1 − J2)
∗ = R,

we get

−Aū ∈ ∂2δM (v̄, 0)(−ω) or, equivalently, ω ∈ ∂2θ(0, v̄)(Aū)

whenever ω ∈ L×R+ × {0}. Taking, e.g., ω = (0, 0, 1, 0), gives us ∂2θ(0, v̄)(Aū) �= ∅.
Hence the set Q(ū) on the right-hand side of (3.18) is nonempty while ∂2ϕ(x̄, ȳ)(ū) = ∅
by (3.38).

It is not hard to check that the second-order qualification condition (3.19) does
not hold in Example 3.5. Therefore, besides the emphasis above, this example can be
considered as a counterexample to the equality in the second-order chain rule (3.18)
with no full rank condition on the derivative and also as an illustration of the possible
validity of the inclusion in (3.18) without the second-order qualification condition
(3.19). In the next section we show that if condition (3.19) holds, then in fact it
yields that the full rank condition must be satisfied for a large class of outer functions
θ in amenable compositions θ ◦h, including the one in Example 3.5. Thus the validity
of the second-order qualification condition (3.19) in such settings ensures the equality
in the second-order chain rule formula (3.18).

4. Exact second-order subdifferential chain rules for fully amenable
compositions. This section is mainly devoted to deriving exact (equality-type) sec-
ond-order subdifferential chain rules in the framework of (3.18) for major classes of
fully amenable compositions ϕ = θ ◦ h without imposing the full rank condition

(4.1) rank∇h(x̄) = m ⇐⇒ ker∇h(x̄)∗ = {0}.

This is done below on the basis of calculating the second-order subdifferential (2.11)
for piecewise linear quadratic outer functions θ in the representation of ϕ.

Note that assuming the full rank condition (4.1) clearly ensures the second-
order qualification condition (3.19) and, moreover, the validity by Theorem 3.1 of
the second-order chain rule

(4.2) ∂2ϕ(x̄, ȳ)(u) = ∇2〈v̄, h〉(x̄)u+∇h(x̄)∗∂2θ(z̄, v̄)(∇h(x̄)u) for all u ∈ R
n

with a unique vector v̄ ∈ ∂θ(z̄) satisfying ∇h(x̄)∗v̄ = ȳ. In what follows we show
that the full rank assumption (4.1) is not needed for the validity of (4.2) if ϕ belongs
to some favorable classes of composite functions widely encountered in variational
analysis and optimization.

Recall [41, 49] that a strongly amenable function ϕ is fully amenable at x̄ if the
outer function θ : Rm → R in its composite representation ϕ = θ ◦ h can be chosen
as piecewise linear-quadratic. The latter class includes piecewise linear functions dis-
cussed in Example 3.5. Their domains as well as their subgradient sets (2.2) and (2.3)
are polyhedral; see [49, section10E].

We first present a general result on calculating the second-order subdifferential
of piecewise linear-quadratic functions in fully amenable compositions, which is of
independent interest while playing a significant role in deriving the exact second-order
chain rules in the rest of this section.

Theorem 4.1 (second-order subdifferentials of piecewise linear-quadratic func-
tions). Let ϕ = θ ◦ h be a fully amenable composition at x̄, let M : Rn ×R

n →→ R
m be

the set-valued mapping defined in (3.24), and let S(z) be the subspaces of Rm parallel
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to the affine hull aff ∂θ(z) for all z near the point z̄ := h(x̄). Then for any sufficiently
small neighborhood O of z̄ we have the second-order subdifferential representation

(4.3) ∂2θ(z̄, v̄)(0) =
⋃
z∈O

S(z) whenever v̄ ∈ M(x̄, ȳ),

where the union is taken only over finitely many subspaces S(z).
Proof. As mentioned in the proof of Theorem 3.3, the mapping M from (3.24)

is closed-graph around (x̄, ȳ, z̄) and uniformly bounded around (x̄, ȳ) for strongly
amenable compositions. Since θ ◦ h is fully amenable at x̄, the set M(x, y) is also
polyhedral for all (x, y) sufficiently close to (x̄, ȳ). This follows from the structure
of M , the preservation of full amenability under small perturbations of the reference
point, and the polyhedrality of subgradient sets for fully amenably functions; see [49,
Exercise 10.25(a,b)].

Fix any v̄ ∈ M(x̄, ȳ). Since θ is piecewise linear-quadratic, its graph G := gph ∂θ
is piecewise polyhedral; i.e., it is the union of finitely many polyhedral sets in R

2m.
Using this and taking into account formulas (2.5) and (2.6), we find a neighborhood
W of (z̄, v̄) such that

(4.4) NG(z̄, v̄) =
⋃{

N̂G(z, v)
∣∣∣ (z, v) ∈ G ∩W

}
=
⋃{

TG(z, v)
∗
∣∣∣ (z, v) ∈ G ∩W

}
,

where only finitely many cones (all of them polyhedral) occur in the unions. Therefore

(4.5) w ∈ ∂2θ(z̄, v̄)(0) ⇐⇒ ∃ (z, v) ∈ G ∩W with (w, 0) ∈ TG(z, v)
∗.

On the other hand, we have TG(z, v) = gph (D∂θ)(z, v) by definition of the graphical
derivative D of a set-valued mapping, and furthermore

(D∂θ)(z, v) = ∂

(
1

2
d2θ(z, v)

)

via the second subderivative of the function θ under consideration; see [49, Theo-
rem 13.40 and Proposition 13.32] for more details. Hence it ensures that

dom (D∂θ)(z, v) = dom d2θ(z, v) = N∂θ(z)(v)

by [49, Theorem 13.14]. Employing now (4.4) and (4.5) gives us the representations

(4.6)

∂2θ(z̄, v̄)(0) =
⋃

(z,v)∈G∩W

[
dom (D∂θ)(z, v)

]∗
=
⋃

(z,v)∈G∩W

[
N∂θ(z)(v)

]∗

=
⋃

(z,v)∈G∩W

T∂θ(z)(v),

where only finitely many sets are taken in the unions. Pick v ∈ ∂θ(z) and find, by the
polyhedrality of the subgradient sets ∂θ(z) and the construction of the subspaces S(z),
a vector v′ ∈ ri ∂θ(z) arbitrarily close to v, and get for all such v′ the relationships

T∂θ(z)(v
′) = S(z) ⊃ T∂θ(z)(v),

which imply by (4.6) the equality

∂2θ(z̄, v̄)(0) =
⋃

S(z),
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where the finite union of subspaces is taken over z such that (z, v) ∈ G ∩ W for
some v.

So far we have focused our analysis on a particular point v̄ ∈ M(x̄, ȳ) and an
associated neighborhood W of (z̄, v̄). Since the mapping M is of closed graph and lo-
cally bounded, the set M(x̄, ȳ) can be covered by finitely many of such neighborhoods.
This allows us to obtain (4.3) and complete the proof of the theorem.

Our next step is to justify the exact second-order chain rule (4.2) in the case when
the outer function θ in the fully amenable composition is (convex) piecewise linear;
see [49] and Example 3.5 above. This can be done by using Theorem 4.1 and the
following reduction lemma, which describes a general setting when the second-order
chain rule can be obtained by a local reduction to the full rank case.

Lemma 4.2 (local reduction to full rank condition). Let ϕ : Rn → R be a strongly
amenable composition at x̄ represented as ϕ = θ ◦ h near x̄ with h : Rn → R

m and
θ : Rm → R. Let L be any subspace of Rm satisfying the conditions

(4.7) L ∩ ker∇h(x̄)∗ = {0},

(4.8) ∂θ(z) ⊂ L for all z ∈ R
m sufficiently close to z̄ = h(x̄).

Then we have the exact second-order chain rule formula (4.2).
Proof. Let dimL = s ≤ m. It is easy to see that the case of s = m corresponds by

(4.7) to the full rank condition on ∇h(x̄), and thus the second-order chain rule (4.2)
follows in this case from Theorem 3.1. Suppose now that s < m, and let A be the
matrix of a linear isometry from R

m into R
s × R

m−s under which A∗L = R
s × {0}.

Denoting P := A−1h and ϑ := θA gives us the representation ϕ = ϑ ◦ P . It follows
from the chain rule of convex analysis that

∂ϑ(w) = A∗∂θ(Aw) for w = A−1z and all z ∈ R
m.

This implies by (4.8) that for all z sufficiently close to x̄ we have

(4.9) ∂ϑ(w) ⊂ A∗L = R
s × {0} with w = A−1z.

Hence the initial framework of the lemma can be reduced to one in which we have, in
terms of P (x) = (p1(x), . . . , pm(x)) and w = Az, the implication

z = Aw sufficiently close to z̄
v = (v1, . . . , vm) ∈ ∂ϑ(w)

}
=⇒ vs+1 = 0, . . . , vm = 0.

This means that in analyzing ∂ϕ locally via ϑ and P it is possible to pass with no
loss of generality to the “submapping”

P0 : x �→ (p1(x), . . . , ps(x)),
since only p1, . . . , ps are active locally while ps+1, . . . , pm do not matter in the impli-
cation

y ∈ ∂ϕ(x) =⇒ ∃ v ∈ ∂ϑ(P (x)) such that ∇P (x)∗v = y.

To reduce the conclusion of the lemma to that of Theorem 3.1, it remains to show that
the Jacobian matrix ∇P0(x̄) is of full rank (= s). To proceed, consider the equation

(4.10) ∇P0(x̄)
∗u = 0n for u ∈ R

s,



SECOND-ORDER SUBDIFFERENTIAL CALCULUS 973

where 0n stands for the origin in R
n. It follows from the construction of P0 that (4.10)

is equivalent to the equation

∇P (x̄)∗(u, 0m−s) = 0n.

Since ∇P (x̄) = A−1∇h(x̄), we get from the above equation that

∇h(x̄)∗
[
(A∗)−1(u, 0m−s)

]
= 0n,

which amounts to the inclusion

(A∗)−1(u, 0m−s) ∈ ker∇h(x̄)∗.

The choice of A ensures that (A∗)−1(u, 0m−s) ∈ L. This gives by assumption (4.7)
that (A∗)−1(u, 0m−s) = 0m, and so u = 0s. Thus (4.10) has only the trivial solution,
which justifies the full rank condition for ∇P0(x̄) and completes the proof of the
lemma.

Next we show that in the case of piecewise linear outer functions in fully amenable
compositions ϕ = θ ◦ h the second-order qualification condition (3.19) allows us to
obtain the exact second-order chain rule (4.2) by reducing the situation to the setting
considered in Lemma 4.2.

Theorem 4.3 (second-order chain rule for fully amenable compositions with
piecewise linear outer functions). Let ϕ = θ ◦ h be a fully amenable composition
at x̄, where θ : Rm → R is (convex) piecewise linear. Picking any (x̄, ȳ) ∈ gph ∂ϕ,
we get that the set M(x̄, ȳ) in (3.24) is a singleton {v̄} and impose the second-order
qualification condition (3.19) at v = v̄. Then the exact second-order chain rule formula
(4.2) holds.

Proof. It is not hard to check that for convex piecewise linear functions θ we
have the inclusion ∂θ(z) ⊂ ∂θ(z̄) for any neighborhood O of z̄ sufficiently small. This
implies that S(z) ⊂ S(z̄) whenever z ∈ O, where S(z) stands for the affine hull of
∂θ(z). Hence representation (4.3) in Theorem 4.1 reduces in this case to the equality

(4.11) ∂2θ(z̄, v̄)(0) = S(z̄) whenever v̄ ∈ M(x̄, ȳ).

Substituting (4.11) into the second-order qualification condition (3.19) gives us

(4.12) S(z) ∩ ker∇h(x̄)∗ = {0} for all z ∈ O.

Recall that the subspace S(z) consists of all vectors λ(v′ − v) such that λ ∈ R and
v, v′ ∈ ∂θ(z). Hence the second-order qualification condition (4.12) is equivalent to
the following: There exist neighborhoods U of z̄ and V of ȳ such that[

x ∈ U, y ∈ V, v, v′ ∈ M(x, y)
]
=⇒ v = v′.

In other words, the latter means that the mapping M from (3.24) is single-valued on
the subdifferential graph gph ∂ϕ around (x̄, ȳ), and thus it is continuous as well.

To reduce the situation to the case considered in Lemma 4.2, we proceed as
follows. Denote L := S(z̄), and by the construction of S(z̄) find b ∈ R

m such that

∂θ(z̄) ⊂ L− b. Consider now the convex piecewise linear function θ̃(z) = θ(z)− 〈b, z〉
and the fully amenable composition ϕ̃ := θ̃ ◦ h. Recalling that ∂θ(z) ⊂ ∂θ(z̄) for all z

near z̄, we get that 0 ∈ ∂θ̃(z) for such z, and thus Lemma 4.2 can be applied to the
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composition ϕ̃ = θ̃ ◦ h. It is easy to see that ȳ−∇h(x̄)∗b ∈ ∂ϕ(x̄)−∇h(x̄)∗b = ∂ϕ̃(x̄)
and that, by the second-order subdifferential sum rule from [31, Proposition 1.121],
we have

(4.13) ∂2ϕ(x̄, ȳ)(u) = ∂2ϕ̃
(
x̄, ȳ −∇h(x̄)∗b

)
(u) +∇2〈b, h〉(x̄)u for all u ∈ R

n.

Applying now the second-order chain rule (4.2) to the composition ϕ̃ = θ̃ ◦ h at

(x̄, ȳ −∇h(x̄)∗b) allows us to find ṽ ∈ ∂θ̃(z̄) such that ∇h(x̄)∗ṽ = ȳ −∇h(x̄)∗b and

(4.14) ∂2ϕ̃(x̄, ȳ −∇h(x̄)∗b) = ∇2〈ṽ, h〉(x̄) +∇h(x̄)∗∂2θ̃(z̄, ṽ)(∇h(x̄)u), u ∈ R
n.

Define v̄ := ṽ + b and observe that v̄ ∈ ∂θ̃(z̄) + b = ∂θ(z̄) and ∇h(x̄)∗v̄ = ∇h(x̄)∗ṽ +
∇h(x̄)∗b = ȳ. Combining finally (4.13) and (4.14) gives us

∂2ϕ(x̄, ȳ)(u) = ∇2〈b, h〉(x̄)u+∇2〈ṽ, h〉(x̄) +∇h(x̄)∗∂2θ̃(z̄, ṽ)(∇h(x̄)u)

= ∇2〈v̄, h〉(x̄)u +∇h(x̄)∗∂2θ(z̄, v̄)(∇h(x̄)u), u ∈ R
n.

The uniqueness of v̄ ∈ ∂θ(z̄) satisfying ∇h(x̄)∗v̄ = ȳ follows from the arguments above
based on the second-order qualification condition. This justifies the exact second-
order chain rule (4.2) for ϕ = θ ◦ h at (x̄, ȳ) and thus completes the proof of the
theorem.

Next we consider a major subclass of piecewise linear-quadratic outer functions
in fully amenable compositions given by

(4.15) θ(z) := sup
v∈C

{
〈v, z〉 − 1

2
〈v,Qv〉

}
,

where C ⊂ R
m is a nonempty polyhedral set, and where Q ∈ R

m×m is a symmetric
positive-semidefinite matrix. Functions of this class are useful in many aspects of vari-
ational analysis and optimization, in particular, as penalty expressions in composite
formats of optimization; see, e.g., [49] and the references therein. By definition (4.15)
we see that θ is proper, convex, and piecewise linear-quadratic (piecewise linear when
Q = 0) with the conjugate representation

(4.16) θ(z) = (δC + jQ)
∗(z) for jQ(v) :=

1

2
〈v,Qv〉.

Prior to deriving the exact second-order chain rule for fully amenable compositions
ϕ = θ ◦ h with θ given in (4.15), we calculate the second-order subdifferential of such
functions θ, which is undoubtedly of interest for its own sake while playing a significant
role in the subsequent proof of the aforementioned second-order chain rule.

Lemma 4.4 (calculating the second-order subdifferential for a major subclass of
piecewise linear-quadratic functions). Let θ : Rn → R be a linear-quadratic function
given in (4.15) under the assumptions made above. Fix any (z̄, v̄) ∈ gph ∂θ and define

(4.17) K := TC(v̄) ∩ (z̄ −Qv̄)⊥,

where TC(v̄) is the tangent cone (2.7) to C at v̄. Then the second-order subdifferential
of θ at (z̄, v̄) is calculated by

(4.18) w ∈ ∂2θ(z̄, v̄)(u) ⇐⇒
{∃ closed faces K1 ⊃ K2 of K
with w ∈ K1 −K2, Qw − u ∈ (K1 −K2)

∗.
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Furthermore, the set ∂2θ(z̄, v̄)(0) is actually a subspace given by

(4.19) ∂2θ(z̄, v̄)(0) = (kerQ) ∩ (K −K).

Proof. It follows from (4.16) that the conjugate function to θ is θ∗ = δC + jQ.
Observe that

(4.20) w ∈ ∂2θ(z̄, v̄)(u) ⇐⇒ −u ∈ ∂2θ∗(v̄, z̄)(−w).

Furthermore, we have by the calculations in [49, Example 11.18] that

(4.21) ∂θ∗(v) = NC(v) +Qv, v ∈ C,

and hence z̄ ∈ ∂θ∗(v̄) ⇐⇒ z̄ − Qv̄ ∈ NC(v̄). Using this and definition (2.11) of the
second-order subdifferential and then applying the coderivative sum rule [31, Theo-
rem 1.62] to (4.21) gives us

∂2θ∗(v̄, z̄)(−w) = D∗NC(v̄, z̄ −Qv̄)(−w) −Qw,

which implies in turn the representation

(4.22) −u ∈ ∂2θ∗(v̄, z̄)(−w) ⇐⇒ Qw − u ∈ ∂2δC(v̄, z̄ −Qv̄)(−w).

Employing (4.20) and (4.22) and proceeding similarly to the consideration in Ex-
ample 3.5 above, we derive from (4.22) the exact formula (4.18) for calculating the
second-order subdifferential of ∂2θ(z̄, v̄), where K in (4.17) is the critical cone for C
at v̄ with respect to z̄−Qv̄. The positive-semidefiniteness of the matrix Q yields that

0 ≥ 〈w,Qw〉 ⇐⇒ Qw = 0 ⇐⇒ w ∈ kerQ,

which allows us to deduce from (4.18) that

w ∈ ∂2θ(z̄, v̄)(0) ⇐⇒ ∃K1 ⊃ K2 with w ∈ K1 −K2, Qw ∈ (K1 −K2)
∗

⇐⇒ ∃K1 ⊃ K2 with w ∈ (kerQ) ∩ (K1 −K2)
⇐⇒ w ∈ (kerQ) ∩ (K −K),

where the last equivalence holds since the cone K is a closed face itself. Thus the
set ∂2θ(z̄, v̄)(0) is a subspace in R

m calculated by formula (4.19). This completes the
proof of the lemma.

Now we are ready to justify the exact second-order chain rule (4.2) for fully
amenable compositions with outer functions of type (4.15). The proof below essen-
tially employs the second-order subdifferential calculations given Theorem 4.1 and
Lemma 4.4, while it is independent from the reduction to the full rank reduction in
Lemma 4.2. To proceed, recall that a mapping h : Rn → R

m is open around x̄ if for
any neighborhood U of x̄ there is some neighborhood V of h(x̄) such that V ⊂ h(U).
It is well known that the openness property is essentially different from the linear
openness/openness at linear rate, which is characterized for smooth mappings be-
tween finite-dimensional spaces by the full rank condition (3.2); see [31, 49]. A simple
example of a function h : R → R that is open but not linear open around x̄ = 0 is
given by h(x) = x3.

Theorem 4.5 (second-order calculus rule for a major subclass of fully amenable
compositions). Let ϕ = θ ◦ h be a fully amenable composition at x̄ with θ of class
(4.15), and let h be open around x̄. Assuming in addition that Q is positive-definite
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and picking any (x̄, ȳ) ∈ gph ∂ϕ, we get that the set M(x̄, ȳ) in (3.24) is a singleton
{v̄} and impose the second-order qualification condition (3.19) at v = v̄. Then the
exact second-order chain rule formula (4.2) holds.

Proof. Since Q is positive-definite, we have kerQ = {0}, and hence ∂2θ(z̄, v̄)(0) =
{0} by (4.19), where z̄ = h(x̄) and v̄ ∈ ∂θ(z̄). Then it follows from representation (4.3)
of Theorem 4.1 that S(z) = {0} for all z around z sufficiently close to z̄. This implies
by the definition of S(z) that the subdifferential ∂θ(z) is a singleton around z̄, and
hence so is M(x̄, ȳ) = {v̄}. Thus we have the inclusion “⊂” in the second-order chain
rule (4.2) by Theorem 3.3. Since ∂θ(z) = (NC + Q)−1(z) by [49, Example 11.18], it
follows from [11, Theorem 2E.6] that the mapping z �→ ∂θ(z) is Lipschitz continuous
around z̄ with some constant 
1. Taking into account this and the Lipschitz continuity
of h around x̄ with some constant 
2, we prove that the opposite inclusion “⊃” holds
in (4.2).

First let us show that, for all u ∈ R
n and q ∈ R

m sufficiently close to ∇h(x̄)u, we
have the inclusion

∇2〈v̄, h〉(x̄)u+∇h(x̄)∗D̂∗∂θ(z̄, v̄)(q) ⊂ D̂∗
�1�2‖q−∇h(x̄)u‖∂ϕ(x̄, ȳ)(u),(4.23)

where D̂∗ stands for the “regular” version of the coderivative defined by scheme (2.9)
with the replacement of N by the regular normal cone (2.4), while the right-hand side
of (4.23) employs the ε-enlargement of the regular coderivative with ε > 0 replacing
0 in the construction of (2.4). Indeed, take any p in the left-hand side set of (4.23)

and find w ∈ D̂∗∂θ(z̄, v̄)(q) such that p = ∇2〈v̄, h〉(x̄)u +∇h(x̄)∗w. Since ∂θ(z) is a
singleton for all z around z̄, we have that v̄ = ∂θ(h(x̄)) and that

0 ≥ Lim sup
z→z̄

〈w, z − z̄〉 − 〈q, ∂θ(z)− ∂θ(z̄)〉
‖z − z̄‖

= Lim sup
z→z̄

〈w, z − z̄〉 − 〈∇h(x̄)u, ∂θ(z)− ∂θ(z̄)〉 − 〈q −∇h(x̄)u, ∂θ(z)− ∂θ(z̄)〉
‖z − z̄‖

≥ Lim sup
z→z̄

〈w, z − z̄〉 − 〈∇h(x̄)u, ∂θ(z)− ∂θ(z̄)〉 − ‖q −∇h(x̄)u‖ · ‖∂θ(z)− ∂θ(z̄)‖
‖z − z̄‖

≥ Lim sup
z→z̄

〈w, z − z̄〉 − 〈∇h(x̄)u, ∂θ(z)− ∂θ(z̄)〉
‖z − z̄‖ − 
1‖q −∇h(x̄)u‖.

This implies, by choosing z = h(x) and using ‖h(x)− h(x̄)‖ ≤ 
2‖x− x̄‖, that


1
2‖q −∇h(x̄)u‖ ≥ Lim sup
x→x̄

〈w, h(x) − h(x̄)〉 − 〈∇h(x̄)u, ∂θ(h(x))− ∂θ(h(x̄))〉
‖x− x̄‖

≥ Lim sup
x→x̄

〈∇h(x̄)∗w, x − x̄〉 − 〈∇h(x̄)u, ∂θ(h(x)) − ∂θ(h(x̄))〉
‖x− x̄‖ .

By the continuity of z �→ ∂θ(z) around z̄ it gives that


1
2‖q −∇h(x̄)u‖

≥ Lim sup
x→x̄

〈p−∇2〈v̄, h〉(x̄)u, x− x̄〉 − 〈∇h(x̄)u, ∂θ(h(x)) − ∂θ(h(x̄))〉
‖x− x̄‖

≥ Lim sup
x→x̄

〈p, x− x̄〉 − 〈v̄, (∇h(x)−∇h(x̄))u〉 − 〈∇h(x̄)u, ∂θ(h(x)) − ∂θ(h(x̄))〉
‖x− x̄‖
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≥ Lim sup
x→x̄

〈p, x− x̄〉 − 〈∂θ(h(x)),∇h(x)u〉 + 〈∇h(x̄)u, ∂θ(h(x̄))〉
‖x− x̄‖

+
〈∂θ(h(x)) − ∂θ(h(x̄)), (∇h(x) −∇h(x̄))u〉

‖x− x̄‖
≥ Lim sup

x→x̄

〈p, x− x̄〉 − 〈u,∇h(x)∗∂θ(h(x)) −∇h(x̄)∗∂θ(h(x̄))〉
‖x− x̄‖

≥ Lim sup
x→x̄

〈p, x− x̄〉 − 〈u, ∂ϕ(x)− ∂ϕ(x̄)〉
‖x− x̄‖ ,

where the mapping x �→ ∂ϕ(x) = ∇h(x)∗∂θ(h(x)) is also single-valued and continuous

around x̄. This ensures that p ∈ D̂∗
�1�2‖q−∇h(x̄)u‖∂ϕ(x̄, ȳ)(u) and thus justifies (4.23).

Similarly we get

∇2〈v, h〉(x)u +∇h(x)∗D̂∗∂θ(z, v)(q) ⊂ D̂∗
�1�2‖q−∇h(x)u‖∂ϕ(x, y)(u), u ∈ R

n,(4.24)

for all x around x̄ as well as v = ∂θ(z), z = h(x), and y = ∂ϕ(x). Next we show that

∇2〈v̄, h〉(x̄)u+∇h(x̄)∗∂2θ(z̄, v̄)(∇h(x̄)u) ⊂ ∂2ϕ(x̄, ȳ)(u)(4.25)

whenever u ∈ R
n, which is actually the inclusion “⊃” in (4.2). Indeed, take any p on

the left-hand side of (4.25) to get

p−∇2〈v̄, h〉(x̄)u ∈ ∇h(x̄)∗∂2θ(z̄, v̄)(∇h(x̄)u).

Hence there are sequences (wk, qk) and (zk, vk)
gph ∂θ→ (z̄, v̄) as k → ∞ satisfying

wk ∈ D̂∗∂θ(zk, vk)(qk) and (∇h(x̄)∗wk, qk) → (p−∇2〈v̄, h〉(x̄)u,∇h(x̄)u).(4.26)

It follows from the assumed openness of h and from inclusion (4.24) that there is a
sequence (xk, yk) → (x̄, ȳ) with yk := ∂ϕ(xk) such that zk = h(xk) and that

∇2〈vk, h〉(xk)u+∇h(xk)
∗wk ∈ D̂∗

�1�2‖qk−∇h(xk)u‖∂ϕ(zk, yk)(u), u ∈ R
n.(4.27)

Passing to the limit as k → ∞ in (4.27) while ‖qk − ∇h(xk)u‖ ↓ 0 and using (4.26)
give us

p ∈ D∗(∂ϕ)(x̄, ȳ)(u) = ∂2ϕ(x̄, ȳ)(u), u ∈ R
n,

which ensures (4.25) and thus completes the proof of the theorem.

5. Applications to tilt stability in nonlinear and extended nonlinear
programming. The second-order chain rules and subdifferential calculations
obtained in sections 3 and 4 are undoubtedly useful in any settings where the second-
order subdifferential (2.11) and its partial counterparts are involved; see the discus-
sions and references in section 1. In this section we confine ourselves to the usage
of second-order chain rules for deriving full characterizations of tilt-stable local min-
imizers in some important classes of constrained optimization problems. It requires
applying equality-type formulas of the second-order subdifferential calculus.

The notion of tilt-stable minimizers was introduced by Poliquin and Rockafellar
[43] in order to characterize strong manifestations of optimality that support com-
putational work via the study of how local optimal solutions react to shifts (tilt
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perturbations) of the data. Recall that a point x̄ is a tilt-stable local minimizer of the
function ϕ : Rn → R finite at x̄ if there is γ > 0 such that mapping

M : y �→ argmin
{
ϕ(x) − ϕ(x̄)− 〈y, x− x̄〉

∣∣∣ ‖x− x̄‖ ≤ γ
}

is single-valued and Lipschitz continuous on some neighborhood of y = 0 with
M(0) = x̄.

It is proved in [43, Theorem 1.3] that for ϕ : Rn → R having 0 ∈ ∂ϕ(x̄) and such
that ϕ is both prox-regular and subdifferentially continuous at x̄ for ȳ = 0, the point
x̄ is a tilt-stable local minimizer of ϕ if and only if the second-order subdifferential
mapping ∂2ϕ(x̄, 0): Rn →→ R

n is positive-definite in the sense that

(5.1) 〈w, u〉 > 0 whenever w ∈ ∂2ϕ(x̄, 0)(u) with u �= 0.

The aforementioned properties of prox-regularity and subdifferential continuity in-
troduced in [42] (see also [49, Definitions 13.27 and 13.28]) hold for broad classes of
“nice” functions encountered in variational analysis and optimization. In particular,
both properties are satisfied at all points of a neighborhood of x̄ for any function
strongly amenable at x̄; see [49, Proposition 13.32].

Our subsequent goal is to extend the characterization of tilt-stable local minimiz-
ers from [43] to favorable classes of constrained optimization problems. To proceed,
we use the following composite format of optimization known as extended nonlinear
programming (ENLP); see [48, 49]:
(5.2)
Minimize ϕ(x) := ϕ0(x) + θ

(
ϕ1(x), . . . , ϕm(x)

)
= ϕ0(x) + (θ ◦ Φ)(x) over x ∈ R

n,

where θ : Rm → R is an extended-real-valued function, and where Φ(x) :=(ϕ1(x), . . .
ϕm(x)) is a mapping from R

n to R
m. Written in the unconstrained format, problem

(5.2) is actually a problem of constrained optimization with the set of feasible solutions
given by

X := {x ∈ R
n| (ϕ1(x), . . . , ϕm(x)) ∈ Z} for Z := {z ∈ R

m| θ(z) < ∞}.

As argued in [48], the composite format (5.2) is a convenient general framework from
both theoretical and computational viewpoints to accommodate a variety of particular
models in constrained optimization. Note that the conventional problem of NLP with
s inequality constraints and m− s equality constraints can be written in the form

(5.3) minimize ϕ0(x) + δZ(Φ(x)) over x ∈ R
m

via the indicator functions of the set Z = R
s
− × {0}m−s.

Our first result provides a complete second-order characterization of tilt-stable
minimizers x̄ for a general class of problems (5.2) under full rank of the Jacobian
matrix ∇Φ(x̄).

Theorem 5.1 (characterization of tilt-stable minimizers for constrained problems
with full rank condition). Let x̄ ∈ X be a feasible solution to (5.2) such that ϕ0

and Φ are smooth around x̄ with their derivatives strictly differentiable at x̄, that
rank∇Φ(x̄) = m, and that θ is prox-regular and subdifferentially continuous at z̄ :=
Φ(x̄) for the (unique) vector v̄ ∈ R

m satisfying the relationships

(5.4) v̄ ∈ ∂θ(z̄) and ∇Φ(x̄)∗v̄ = −∇ϕ0(x̄).
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Then x̄ with −∇ϕ0(x̄) ∈ ∇Φ(x̄)∗∂θ(z̄) is a tilt-stable local minimizer of (5.2) if and
only if the mapping T : Rn →→ R

n given by

(5.5) T (u) := ∇2ϕ0(x̄)u+∇2〈v̄,Φ〉(x̄)u+∇Φ(x̄)∗∂2θ(z̄, v̄)(∇Φ(x̄)u), u ∈ R
n,

is positive-definite in the sense of (5.1).
Proof. Since ϕ0 and Φ are smooth around x̄ and ∇Φ(x̄) has full rank m, it follows

from the first-order subdifferential sum and chain rules of [49, Corollary 10.9 and
Exercise 10.7] that

0 ∈ ∂ϕ(x̄) ⇐⇒ −∇ϕ0(x̄) ∈ ∇Φ(x̄)∗∂θ(z̄)

for ϕ in (5.2). Furthermore, these rules and the definitions of prox-regularity and
subdifferential continuity in [49] imply that the latter properties of ϕ at x̄ for 0 ∈ ∂ϕ(x̄)
are equivalent to the corresponding properties of θ at z̄ for v̄ satisfying (5.4).

It remains to check therefore that the positive-definiteness (5.1) of ∂2ϕ(x̄, 0) is
equivalent to that of T in (5.5). We show in fact that ∂2ϕ(x̄, 0)(u) = T (u) for all
u ∈ R

n. Indeed, using the second-order chain rule from [31, Proposition 1.121] in
(5.2) gives us

(5.6) ∂2ϕ(x̄, 0)(u) = ∇2ϕ0(x̄)u+ ∂2(θ ◦ Φ)(x̄,−∇ϕ0(x̄))(u), u ∈ R
n.

To complete the proof of the theorem, we finally apply the exact second-order chain
rule from Theorem 3.1 to the composition θ ◦ Φ in the latter equality.

Next we address the conventional model of nonlinear programming (NLP) with
smooth data:

(5.7) Minimize ϕ0(x) subject to ϕi(x) =

{≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m.

As mentioned above, problem (5.7) can be written in form (5.3) with Z = R
s
− ×

{0}m−s. For this problem, the full rank condition of Theorem 5.1 corresponds to the
following: The gradients

(5.8) ∇ϕ1(x̄), . . . ,∇ϕm(x̄) are linearly independent.

Since our analysis is local, and since Lagrange multipliers corresponding to inactive
inequality constraints disappear due to the complementarity conditions, in what fol-
lows we can drop any inactive inequality constraints from the picture; see also the
remark after the proof of Theorem 5.2. Thus the situation is reduced to

(5.9) ϕi(x̄) = 0 for all i = 1, . . . ,m.

Then the full rank condition (5.8) in case (5.9) is the classical linear independence
constraint qualification (LICQ): The active constraint gradients at x̄ are linearly in-
dependent.

To proceed further, consider the Lagrangian function in (5.7) given by

L(x, λ) := ϕ0(x) +

m∑
i=1

λiϕi(x) with λ = (λ1, . . . , λm) ∈ R
m

and recall that, for any local optimal solution x̄ to (5.7), the LICQ at x̄ ensures the
existence of a unique multiplier vector λ̄ = (λ̄1, . . . , λ̄m) ∈ R

s
+ × R

m−s such that

(5.10) ∇xL(x̄, λ̄) = ∇ϕ0(x̄) +

m∑
i=1

λ̄i∇ϕi(x̄) = 0.
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Define the index sets for the inequality and equality constraints in (5.7) by

I1 :=
{
i ∈ {1, . . . , s}∣∣ λ̄i > 0

}
,

I2 :=
{
i ∈ {1, . . . , s}∣∣ λ̄i = 0

}
,

I3 :=
{
s+ 1, . . . ,m}

and recall that the strong second-order optimality condition (SSOC) holds at x̄ if

(5.11) 〈u,∇2
xxL(x̄, λ̄)u〉 > 0 for all 0 �= u ∈ S,

where the subspace S ⊂ R
n is given by

(5.12) S := {u ∈ R
n| 〈∇ϕi(x̄), u〉 = 0 whenever i ∈ I1 ∪ I3}.

Note that (5.11) is also known as the “strong second-order sufficient condition” for
local optimality; see, e.g., [3]. The following theorem shows that, in the setting
under consideration, the SSOC is necessary and sufficient for the tilt stability of local
minimizers.

Theorem 5.2 (characterization of tilt-stable local minimizers for NLP). Let x̄
be a feasible solution to (5.7) such that all of the functions ϕi for i = 0, . . . ,m are
smooth around x̄ with their derivatives strictly differentiable at x̄ and that the LICQ
is satisfied at this point. Then we have the following assertions:

(i) If x̄ is a tilt-stable local minimizer of (5.7), then SSOC (5.11) holds at x̄ with
a unique multiplier vector λ̄ ∈ R

s
+ × R

m−s satisfying (5.10).
(ii) Conversely, the validity of SSOC at x̄ with λ̄ ∈ R

s
+ × R

m−s satisfying (5.10)
implies that x̄ is a tilt-stable local minimizer of (5.7).

Proof. As mentioned above, the LICQ corresponds to the full rank condition
of Theorem 5.1. The prox-regularity and subdifferential continuity of θ = δZ with
Z = R

s
−×{0}m−s follow from its convexity [49, Example 13.30]. Let us next represent

the mapping T in (5.5) via the initial data of problem (5.7). It is easy to see that
T (u) reduces in this case to

T (u) = ∇2
xxL(x̄, λ̄)u+∇Φ(x̄)∗∂2δZ(0, λ̄)(∇Φ(x̄)u),

with Φ = (ϕ1, . . . , ϕm) and Z = R
s
−×{0}m−s, provided that the first-order condition

(5.10) is satisfied. This is of course the case when x̄ is a tilt-stable local minimizer of
(5.7), since it is a standard local minimizer as well. Thus the positive-definiteness of
T (u) amounts to

(5.13) u �= 0, w ∈ ∂2δZ(0, λ̄)(∇Φ(x̄)u) =⇒ 〈u,∇2
xxL(x̄, λ̄)u〉+ 〈w,∇Φ(x̄)u〉 > 0.

To proceed, we calculate the second-order subdifferential ∂2δZ(0, λ̄) in (5.13) by using
formula (3.39) presented and discussed in Example 3.5. Observe that the critical cone
in this situation is K = Z ∩ λ̄⊥. It follows directly from (3.39) that
(5.14)

w ∈ ∂2δZ(0, λ̄)(∇Φ(x̄)u) ⇐⇒
{
there exist closed faces K1 ⊂ K2 of K
with ∇Φ(x̄)u ∈ K1 −K2, w ∈ (K2 −K1)

∗.

The latter implies in turn that
(5.15)

minw∈∂2δZ(0,λ̄)(∇Φ(x̄)u)〈w,∇Φ(x̄)u〉 = 0 for all u ∈ dom ∂2δZ(0, λ̄)(∇Φ(x̄)(·))
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with the subdifferential domain representation

dom ∂2δZ(0, λ̄)(∇Φ(x̄)(·)) =
⋃{

(K1 −K2)
∣∣∣ K1 ⊂ K2 closed faces of K

}
= K −K.

To further elaborate on condition (5.15), we observe that for all vectors v =
(v1, . . . , vm) ∈ K = Z ∩ λ̄⊥ we have the relationships

〈v, λ̄〉 =
m∑
i=1

viλ̄i =

s∑
i=1

viλ̄i = 0 and vi = 0 whenever i ∈ I3.

This implies therefore the critical cone representation

(5.16) K =
{
v ∈ R

m
∣∣ vi = 0 for i ∈ I1 ∪ I3 and vi ≤ 0 for i ∈ I2

}
.

Taking now any pair (u,w) with w ∈ ∂2δZ(0, λ̄)(∇Φ(x̄)u) and u �= 0, we find by (5.14)
two closed faces K1 ⊂ K2 of K such that

∇Φ(x̄)u ∈ K1 −K2 and w ∈ (K2 −K1)
∗.

It follows from representation (5.16) that

v ∈ K1 −K2 =⇒ vi = 0 for all i ∈ I1 ∪ I3.

Hence we get from ∇Φ(x̄)u ∈ K1 −K2 that

〈∇ϕi(x̄), u〉 = 0 for all i ∈ I1 ∪ I3

and thus conclude from (5.13), (5.14), and (5.15) that SSOC (5.11) holds. This
completes the proof of assertion (i) in the theorem.

To prove assertion (ii), assume that SSOC (5.11) is satisfied together with (5.10)
under the validity of LICQ at x̄. To show that x̄ is a tilt-stable local minimizer for
(5.7), we need to check by Theorem 5.1 that the positive-definiteness condition (5.13)
holds. Indeed, taking w ∈ ∂2δZ(0, λ̄)(∇Φ(x̄)u) with u �= 0 and using representations
(5.14) and (5.16) established above, we have by the SSOC at x̄ that

〈u,∇2
xxL(x̄, λ̄)u〉+ 〈w,∇Φ(x̄)u〉 ≥ 〈u,∇2

xxL(x̄, λ̄)u〉
+min
{〈w,∇Φ(x̄)u〉∣∣ w ∈ ∂2δZ(0, λ̄)(∇Φ(x̄)u)

}
≥ 〈u,∇2

xxL(x̄, λ̄)u〉+ 0 > 0.

This justifies the positive-definiteness of T (u) and ends the proof of the
theorem.

It follows from the proof of Theorem 5.2 that assertion (i) holds true if we modify
the SSOC condition (5.11) by narrowing the subspace S therein while considering
only those vectors u ∈ S satisfying in addition the relationships

〈∇ϕi(x̄), u〉 ≤ 0 for i ∈ I2.

However, such a narrowing of S in (5.12) is not suitable to justify assertion (ii), since
it does not allow us to ensure the validity of the inclusion ∇Φ(x̄)u ∈ K1 −K2.

Note also that the presence of inactive inequality constraints at x̄ in problem
(5.7) does not change the result of Theorem 5.2 and its proof given above. The
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only modification to make is to observe that the critical cone in this case is K =
TZ(Φ(x̄)) ∩ λ̄⊥ (cf. Example 3.5), and it admits the representation

K =
{
v ∈ R

m
∣∣ vi ∈ R for i ∈ I0, vi = 0 for i ∈ I1 ∪ I3, and vi ≤ 0 for i ∈ I2

}
,

where the index sets I1, I2, and I3 are defined as in the proof of Theorem 5.2 for
equalities and active inequality constraints, and where the set I0 consists of indexes
corresponding to inequality constraints that are inactive at x̄.

The obtained characterization of tilt-stable minimizers for NLP leads us to com-
pare this notion with the classical Robinson’s notion of strong regularity [45] of param-
eterized variational inequalities associated with the KKT conditions for NLP (5.7);
see, e.g., [3, 11, 12] for the exact definition and more discussions. Complete char-
acterizations of strong regularity for NLP are derived in [11]; see also the references
therein.

Corollary 5.3 (comparing tilt stability and strong regularity). Under the as-
sumptions of Theorem 5.2, the tilt stability of local minimizers for (5.7) is equivalent to
the strong regularity of the variational inequality associated with the KKT conditions
for (5.7).

Proof. The proof follows directly from Theorem 5.2 and the characterization of
strong regularity obtained in [11, Theorem 5 and Theorem 6].

It is not hard to check that the strong regularity of the KKT system directly
implies the LICQ at the corresponding solution of (5.7). On the other hand, the LICQ
requirement arising from the full rank condition of Theorem 5.1 is essential for the
SSOC characterization of tilt stability in Theorem 5.2. Furthermore, even imposing
the seemingly less restrictive second-order qualification condition (3.19) needed for
deriving the second-order chain rule unavoidably leads us to the LICQ requirement
for NLP, since the latter class is represented via fully amenable compositions with
piecewise linear outer functions θ in the composite format (5.2). This follows from
the results of section 4 and is reflected in the next theorem.

Theorem 5.4 (characterizing tilt-stable minimizers for constrained problems de-
scribed by fully amenable compositions). Let x̄ be a feasible solution to (5.2) such
that ϕ0 is smooth around x̄ with the strictly differentiable derivative at x̄ and that the
composition θ ◦ Φ is fully amenable at x̄ with the outer function θ : Rm → R of the
following types:

• either θ is piecewise linear,
• or θ is of class (4.15) under the assumptions of Theorem 4.5.

Assume further that the second-order qualification condition (3.19) holds at x̄ with
h = Φ therein, where v = −v̄ is a unique vector satisfying (5.4) with z̄ = Φ(x̄). Then
x̄ with −∇ϕ0(x̄) ∈ ∇Φ(x̄)∗∂θ(z̄) is a tilt-stable local minimizer of (5.2) if and only
if the mapping T : Rn →→ R

n defined in (5.5) is positive-definite in the sense of (5.1),
where the second-order subdifferential ∂2θ(z̄, v̄) is calculated by formulas (4.11) and
(4.18), respectively.

Proof. Observe first that in both cases under consideration the composition θ ◦
Φ is prox-regular and subdifferentially continuous at any point x around x̄ by [49,
Proposition 13.32]; hence the same holds for the function ϕ from (5.2). It follows
from Theorems 4.3 and 4.5 that, under the validity of the second-order qualification
condition (3.19), we have the unique vector v̄ satisfying (5.4) and the second-order
chain rule

(5.17) ∂2(θ ◦ Φ)(x̄,−∇ϕ0(x̄))(u) = ∇2〈v̄,Φ〉(x̄)u+∇Φ(x̄)∗∂2θ(z̄, v̄)(∇Φ(x̄)u)
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for all u ∈ R
n when θ belongs to one of the classes considered in this theorem.

Substituting (5.17) into formula (5.6) due to the second-order sum rule from [31,
Proposition 1.121] allows us to justify that

∂2ϕ(x̄, 0) = T (u) whenever u ∈ R
n,

and thus the positive-definiteness of the mapping T from (5.5) fully characterizes the
tilt stability of the local minimizer x̄ of (3.1) in both cases of θ under consideration
with the formulas for calculating ∂2θ(z̄, v̄) derived in the proofs of Theorems 4.3 and
4.5, respectively.

We conclude the paper with the following three final remarks.
Remark 5.5 (sufficient conditions for tilt-stable local minimizers). The second-

order chain rule (3.18) of the inclusion type derived in Theorem 3.3 for strongly
amenable compositions and the second-order sum rule inclusions obtained in [31,
Theorem 3.73] allow us to establish general sufficient conditions for tilt-stable local
minimizers in large classes of constrained optimization problems written in the com-
posite format (5.2). Indeed if, in addition to the hypotheses of Theorem 3.3 for the
composition θ◦Φ in (5.2), we assume that the function ϕ0 is, e.g., of class C1,1 around
x̄, then we have by the second-order sum rule from [31, Theorem 3.73(i)] and the
chain rule of Theorem 3.3 the fulfillment of the inclusion

(5.18) ∂2ϕ(x̄, 0)(u) ⊂ T (u), u ∈ R
n,

for ϕ from (5.2) and T from (5.5). The prox-regularity and subdifferential continuity
of such functions ϕ follow, under the assumptions made, from [49, Proposition 13.32
and Proposition 13.34] and first-order subdifferential calculus rules. Thus inclusion
(5.18) ensures that the positive-definiteness of T implies that of ∂2ϕ(x̄, 0), and the
former is therefore a sufficient condition for tilt stability of local minimizers of (5.2).

Remark 5.6 (full stability of local minimizers). Developing the concept of tilt
stability, Levy, Poliquin, and Rockafellar [21] introduced the notion of fully stable
local minimizers of general optimization problems of the type

(5.19) minimize ϕ(x, u)− 〈v, x〉 over x ∈ R
n

with respect to both “basic” perturbations u and “tilt” perturbations v. The main
result of that paper [21, Theorem 2.3] establishes a complete characterization of fully
stable local minimizers of (5.19) via the positive-definiteness of the extended partial
second-order subdifferential (2.13) of ϕ. Similarly to the results of this section for
tilt-stable minimizers of constraint optimization problems written in the composite
format (5.2), we can derive characterizations as well as sufficient conditions for fully
stable minimizers of (5.19) based on [21, Theorem 2.3] and the second-order chain
rules for the partial second-order counterpart (2.13) established above. Our ongoing
research project is to comprehensively elaborate these developments on full stability
in constrained optimization and its applications. We have already obtained some
results in this direction, while further research is required to complete the project.

Remark 5.7 (tilt stability and partial smoothness). After completing this paper,
we became aware of the concurrent work by Lewis and Zhang [23] related to second-
order subdifferentials (generalized Hessians) and tilt stability. The main results of [23]
provide calculations of the basic second-order construction from Definition 2.1 for C2–
partly smooth functions on C2-smooth manifolds and then characterize tilt stability
in such settings via strong criticality and local quadratic growth. To this end, note
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that a certain uniform second-order growth condition is used in [3, Theorem 5.36] for
characterizing tilt stability of local minimizers in some parametric settings different
from [23]. Related growth conditions for tilt stability are also studied in [13].
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