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Abstract. For solving the generalized equation f(x) + F (x) 3 0, where f is a smooth
function and F is a set-valued mapping acting between Banach spaces, we study the
inexact Newton method described by

(f(xk) + Df(xk)(xk+1 − xk) + F (xk+1)) ∩Rk(xk, xk+1) 6= ∅,

where Df is the derivative of f and the sequence of mappings Rk represents the inex-
actness. We show how regularity properties of the mappings f + F and Rk are able to
guarantee that every sequence generated by the method is convergent either q-linearly,
q-superlinearly, or q-quadratically, according to the particular assumptions. We also
show there are circumstances in which at least one convergence sequence is sure to
be generated. As a byproduct, we obtain convergence results about inexact New-
ton methods for solving equations, variational inequalities and nonlinear programming
problems.
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1 Introduction

In this paper we consider inclusions of the form

(1) f(x) + F (x) 3 0,

with f : X → Y a function and F : X →→ Y a set-valued mapping. General models of such
kind, commonly called “generalized equations” after Robinson2, have been used to describe
in a unified way various problems such as equations (F ≡ 0), inequalities (Y = Rm and
F ≡ Rm

+ ), variational inequalities (F the normal cone mapping NC of a convex set C in Y or
more broadly the subdifferential mapping ∂g of a convex function g on Y ), and in particular,
optimality conditions, complementarity problems and multi-agent equilibrium problems.

Throughout, X, Y and P are (real) Banach spaces, unless stated otherwise. For the
generalized equation (1) we assume that the function f is continuously Fréchet differentiable
everywhere with derivative mapping Df and the mapping F has closed nonempty graph3.

A Newton-type method for solving (1) utilizes the iteration

(2) f(xk) + Df(xk)(xk+1 − xk) + F (xk+1) 3 0, for k = 0, 1, . . . ,

with a given starting point x0. When F is the zero mapping, the iteration (2) becomes the
standard Newton method for solving the equation f(x) = 0:

(3) f(xk) + Df(xk)(xk+1 − xk) = 0, for k = 0, 1, . . . .

For Y = Rm × Rl and F = Rm
+ × {0}Rl , the inclusion (1) describes a system of equalities

and inequalities and the method (2) becomes a fairly known iterative procedure for solving
feasibility problems of such kind. In the case when F is the normal cone mapping appearing
in the Karush-Kuhn-Tucker optimality system for a nonlinear programming problem, the
method (2) is closely related to the popular sequential quadratic programming method in
nonlinear optimization.

The inexact Newton method for solving equations, as introduced by Dembo, Eisenstat,
and Steihaug [4], consists in approximately solving the equation f(x) = 0 for X = Y = Rn

in the following way: given a sequence of positive scalars ηk and a starting point x0, the
(k + 1)st iterate is chosen to satisfy the condition

(4) ‖f(xk) + Df(xk)(xk+1 − xk)‖ ≤ ηk‖f(xk)‖.
2Actually, in his pioneering work [15] Robinson considered variational inequalities only.
3Since our analysis is local, one could localize these assumptions around a solution x̄ of (1). Also, in some

of the presented results, in particular those involving strong metric subregularity, it is sufficient to assume
continuity of Df only at x̄. Since the paper is already quite involved technically, we will not go into these
refinements in order to simplify the presentation as much as possible.
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Basic information about this method is given in the book of Kelley [14, Chapter 6], where
convergence and numerical implementations are discussed. We will revisit the results in [4]
and [14] in Section 4, below.

Note that the iteration (4) for solving equations can be also written as

(f(xk) +∇f(xk)(xk+1 − xk)) ∩ IBηk‖f(xk)‖(0) 6= ∅,
where we denote by IBr(x) the closed ball centered at x with radius r. Here we extend this
model to solving generalized equations, taking a much broader approach to “inexactness”
and working in a Banach space setting, rather than just Rn. Specifically, we investigate the
following inexact Newton method for solving generalized equations:

(5) (f(xk) + Df(xk)(xk+1 − xk) + F (xk+1)) ∩Rk(xk, xk+1) 6= ∅, for k = 0, 1, . . . ,

where Rk : X×X →→ Y is a sequence of set-valued mappings with closed graphs. In the case
when F is the zero mapping and Rk(xk, xk+1) = IBηk‖f(xk)‖(0), the iteration (5) reduces to
(4).

Two issues are essential to assessing the performance of any iterative method: conver-
gence of a sequence it generates, but even more fundamentally, its ability to produce an
infinite sequence at all. With iteration (5) in particular there is the potential difficulty that
a stage might be reached in which, given xk, there is no xk+1 satisfying the condition in
question, and the calculations come to a halt. When that is guaranteed not to happen, we
can speak of the method as being surely executable.

In this paper, we give conditions under which the method (5) is surely executable and
every sequence generated by it converges with either q-linear, q-superlinear, or q-quadratic
rate, provided that the starting point is sufficiently close to the reference solution. We re-
cover, through specialization to (4), convergence results given in [4] and [14]. The utilization
of metric regularity properties of set-valued mappings is the key to our being able to handle
generalized equations as well as ordinary equations. Much about metric regularity is laid
out in our book [9], but the definitions will be reviewed in Section 2.

The extension of the exact Newton iteration to generalized equations goes back to the
PhD thesis of Josephy [13], who proved existence and uniqueness of a quadratically con-
vergent sequence generated by (2) under the condition of strong metric regularity of the
mapping f + F . We extend this here to inexact Newton methods of the form (5) and also
explore the effects of weaker regularity assumptions.

An inexact Newton method of a form that fits (5) was studied recently by Izmailov
and Solodov in [12] for the generalized equation (1) in finite dimensions and with a reference
solution x̄ such that the mapping f +F is strongly subregular at x̄ for 0 (in [12] this property
is called semistability). It is assumed in [12, Theorem 2.1] that the mapping Rk in (5) does
not depend on k and the following conditions hold:

(a) For every u near x̄ there exists x(u) solving (f(u)+Df(u)(x−u)+F (x))∩R(u, x) 6= ∅
such that x(u) → x̄ as u → x̄;
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(b) Every ω ∈ (f(u)+Df(u)(x−u)+F (x))∩R(u, x) satisfies ‖ω‖ = o(‖x−u‖+‖u− x̄‖)
uniformly in u ∈ X and x near x̄.

Note that for R(u, x) = IBη‖f(u)‖(0) with the Jacobian Df(x̄) being nonsingular, which is
the case considered by Dembo et al. [4], the assumption (b) never holds. Under conditions
(a) and (b) above it is demonstrated in [12, Theorem 2.1] that there exists δ > 0 such that,
for any starting point close enough to x̄, there exists a sequence {xk} satisfying (5) and the
bound ‖xk+1 − xk‖ ≤ δ; moreover, each such sequence is superlinearly convergent to x̄. It
is not specified however in [12] how to find a constant δ in order to identify a convergent
sequence.

In contrast to Izmailov and Solodov [12], we show here that under strong subregularity
only for the mapping f + F plus certain conditions for the sequence of mappings Rk, all
sequences generated by the method (5) and staying sufficiently close to a solution x̄, converge
to x̄ at a rate determined by a bound on Rk. In particular, we recover the results in [4] and
[14]. Strong subregularity of f + F alone is however not sufficient to guarantee that there
exist infinite sequences generated by the method (5) for any starting point close to x̄.

To be more specific about the pattern of assumptions on which we rely, we focus on a
particular solution x̄ of the generalized equation (1), so that the graph of f + F contains
(x̄, 0), and invoke properties of metric regularity, strong metric subregularity and strong
metric regularity of f + F at x̄ for 0 as quantified by a constant λ. Metric regularity of
f + F at x̄ for 0 is equivalent to a property we call Aubin continuity of (f + F )−1 at 0 for
x̄. However, we get involved with Aubin continuity in another way, more directly. Namely,
we assume that the mapping (u, x) 7→ Rk(u, x) has the partial Aubin continuity property in
the x argument at x̄ for 0, uniformly in k and u near x̄, as quantified by a constant µ such
that λµ < 1.

In that setting in the case of (plain) metric regularity and under a bound for the inner
distance d(0, Rk(u, x̄)), we show that for any starting point close enough to x̄ the method
(5) is surely executable and moreover generates at least one sequence which is linearly con-
vergent. In this situation however, the method might also generate, through nonuniqueness,
a sequence which is not convergent at all. This kind of result for the exact Newton method
(2) was first obtained in [5]; for extensions see e.g. [11] and [3].

We further take up the case when the mapping f + F is strongly metrically subregular,
making the stronger assumption on Rk that the outer distance d+(0, Rk(u, x)) goes to zero
as (u, x) → (x̄, x̄) for each k, entailing Rk(x̄, x̄) = {0}, and also that, for a sequence of
scalars γk and u close to x̄, we have d+(0, Rk(u, x̄)) ≤ γk‖u − x̄‖p for p = 1, or instead
p = 2. Under these conditions, we prove that every sequence generated by the iteration
(5) and staying close to the solution x̄, converges to x̄ q-linearly (γk bounded and p = 1),
q-superlinearly (γk → 0 and p = 1) or q-quadratically (γk bounded and p = 2). The strong
metric subregularity, however, does not prevent the method (5) from perhaps getting “stuck”
at some iteration and thereby failing to produce an infinite sequence.

Finally, in the case of strong metric regularity, we can combine the results for metric
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regularity and strong metric subregularity to conclude that there exists a neighborhood
of x̄ such that, from any starting point in this neighborhood, the method (5) is surely
executable and, although the sequence it generates may be not unique, every such sequence
is convergent to x̄ either q-linearly, q-superlinearly or q-quadratically, depending on the
bound for d+(0, Rk(u, x̄)) indicated in the preceding paragraph.

For the case of an equation f = 0 with a smooth f : Rn → Rn near a solution x̄, each
of the three metric regularity properties we employ is equivalent to the nonsingularity of
the Jacobian of f at x̄, as assumed in Dembo et. al. [4]. Even in this case, however, our
convergence results extend those in [4] by passing to Banach spaces and allowing broader
representations of inexactness.

In the recent paper [1], a model of an inexact Newton method was analyzed in which
the sequence of mappings Rk in (5) is just a sequence of elements rk ∈ Y that stand for
error in computations. It is shown under metric regularity of the mapping f + F that if the
iterations can be continued without getting stuck, and rk converges to zero at certain rate,
there exists a sequence of iterates xk which is convergent to x̄ with the same r-rate as rk.
This result does not follow from ours. On the other hand, the model in [1] does not cover
the basic case in [4] whose extension has been the main inspiration of the current paper.

There is a vast literature on inexact Newton-type method for solving equations which
employs representations of inexactness other than that in Dembo et. al. [4], see e.g. [2] and
the references therein.

In the following section we present background material and some technical results used
in the proofs. Section 3 is devoted to our main convergence results. In Section 4 we present
applications. First, we recover there the result in [4] about linear convergence of the itera-
tion (4). Then we deduce convergence of the exact Newton method (2), slightly improving
previous results. We then discuss an inexact Newton method for a variational inequality
which extends the model in [4]. Finally, we establish quadratic convergence of the sequential
quadratically constrained quadratic programming method.

2 Background on metric regularity

Let us first fix the notation. We denote by d(x, C) the inner distance from a point x ∈ X to
a subset C ⊂ X; that is d(x,C) = inf {‖x− x′‖ ∣∣ x′ ∈ C} whenever C 6= ∅ and d(x, ∅) = ∞,
while d+(x,C) is the outer distance, d+(x,C) = sup {‖x − x′‖

∣∣ x′ ∈ C}. The excess from a
set C to a set D is e(C, D) = supx∈C d(x,D) under the convention e(∅, D) = 0 for D 6= ∅ and
e(D, ∅) = +∞ for any D. A set-valued mapping F from X to Y , indicated by F : X →→ Y ,
is identified with its graph gph F = {(x, y) ∈ X × Y | y ∈ F (x)}. It has effective domain
dom F =

{
x ∈ X

∣∣ F (x) 6= ∅} and effective range rge F =
{

y ∈ Y
∣∣ ∃x with F (x) 3 y

}
.

The inverse F−1 : Y →→ X of a mapping F : X →→ Y is obtained by reversing all pairs in the
graph; then dom F−1 = rge F .
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We start with the definitions of three regularity properties which play the main roles in
this paper. The reader can find much more in the book [9], most of which is devoted to
these properties.

Definition 2.1 (metric regularity). Consider a mapping H : X →→ Y and a point (x̄, ȳ) ∈
X × Y . Then H is said to be metrically regular at x̄ for ȳ when ȳ ∈ H(x̄) and there is a
constant λ > 0 together with neighborhoods U of x̄ and V of ȳ such that

(6) d(x,H−1(y)) ≤ λd(y, H(x)) for all (x, y) ∈ U × V.

If f : X → Y is smooth near x̄, then metric regularity of f at x̄ for f(x̄) is equivalent to
the surjectivity of its derivative mapping Df(x̄). Another popular case is when the inclusion
0 ∈ H(x) describes a system of inequalities and equalities, i.e.,

H(x) = h(x) + F, where h =

(
g1

g2

)
and F =

(
Rm

+

0

)

with smooth functions g1 and g2. Metric regularity of the mapping H at, say, x̄ for 0 is
equivalent to the standard Mangasarian-Fromovitz condition at x̄, see e.g. [9, Example
4D.3].

Metric regularity of a mapping F is equivalent to linear openness of H and to Aubin
continuity of the inverse H−1, both with the same constant λ but perhaps with different
neighborhoods U and V . Recall that a mapping S : Y →→ X is said to be Aubin continuous
(or have the Aubin property) at ȳ for x̄ if x̄ ∈ S(ȳ) and there exists λ > 0 together with
neighborhoods U of x̄ and V of ȳ such that

e(S(y) ∩ U, S(y′)) ≤ κ‖y − y′‖ for all y, y′ ∈ V.

We also employ a partial version of the Aubin property for a mappings of two variables. We
say that a mapping T : P ×X →→ Y is partially Aubin continuous at ȳ for x̄ uniformly in p
around p̄ if x̄ ∈ T (ȳ, p̄) and there exist λ > 0 and neighborhoods U of x̄, V of ȳ and Q of p̄
such that

e(T (p, y) ∩ U, T (p, y′)) ≤ κ‖y − y′‖ for all y, y′ ∈ V and all p ∈ Q.

Definition 2.2 (strong metric regularity). Consider a mapping H : X →→ Y and a point
(x̄, ȳ) ∈ X × Y . Then H is said to be strongly metrically regular at x̄ for ȳ when ȳ ∈ H(x̄)
and there is a constant λ > 0 together with neighborhoods U of x̄ and V of ȳ such that (6)
holds together with the property that the mapping U 3 x 7→ H−1(x) ∩ V is single-valued.

When a mapping y 7→ S(y) ∩ U ′ is single-valued and Lipschitz continuous on V ′, for
some neighborhoods U ′ and V ′ of x̄ and ȳ, respectively, then S is said to have a Lipschitz
localization around ȳ for x̄. Strong metric regularity of a mapping H at x̄ for ȳ is then
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equivalent to the existence of a Lipschitz localization of H−1 around ȳ for x̄. A mapping S
is Aubin continuous at ȳ for x̄ with constant λ and has a single-valued localization around ȳ
for x̄ if and only if S has a Lipschitz localization around ȳ for x̄ with Lipschitz constant λ.

Strong metric regularity is the property which appears in the classical inverse function
theorem: when f : X → Y is smooth around x̄ then f is strongly metrically regular if and
only if Df(x̄) is invertible4. In Section 4 we will give a sufficient condition for strong metric
regularity of the variational inequality representing the first-order optimality condition for
the standard nonlinear programming problem.

Our next definition is a weaker form of strong metric regularity.

Definition 2.3 (strong metric subregularity). Consider a mapping H : X →→ Y and a point
(x̄, ȳ) ∈ X×Y . Then H is said to be strongly metrically subregular at x̄ for ȳ when ȳ ∈ H(x̄)
and there is a constant λ > 0 together with neighborhoods U of x̄ such that

‖x− x̄‖ ≤ λd(ȳ, H(x)) for all x ∈ U.

Metric subregularity of H at x̄ for ȳ implies that x̄ is an isolated point in H(ȳ); moreover,
it is equivalent to the so-called isolated calmness of the inverse H−1, meaning that there is
a neighborhood U of x̄ such that H−1(y)∩U ⊂ x̄ + λ‖y− x̄‖IB for all y ∈ Y , see [9, Section
3I]. Every mapping H acting in finite dimensions, whose graph is the union of finitely many
convex polyhedral sets, is strongly metrically regular at x̄ for ȳ if and only if x̄ is an isolated
point in H−1(ȳ). As another example, consider the minimization problem

(7) minimize g(x)− 〈p, x〉 over x ∈ C,

where g : Rn → R is a convex C2 function, p ∈ Rn is a parameter, and C is a convex
polyhedral set in Rn. Then the mapping ∇g + NC is strongly metrically subregular at x̄ for
p̄, or equivalently, its inverse, which is the solution mapping of problem (7), has the isolated
calmness property at p̄ for x̄, if and only if the standard second-order sufficient condition
holds at x̄ for p̄; see [9, Theorem 4E.4].

In the proofs of convergence of the inexact Newton method (5) given in Section 3 we use
some technical results. The first is the following coincidence theorem from [7]:

Theorem 2.4 (coincidence theorem). Let X and Y be two metric spaces. Consider a set-
valued mapping Φ : X →→ Y and a set-valued mapping Υ : Y →→ X. Let x̄ ∈ X and
ȳ ∈ Y and let c, κ and µ be positive scalars such that κµ < 1. Assume that one of the
sets gph Φ ∩ (IBc(x̄) × IBc/µ(ȳ)) and gph Υ ∩ (IBc/µ(ȳ) × IBc(x̄)) is closed while the other is
complete, or both sets gph(Φ ◦Υ)∩ (IBc(x̄)× IBc(x̄)) and gph(Υ ◦Φ)∩ (IBc/µ(ȳ)× IBc/µ(ȳ))
are complete. Also, suppose that the following conditions hold:

4The classical inverse function theorem actually gives us more: it shows that the single-valued localization
of the inverse is smooth and provides also the form of its derivative.
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(a) d(ȳ, Φ(x̄)) < c(1− κµ)/µ;
(b) d(x̄, Υ(ȳ)) < c(1− κµ);
(c) e(Φ(u)∩IBc/µ(ȳ), Φ(v)) ≤ κ ρ(u, v) for all u, v ∈ IBc(x̄) such that ρ(u, v) ≤ c(1−κµ)/µ;
(d) e(Υ(u)∩ IBc(x̄), Υ(v)) ≤ µ ρ(u, v) for all u, v ∈ IBc/µ(ȳ) such that ρ(u, v) ≤ c(1−κµ).

Then there exist x̂ ∈ IBc(x̄) and ŷ ∈ IBc/µ(ȳ) such that ŷ ∈ Φ(x̂) and x̂ ∈ Υ(ŷ). If the
mappings IBc(x̄) 3 x 7→ Φ(x) ∩ IBc/µ(ȳ) and IBc/µ 3 y 7→ Υ(y) ∩ IBc(x̄) are single-valued,
then the points x̂ and ŷ are unique in IBc(x̄) and IBc/µ(ȳ), respectively.

To prove the next technical result given below as Corollary 2.6, we apply the following
extension of [1, Theorem 2.1], where the case of strong metric regularity was not included but
its proof is straightforward. This is actually a “parametric” version of the Lyusternik-Graves
theorem; for a basic statement see [9, Theorem 5E.1].

Theorem 2.5 (perturbed metric regularity). Consider a mapping H : X →→ Y and any
(x̄, ȳ) ∈ gph H at which gph H is locally closed (which means that the intersection of gph H
with some closed ball around (x̄, ȳ) is closed). Consider also a function g : P ×X → Y with
(q̄, x̄) ∈ dom g and positive constants λ and µ such that λµ < 1. Suppose that H is [resp.,
strongly] metrically regular at x̄ for ȳ with constant λ and also there exist neighborhoods Q
of q̄ and U of x̄ such that

(8) ‖g(q, x)− g(q, x′)‖ ≤ µ‖x− x′‖ for all q ∈ Q and x, x′ ∈ U.

Then for every κ > λ/(1 − λµ) there exist neighborhoods Q′ of q̄, U ′ of x̄ and V ′ of ȳ such
that for each q ∈ Q′ the mapping g(q, ·) + H(·) is [resp., strongly] metrically regular at x̄ for
g(q, x̄) + ȳ with constant κ and neighborhoods U ′ of x̄ and g(q, x̄) + V ′ of g(q, x̄) + ȳ.

From this theorem we obtain the following extended version of Corollary 3.1 in [1], the
main difference being that here we assume that f is merely continuously differentiable near x̄,
not necessarily with Lipschitz continuous derivative. Here we also suppress the dependence
on a parameter, which is not needed, present the result in the form of Aubin continuity,
and include the case of strong metric regularity; all this requires certain modifications in the
proof, which is therefore presented in full.

Corollary 2.6. Suppose that the mapping f +F is metrically regular at x̄ for 0 with constant
λ. Let u ∈ X and consider the the mapping

(9) X 3 x 7→ Gu(x) = f(u) + Df(u)(x− u) + F (x).

Then for every κ > λ there exist positive numbers a and b such that

(10) e(G−1
u (y) ∩ IBa(x̄), G−1

u (y′)) ≤ κ‖y − y′‖ for every u ∈ IBa(x̄) and y, y′ ∈ IBb(0).
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If f + F is strongly metrically regular around x̄ for ȳ with constant λ, then the mapping Gu

is strongly metrically regular at x̄ for 0 uniformly in u; specifically, there are positive a′ and
b′ such that for each u ∈ IBa′(x̄) the mapping

y 7→ G−1
u (y) ∩ IBa′(x̄)

is a Lipschitz continuous function on IBb′(0) with Lipschitz constant κ.

Proof. First, let κ > λ′ > λ. From one of the basic forms of the Lyusternik-Graves theorem,
see e.g. [9, Theorem 5E.4], it follows that the mapping Gx̄ is metrically regular at x̄ for 0 with
any constant λ′ > λ and neighborhoods IBα(x̄) and IBβ(0) for some positive α and β (this
could be also deduced from Theorem 2.5). Next, we apply Theorem 2.5 with H(x) = Gx̄(x),
ȳ = 0, q = u, q̄ = x̄, and

g(q, x) = f(u) + Df(u)(x− u)− f(x̄)−Df(x̄)(x− x̄).

Let κ > λ′. Pick any µ > 0 such that µκ < 1 and κ > λ′/(1 − λ′µ). Then adjust α if
necessary so that, from the continuous differentiability of f around x̄,

(11) ‖Df(x)−Df(x′)‖ ≤ µ for every x, x′ ∈ IBα(x̄).

Then for any x, x′ ∈ X and any u ∈ IBα(x̄) we have

‖g(u, x)− g(u, x′)‖ ≤ ‖Df(u)−Df(x̄)‖‖x− x′‖ ≤ µ‖x− x′‖,
that is, condition (8) is satisfied. Thus, by Theorem 2.5 there exist positive constants α′ ≤ α
and β′ such that for any u ∈ IBα′(x̄) the mapping Gu(x) = g(u, x) + Gx̄(x) is (strongly)
metrically regular at x̄ for g(u, x̄) = f(u) + Df(u)(x̄ − u) − f(x̄) with constant κ and
neighborhoods IBα′(x̄) and IBβ′(g(q, x̄)), that is,

(12) d(x,G−1
u (y)) ≤ κd(y,Gu(x)) for every u, x ∈ IBα′(x̄) and y ∈ IBβ′(g(q, x̄)).

Now choose positive scalars a and b such that

a ≤ α′ and µa + b ≤ β′.

Then, using (11), for any u, x ∈ IBa(x̄) we have

‖f(x)− f(u)−Df(u)(x− u)‖(13)

=

∥∥∥∥
∫ 1

0

Df(u + t(u− x))(x− u)dt−Df(u)(x− u)

∥∥∥∥ ≤ µ‖x− u‖.

Hence, for any u ∈ IBa(x̄), we obtain

‖f(u) + Df(u)(x̄− u)− f(x̄)‖ ≤ µ‖u− x̄‖,

9



and then, for y ∈ IBb(0),

‖g(u, x̄)− y‖ ≤ ‖f(u) + Df(u)(x̄− u)− f(x̄)‖+ ‖y‖
≤ µ‖u− x̄‖+ b ≤ µa + b ≤ β′.

Thus, IBb(0) ⊂ IBβ′(g(u, x̄)). Let y, y′ ∈ IBb(0) and x ∈ G−1
u (y) ∩ IBa(x̄). Then x ∈ IBa(x̄)

and from (12) we have

d(x,G−1
u (y′)) ≤ κd(y′, Gu(x)) ≤ κ‖y′ − y‖.

Taking the supremum on the left with respect to x ∈ G−1
u (y) ∩ IBc(x̄) we obtain (10).

If f + F is strongly metrically regular, then we repeat the above argument but now by
applying the strong regularity version of Theorem 2.5, obtaining constants a′ and b′ that
might be different from a and b for metric regularity.

The following theorem is a “parametric” version of [9, Theorem 3I.6]:

Theorem 2.7 (perturbed strong subregularity). Consider a mapping H : X →→ Y and any
(x̄, ȳ) ∈ gph H. Consider also a function g : P ×X → Y with (q̄, x̄) ∈ dom g and let λ and µ
be two positive constants such that λµ < 1. Suppose that H is strongly metrically subregular
at x̄ for ȳ with constant λ and a neighborhood U of x̄, and also there exists a neighborhood
Q of q̄ such that

(14) ‖g(q, x)− g(q, x̄)‖ ≤ µ‖x− x̄‖ for all q ∈ Q and x ∈ U.

Then for every q ∈ Q the mapping g(q, ·) + H(·) is strongly metrically regular at x̄ for
g(q, x̄) + ȳ with constant λ/(1− λµ) and neighborhood U of x̄.

Proof. Let x ∈ U and y ∈ H(x); if there is no such y the conclusion is immediate under
the convention that d(ȳ, ∅) = +∞. Let q ∈ Q; then, using (14),

‖x− x̄‖ ≤ λ‖ȳ − y‖ ≤ λ‖ȳ + g(q, x̄)− g(q, x)− y‖+ λ‖g(q, x)− q(q, x̄)‖
≤ λ‖ȳ + g(q, x̄)− g(q, x)− y‖+ λµ‖x− x̄‖,

hence

‖x− x̄‖ ≤ λ

1− λµ
‖ȳ + g(q, x̄)− g(q, x)− y‖.

Since y is arbitrary in H(x), we conclude that

‖x− x̄‖ ≤ λ

1− λµ
‖d(ȳ + g(q, x̄), g(q, x) + H(x))‖

and the proof is complete.

We will use the following corollary of Theorem 2.7.
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Corollary 2.8. Suppose that the mapping f + F is strongly metrically subregular at x̄ for
0 with constant λ. Let u ∈ X and consider the mapping (9). Then for every κ > λ there
exists a > 0 such that

(15) ‖x− x̄‖ ≤ κd(f(u)−Df(u)(u− x̄)− f(x̄), Gu(x)) for every u, x ∈ IBa(x̄).

Proof. In [9, Corollary 3I.9] it is proved that if the mapping f + F is strongly metrically
subregular at x̄ for 0 with constant λ then for any κ > λ the mapping Gx̄, as defined in (9),
is strongly metrically subregular at x̄ for 0 with constant κ. This actually follows easily from
Theorem 2.7 with H = f + F and

g(q, x) = q(x) = −f(x) + f(x̄) + Df(x̄)(x− x̄).

Fix κ > κ′ > λ and let µ′ > 0 be such that λµ′ < 1 and λ(1 − λµ′) < κ′. Then there
exists a′ > 0 such that (11) holds with this µ′ and α replaced by a′. Utilizing (13), for any
x ∈ IBa′(x̄) we obtain

‖g(x)− g(x̄)‖ = ‖f(x)− f(x̄)−Df(x̄)(x− x̄)‖| ≤ µ′‖x− x′‖,
that is, condition (14) is satisfied. Thus, from Theorem 2.7 the mapping g + F = Gx̄ is
strongly metrically subregular at x̄ for 0 with constant κ′ and neighborhood IBa′(x̄).

To complete the proof we apply Theorem 2.7 again but now with H(x) = Gx̄(x), ȳ = 0,
q = u, q̄ = x̄, and

g(u, x) = f(u) + Df(u)(x− u)− f(x̄)−Df(x̄)(x− x̄).

Pick any µ > 0 such that µ ≤ µ′, µκ < 1 and κ > κ′/(1− κ′µ). Then there exists a positive
a ≤ a′ such that (11) and hence (13) holds with this µ. Let u ∈ IBa(x̄). Then for any x ∈ X
we have

‖g(u, x)− g(q, x̄)‖ ≤ ‖Df(u)−Df(x̄)‖‖x− x̄‖ ≤ µ‖x− x′‖,
that is, (14) is satisfied. Thus, by Theorem 2.7 the mapping Gu(x) = g(u, x) + Gx̄(x) is
strongly metrically subregular at x̄ for g(u, x̄) = f(u) + Df(u)(x̄− u)− f(x̄) with constant
κ. We obtain (15).

3 Convergence of the inexact Newton method

In this section we consider the generalized equation (1) and the inexact Newton iteration
(5), namely

(f(xk) + Df(xk)(xk+1 − xk) + F (xk+1)) ∩Rk(xk, xk+1) 6= ∅, for k = 0, 1, . . . .

Our first result shows that metric regularity is sufficient to make the method (5) surely
executable.
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Theorem 3.1 (convergence under metric regularity). Let λ and µ be two positive constants
such that λµ < 1. Suppose that the mapping f + F is metrically regular at x̄ for 0 with
constant λ. Also, suppose that for each k = 0, 1, . . . , the mapping (u, x) 7→ Rk(u, x) is
partially Aubin continuous with respect to x at x̄ for 0 uniformly in u around x̄ with constant
µ. In addition, suppose that there exist positive scalars γ < (1− λµ)/µ and β such that

(16) d(0, Rk(u, x̄)) ≤ γ‖u− x̄‖ for all u ∈ IBβ(x̄) and all k = 0, 1, . . . .

Then there exists a neighborhood O of x̄ such that for any starting point x0 ∈ O there exists
a Newton sequence {xk} contained in O which is q-linearly convergent to x̄.

Proof. Let t ∈ (0, 1) be such that 0 < γ < t(1 − λµ)/µ. Choose a constant κ such that
κ > λ, κµ < 1 and γ < t(1 − κµ)/µ. Next we apply Corollary 2.6; let a and b be the
constants entering (10) and in addition satisfying

(17) e(Rk(u, x) ∩ IBb(0), Rk(u, x′)) ≤ µ‖x− x′‖ for all u, x, x′ ∈ IBa(x̄).

Choose positive ε such that ε < t(1− κµ)/κ and make a even smaller if necessary so that

(18) ‖Df(u)−Df(v)‖ ≤ ε for all u, v ∈ IBa(x̄).

Pick a′ > 0 to satisfy

(19) a′ ≤ min{a, b/ε, β, bµ}.
Let u ∈ IBa′(x̄), u 6= x̄. We apply Theorem 2.4 to the mappings x 7→ Φ(x) = R0(u, x) and
Υ = G−1

u , with κ := κ, µ := µ, x̄ := x̄, ȳ := 0 and c := t‖u − x̄‖. Since u ∈ IBa′(x̄) and
a′ ≤ β, from (16) we have

(20) d(0, R0(u, x̄)) ≤ γ‖u− x̄‖ <
t(1− κµ)

µ
‖u− x̄‖ =

c(1− κµ)

µ
.

Further, taking into account (18) in (13) and that εa′ ≤ b, we obtain

‖ − f(x̄) + f(u) + Df(u)(x̄− u)‖ ≤ εa′ ≤ b.

Hence, by the assumption 0 ∈ f(x̄) + F (x̄) and the form of Gu in (9), we have

−f(x̄) + f(u) + Df(u)(x̄− u) ∈ Gu(x̄) ∩ IBb(0).

Then, from (10),

d(x̄, G−1
u (0)) ≤ κd(0, Gu(x̄))

≤ κ‖ − f(x̄) + f(u) + Df(u)(x̄− u)‖ ≤ κε‖u− x̄‖
< t(1− κµ)‖u− x̄‖ = c(1− κµ).
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We conclude that conditions (a) and (b) in Theorem 2.4 are satisfied. Since u ∈ IBa′(x̄), we
have by (19) that c ≤ a′ ≤ a and c/µ ≤ b, hence (17) implies condition (c). Further, from
(15) we obtain that condition (d) in Theorem 2.4 holds for the mapping Υ = G−1

u . Thus, we
can apply Theorem 2.4 obtaining that there exists x1 ∈ IBc(x̄) and v1 such that x1 ∈ G−1

u (v1)
and v1 ∈ R0(u, x1), that is, x1 satisfies (5) with x0 = u and also ‖x1 − x̄‖ ≤ t‖x0 − x̄‖. In
particular, x1 ∈ IBa′(x̄).

The induction step repeats the argument used in the first step. Having iterates xi ∈
IBa′(x̄) from (5) for i = 0, 1 . . . , k − 1 with x0 = u, we apply Theorem 2.4 with c :=
t‖xk − x̄‖, obtaining the existence of xk+1 satisfying (5) which is in IBc(x̄) ⊂ IBa′(x̄) and
‖xk+1 − x̄‖ ≤ t‖xk − x̄‖ for all k.

If we assume that in addition Df is Lipschitz continuous near x̄ and also 0 ∈ Rk(u, x) for
any (u, x) near (x̄, x̄), the above theorem would follow from [9, Theorem 6C.6], where the
existence of a quadratically convergent sequence is shown generated by the exact Newton
method (2). Indeed, in this case any sequence that satisfies (2) will also satisfy (5).

Under metric regularity of the mapping f + F , even the exact Newton method (2) may
generate a sequence which is not convergent. The simplest example of such a case is the
inequality x ≤ 0 in R which can be cast as the generalized equation 0 ∈ x+R+ with a solution
x̄ = 0. Clearly the mapping x 7→ x + R+ is metrically regular at 0 for 0 but not strongly
metrically subregular there. The (exact) Newton method has the form 0 ∈ xk+1 + R+ and
it generates both convergent and non-convergent sequences from any starting point.

The following result shows that strong metric subregularity of f + F , together with
assumptions for the mappings Rk that are stronger than in Theorem 3.1, implies convergence
of any sequence generated by the method (5) which starts close to x̄, but cannot guarantee
that the method is surely executable.

Theorem 3.2 (convergence under strong metric subregularity). Let λ and µ be two positive
constants such that λµ < 1. Suppose that the mapping f +F is strongly metrically subregular
at x̄ for 0 with constant λ. Also, suppose that for each k = 0, 1, . . . , the mapping (u, x) 7→
Rk(u, x) is partially Aubin continuous with respect to x at x̄ for 0 uniformly in u around x̄
with constant µ and also satisfies d+(0, Rk(u, x)) → 0 as (u, x) → (x̄, x̄).

(i) Let t ∈ (0, 1) and let there exist positive γ < t(1− λµ)/λ and β such that

(21) d+(0, Rk(u, x̄)) ≤ γ‖u− x̄‖ for all u ∈ IBβ(x̄) k = 0, 1, . . . .

Then there exists a neighborhood O ⊂ IBa(x̄) of x̄ such that for any x0 ∈ O every sequence
{xk} generated by the Newton method (5) starting from x0 and staying in O for all k satisfies

(22) ‖xk+1 − x̄‖ ≤ t‖xk − x̄‖ for all k = 0, 1, . . . ,

that is, xk → x̄ q-linearly;
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(ii) Let there exist a sequences of positive scalars γk↘0, with γ0 < (1− λµ)/λ, and β > 0
such that

(23) d+(0, Rk(u, x̄)) ≤ γk‖u− x̄‖ for all u ∈ IBβ(x̄) k = 0, 1, . . . .

Then there exists a neighborhood O of x̄ such that for any x0 ∈ O every sequence {xk}
generated by the Newton method (5) starting from x0 and staying in O for all k, and such
that xk 6= x̄ for all k satisfies

(24) lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ = 0,

that is, xk → x̄ q-superlinearly;
(iii) Suppose that the derivative mapping Df is Lipschitz continuous near x̄ with Lipschitz

constant L and let there exist positive scalars γ and β such that

(25) d+(0, Rk(u, x̄)) ≤ γ‖u− x̄‖2 for all u ∈ IBβ(x̄) k = 0, 1, . . . .

Then for every

(26) C >
λ(γ + L/2)

1− λµ

there exists a neighborhood O of x̄ such that for any x0 ∈ O every sequence {xk} generated
by the Newton method (5) starting from x0 and staying in O for all k satisfies

(27) ‖xk+1 − x̄‖ ≤ C‖xk − x̄‖2 for all k = 0, 1, . . . .

that is, xk → x̄ q-quadratically.

Proof of (i). Choose t, γ and β as requested and let κ > λ be such that κµ < 1 and
γ < t(1− κµ)/κ. Choose positive a and b such that (15) and (17) are satisfied. Pick ε > 0
such that γ + ε < t(1− κµ) and adjust a if necessary so that a ≤ β and

(28) ‖Df(u)−Df(x̄)‖ ≤ ε‖u− x̄‖ for all u ∈ IBa(x̄).

From (21) we have that Rk(x̄, x̄) = {0} and then, by the assumptions that d+(0, Rk(u, x)) →
0 as (u, x) → (x̄, x̄) we can make a so small that Rk(u, x) ⊂ IBb(0) whenever u, x ∈ IBa(x̄).

Let x0 ∈ IBa(x̄) and consider any sequence {xk} generated by Newton method (5) starting
at x0 and staying in IBa(x̄). Then there exists y1 ∈ Rk(x0, x1)∩Gx0(x1). From (15) and (28)
via (13),

‖x1 − x̄‖ ≤ κ‖y1‖+ κ‖f(x0)−Df(x0)(x0 − x̄)− f(x̄)‖ ≤ κ‖y1‖+ κε‖x0 − x̄‖.
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Since R0(x0, x1) ⊂ IBb(0), from (17) there exists y′1 ∈ R0(x0, x̄) such that

‖y1 − y′1‖ ≤ µ‖x1 − x̄‖
and moreover, utilizing (21),

‖y′1‖ ≤ γ‖x0 − x̄‖.
We obtain

‖x1 − x̄‖ ≤ κ‖y1‖+ κε‖x0 − x̄‖
≤ κ(‖y′1‖+ ‖y1 − y′1‖) + κε‖x0 − x̄‖ ≤ κ(γ + ε)‖x0 − x̄‖+ κµ‖x1 − x̄‖.

Hence,

‖x1 − x̄‖ ≤ κ(γ + ε)

1− κµ
‖x0 − x̄‖ ≤ t‖x0 − x̄‖,

Thus, (22) is established for k = 0. We can then repeat the above argument with x0 replaced
by x1 and so on, obtaining by induction (22) for all k.

Proof of (ii). Choose a sequence γk↘0 with γ0 < (1− λµ)/λ and β > 0 such that (23)
holds and then pick κ > λ such that κµ < 1 and γ0 < (1 − κµ)/κ. As in the proof of (i),
choose a ≤ β and b such that (15) and (17) are satisfied and since Rk(x̄, x̄) = {0} from (25),
adjust a so that Rk(u, x) ⊂ IBb(0) whenever u, x ∈ IBa(x̄).

Choose x0 ∈ IBa(x̄) and consider any sequence {xk} generated by (5) starting from x0

and staying in IBa(x̄). Since all assumptions in (i) are satisfied, this sequence is convergent
to x̄. Let ε > 0. Then there exists a natural k0 such that

(29) ‖Df(x̄ + t(xk − x̄))−Df(x̄)‖ ≤ ε‖xk − x̄‖ for all t ∈ [0, 1] and all k > k0.

In further lines we mimick the proof of (i). For each k > k0 there exists yk+1 ∈ Rk(xk, xk+1)∩
Gxk

(xk+1). From (15) and (29) via (13),

‖xk+1 − x̄‖ ≤ κ‖yk+1‖+ κ‖f(xk)−Df(xk)(xk − x̄)− f(x̄)‖ ≤ ε‖xk − x̄‖.
By (17) there exists y′k+1 ∈ Rk(xk, x̄) such that

‖yk+1 − y′k+1‖ ≤ µ‖xk+1 − x̄‖
and also, from (25),

‖y′k+1‖ ≤ γk‖xk − x̄‖.
By combining the last three estimates, we obtain

‖xk+1 − x̄‖ ≤ κ‖yk+1‖+ κ‖f(xk)−Df(xk)(xk − x̄)− f(x̄)‖
≤ κ(‖y′k+1‖+ ‖yk+1 − y′k+1‖) + κε‖xk − x̄‖
≤ κγk‖xk − x̄‖+ κε‖xk − x̄‖+ κµ‖xk+1 − x̄‖.
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Hence
‖xk+1 − x̄‖ ≤ κ

1− κµ
(γk + ε)‖xk − x̄‖.

Passing to the limit with k →∞ we get

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ ≤ κε

1− κµ
.

Since ε can be arbitrary small and the expression on the left side does not depend on ε, we
obtain (24).

Proof of (iii). Choose γ and β such that (25) holds and then pick C satisfying (26).
Take κ > λ such that κµ < 1 and C > (κ + L/2)/(1− κµ). Applying Corollary 2.8, choose
a ≤ β and b such that (15) and (17) are satisfied and Ca < 1. From (25) we have that
Rk(x̄, x̄) = {0}; then adjust a so that Rk(u, x) ⊂ IBb(0) whenever u, x ∈ IBa(x̄). Make a
smaller if necessary so that

‖Df(u)−Df(v)‖ ≤ L‖u− v‖ for all u, v ∈ IBa(x̄).

Then, for any x ∈ IBa(x̄) we have

‖f(x) + Df(x)(x̄− x)− f(x̄)‖(30)

=

∥∥∥∥
∫ 1

0

Df(x̄ + t(x− x̄))(x− x̄)dt−Df(x)(x− x̄)

∥∥∥∥

≤ L

∫ 1

0

(1− t)dt ‖x− x̄‖2 =
L

2
‖x− x̄‖2.

Let x0 ∈ IBa(x̄) and consider a sequence {xk} generated by Newton method (5) starting
at x0 and staying in IBa(x̄) for all k. By repeating the argument of case (ii) and employing
(30), we obtain

‖xk+1 − x̄‖ ≤ κ‖yk+1‖+ κ‖f(xk)−Df(xk)(xk − x̄)− f(x̄)‖
≤ κ(‖y′k+1‖+ ‖yk+1 − y′k+1‖) +

κL

2
‖xk − x̄‖2

≤ (κγ +
κL

2
)‖xk − x̄‖2 + κµ‖xk+1 − x̄‖.

Hence

‖xk+1 − x̄‖ ≤ κ(γ + L/2))

1− κµ
‖x0 − x̄‖2 ≤ C‖x0 − x̄‖2.

Thus (27) is established.
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The strong metric subregularity assumed in Theorem 3.2 does not guarantee that the
method (5) is surely executable. As a simple example, consider the function f : R → R
given by

f(x) =

{
1
2

√
x + 1 for x ≥ 0,

∅ otherwise.

This function is strongly subregular at 0 for 0, but from any point x0 arbitrarily close to 0
there is no Newton step x1.

We come to the central result of this paper, whose proof is a combination of the two
preceding theorems.

Theorem 3.3 (convergence under strong metric regularity). Consider the generalized equa-
tion (1) and the inexact Newton iteration (5) and let λ and µ be two positive constants such
that λµ < 1. Suppose that the mapping f + F is strongly metrically regular at x̄ for 0 with
constant λ. Also, suppose that for each k = 0, 1, . . . , the mapping (u, x) 7→ Rk(u, x) is par-
tially Aubin continuous with respect to x at x̄ for 0 uniformly in u around x̄ with constant µ
and satisfies d+(0, Rk(u, x)) → 0 as (u, x) → (x̄, x̄).

(i) Let t ∈ (0, 1) and let there exist positive γ < t(1− λµ) min{1/κ, 1/µ} and β such that
the condition (21) in Theorem 3.2 holds. Then there exists a neighborhood O of x̄ such that
for any starting point x0 ∈ O the inexact Newton method (5) is sure to generate a sequence
which stays in O and converges to x̄, which may be not unique, but every such sequence is
convergent to x̄ q-linearly in the way described in (22);

(ii) Let there exist sequences of positive scalars γk↘0, with γ0 < (1 − λµ)/λ, and β such
that condition (23) in Theorem 3.2 is satisfied. Then there exists a neighborhood O of x̄
such that for any starting point x0 ∈ O the inexact Newton method (5) is sure to generate
a sequence which stays in O and converges to x̄, which may be not unique, but every such
sequence is convergent to x̄ q-superlinearly;

(iii) Suppose that the derivative mapping Df is Lipschitz continuous near x̄ with Lipschitz
constant L and let there exist positive scalars γ and β such that (25) in Theorem 3.2 holds.
Then for every constant C satisfying (26) there exists a neighborhood O of x̄ such that for
any starting point x0 ∈ O the inexact Newton method (5) is sure to generate a sequence
which stays in O and converges to x̄, which may be not unique, but every such sequence is
convergent q-quadratically to x̄ in the way described in (27).

If in addition the mapping Rk has a single-valued localization at (x̄, x̄) for 0, then in each
of the cases (i), (ii) and (iii) there exists a neighborhood O of x̄ such that for any starting
point x0 ∈ O there is a unique Newton sequence {xk} contained in O and this sequence hence
converges to x̄ in the way described in (i), (ii) and (iii), respectively.

Proof. The statements in (i), (ii) and (iii) follow immediately by combining Theorem 3.2
and Theorem 3.1. Let Rk have a single-valued localization at (x̄, x̄) for 0. Choose a and b as
above and adjust them so that Rk(u, x) ∈ IBb(0) is a singleton for all u, x ∈ IBa(x̄). Recall
that in this case the mapping x 7→ R0(u, x) ∩ IBb(0) is Lipschitz continuous on IBa((x̄, x̄))
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with constant µ. Then, by observing that x1 = G−1
u (−R0(u, x1) ∩ IBb(0)) ∩ IBa(x̄) and the

mapping x 7→ G−1
u (−R0(u, x) ∩ IBb(0)) ∩ IBa(x̄) is Lipschitz continuous on IBa(x̄) with a

Lipschitz constant κµ < 1, hence it is a contraction, we conclude that there is only one
Newton iterate x1 from x0 which is in IBa(x̄). By induction, the same argument works for
each iterate xk.

4 Applications

For the equation f(x) = 0 with f : Rn → Rn having a solution x̄ at which Df(x̄) is
nonsingular, it is shown in Dembo et al. [4, Theorem 2.3] that when 0 < ηk ≤ η̄ < t < 1,
then any sequence {xk} starting close enough to x̄ and generated by the inexact Newton
method (4) is linearly convergent with

(31) ‖xk+1 − xk‖ ≤ t‖xk − x̄‖.

We will now deduce this result from our Theorem 3.3(i) for X and Y Banach spaces instead of
just Rn. A constant of metric regularity of f at x̄ could be any real number λ > ‖Df(x̄)−1‖.

Fix η̄ < t < 1 and choose a sequence ηk ≤ η̄. Let ν = max{‖Df(x̄)‖, ‖Df(x̄)−1‖−1}
and choose γ such that η̄ν < γ < ν. Then pick β > 0 to satisfy γ > η̄ supx∈IBβ(x) ‖Df(x)‖.
Finally, choose λ > ‖Df(x̄)−1‖ so that 1/λ > γ. Then, since f(x̄) = 0, for any u ∈ IBβ(x̄)
we have

(32) d+(0, Rk(u, x̄)) = ηk‖f(u)‖ = ηk‖f(u)−f(x̄)‖ ≤ ηk sup
x∈IBβ(x̄)

‖Df(x)‖‖u−x̄‖ ≤ γ‖u−x̄‖.

Since in this case Rk(u) = IBηk‖f(u)‖(0) doesn’t depend on x, we can choose as µ any arbitrar-
ily small positive number, in particular satisfying the bounds λµ < 1 and γ < t(1− λµ)/λ.
Then Theorem 3.3(i) applies and we recover the linear convergence (31) obtained in [4,
Theorem 2.3].

For the inexact method (4) with f having Lipschitz continuous derivative near x̄, it is
proved in [14, Theorem 6.1.4] that when ηk↘0 with η0 < η̄ < 1, any sequence of iterates
{xk} starting close enough to x̄ is q-superlinearly convergent to x̄. By choosing γ0, β and
λ as γ, β and λ in the preceding paragraph, and then applying (32) with γ replaced by γk,
this now follows from Theorem 3.3(ii) without assuming Lipschitz continuity of Df .

If we take Rk(u, x) = IBη‖f(u)‖2(0), we obtain from Theorem 3.3(iii) q-quadratic con-
vergence, as claimed in [14, Theorem 6.1.4]. We note that Dembo et al. [4] gave results
characterizing the rate of convergence in terms of the convergence of relative residuals.

When Rk ≡ 0 in (5), we obtain from the theorems in Section 3 convergence results
for the exact Newton iteration (2) as shown in Theorem 4.1 below. The first part of this
theorem is a new result which claims superlinear convergence of any sequence generated by
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the method under strong metric subregularity of f + F . Under the additional assumption
that the derivative mapping Df is Lipschitz continuous around x̄ we obtain q-quadratic
convergence; this is essentially a known result, for weaker versions see, e.g., [5], [1] and [9,
Theorem 6D.1].

Theorem 4.1 (convergence of exact Newton method). Consider the generalized equation
(1) with a solution x̄ and let the mapping f + F be strongly metrically subregular at x̄ for 0.
Then the following statements hold for the (exact) Newton iteration (2):

(i) There exists a neighborhood O of x̄ such that for any starting point x0 ∈ O every
sequence {xk} generated by (2) starting from x0 and staying in O is convergent q-superlinearly
to x̄.

(ii) Suppose that the derivative mapping Df is Lipschitz continuous near x̄. There exists
a neighborhood O of x̄ such that for any starting point x0 ∈ O every sequence {xk} generated
by (2) and staying in O is q-quadratically convergent to x̄.

If the mapping f + F is not only metrically subregular but actually strongly metrically
regular at x̄ for 0, then there exists a neighborhood O of x̄ such that in each of the cases
(i) and (ii) and for any starting point x0 ∈ O there is a unique sequence {xk} generated by
(2) and staying in O, and this sequence converges to x̄ q-superlinearly or q-quadratically, as
described in (i) and (ii).

We will next propose an inexact Newton method for the variational inequality

(33) 〈f(x), v − x〉 ≤ 0 for all v ∈ C or, equivalently, f(x) + NC(x) 3 0,

where f : Rn → Rn and NC is the normal cone mapping to the convex polyhedral set C ⊂ Rn:

NC(x) =

{ {y | 〈y, v − x〉 ≤ 0 for all v ∈ C} for x ∈ C
∅ otherwise.

Verifiable sufficient conditions and in some cases necessary and sufficient conditions for
(strong) metric (sub)regularity of the mapping f + NC are given in [9].

For the mapping V := f + NC it is proved in [8] that when V is metrically regular at
x̄ for 0, then V is strongly metrically regular there; that is, in this case metric regularity
and strong metric regularity are equivalent properties. Let us assume that V is metrically
regular at a solution x̄ of (33) for 0. If we use the residual Rk(u) = d(0, f(u) + NC(u))
as a measure of inexactness, we may encounter difficulties coming from the fact that the
normal cone mapping may be not even continuous. A way to avoid this is to use instead the
equation

(34) ϕ(x) = PC(f(x)− x)− x = 0,

where PC is the projection mapping into the set C. As is well known, solving (34) is
equivalent to solving (33). Let us focus on the case described in Theorem 3.3(iii). If we use
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Rk(u, x) = IBηk‖ϕ(u)‖2(0) we obtain an inexact Newton method for solving (33) in the form

(35) d(0, f(xk) + Df(xk)(xk+1 − xk) + NC(xk+1)) ≤ ηk‖ϕ(xk)‖2.

Let β > 0 be such that f in (33) is C1 in IBβ(x̄). Then ϕ is Lipschitz continuous on IBβ(x̄)
with Lipschitz constant L ≥ 2 + supu∈IBβ(x̄) ‖Df(u)‖, and hence condition (25) holds with

any γ > supk ηkL
2. Thus, we obtain from Theorem 3.3(iii) that method (35) is sure to

generate infinite sequences when starting close to x̄ and each such sequence is quadratically
convergent to x̄. For the case of equation, that is, with C = Rn, this result covers [14,
Theorem 6.1.4]. The method (35) seems to be new and its numerical implementation is still
to be explored.

As a final application, consider the standard nonlinear programming problem

(36) minimize g0(x) over all x satisfying gi(x)

{
= 0 for i ∈ [1, r],
≤ 0 for i ∈ [r + 1,m]

with twice continuously differentiable functions gi : Rn → R, i = 0, 1, . . . , m. Using the
Lagrangian

L(x, y) = g0(x) +
m∑

i=1

gi(x)yi

the associated Karush-Kuhn-Tucker (KKT) optimality system has the form

(37) f(x, y) + NE(x, y) 3 (0, 0),

where

f(x, y) =




∇xL(x, y)
−g1(x)

...
−gm(x)




and NE is the normal cone mapping to the set E = Rn× [Rr×Rm−r
+ ]. It is well known that,

under the Mangasarian-Fromovitz condition for the systems of constraints, for any local
minimum x of (36) there exists a Lagrange multiplier y, with yi ≥ 0 for i = r + 1, . . . , m,
such that (x, y) is a solution of (37).

Consider the mapping T : Rn+m →→ Rn+m defined as

(38) T : z 7→ f(z) + NE(z)

with f and E as in (37), and let z̄ = (x̄, ȳ) solve (37), that is, T (z̄) 3 0. We recall a
sufficient condition for strong metric regularity of the mapping T described above, which
can be extracted from [9, Theorem 2G.8]. Consider the nonlinear programming problem (36)
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with the associated KKT condition (37) and let x̄ be a solution of (36) with an associated
Lagrange multiplier vector ȳ. In the notation

I =
{

i ∈ [1,m]
∣∣ gi(x̄) = 0

} ⊃ {s + 1, . . . ,m},
I0 =

{
i ∈ [1, s]

∣∣ gi(x̄) = 0 and ȳi = 0
} ⊂ I

and
M+ =

{
w ∈ Rn

∣∣ w ⊥ ∇xgi(x̄) for all i ∈ I\I0

}
,

M− =
{

w ∈ Rn
∣∣w ⊥ ∇xgi(x̄) for all i ∈ I

}
,

suppose that the following conditions are both fulfilled:

(a) the gradients ∇xgi(x̄) for i ∈ I are linearly independent,
(b) 〈w,∇2

xxL(x̄, ȳ)w〉 > 0 for every nonzero w ∈ M+ with ∇2
xxL(x̄, ȳ)w ⊥ M−.

Then the mapping T defined in (38) is strongly metrically regular at (x̄, ȳ) for 0.
The exact Newton method (2) applied to the optimality system (37) consists in generating

a sequence {(xk, yk)} starting from a point (x0, y0), close enough to (x̄, ȳ), according to the
iteration

(39)

{ ∇xL(xk, yk) +∇2
xxL(xk, yk)(xk+1 − xk) +∇g(xk)

T(yk+1 − yk) = 0,
g(xk) +∇g(xk)(xk+1 − xk) ∈ NRs

+×Rm−s(yk+1).

That is, the Newton method (2) comes down to sequentially solving linear variational in-
equalities of the form (39) which in turn can be solved by treating them as optimality
systems for associated quadratic programs. This specific application of the Newton method
is therefore called the sequential quadratic programming (SQP) method.

Since at each iteration the method (39) solves a variational inequality, we may utilize
the inexact Newton method (35) obtaining convergence in the way described above. We will
not go into details here, but rather discuss an enhanced version of (39) called the sequen-
tial quadratically constrained quadratic programming method. This method has attracted
recently the interest of people working in numerical optimization, mainly because at each
iteration it solves a second-order cone programming problem to which efficient interior-point
methods can be applied. The main idea of the method is to use second-order expansions
for the constraint functions, thus obtaining that at each iteration one solves the following
optimization problem with a quadratic objective function and quadratic constraints:

(40)





∇xL(xk, yk) +∇2
xxL(xk, yk)(xk+1 − xk)

+∇g(xk)
T(yk+1 − yk) + (∇2g(xk)(xk+1 − xk))

T(yk+1 − yk) = 0,
g(xk) +∇g(xk)(xk+1 − xk)

+(∇2g(xk)(xk+1 − xk))
T(xk+1 − xk) ∈ NRs

+×Rm−s(yk+1).

Observe that this scheme fits into the general model of the inexact Newton method (5) if
f + NC is the mapping of the generalized equation, and then, denoting by z = (x, y) the
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variable associated with (xk+1, yk+1) and by w = (u, v) the variable associated with (xk, yk),
consider the “inexactness” term

Rk(w, z) = R(w, z) :=

(
(∇2g(u)(x− u))T(y − v)
(∇2(g(u)(x− u))T(x− u)

)
for each k.

Clearly, R is Lipschitz continuous with respect to z with an arbitrarily small Lipschitz
constant when z and w are close to the primal-dual pair z̄ = (x̄, ȳ) solving the problem and
‖R(w, z̄)‖ ≤ c‖w−z̄‖2 for some constant c > 0 and for w close to z̄. Hence, from Theorem 3.3
we obtain that under the conditions (a) and (b) given above and when the starting point
is sufficiently close to z̄, the method (40) is sure to generate a unique sequence which is
quadratically convergent to the reference point (x̄, ȳ). This generalizes [10, Theorem 2],
where the linear independence of the active constraints, the second-order sufficient condition
and the strict complementarity slackness are required. It also complements the result in
[12, Corollary 4.1], where the strict Mangasarian-Fromovitz condition and the second-order
sufficient condition are assumed.

In this final section we have presented applications of the theoretical results developed
in the preceding sections to standard, yet basic, problems of solving equations, variational
inequalities and nonlinear programming problems. However, there are a number of im-
portant variational problems that go beyond these standard models, such as problems in
semidefinite programming, co-positive programming, not to mention optimal control and
PDE constrained optimization, for which inexact strategies might be very attractive nu-
merically and still wait to be explored. Finally, we did not consider in this paper ways of
globalization of inexact Newton methods, which is another venue for further research.

Acknowledgement. The authors wish to thank the referees for their valuable comments
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