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1 Introduction and Background

Newton’s method for solving a nonlinear equation f(x) = 0 for a function
f : IRn → IRn focuses on successive linearization; if started near enough
to a solution x̄ around which f is continuously differentiable with invertible
derivative, it converges to x̄. However, the convergence analysis depends on
looking at more than just the single equation f(x) = 0. It is closely connected
with the applicability of the inverse function theorem to f with respect to
the pair (x̄, 0) in its graph and thus to the theoretical potential for solving
f(x) = y for x as a function of y in a local sense around (x̄, 0).

From this insight, it is easy to pass to a broader setting in which f(p, x) =
0 is to be solved in relation to a parameter p ∈ IRm. Newton’s method can
be studied not only in terms of determining a solution x̄ for a particular
instance p̄ of p, but also in assessing how the convergence may behave with
respect to shifts in p. That puts the analysis in the context of the implicit
function theorem as applied to f at a pair (p̄, x̄) satisfying f(p̄, x̄) = 0.

In this paper the framework is broader still. We work with Banach spaces
P for p, X for x, and Y for the range space of f . We consider so-called
generalized equations of the form

(1.1) f(p, x) + F (x) 3 0, or equivalently − f(p, x) ∈ F (x),

for a function f : P×X → Y and a mapping F from X to Y that may be set-
valued , which we indicate by writing F : X →→ Y . As is well known, the model
of a generalized equation (1.1) covers a huge territory. The classical case of an
equation corresponds to having F (x) ≡ 0, whereas by taking F (x) ≡ −K for
a fixed set K ⊂ Y one gets various constraint systems. When Y is the dual
X∗ of X and F is the normal cone mapping NC associated with a closed,
convex set C ⊂ X, one has a variational inequality.

We assume throughout that f is continuously Fréchet differentiable in x
with derivative denoted by Dxf(p, x), and that both f(p, x) and Dxf(p, x)
depend continuously on (p, x). The graph of F is the set gph F =

{
(x, y) ∈

X×Y
∣∣ y ∈ F (x)

}
, and the inverse of F if the mapping F−1 : Y →→ X defined

by F−1(y) =
{

x
∣∣ y ∈ F (x)

}
. The norms in P , X and Y are all denoted by

‖ · ‖. The closed ball centered at x with radius r is symbolized by IBr(x).
The extension of Newton’s method to the generalized equation (1.1) op-

erates with successive linearizations of f in the x argument while leaving F
untouched. The exact formulation will be given in the next section. Our aim
is to investigate its parametric properties with respect to p, and to do so
moreover in terms of spaces of sequences of iterates. This investigation will
rely heavily on extensions of the implicit function theorem that have been
developed for (1.1).

The solution mapping associated with the generalized equation (1.1) is
the potentially set-valued mapping S : P →→ X defined by

(1.2) S : p 7→ {
x

∣∣ f(p, x) + F (x) 3 0
}
.

The implicit function paradigm asks the same questions about solutions in
this case as in the classical case where F = 0, but for a clear expression it is
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useful to have the concept of a graphical localization of S at p̄ for x̄, where
x̄ ∈ S(p̄). By this we mean a set-valued mapping with its graph in P × X
having the form (Q × U) ∩ gphS for some neighborhoods Q of p̄ and V of
x̄. The localization is single-valued when this mapping reduces to a function
from Q into U . If it is not only single-valued but Lipschitz continuous on Q,
we speak of a Lipschitz localization. Beyond that, one can look for continuous
differentiability, and so forth. The issue is what kind of localization properties
can be deduced from assumptions on f and F in connection with a pair (p̄, x̄)
in the graph of S, or in other words a particular solution x̄ to the generalized
equation (1.1) corresponding to a choice of p̄ of p.

Robinson [12] gave an answer to this question for the solution mapping
S in the case of a parameterized variational inequality, where Y = X∗ and
F is the normal cone mapping NC to a convex closed set C in X. His main
discovery was the fact that the implicit function theorem paradigm works for
this general model, albeit in a somewhat weaker sense: if the solution map-
ping of a “partial linearization” of (1.1) has a Lipschitz localization, then the
solution mapping S in (1.2) also possesses this property. Lipschitz continuity
is the most one can get in the general framework of (1.1), because elementary
one-dimensional examples of variational inequalities already exhibit single-
valued solution mappings that are not differentiable, but nevertheless are
Lipschitz continuous. This puts Lipschitz continuity in center stage for ex-
ploring properties of solutions mappings S of the form (1.2). Much more on
this circle of ideas will be presented in the forthcoming authors’ book [7].

Enabled by Robinson’s result, Josephy succeeded in his thesis [9] to be
the first to show convergence of the extended Newton’s method for solving a
variational inequality. In Section 2 we prove quadratic convergence of New-
ton’s method, for solving the parametric generalized equation (1.1), which is
locally uniform in the parameter p. We should point out that here we deal
with the weak mode of convergence of Newton’s method, where we assume
the existence of a solution and then show that when the method is started
close enough to this solution, we have convergence. Another way to con-
sider convergence is in line with the classical Kantorovich theorem, where
no assumptions for the existence of a solution are made but conditions are
imposed on the starting point of the iteration. A Kantorovich-type theorem
for generalized equations without parameter dependence is obtained in [2],
which generalizes a previous result in [13]; extending this result to paramet-
ric generalized equations of the form (1.1) is a subject for future research. A
wide overview of Newton’s method for nonsmooth equations and generalized
equations is available in the book by Klatte and Kummer [10], see also the
more recent survey [11].

In this paper our efforts will be concentrated on the role of the parameter
p in generating sequences by Newton’s iteration that approach a solution of
(1.1). In Section 2 we focus on the extent to which quadratic convergence of
Newton’s method takes place which is locally uniform in the parameter. In
Section 3 we go further by treating Newton’s method in terms of an implicitly
defined mapping involving sequences of iterates as elements of a sequence
space, and obtain a result which is strikingly similar to the corresponding
implicit function theorem for generalized equations (Theorem 1.1 below). An
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inverse function version of this result is also obtained. Here we build on a
paper of Dontchev [3], where this idea originated. Some other results in this
direction were subsequently obtained in [8]. Although oriented differently, our
analysis here is related to previous studies of mesh independence of Newton’s
method when applied to discretized optimal control problems, see [1] and [4].
There is other work in the literature concerned with parametric versions
of Newton’s method; here, in contrast, we approach the dependence on a
parameter in a quantitative way, as it is dealt with in the implicit function
theorem.

The rest of this section introduces background facts and notation. We be-
gin with quantitative measures for Lipschitz continuity and partial Lipschitz
continuity in a neighborhood, both of which will have an essential role.

Lipschitz modulus. A function f : X → Y is said to be Lipschitz con-
tinuous relative to a set D, or on a set D, if D ⊂ dom f and there exists a
constant κ ≥ 0 (a Lipschitz constant) such that

(1.3) ‖f(x′)− f(x)‖ ≤ κ‖x′ − x‖ for all x′, x ∈ D.

It is said to be Lipschitz continuous around x̄ when this holds for some
neighborhood D of x̄. The Lipschitz modulus of f at x̄, denoted lip(f ; x̄), is
the infimum of the set of values of κ for which there exists a neighborhood
D of x̄ such that (1.3) holds. Equivalently,

lip(f ; x̄) := lim sup
x′,x→x̄,

x6=x′

‖f(x′)− f(x)‖
‖x′ − x‖ .

Further, a function f : P ×X → Y is said to be Lipschitz continuous with
respect to x uniformly in p around (p̄, x̄) ∈ int dom f when there are neigh-
borhoods Q of p̄ and U of x̄ along with a constant κ and such that

‖f(p, x)− f(p, x′)‖ ≤ κ‖x− x′‖ for all x, x′ ∈ U and p ∈ Q.

Accordingly, the partial uniform Lipschitz modulus has the form

l̂ipx(f ; (p̄, x̄)) := lim sup
x,x′→x̄,p→p̄,

x6=x′

‖f(p, x′)− f(p, x)‖
‖x′ − x‖ .

The following two results can be extracted from [6] (or from [7] when this
book becomes available).

Theorem 1.1 (implicit function theorem). For a generalized equation (1.1)
and its solution mapping S in (1.2), let p̄ and x̄ be such that x̄ ∈ S(p̄).
Assume that f is Lipschitz continuous with respect to p uniformly in x at
(p̄, x̄), that is,

l̂ipp(f ; (p̄, x̄)) < ∞,

and that the inverse G−1 of the mapping

(1.4) G(x) = f(p̄, x̄) + Dxf(p̄, x̄)(x− x̄) + F (x) for which G(x̄) 3 0,
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has a Lipschitz localization σ at 0 for x̄.
Then the mapping S has a Lipschitz localization s at p̄ for x̄ with

(1.5) lip(s; p̄) ≤ lip(σ; 0) · l̂ipp(f ; (p̄, x̄)).

The property in assumed in Theorem 1.1 for the mapping F in the context
of a variational inequality was called by Robinson [12] strong regularity. We
give this concept a broader meaning.

Strong regularity. A mapping T : X →→ Y with (x̄, ȳ) ∈ gph T will be called
strongly regular at x̄ for ȳ if its inverse T−1 has a Lipschitz localization at ȳ
for x̄.

In the case of the generalized equation (1.1) with P = Y and f(p, x) =
g(x)− p for a function g : X → Y , so that

(1.6) S(p) =
{

x
∣∣ p ∈ g(x) + F (x)

}
= (g + F )−1(p),

the property of both the mapping G in Theorem 1.1(b) as well as the mapping
g + F translates as strong regularity and the inverse function version of
Theorem 1.1 has the following symmetric form.

Theorem 1.2 (inverse version). In the framework of the solution mapping
(1.6), consider any pair (p̄, x̄) with x̄ ∈ S(p̄). Then the mapping g + F is
strongly regular at x̄ for p̄ if and only if its partial linearization x 7→ G(x) =
g(x̄)+Dg(x̄)(x− x̄)+F (x) is strongly regular at p̄ for x̄. In addition, if s and
σ are the associated Lipschitz localizations of (g+F )−1 and G−1 respectively,
then

lip(s− σ; p̄) = 0.

This implies in particular that lip(s; p̄) = lip(σ; p̄).

Throughout the paper we repeatedly use the contraction mapping prin-
ciple in the following form:

Theorem 1.3 (contraction mapping principle). Let X be a complete metric
space with metric ρ. Consider a point x̄ ∈ X and a function Φ : X → X for
which there exist scalars a > 0 and λ ∈ [0, 1) such that:

(a) ρ(Φ(x̄), x̄) ≤ a(1− λ);
(b) ρ(Φ(x′), Φ(x)) ≤ λρ(x′, x) for every x′, x ∈ IBa(x̄).

Then there is a unique x ∈ IBa(x̄) satisfying x = Φ(x), that is, Φ has a unique
fixed point in IBa(x̄).

Behind Theorems 1.1 and 1.2 is a more general fact about the stability
of strong regularity under perturbations. Since this fact was never stated
in the way we need it in the present paper, we supply it with a proof, for
completeness.

Theorem 1.4 (stability of strong regularity under perturbation). Consider a
mapping T : X →→ Y and any (x̄, ȳ) ∈ gphT such that, for a positive constant
κ and neighborhoods U of x̄ and V of ȳ, the mapping y 7→ T−1(y) ∩ U is
a Lipschitz continuous function on V with Lipschitz constant κ. Then for
every positive constant µ with κµ < 1 there exist neighborhoods U ′ ⊂ U
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of x̄ and V ′ ⊂ V of ȳ such that for every function h : X → Y which
is Lipschitz continuous on U with Lipschitz constant µ, the mapping y 7→
(h+T )−1(y)∩U ′ is a Lipschitz continuous function on h(x̄)+V ′ with Lipschitz
constant κ/(1− κµ).

Proof. By assumption, for the function s(y) = T−1(y) ∩ U for y ∈ V we
have

(1.7) ‖s(y′)− s(y)‖ ≤ κ ‖y′ − y‖ for all y′, y ∈ V.

Pick µ > 0 such that κµ < 1 and then choose positive constants a and b such
that

(1.8) IBa(x̄) ⊂ U, IBb+µa(ȳ) ⊂ V and b < a(1− κµ)/κ.

Choose any function h : X → Y such that

(1.9) ‖h(x′)− h(x)‖ ≤ µ ‖x′ − x‖ for all x′, x ∈ U.

For any y ∈ IBb(h(x̄) + ȳ) and any x ∈ IBa(x̄) we have

‖ − h(x) + y − ȳ‖ ≤ ‖y − h(x̄)− ȳ)‖+ ‖h(x)− h(x̄)‖ ≤ b + µa,

and hence, by (1.8), −h(x) + y ∈ V ⊂ dom s. Fix y ∈ IBb(h(x̄) + ȳ) and
consider the mapping

Φy : x 7→ s(−h(x) + y) for x ∈ IBa(x̄).

Then, by using (1.7), (1.8) and (1.9) we get

‖x̄− Φy(x̄)‖ = ‖s(ȳ)− s(y − h(x̄))‖ ≤ κ ‖y − ȳ + h(x̄)‖ ≤ κb < a(1− κµ).

Moreover, for any v, v′ ∈ IBa(x̄),

‖Φy(v)−Φy(v′)‖ = ‖s(y−h(v))−s(y−h(v′))‖ ≤ κ ‖h(v)−h(v′)‖ ≤ κµ ‖v−v′‖.
Thus, by the contraction mapping principle, there exists a fixed point x =
Φy(x) in IBa(x̄), and there is no more than one such fixed point in IBa(x̄).
The mapping from y ∈ IBb(h(x̄) + ȳ) to the unique fixed point x(y) of Φy in
IBa(x̄) is a function which satisfies x(y) = s(y − h(x(y))); therefore, for any
y, y′ ∈ IBb(h(x̄) + ȳ) we have

‖x(y)− x(y′)‖ = ‖s(y − h(x(y)))− s(y′ − h(x(y′)))‖
≤ κ ‖y − y′‖+ κ ‖h(x(y))− h(x(y′))‖
≤ κ ‖y − y′‖+ κµ ‖x(y)− x(y′)‖.

Hence,
‖x(y)− x(y′)‖ ≤ κ

1− µκ
‖y − y′‖.

Choosing U ′ = IBa(x̄) and V ′ = IBb(ȳ), and noting that IBb(g(x̄) + ȳ) =
g(x̄) + IBb(ȳ), we complete the proof.

In the paper we utilize the following important corollary of Theorem 1.4:
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Corollary 1.5. For a mapping F : X →→ Y and a point (x̄, ȳ) ∈ gphF , let
F be strongly regular at x̄ for ȳ with associated Lipschitz localization s of
F−1 at ȳ for x̄. Consider also a function r : P ×X → Y such that r(p, x̄) is
continuous at p̄ and

lip(s; ȳ) · l̂ipx(r; (p̄, x̄)) < 1.

Then for each

(1.10) γ >
lip(s; ȳ)

1− lip(s; ȳ) · l̂ipx(r; (p̄, x̄))

there exist neighborhoods U of x̄, V of ȳ and Q of p̄ such that for every p ∈ Q
the mapping y 7→ (r(p, ·) + F )−1(y) ∩ U is a Lipschitz continuous function
on r(p̄, x̄) + V with a Lipschitz constant γ.

Proof. Pick γ as in (1.10) and then κ > lip(s; ȳ) and µ > l̂ipx(r; (p̄, x̄))
such that κµ < 1 and κ/(1−κµ) ≤ γ. Choose neighborhoods U ′ of x̄ and Q of
p̄ such that s is Lipschitz continuous on U ′ with Lipschitz constant κ and for
each p ∈ Q the function r(p, ·) is Lipschitz continuous on U ′ with Lipschitz
constant µ. Applying Theorem 1.4, we obtain neighborhoods U ⊂ U ′ of x̄,
and V ′ of ȳ such that for every p ∈ Q the mapping y 7→ (r(p, ·)+F )−1(y)∩U
is a Lipschitz continuous function on r(p, x̄) + V ′ with Lipschitz constant γ.
By making Q small enough we can find a neighborhood V of ȳ such that
r(p̄, x̄) + V ⊂ r(p, x̄) + V ′ for every p ∈ Q.

2 Newton’s method and its convergence

As already mentioned, the version of Newton’s method we consider is based
on partial linearization, in which we linearize f with respect to the variable
x at the current point but leave F intact.

Newton’s method (in extended form). With the aim of approximating
a solution to the generalized equation (1.1) for a fixed value of the parameter
p, choose a starting point x0 and generate a sequence {xk}∞k=0 iteratively for
k = 0, 1, . . . , by taking xk+1 to be a solution to the auxiliary generalized
equation

(2.1) fk(p, xk+1) + F (xk+1) 3 0,

where

fk(p, x) = f(p, xk) + Dxf(p, xk)(x− xk).

The iteration (2.1) reduces to the standard Newton’s method for solv-
ing a nonlinear equation when F is the zero mapping. If F is the normal
cone mapping appearing in the first-order optimality system for a nonlin-
ear programming problem, (2.1) becomes the popular sequential quadratic
programming (SQP) method for numerical optimization.
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We will study this method by reconceiving the iteration rule (2.1) as a
condition that defines an element of the Banach space l∞(X), consisting of
all infinite sequences

ξ =
{

x1, x2, . . . , xk, . . .
}

with elements xk ∈ X.

The norm on l∞(X) is
‖ξ‖∞ = sup

k≥1
‖xk‖.

Define a mapping Ξ : X × P →→ l∞(X) by
(2.2)

Ξ : (u, p) 7→
{

ξ ∈ l∞(X)
∣∣∣

⋂∞
k=0(f(p, xk) + Dxf(p, xk)(xk+1 − xk) + F (xk+1)) 3 0 with x0 = u

}
,

whose value for a given (u, p) is the set of all sequences {xk}∞k=1 generated
by Newton’s iteration (2.1) for p that start from u. If x̄ is a solution of (1.1)
for p̄, the

the constant sequence ξ̄ = {x̄, x̄, . . . , x̄, . . .} satisfies ξ̄ ∈ Ξ(x̄, p̄).

Theorem 2.1 (uniform convergence of Newton’s iteration). In the frame-
work of the generalized equation (1.1) with solution mapping S in (1.2), let
x̄ ∈ S(p̄). Assume that

l̂ipp(f ; (p̄, x̄)) + l̂ipx(Dxf ; (p̄, x̄)) < ∞
and let the mapping G in (1.4) be strongly regular at x̄ for 0 with associated
Lipschitz localization σ of the inverse G−1 at 0 for x̄. Then for every

(2.3) γ >
1
2

lip(σ; 0) · l̂ipx(Dxf ; (p̄, x̄))

there exist neighborhoods Q of p̄ and U of x̄ such that for every p ∈ Q and
u ∈ U there is exactly one sequence ξ(u, p) with components x1, . . . , xk, . . . ,
all belonging to U and generated by Newton’s iteration (2.1) starting from
u for the value p of the parameter. This sequence is convergent to the value
s(p) of the Lipschitz localization s of the solution mapping S at p̄ for x̄ whose
existence is claimed in Theorem 1.1; moreover, the convergence is quadratic
with constant γ, that is,

(2.4) ‖xk+1 − s(p)‖ ≤ γ‖xk − s(p)‖2 for all k ≥ 0.

In other words, the mapping Ξ in (2.2) has a single-valued graphical local-
ization ξ at (x̄, p̄) for ξ̄; moreover, for u close to x̄ and p close to p̄ the value
ξ(u, p) of this localization is a sequence which converges quadratically to the
associated solution s(p) for p in the sense of (2.4).

Proof. Choose γ as in (2.3) and then κ > lip(σ; 0) and µ > l̂ipx(Dxf ; (p̄, x̄))
such that κµ < 2γ. Next, choose ε > 0 so that κε < 1 and moreover

(2.5)
κµ

2(1− κε)
≤ γ.
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The assumed strong regularity of the mapping G in (1.4) at x̄ for 0 and the
choice of κ mean that there exist positive constants α′ and b′ such that the
mapping y 7→ σ(y) = G−1(y) ∩ IBα′(x̄) is a Lipschitz continuous function
on IBb′(0) with Lipschitz constant κ. Along with the mapping G in (1.4)
consider the parameterized mapping

x 7→ Gp,w(x) = f(p, w) + Dxf(p, u)(x− w) + F (x).

Note that Gp,w(x) = r(p, w;x) + G(x), where the function

x 7→ r(p, w;x) = f(p, w) + Dxf(p, w)(x− w)− f(p̄, x̄)−Dxf(p̄, x̄)(x− x̄)

is affine, and hence Lipschitz continuous, with Lipschitz constant

η(p, w) = ‖Dxf(p, w)−Dxf(p̄, x̄)‖.
Now, let κ′ be such that κ > κ′ > lip(σ; 0) and let χ > 0 satisfy

χκ′ < 1 and
κ′

1− χκ′
< κ.

Applying Corollary 1.5 to the mapping Gp,w and noting that r(p̄, x̄, x̄) = 0,
we obtain that there are positive constants α ≤ α′ and b ≤ b′ such that
for p and w satisfying η(p, w) ≤ χ the mapping y 7→ G−1

p,w(y) ∩ IBα(x̄) is a
Lipschitz continuous function on IBb(0) with Lipschitz constant κ; we denote
this function by Θ(p, w; ·).

Since Dx is continuous near (p̄, x̄), there exist positive constants c and a
such that η(p, w) ≤ χ whenever p ∈ IBc(p̄) and w ∈ IBa(x̄). Make a and c
smaller if necessary so that a ≤ α and moreover

(2.6) ‖Dxf(p, x)−Dxf(p, x′)‖ ≤ µ‖x− x′‖
for x, x′ ∈ IBa(x̄) and p ∈ IBc(p̄). The assumptions of Theorem 1.1 hold,
hence, we can apply it and further adjust a and c so that the truncation
S(p) ∩ IBa(x̄) of the solution mapping S in (1.2) is a function s which is
Lipschitz continuous on IBc(p̄) (with Lipschitz constant some λ > lip(σ; 0) ·
‖Dpf(p̄, x̄)‖). Next, take a even smaller if necessary so that

(2.7)
27
8

a2 < b,
3
2
µa ≤ ε,

1
2
κµa < 1− κε and

9
2
γa ≤ 1.

The first and the third inequality in (2.7) allow us to choose δ > 0 satisfying

(2.8) δ +
1
8
µa2 ≤ b and κδ +

1
2
κµa2 ≤ a(1− κε).

Then make c even smaller if necessary so that

(2.9) ‖s(p)− x̄‖ ≤ a/2 and ‖f(p, x̄)− f(p̄, x̄)‖ ≤ δ for p ∈ IBc(p̄).

Summarizing, we have found constants a, b and c such that for each p ∈ IBc(p̄)
and w ∈ IBa(x̄) the function Θ(p, w, ·) is Lipschitz continuous on IBb(0) with
constant κ, and also the conditions (2.6)–(2.9) are satisfied.
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We frequently use an estimate for smooth functions obtained by simple
calculus. From the standard equality

f(p, y)− f(p, v) =
∫ 1

0

Dxf(p, v + t(y − v))(y − v)dt,

which yields

‖f(p, y)− f(p, v)−Dxf(p, v)(y − v)‖
= ‖ ∫ 1

0
Dxf(p, v + t(y − v))(y − v)dt−Dxf(p, v)(y − v)‖

≤ µ
∫ 1

0
tdt‖y − v‖2,

we have from (2.6) that for all y, v ∈ IBa(x̄) and p ∈ IBc(p̄)

(2.10) ‖f(p, y)− f(p, v)−Dxf(p, v)(y − v)‖ ≤ 1
2
µ‖y − v‖2.

Fix p ∈ IBc(p̄) and w ∈ IBa(x̄) and consider the function

(2.11) x 7→ g(p, w;x) := −f(p, w)−Dxf(p, w)(x− w)
+f(p, s(p)) + Dxf(p, s(p))(x− s(p)).

Recall that here s(p) = S(p)∩IBa/2(x̄) for all p ∈ IBc(p̄). For any x ∈ IBa(x̄),
using (2.6) and (2.10), we have

‖g(p, w;x)‖ ≤ ‖f(p, s(p))− f(p, w)−Dxf(p, w)(s(p)− w)‖
+‖(Dxf(p, w)−Dxf(p, s(p)))(x− s(p))‖
≤ 1

2µ‖w − s(p)‖2 + µ‖w − s(p)‖‖x− s(p)‖ ≤ 27
8 µa2.

Then, from the second inequality in (2.7),

(2.12) ‖g(p, w;x)‖ ≤ b.

Using (2.9), (2.10), and the first inequality in (2.8) we come to

(2.13)

‖f(p̄, x̄)− f(p, s(p))−Dxf(p, s(p))(x̄− s(p))‖
≤ ‖f(p̄, x̄)− f(p, x̄)‖

+‖f(p, x̄)− f(p, s(p))−Dxf(p, s(p))(x̄− s(p))‖
≤ δ + 1

2µ‖s(p)− x̄‖2 ≤ δ + 1
8µa2 ≤ b.

Hence, remembering that p ∈ IBc(p̄) and s(p) ∈ IBa(x̄), both

g(p, w; x) and f(p̄, x̄)− f(p, s(p))−Dxf(p, s(p))(x̄− s(p))

are in the domain of Θ(p, s(p); ·) where this function is Lipschitz continuous
with Lipschitz constant κ.

We now choose p ∈ IBc(p̄) and u ∈ IBa(x̄), and construct a sequence
ξ(u, p) generated by Newton’s iteration (2.1) starting from u for the value p
of the parameter, whose existence, uniqueness and quadratic convergence is
claimed in the statement of the theorem.

If u = s(p) there is nothing to prove, so assume u 6= s(p). Our first step
is to show that, for the function g defined in (2.11), the mapping

Φ0 : x 7→ Θ(p, s(p); g(p, u; x)),
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has a unique fixed point in IBa(x̄). Using the equality

x̄ = Θ(p, s(p);−f(p̄, x̄) + f(p, s(p)) + Dxf(p, s(p))(x̄− s(p))),

(2.12), (2.13) and the Lipschitz continuity of Θ(p, s(p); ·) in IBb(0) with con-
stant κ, and then the second inequality in (2.9), (2.10) and the second in-
equality in (2.8), we have

(2.14)

‖x̄− Φ0(Θ(p, s(p); g(p, u; x̄)))‖
= ‖Θ(p, s(p);−f(p̄, x̄) + f(p, s(p)) + Dxf(p, s(p))(x̄− s(p)))

−Θ(p, s(p); g(p, u; x̄))‖
≤ κ‖ − f(p̄, x̄) + f(p, s(p)) + Dxf(p, s(p))(x̄− s(p))

−[−f(p, u)−Dxf(p, u)(x̄− u)
+f(p, s(p)) + Dxf(p, s(p))(x̄− s(p))]‖

= κ‖ − f(p̄, x̄) + f(p, u) + Dxf(p, u)(x̄− u)‖
≤ κ‖ − f(p̄, x̄) + f(p, x̄)‖+

κ‖f(p, u)− f(p, x̄)−Dxf(p, u)(u− x̄)‖
≤ κδ + 1

2κµ‖u− x̄‖2 ≤ κδ + 1
2κµa2 ≤ a(1− κε).

Further, for any v, v′ ∈ IBa(x̄), by (2.12), the Lipschitz continuity of Θ(p, s(p), ·),
(2.6), and the second inequality in (2.7), we obtain

(2.15)

‖Φ0(v)− Φ0(v′)‖ = ‖Θ(p, s(p); g(p, u; v))−Θ(p, s(p); g(p, u; v′))‖
≤ κ‖g(p, u; v)− g(p, u; v′)‖ =
κ‖(−Dxf(p, u) + Dxf(p, s(p)))(v − v′)‖
≤ κµ‖u− s(p)‖‖v − v′‖ ≤ 3

2aκµ‖v − v′‖ ≤ κε‖v − v′‖.
Hence, there exists a fixed point x1 ∈ Φ0(x1) ∩ IBa(x̄) which translates to
g(p, u; x1) ∈ Gp,u(x1), that is, x1 = Θ(p, u; 0) ∈ G−1

p,u(0) or, equivalently,

0 ∈ f(p, u) + Dxf(p, u)(x1 − u) + F (x1),

meaning that x1 is obtained by the Newton iteration (2.1) from u for p, and
there is no more than just one such iterate in IBa(x̄).

Now we will show that x1 satisfies a tighter estimate. Let

ω0 = γ‖u− s(p)‖2.
Then ω0 > 0 and, by the last inequality in (2.7), ω0 ≤ γ(a + a/2)2 ≤ a/2.
We apply again the contraction mapping principle to the mapping Φ0 but
now on IBω0(s(p)). Noting that s(p) = Θ(p, s(p); 0) and using (2.5), (2.10)
and (2.12), we have

(2.16)

‖s(p)− Φ0(Θ(p, s(p); g(p, u; s(p)))‖
= ‖Θ(p, s(p); 0)−Θ(p, s(p); g(p, u; s(p)))‖
≤ κ‖g(p, u; s(p))‖
= κ‖ − f(p, u)−Dxf(p, u)(s(p)− u) + f(p, s(p))‖
≤ 1

2κµ‖u− s(p)‖2 ≤ γ(1− κε)‖u− s(p)‖2 = ω0(1− κε).

Since IBω0(s(p)) ⊂ IBa(x̄), from (2.15) we immediately obtain

(2.17) ‖Φ0(v)− Φ0(v′)‖ ≤ κε‖v − v′‖ for any v, v′ ∈ IBω0(s(p)).
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Hence, the contraction mapping principle applied to the function Φ0 on the
ball IBω1(s(p)) yields that there exists x′1 in this ball such that x′1 = Φ0(x′1).
But the fixed point x′1 of Φ0 in IBω0(s(p)) must then coincide with the unique
fixed point x1 of Φ0 in the larger set IBa(x̄). Hence, the fixed point x1 of Φ0

on IBa(x̄) satisfies
‖x1 − s(p)‖ ≤ γ‖u− s(p)‖2,

which, for x0 = u, means that (2.4) holds for k = 0.
The induction step is now clear: if the claim holds for k = 1, 2, . . . , n,

by defining Φn : x 7→ Θ(p, s(p); g(p, xn; x)) and replacing u by xn in (2.14)
and (2.15), we obtain that the function Φn has a unique fixed point xn+1 in
IBa(x̄). This means that g(p, xn; xn+1) ∈ Gp,xn

(xn+1) and hence xn+1 is the
unique Newton iterate from xn for p which is in IBa(x̄). Next, by employing
again the contraction mapping principle as in (2.16) and (2.17) to Φn but
now on the ball IBωn

(s(p)) for ωn = γ‖xn − s(p)‖2 we obtain that xn+1 is
at distance ωn from s(p). Using the first inequality in (2.9) and then the last
one in (2.7) we have

θ := γ‖x0 − s(p)‖ ≤ γ(‖x0 − x̄‖+ ‖s(p)− x̄‖) ≤ γ(a +
a

2
) < 1.

Hence,

(2.18) ‖xk − s(p)‖ ≤ θ2k−1‖x0 − s(p)‖
and therefore the sequence {xk} is quadratically convergent to s(p) as in
(2.4). This completes the proof of the theorem.

3 An implicit function theorem for the Newton iterations

In this section we make a step further in exploring the dependence of New-
ton’s iteration on parameters. Our main result is the following theorem which
follows the general format of the implicit function theorem paradigm.

Theorem 3.1 (implicit function theorem for Newton’s iteration). In addi-
tion to the assumptions of Theorem 2.1, suppose that

(3.1) lip(Dxf ; (p̄, x̄)) < ∞.

Then the single-valued localization ξ of the mapping Ξ in (2.2) at (p̄, x̄) for ξ̄
described in Theorem 2.1 is Lipschitz continuous near (x̄, p̄), moreover having

(3.2) l̂ipu(ξ; (x̄, p̄)) = 0 and l̂ipp(ξ; (x̄, p̄)) ≤ lip(σ; 0)) · l̂ipp(f ; (p̄, x̄)).

Proof. First, recall some notation and facts established in Theorem 2.1
and its proof. We know that for any κ > lip(σ; 0) there exist positive con-
stants a, α, b and c such that a ≤ α and for every p ∈ IBc(p̄) and w ∈ IBa(x̄)
the mapping y 7→ G−1

p,w(y)∩IBα(x̄) is a function, with values Θ(p, w; y), which
is Lipschitz continuous on IBb(0) with Lipschitz constant κ; moreover, the
truncation S(p)∩ IBa(x̄) of the solution mapping in (2) is a Lipschitz contin-
uous function on IBc(p̄) and its values are in IBa/2(x̄); also, for any starting
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point u ∈ IBa(x̄) and any p ∈ IBc(p̄) there is a unique sequence ξ(u, p) start-
ing from u and generated by Newton’s method (2.1) for p whose components
are contained in IBa(x̄), and this sequence is quadratically convergent to s(p)
as described in (2.4).

Our first observation is that for any positive a′ ≤ a, by adjusting the size
of the constant c and taking as a starting point u ∈ IBa′(x̄) we can have
that for any p ∈ IBc(p̄) all elements xk of the sequence ξ(u, p) are actually
in IBa′(x̄). Indeed, by taking δ > 0 to satisfy (2.8) with a replaced by a′

and then choosing c so that (2.9) holds for the new δ and for a′, then all
requirements for a will hold for a′ as well and hence all Newton’s iterates xk

will be at distance a′ from x̄.
Let us choose positive η and ν such that

η > lip(Dxf ; (p̄, x̄)) and ν > l̂ipp(f ; (p̄, x̄)),

and then pick a positive constant d ≤ a/2 and make c smaller if necessary so
that for every p, p′ ∈ IBc(p̄) and every w,w′ ∈ IBd(x̄) we have

(3.3) ‖Dxf(p′, w′)−Dxf(p, w)‖ ≤ η(‖p′ − p‖+ ‖w′ − w‖),

(3.4) ‖f(p′, w)− f(p, w)‖ ≤ ν‖p′ − p‖,
and, in addition, for every x ∈ IBd(x̄), every p, p′ ∈ IBc(p̄) and every w,w′ ∈
IBd(x̄)

(3.5) ‖f(p′, w′)−Dxf(p′, w′)(x− w′)− f(p, w)−Dxf(p, w)(x− w)‖ ≤ b.

Choose a positive τ such that κτ < 1
3 . Make d and c smaller if necessary so

that

(3.6) 3η(d + c) < τ.

Since κτ
1−κτ < 1

2 we can take c smaller in order to have

(3.7)
κτ(2d) + 3κ(τ + ν)(2c)

1− κτ
≤ d.

Let p, p′ ∈ IBc(p̄), u, u′ ∈ IBd(x̄), (p, u) 6= (p′, u′) and, according to Theo-
rem 2.1 and the observation above, let ξ(p, u) = (x1, . . . , xk, . . .) be the unique
sequence generated by Newton’s iteration (2.1) starting from u whose com-
ponents xk are all in IBd(x̄) and hence in IBa/2(x̄). For this sequence, having
x0 = u, we know that for all k ≥ 0

(3.8) xk+1 = Θ(p, xk; 0),

where

Θ(p, xk; 0) = (f(p, xk) + Dxf(p, xk)(· − xk) + F (·))−1(0) ∩ IBα(x̄).

Let

γ0 =
κτ‖u− u′‖+ κ(τ + ν)‖p− p′‖

1− κτ
.
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By using (3.7) we get that γ0 ≤ d and then IBγ0(x1) ⊂ IBa(x̄). Consider the
function

Φ0 : x 7→ Θ(p, u;−f(p′, u′)−Dxf(p′, u′)(x−u′)+f(p, u)+Dxf(p, u)(x−u)).

Using (3.5) and then the Lipschitz continuity of Θ(p, u; ·) on IBb(0), and
applying (2.10), (3.3), (3.4) and (3.6) we obtain

(3.9)

‖x1 − Φ0(x1)‖ = ‖Θ(p, u; 0)−
Θ(p, u;−f(p′, u′)−Dxf(p′, u′)(x1 − u′)

+f(p, u) + Dxf(p, u)(x1 − u))‖
≤ κ‖f(p′, u)− f(p′, u′)−Dxf(p′, u′)(u− u′)

−Dxf(p′, u′)(x1 − u)− f(p′, u)
+f(p, u) + Dxf(p, u)(x1 − u)‖

≤ κ‖f(p′, u)− f(p′, u′)−Dxf(p′, u′)(u− u′)‖
+κ‖(Dxf(p, u)−Dxf(p, u′))(x1 − u)‖

+‖(Dxf(p, u′)−Dxf(p′, u′))(x1 − u)‖
+κ‖ − f(p′, u) + f(p, u)‖

≤ 1
2κη‖u− u′‖2 + κη‖u− u′‖‖x1 − u‖
+κη‖p− p′‖‖x1 − u‖+ κν‖p− p′‖

≤ 3κηd‖u− u′‖+ κ(2ηd + ν)‖p− p′‖
< κτ‖u− u′‖+ κ(τ + ν)‖p− p′‖ = γ0(1− κτ).

For v, v′ ∈ IBγ0(x1), using (3.3), (3.4) and (3.6) we have

(3.10) ‖Φ0(v)− Φ0(v′)‖ ≤ κ‖(−Dxf(p′, u′) + Dxf(p, u))(v − v′)‖
≤ 2κη(d + c)‖v − v′‖ ≤ κτ‖v − v′‖.

Thus, by the contraction mapping principle there exists a unique x′1 in
IBγ0(x1) such that

x′1 = Θ(p, u;−f(p′, u′)−Dxf(p′, u′)(x− u′) + f(p, u) + Dxf(p, u)(x− u)).

But then
f(p′, u′) + Df(p′, u′)(x′1 − u′) + F (x′1) 3 0,

that is, x′1 is the unique Newton iterate from u′ for p′ which satisfies

‖x′1 − x1‖ ≤ γ0.

Since γ0 < d, we obtain that x′1 ∈ IBa(x̄) and then x′1 is the unique Newton’s
iterate from u′ for p′ which is in IBa(x̄).

By induction, we construct a sequence ξ′ = {u′, x′1, x′2, . . . , x′k, . . .} ∈
Ξ(p′, u′) such that the distance from x′k to the corresponding components
xk of ξ satisfies the estimate

(3.11) ‖x′k − xk‖ ≤ γk−1 :=
κτ‖xk−1 − x′k−1‖+ κ(τ + ν)‖p− p′‖

1− κτ

for k = 2, 3, . . . . Suppose that for some n > 1 we have found x′2, x
′
3, . . . , x

′
n

with this property. First, observe that

γk ≤
[

κτ

1− κτ

]k+1

‖u− u′‖+
κ(τ + ν)
1− κτ

‖p− p′‖
k∑

i=0

[
κτ

1− κτ

]i

,
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from where we get the estimate that for all k = 0, 1, . . . , n− 1,

(3.12) γk ≤ κτ

1− κτ
‖u− u′‖+

κ(τ + ν)
1− κτ

‖p− p′‖.

In particular, by (3.7) we obtain that γk ≤ d for all k and hence x′k ∈
IBd(xk) ⊂ IBa(x̄).

To show that x′n+1 is a Newton iterate from x′n for p′, we proceed in the
same way as in obtaining x′1 from u′ for p′. Consider the function

Φk : x 7→ Θ(p, xk;−f(p′, x′k)−Dxf(p′, x′k)(x−x′k)+f(p, xk)+Dxf(p, xk)(x−xk)).

By replacing Φ0 by Φk, u by xk, u′ by x′k, and x1 by xk+1 in (3.9) and (3.10)
we obtain that

‖xk+1 − Φk(xk+1)‖ < κτ‖xk − x′k‖+ κ(τ + ν)‖p− p′‖ = γk(1− κτ)

and
‖Φk(v)− Φk(v′)‖ ≤ κτ‖v − v′‖ for any v, v′ ∈ IBγk

(xk).

Then, by the contraction mapping principle there exists a unique x′k+1 in
IBγk

(xk+1) with x′k+1 = Φk(x′k+1), which gives us

f(p′, x′k) + Dxf(p′, x′k)(x′k+1 − x′k) + F (x′k+1).

Moreover, since γk ≤ d we have that x′k+1 ∈ IBa(x̄).
We constructed a sequence x′1, . . . , x

′
k, . . . which is generated by New-

ton’s iteration for p′ starting from u′ and whose components are in IBa(x̄).
According to Theorem 2.1, this sequence must be the value ξ(u′, p′) of the
single-valued localization ξ whose value ξ(u, p) is the sequence x1, . . . , xk, . . ..
Taking into account (3.11) and (3.12) we obtain

‖ξ(u, p)− ξ(u′, p′)‖∞ ≤ O(τ)‖u− u′‖+ (κν + O(τ))‖p− p′‖.
Since τ can be chosen arbitrarily small, this gives us (3.2).

One should note the striking similarity between the estimate (1.5) for
the Lipschitz modulus of the single-valued localization of the solution map-
ping (1.2) and the estimate (3.2) for Newton’s iteration, which indicated the
sharpness of the latter result. But there is more to be said: as in the case
of Theorem 1.2, the inverse function version of Theorem 3.1 becomes an “if
and only if” result.

Consider the generalized equation (1.1) with f(p, x) = g(x) − p whose
solution mapping S is described in (1.6) and let x̄ ∈ S(p̄). The corresponding
Newton’s iteration mapping in (2.2) then has the form

(3.13)
Υ : (u, p) 7→

{
ξ ∈ l∞(X)

∣∣∣
⋂∞

k=0(g(xk) + Dg(xk)(xk+1 − xk) + F (xk+1)) 3 p with x0 = u
}

.

Recall that a set C is locally closed at a point x ∈ C when there exists a
closed neighborhood U of x̄ such that C ∩ U is a closed set.
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Theorem 3.2 (inverse function theorem for Newton’s iteration). Suppose
that the mapping F has locally closed graph at (x̄, p̄− g(x̄)). Then the map-
ping g+F is strongly regular at x̄ for p̄ if and only if the mapping Υ in (3.13)
has a Lipschitz localization ξ at (x̄, p̄) for ξ̄ with

(3.14) l̂ipu(ξ; (x̄, p̄)) < 1

and such that for each (u, p) close to (x̄, p̄) the sequence ξ(u, p) is convergent.
Moreover, in this case

(3.15) l̂ipp(ξ; (x̄, p̄)) = lip(σ; p̄) = lip(s; p̄),

where σ and s are is the Lipschitz localizations described in Theorem 1.2.

Proof. The “only if” part follows from the combination of Theorems 2.1
and 3.1. From (3.2) we get

(3.16) l̂ipp(ξ; (x̄, p̄)) ≤ lip(σ; p̄).

To prove the “if” part, choose κ > l̂ipp(ξ; (x̄, p̄)), a positive ε < 1 and corre-
sponding neighborhoods U of x̄ and Q of p̄ such that the sequence ξ(u, p) is
the only element of Υ (u, p) whose components x1, . . . , xk, . . . are in U and,
moreover, the function ξ acting from X×Y to l∞(X) is Lipschitz continuous
with Lipschitz constants κ in p ∈ Q uniformly in u ∈ U and, from (3.14), is
Lipschitz continuous with Lipschitz constants ε in u ∈ U uniformly in p ∈ Q.
From the assumed local closedness of gph F we are able to make Q and U
smaller is necessary so that for any p ∈ Q and any sequence with components
vk ∈ Q convergent to v and satisfying

(3.17) g(vk) + Dg(vk)(vk+1 − vk) + F (vk+1) 3 p for all k = 1, 2, . . . .

one g(v) + F (v) 3 p.
Let p, p′ ∈ Q and let x ∈ (g + F )−1(p) ∩ U . The constant sequence

χ = (x, x, . . . , x) is obviously convergent to the solution x of the inclusion
g(x) + F (x) 3 p. Then χ ∈ Υ−1(x, p) and all its components are in U , hence
χ = ξ(p, u). By assumption,

(3.18) ‖χ− ξ(x, p′)‖∞ ≤ κ‖p− p′‖,
and moreover ξ(x, p′) = {x, x′1, . . . , x

′
k, . . .} is convergent. Note that, by defi-

nition, ξ(x, p′) satisfies

g(x′k) + Dg(x′k)(x′k+1 − x′k) + F (x′k+1) 3 p′ for all k = 1, 2, . . . .

From the property described around (3.17) we obtain that the sequence
ξ(x, p′) is convergent to a solution x′ ∈ (g + F )−1(p′) ∩ U . Hence, using
(3.18), we have

‖x− x′‖ ≤ ‖x− x′k‖+ ‖x′k − x′‖
≤ ‖χ− ξ(x, p′)‖∞ + ‖x′k − x′‖
≤ κ‖p− p′‖+ ‖x′k − x′‖.
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Since x′k → x′ as n → ∞, by passing to the limit in this last inequality we
conclude that

(3.19) ‖x− x′‖ ≤ κ‖p− p′‖.
We will now show that the mapping (g + F )−1 has a single-valued localiza-
tion at p̄ for x̄. Assume that for every neighborhoods U of x̄ and Q of p̄
there exist p ∈ Q and w, w′ ∈ U such that w 6= w′ and both w and w′ are
in (g + F )−1(p). Then the constant sequences {w,w, . . . , w, . . .} ∈ Υ (u, p)
and {w′, w′, . . . , w′, . . .} ∈ Υ (w′, p) and all their components are in U , hence
{w, w, . . . , w, . . .} = ξ(w, p) and {w′, w′, . . . , w′, . . .} = ξ(w′, p). In the begin-
ning of the proof we have chosen the neighborhoods U and Q such that for a
fixed p ∈ V the mapping u 7→ ξ(u, p) is a Lipschitz continuous function from
X to l∞(X) with Lipschitz constant ε < 1, and hence this condition holds
for all of its components. This yields

‖w − w′‖ ≤ ε‖w − w′‖ < ‖w − w′‖,
which is absurd. Hence, (g+F )−1 has a single-valued localization s at p̄ for x̄.
But then from (3.19) this localization is Lipschitz continuous with lip(s; p̄) ≤
κ. Theorem 1.2 says that lip(σ; p̄) = lip(s; p̄) and hence lip(σ; p̄) ≤ κ. Since
κ could be arbitrarily close to l̂ipp(ξ; (x̄, p̄)), we get the inequality opposite
to (3.16), and hence (3.15) holds.

Remark. In addition to the conditions in Theorem 3.1, if we assume that
f is continuously differentiable in a neighborhood of (p̄, x̄) and the ample pa-
rameterization condition holds, namely the derivative Dpf(p̄, x̄) is surjective,
then, by using Lemma 2.4 from [5] (stated there in finite dimensions, but
whose reformulation in Banach spaces needs changes only in terminology)
we can modify the proof of Theorem 3.2 to obtain the equivalence of metric
regularity of the mapping G in (1.4) with the existence of a single-valued lo-
calization of the mapping Ξ in (2.2) the values of which are convergent, as in
the statement of Theorem 3.2. We choose not to present this generalization
here in order to simplify the already involved presentation.

As an illustration of possible applications of the results in Theorems 2.1
and 3.1 in studying complexity of Newton’s iteration, we will give an estimate
for the number of iterations needed to achieve certain accuracy of the method,
which is the same for all values of the parameter p in some neighborhood of
the reference point p̄. Given an accuracy measure ρ, suppose that Newton’s
method (2.1) is terminated at the k-th step if

(3.20) dist(0, f(p, xk) + F (xk)) ≤ ρ.

Also suppose that the constant µ and the constants a, c and θ are chosen as
in the proof of Theorem 2.1 and for p ∈ IBc(p̄) consider the unique sequence
{xk} generated by (2.1) for p and starting from x0 ∈ IBa(x̄) so that all
elements of which are in IBa(x̄). Since xk is a Newton iterate from xk−1 we
have that

f(p, xk)− f(p, xk−1)−Dxf(p, xk−1)(xk − xk−1) ∈ f(p, xk) + F (xk).
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Using (2.10), we have
(3.21)
dist(0, f(p, xk) + F (xk))

≤ ‖f(p, xk)− f(p, xk−1)−Dxf(p, xk−1)(xk − xk−1)‖ ≤ 1
2µ‖xk − xk−1‖2.

Let kρ be the first iteration at which (3.20) holds. Then for k < kρ, from
(3.21) we obtain

(3.22) ρ <
1
2
µ‖xk − xk−1‖2.

Further, utilizing (2.18) we get

‖xk−xk−1‖ ≤ ‖xk−s(p)‖+‖xk−1−s(p)‖ ≤ θ2k−2(1+θ)(‖x0−x̄‖+‖s(p)−x̄‖),
and from the choice of x0 and the first inequality in (2.9) we have

‖xk − xk−1‖ ≤ θ2k−2(1 + θ)
3a

2
.

But then, taking into account (3.22) we obtain

ρ <
1
2
µθ2k+1 9a2(1 + θ)2

4θ4
.

Hence, any k < kρ satisfies

k ≤ log2

(
logθ

(
8θ4ρ

9a2µ(1 + θ)2

))
− 1.

Thus, we obtained an upper bound of the numbers of iterations needed to
achieve certain accuracy, which, most importantly, is the same for all values
of the parameter p in some neighborhood of the reference value p̄. This tells
us, for example, that, on the assumptions of Theorem 3.1, small changes of
parameters in a problem do not affect the performance of Newton’s method
applied to this problem.
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