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1 Introduction

In a landmark paper in 1980, S. M. Robinson studied “generalized equations” with parameters,
where an equation f(p, x) = 0 was replaced by a more complicated condition on f(p, x) which
nonetheless was to be solved for x in terms of p. Robinson focused on a particular class of
conditions, but in this paper we use his “generalized equation” terminology for all conditions of
the form

(1) f(p, x) + F (x) 3 0,

where p and x belong to Banach spaces P and X, f is a function from P×X to a Banach space Y ,
and F is a set-valued mapping from X to Y . In that setting, signaled by the notation F : X →→ Y ,
the domain of F is dom F = {x |F (x) 6= ∅} and the graph of F is gph F = { (x, y) | y ∈ F (x)}.
The inverse of F is the set-valued mapping F−1 : Y →→ X defined by F−1(y) = {x |F (x) ∈ y}.
As a special case, F might just be single-valued on dom F , and we then could write F : X → Y .

For a parameterized generalized equation (1), the central object of interest is the solution
mapping S : P →→ X defined by

(2) S(p) = {x | f(p, x) + F (x) 3 0},

especially questions about its possible single-valuedness and differentiability, or properties akin
to differentiability. Obviously (1) reduces to the equation f(p, x) = 0 when F is the zero mapping
from X to Y , which we indicate by writing F ≡ 0. The context is then the traditional one of
implicit functions, handled classically through derivative assumptions on f .

The case of (1) where Robinson broke new ground in [14] is the one where Y is the dual
Banach space X∗ and F is the normal cone mapping NC : X →→ X∗ associated with a nonempty
closed convex set C ⊂ X, as defined by

(3) NC(x) =
{ { y ∈ X∗ | 〈y, v − x〉 ≤ 0 for all v ∈ C} if x ∈ C,
∅ if x /∈ C,

where 〈·, ·〉 is the canonical pairing between X and X∗. The generalized equation (1) comes down
then to the variational inequality

(4) 〈f(p, x), v − x〉 ≥ 0 for all v ∈ C.

Again, a simple equation f(p, x) = 0 can be obtained as a specialization, namely by taking
C = X, which makes NC ≡ 0. But in this context only equations for functions f : P ×X → X∗

are encompassed, not for f mapping into a space Y 6= X∗. That feature makes a difference
already in finite dimensions, since if X = IRn it requires the image space for f to be IRn too.

A broader formulation as in (1) is therefore needed, if Robinson’s pioneering contributions to
generalized implicit function theory, in approaches as well as results, are to be brought out fully.
Putting Robinson’s ideas in this perspective and extending them further are our chief aims here.
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A notion that will conveniently help us, in working with a solution mapping S : P →→ X, is
that of a graphical localization of S at p̄ for x̄, where (p̄, x̄) ∈ gph S. This refers to a “submapping”
s obtained by taking

gph s = (U × V ) ∩ gph S for some neighborhoods U of p̄ and V of x̄,

so that

s(p) =
{

V ∩ S(p) for p ∈ U ,
∅ for p /∈ U .

Note that dom s may be different from U ∩ dom S and can depend on the choice of V . Of
particular interest is the case where s is nonempty-valued around p̄, which corresponds to p̄
belonging to the interior of dom s. Even more important is the case where, in addition, s is
single-valued around p̄, i.e., is a function on some neighborhood of x̄. We say then that s is a
single-valued graphical localization of S at p̄ for x̄.

In order to review some results in this direction for generalized equations (1) in which the
function f is (Fréchet) differentiable, we will use the notation that Df(p̄, x̄) is the continuous
linear mapping from P ×X to Y giving the derivative of f at (p̄, x̄). In the same vein, Dp(p̄, x̄)
will denote the derivative of f(·, x̄) at p̄, while Dx(p̄, x̄) will denote the derivative of f(p̄, ·) at x̄.
We say that a continuous linear mapping A : X → Y (in notation A ∈ L(X, Y )) is invertible if
its inverse A−1 is single-valued and continuous from Y onto X (i.e., belongs to L(Y, X)); actually
the continuity is automatic when A−1 is single-valued from Y onto X, according to the Banach
open mapping principle. Continuous differentiability of f refers to the derivative Df(p, x), as an
element of L(P ×X, Y ), depending continuously on (p, x).

Theorem 1.1 (classical implicit function theorem). In the case of the generalized equation (1)
in which F ≡ 0, suppose f is continuously differentiable around (p̄, x̄), and that Dxf(p̄, x̄) is
invertible. Then the solution mapping S in (2) has a single-valued graphical localization s at p̄
for x̄. Moreover this localization is continuously differentiable around p̄, and a formula for its
derivative is available:

Ds(p) = −Dxf(p, s(p))−1Dpf(p, s(p)) for all p in a neighborhood of p̄.

An immediate specialization of this implicit function theorem is the seemingly more basic
result which is classical inverse function theorem.

Theorem 1.2 (classical inverse function theorem). In the case of the generalized equation (1)
in which F ≡ 0, suppose

f(p, x) = g(x)− p for a function g : X → Y = P,

so that S(p) = {x | g(x) = p} = g−1(p). Let g be continuously differentiable around x̄, and
suppose that the derivative Dg(x̄) is invertible; let p̄ = g(x̄). Then the mapping S = g−1 has
a single-valued graphical localization s at p̄ for x̄. Moreover this localization is continuously
differentiable around p̄, and a formula for its derivative is available:

Ds(p) = Dg(s(p))−1 for all p in a neighborhood of p̄.
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Historical background on these famous and universally appreciated results in analysis can be
found in [12], for example. It’s well known that the classical inverse function theorem is actually
equivalent to the classical implicit function theorem. However, it’s the implicit function theorem
rather than the inverse function theorem that provides the pattern of result one might hope
to get for a generalized equation (1) with F 6≡ 0. In such a context the differentiability of a
graphical localization s of the solution mapping S can’t be expected, but single-valuedness can
still be realistic along other properties which, to some degree, may substitute for differentiability.

Two quantitative properties related conceptually to differentiability are prominent in this
respect: “calmness” and “Lipschitz continuity”. Both will be important in our developments,
and even in understanding the theorem of Robinson on which we want to build. In recalling
their definitions, we use ‖ · ‖ for the norm in any Banach space that comes up.

Calmness. For s : P → X, a subset D of P and a point p̄ ∈ D ∩ dom s, the function s is said
to be calm2 at p̄ relative to D if there exists a constant κ ≥ 0 (a calmness constant) such that

(5) ‖s(p)− s(p̄)‖ ≤ κ‖p− p̄‖ for all p ∈ D ∩ dom s.

When this holds for some neighborhood D of p̄, s is said to be calm at p̄. The infimum of all the
calmness constants κ for which (5) holds with respect to various choices of such a neighborhood
D of p̄ is called the calmness modulus of s at p̄ and denoted by clm(s; p̄).

If p̄ is an isolated point of dom s, trivially clm(s; p̄) = 0, but otherwise the calmness modulus
is given by the formula

clm(s; p̄) = lim sup
p∈dom s

p→p̄, p 6=p̄

‖s(p)− s(p̄)‖
‖p− p̄‖

.

Calmness at x̄ corresponds to this limit being finite, but we denote the limit by clm(s; p̄) even
when it isn’t finite, so that

s is calm at p̄ ⇐⇒ p̄ ∈ dom s and clm(s; p̄) < ∞.

Lipschitz continuity. For s : P → X and a subset D ⊂ P , the function s is said to be Lipschitz
continuous3 relative to D if D ⊂ dom s there exists κ ≥ 0 (a Lipschitz constant) such that

(6) ‖s(p′)− s(p)‖ ≤ κ‖p′ − p‖ for all p, p′ ∈ D.

When this holds for some neighborhood D of p̄, s is said to be Lipschitz continuous around p̄.
The infimum of the set of all values κ ≥ 0 for which (6) holds relative to various choices of such
a neighborhood D of p̄ is called the Lipschitz modulus of s at p̄ and denoted by lip(s; p̄).

Note that, in contrast to the calmness modulus, the Lipschitz modulus is only defined when
p̄ ∈ int dom s. For such points p̄ it is given equivalently by the formula

lip(s; p̄) = lim sup
p,p′→p̄,

p 6=p′

‖s(p′)− s(p)‖
‖s′ − s‖

.

2The name “calmness” was coined by Francis Clarke in [3], see also [16].
3This is named after Rudolf Otto Sigismund Lipschitz (1832–1903).
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Lipschitz continuity around p̄ corresponds to this limit being finite, but again we adopt the tactic
of using it to define lip(s; p̄) even when the limit isn’t finite, so that

s is Lipschitz continuous around p̄ ⇐⇒ p̄ ∈ int dom s and lip(s; p̄) < ∞.

What did we mean in saying that calmness and Lipschitz continuity are related to differen-
tiability? In the first place, both properties provide estimates of the “rate of change” of s(p)
with respect to changes in p. In calmness at p̄, comparisons are made only between p and p̄,
whereas in Lipschitz continuity around p̄ comparisons are made between arbitrary pairs of points
p and p′ in some neighborhood of p̄. For Lipschitz continuity there is also the famous theo-
rem of Rademacher, according to which this property of s on an open set D in P when P is
finite-dimensional entails s being differentiable at all but a negligible set of points in D.

But calmness and Lipschitz continuity are also connected with differentiability through no-
tions of approximation. It’s instructive to observe that the very definition of the derivative of s
at p̄ (when it exists) can be captured in the following manner:

(7)
{

s is (Fréchet) differentiable at p̄ if and only if p̄ ∈ int dom s
and there exists A ∈ L(P, X) such that clm(s− A; p̄) = 0.

Then A = Ds(p̄), of course. Lipschitz continuity serves in a parallel way in the definition of
strict (Fréchet) differentiability:

(8)
{

s is strictly differentiable at p̄ if and only if p̄ ∈ int dom s
and there exists A ∈ L(P, X) such that lip(s− A; p̄) = 0.

Just as differentiability at p̄ entails continuity at p̄, strict differentiability at p̄ entails Lipschitz
continuity around p̄. Strict differentiability also has an important tie to continuous differentiabil-
ity. If s is continuously differentiable around p̄, then s is strictly differentiable at p̄. On the other
hand, if s is strictly differentiable on some neighborhood of p̄, then s is continously differentiable
on around p̄. Thus, strict differentiability is the pointwise property that captures continuous
differentiability.

The conditions clm(s − A; p̄) = 0 and lip(s − A; p̄) = 0 in (7) and (8) express the quality
of the “linearization” of s at p̄ afforded by A, or more exactly by the affine function h(p) =
s(p̄) + A(p − p̄). (These conditions concern differences, so the constant terms in the formula
for h(p) drop out of them.) Later, we’ll work with nonaffine approximations h based on such
conditions. For now, before getting on with the formulation of Robinson’s main theorem from
[14], we mention two results which indicate how the classical inverse function theorem can be
complemented, or sharpened, in terms of the concepts just reviewed.

Theorem 1.3 (derivative invertibility from inverse calmness). Let g : X → P be differentiable
at x̄ ∈ int dom g, and let p̄ := g(x̄). If the (generally set-valued) inverse mapping g−1 has a single-
valued graphical localization s at p̄ for x̄ that is calm at p̄, then the derivative Dg(x̄) ∈ L(X, P )
must be invertible.
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Theorem 1.4 (inverse functions under strict differentiability). Let g : X → P be strictly
differentiable at x̄ ∈ int dom g, and let p̄ = g(x̄). Then the invertibility of Df(x̄) is both
necessary and sufficient for g−1 to have a single-valued graphical localization s at p̄ for x̄ which
is strictly differentiable at p̄. In that case, moreover,

Ds(p̄) = Dg(x̄)−1.

Theorem 1.3 hasn’t previously been noted, but it can readily be deduced from the circum-
stances in the classical proofs for Theorem 1.2. Theorem 1.4 is essentially due to Leach [11],
although he didn’t emphasize the symmetry in his formulation; that was brought out later in [4,
Corollary 3.3]. Leach didn’t offer a corresponding version of the implicit function theorem, but
one can be obtained from his inverse function theorem by the same argument that relates the
two classical results, as noted by Nijenhuis [13].

Theorem 1.5 (implicit functions under strict differentiability). In classical form of (1) with
F ≡ 0, let p̄ and x̄ be such that x̄ ∈ S(p̄) for the solution mapping S in (2). Let f be strictly
differentiable at (p̄, x̄) and suppose Dxf(p̄, x̄) is invertible. Then S has a single-valued graphical
localization s at p̄ for x̄ which is strictly differentiable at p̄ (in particular Lipschitz continuous
around p̄), with

Ds(p̄) = −Dxf(p̄, x̄))−1Dpf(p̄, x̄).

The relationship between strict differentiability and continuous differentiability spelled out
above reveals that Theorem 1.5 is a more powerful result from which Theorem 1.1 can be deduced.
The latter corresponds in effect to assuming strict differentiability of f on a neighborhood of (p̄, x̄)
and thereby concluding the strict differentiability of s on a neighborhood of p̄.

We are ready now to state the important result of Robinson from [14]. Up to some rewording,
it goes as follows.

Theorem 1.6 (Robinson’s implicit function theorem). In the variational inequality case of the
generalized equation (1), with Y = X∗ and F the normal cone mapping NC associated with a
nonempty, closed, convex set C ⊂ X as in (3), consider a pair (p̄, x̄) such that x̄ ∈ S(p̄) for the
solution mapping S in (2). Assume that

(a) f is (Fréchet) differentiable with respect to x at all points (p, x) in a neighborhood of
(p̄, x̄), and that both f(p, x) and Dxf(p, x) depend continuously on (p, x) in this neighborhood;

(b) the inverse G−1 of the set-valued mapping G : X →→ Y defined by

(9) G(x) = f(p̄, x̄) + Dxf(p̄, x̄)(x− x̄) + NC(x)

has a single-valued graphical localization σ at 0 for x̄ which is Lipschitz continuous around 0
with associated Lipschitz constant κ.

Then S has a single-valued localization s at p̄ for x̄ which is continuous at p̄ and such that
for every ε > 0 the estimate holds that

(10) ‖s(p′)− s(p)‖ ≤ (κ + ε)‖f(p′, s(p))− f(p, s(p))‖ for all p′, p in a neighborhood of p̄.

Corollary 1.7 (calmness of solutions). In the framework of Theorem 1.6, if f(·, x̄) is calm at p̄
with clm(f(·, x̄); p̄) ≤ λ, then s is calm at p̄ with clm(s; p̄) ≤ κλ.
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Corollary 1.8 (Lipschitz continuity of solutions). In the framework of Theorem 1.6, if neigh-
borhoods U of p̄ and V of x̄ exist such that, for all x ∈ V , f(·, x) is Lipschitz continuous relative
to U with constant λ, then s is Lipschitz continuous around p̄ with lip(s; p̄) ≤ κλ.

The invertibility property assumed in (b) of Theorem 1.6 is what Robinson in [14] called the
“strong regularity” of the generalized equation at hand. This term has since come to refer rather
to the existence of a Lipschitz continuous localization as in Corollary 1.8; cf. [6].

Differentiability of the localization s at p̄ can’t be deduced from the estimate in (10), not to
speak of continuous differentiability around p̄, and in fact differentiability may fail. Elementary
one-dimensional examples of variational inequalities exhibit solution mappings that are not dif-
ferentiable, usually in connection with the “solution trajectory” hitting or leaving the boundary
of the set C. For such mappings, weaker concepts of differentiability are available; we will touch
upon this in Section 3.

In the special case where the variational inequality treated by Robinson’s theorem reduces
to the equation f(p, x) = 0 (namely C = 0, so NC ≡ 0), the invertibility of the mapping G in
(9) comes down to the invertibility of Dxf(p̄, x̄) in the classical implicit function theorem, but
Robinson’s result falls short of yielding all the conclusions in that result, Theorem 1.1. It could,
though, be used as an intermediate step in the proof of Theorem 1.1, when Y = X∗. Closing the
gap would be tantamount to supplying a corollary, beyond the two given above, which confirms
that s is continuously differentiable around p̄ when f is continuously differentiable with respect
to p and x jointly. Similarly, Theorem 1.6 is not adequate on its face for deriving the strict
differentiability version of the classical implicit function theorem in Theorem 1.5.

On the other hand, Robinson’s result does provide through Corollary 1.8 a property of s on
a neighborhood of p̄ which can well be compared with the classical conclusion about continuous
differentiability in Theorem 1.1. The connection can be seen through the fact that continuous
differentiability of s around p̄ implies Lipschitz continuity around p̄, whereas, when the parameter
space P is finite-dimensional, Lipschitz continuity around p̄ implies in turn that s is differentiable
almost everywhere around p̄.

For stating and proving his result, Robinson was clearly motivated by the problem of how the
solutions of the standard nonlinear programming problem depend on parameters, and he pursued
this goal in the same paper [14] where he presented his implicit function. At that time it was
already known from the work of Fiacco and McCormick [8] that under linear independence of the
constraint gradients and second-order sufficient conditions, together with strict complementarity
slackness at the reference point, the solution mapping of the standard nonlinear programming
problem has a smooth single-valued localization around the reference point. The proof of this
result was based on the classical implicit function theorem, inasmuch under strict complemen-
tarity slackness the Kuhn-Tucker system turns into a system of equations locally. Robinson
looked at the case when the strict complementarity slackness is violated, which happens, as
alread noted, when the “stationary point trajectory” hits or leaves the constraints. Based on
his implicit function theorem, which actually reached far beyond his immediate goal, he proved,
still in [14], that under a stronger form of the second-order sufficient condition, together with
linear independence of the constraint gradients, the solution mapping of the standard nonlinear
programming problem has a Lipschitz continuous single-valued localization around the reference
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point. This result was a stepping stone to the subsequent extensive development of stability
analysis in optimization, whose maturity came with the publication of the recent books [2],[7]
and [10].

Robinson’s breakthrough in the stability analysis of nonlinear programming was in fact much
needed for the emerging numerical analysis of variational problems more generally. In his paper
[14], he noted the thesis of his Ph.D. student Josephy [9] who proved that strong regularity yields
local quadratic convergence of Newton’s method for solving variational inequalities, a method
whose version for constrained optimization problems is well known as the sequential quadratic
programming (SQP) method in nonlinear programming. In the explosion of works in this area
in the 80’s and 90’s Robinson’s contribution, if not forgotten, was sometimes taken for granted.
Still, its importance was acknowledged in many papers—too many to be listed here.

About about a decade after Robinson’s theorem was published, it was realized that it could
be used as a tool in the analysis of a variety of other contexts. Alt [1] was the first to use it
for optimal control problems. About the same time, a rigorous proof was obtained in [5] of the
fact that everything in Theorem 1.6 actually holds for all generalized equations (1), without any
need of restriction to Y = X∗ and F = NC . Variational inequalities serve as an example, not
a limitation. Corresponding generalizations of Robinson’s implicit function theorem to abstract
spaces came later, as well as important applications such as to convergence analysis of algorithms
and discrete approximations to infinite-dimensional variational problems. However, to survey
these widespread developments is not within the scope of this paper.

In Section 2 we will present a result (Theorem 2.1) which carries Robinson’s theorem to
a setting of generalized equations (1) without any, even rudimentary, form of differentiability
required of f .

Robinson, in a different paper [15] written long after [14], introduced a concept of first-order
approximation as a replacement of derivative, and employed it for obtaining an implicit function
theorem for equations (not generalized equations) with nonsmooth functions f . By means of
that approximation idea, a version of Theorem 1.6 for generalized equations (1) was obtained
in [4] in which differentiability properties of the localized solution mapping s at p̄ were shown
to follow from differentiability properties of f , and differentiability could even be replaced by
semidifferentiability. In Section 3 (Theorem 3.1), that result of [4] will be extended further as well.
A first-order approximation formula at p̄ will be furnished for the localized solution mapping s
whose existence is guaranteed by Theorem 2.1. We will have arrived then at an implicit function
theorem for generalized equations (1) which, despite not relying in its statement on any form of
derivatives, fully covers the sharpened version of Theorem 1.1 given in Theorem 1.5.

The main contributions of this paper, Theorems 2.1 and 3.1, can easily be adapted to the
framework of X being a complete metric space, Y being a linear metric space with shift-invariant
metric, and P being any metric space. The statements and the proofs require hardly more than
changes in notation.
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2 Robinson’s Theorem—Extended

We start with defining a concept introduced by Robinson in [15] which we’ll be able to use as a
replacement for the linearization in condition (b) of Theorem 1.6.

First-order approximations. For a function f : X → Y and a point x̄ ∈ int dom f , a function
h : X → Y is said to be a first-order approximation of f at x̄ when

(11) f(x̄) = h(x̄) and clm(f − h; x̄) = 0.

This approximation is said to be strict if actually

(12) f(x̄) = h(x̄) and lip(f − h; x̄) = 0.

Traditional approximations through linearization fit as the case where h = f(x̄) + A(x − x̄)
for some A ∈ L(X, Y ). In (11), f is (Fréchet) differentiable with A = Df(x̄), whereas in (12) we
have not just differentiability but strict differentiability.

To meet the challenges ahead, we will have to distinguish between different behaviors of
f(p, x) with respect to its two arguments, and also to capture uniformities in these behaviors.
Moduli for “partial” calmness and Lipschitz continuity will be required. They will serve in
defining partial first-order approximations.

Partial calmness and partial Lipschitz continuity. For a function f : P ×X → Y and a
point (p̄, x̄) ∈ dom f that is not an isolated point of dom f , the partial calmness modulus of f
with respect to x at (p̄, x̄) is defined by

ĉlmx(f ; (p̄, x̄)) = lim sup
x→x̄,p→p̄,

(p,x)∈dom f,x6=x̄

‖f(p, x)− f(p, x̄)‖
‖x− x̄‖

.

Analogously, for a point (p̄, x̄) ∈ int dom f the partial Lipschitz modulus is defined by

l̂ipx(f ; (p̄, x̄)) = lim sup
x,x′→x̄,p→p̄,

x6=x′

‖f(p, x′)− f(p, x)‖
‖x′ − x‖

.

Partial first-order approximations. For f : P × X → Y and a point (p̄, x̄) ∈ int dom f , a
function h : X → Y is said to be a first-order approximation of f with respect to x uniformly in
p at (p̄, x̄) when

f(p̄, x̄) = h(x̄) and ĉlmx(f − h; (p̄, x̄)) = 0.

This approximation is said to be strict if

f(p̄, x̄) = h(x̄) and l̂ipx(f − h; (p̄, x̄)) = 0.

For the first of the two main results we feature in this paper, which will be stated next, we
continue in the setting of a generalized equation (1) and its solution mapping S in (2). Surpris-
ingly, perhaps, no assumptions at all are imposed directly on the set-valued mapping F : X →→ Y

9



in (1), although certain properties of F are obviously implicit in the “invertibility” condition
imposed jointly on F and an auxiliary function h. The function h could be a linearization as in
Theorem 2.1, or a nonlinear first-order approximation, but not necessarily.

To save on words, we henceforth refer to a “Lipschitz continuous single-valued graphical
localization” simply as a Lipschitz localization.

Theorem 2.1 (extension of Robinson’s implicit function theorem). In the generalized equation
(1) with its solution mapping S in (2), let p̄ and x̄ be such that x̄ ∈ S(p̄). Assume that

(a) f(·, x̄) is continuous at p̄ and h : X → Y is a function having

(13) h(x̄) = f(p̄, x̄) and l̂ipx(f − h; (p̄, x̄)) < ∞.

(b) For the set-valued mapping G = h + F , with G(x̄) 3 0, the inverse G−1 has a Lipschitz
localization σ at 0 for x̄ with

(14) lip(σ; 0) · l̂ipx(f − h; (p̄, x̄)) < 1.

Then S has a single-valued graphical localization s at p̄ for x̄ which is continuous at p̄ and
such that for every

(15) κ >
(

lip(σ; 0)−1 − l̂ipx(f − h; (p̄, x̄))
)−1

the estimate holds that

(16) ‖s(p′)− s(p)‖ ≤ κ‖f(p′, s(p))− f(p, s(p))‖ for all p′, p in a neighborhood U of p̄.

Theorem 1.6 follows at once from Theorem 2.1 by taking F to be NC and h to be the
linearization of f given by h(x) = f(p̄, x̄) + Dxf(p̄, x̄)(x − x̄). In contrast to Robinson’s result
in Theorem 1.6, however, h no longer needs to be a linearization. It doesn’t even have to be
a first-order approximation, although the conditions in (13) are certainly satisfied when h is a
strict first-order approximation of f with respect to x uniformly in p at (p̄, x̄), as defined above.
That case, which has further implications, will be taken up in Section 3. However, Theorem 2.1
is able to extract information from relationships between f and h that are much weaker than
first-order approximation but still can have important consequences for the behavior of solutions
to a generalized equation.

As an illustration of what we just said, observe that Theorem 2.1 specified for linear mappings
yields a classical result known as the Banach lemma. Namely, for f(p, x) = (A + B)x + p and
h(x) = Ax for linear bounded mappings A and B acting from X to Y , F ≡ 0 and x̄ = p̄ =

0, condition (b) means that A is invertible, moreover, since lip(σ; 0) = ‖A−1‖ and l̂ipx(f −
h; (p̄, x̄)) = ‖B‖, (14) becomes ‖B‖ ·‖A−1‖ < 1. Then Theorem 2.1 says that the mapping A+B
is invertible, and ‖(A + B)−1‖ ≤ κ for any κ > (‖A−1‖ − ‖B‖)−1. This leads directly to the
statement of the Banach lemma: if A ∈ L(X,Y ) is invertible then for any B ∈ L(X, Y ) with
‖B‖ < ‖A−1‖−1 one has

‖(A + B)−1‖ ≤ (‖A−1‖−1 − ‖B‖)−1.
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Note that this result cannot be obtained from Theorem 1.6.
Corollaries 1.7 and 1.8 of Theorem 1.6 translate fully to the framework of Theorem 2.1, of

course, since they only depend on the estimate for ‖s(p′)− s(p)‖, which has the same character
in (16) as in (10).

Our proof of Theorem 2.1 will proceed through an intermediate step which we isolate as a
lemma with a somewhat lengthly statement. Proving the lemma requires an appeal to the Banach
fixed point theorem, as stated next in its Banach space version. Here we use the notation that

IBa(x̄) = {x | ||x− x̄|| ≤ a}.

Banach fixed point theorem. Consider a point x̄ ∈ X and a function Φ : X → X for which
there exist scalars a > 0 and θ, 0 ≤ θ < 1 such that

(a) ‖Φ(x̄)− x̄‖ ≤ a(1− θ);
(b) Φ is Lipschitz continuous on IBa(x̄) with Lipschitz constant θ.

Then Φ has a unique fixed point in IBa(x̄); in other words, there exists one, and only one,
x ∈ IBa(x̄) satisfying x = Φ(x).

Lemma 2.2. Consider a function ϕ : P × X → Y and a point (p̄, x̄) ∈ int dom ϕ and let the
scalars µ ≥ 0, b ≥ 0, a > 0 and the set U ⊂ P be such that p̄ ∈ U and

(17)

{
‖ϕ(p, x)− ϕ(p, x′)‖ ≤ µ‖x− x′‖ for all x, x′ ∈ IBa(x̄) and p ∈ U,
‖ϕ(p, x̄)− ϕ(p̄, x̄)‖ ≤ b for all p ∈ U.

Consider also a set-valued mapping M : Y →→ X with (ȳ, x̄) ∈ gph M where ȳ = ϕ(p̄, x̄), such
that for each y ∈ IBµa+b(ȳ) the set M(y)∩ IBa(x̄) consists of exactly one point, denoted by r(y),
and suppose that this function

(18) r : y 7→ M(y) ∩ IBa(x̄) for y ∈ IBµa+b(ȳ)

is Lipschitz continuous in its domain with Lipschitz constant γ. In addition, suppose that
(a) γµ < 1;
(b) γµa + γb ≤ a.

Then for each p ∈ U the set {x ∈ IBa(x̄) |x ∈ M(ϕ(p, x))} consists of exactly one point, denoted
by s(p), and the associated function

(19) s : p 7→ {x ∈ IBa(x̄) |x ∈ M(ϕ(p, x))} for p ∈ U

satisfies

(20) ‖s(p′)− s(p)‖ ≤ (γ−1 − µ)−1‖ϕ(p′, s(p))− ϕ(p, s(p))‖ for all p′, p ∈ U .

Proof. Fix p ∈ U and consider the function Φp : X → X defined by

Φp : x 7→ r(ϕ(p, x)) for x ∈ IBa(x̄).

11



Then, if x ∈ IBa(x̄), we have from the Lipschitz continuity of r, (17) along with condition (b)
and the identity x̄ = r(ϕ(p̄, x̄)), that

‖Φp(x̄)− x̄‖ = ‖r(ϕ(p, x̄))− r(ϕ(p̄, x̄))‖ ≤ γ‖ϕ(p, x̄)− ϕ(p̄, x̄)‖ ≤ γb ≤ a(1− γµ)

and for any x, x′ ∈ IBa(x̄), x 6= x′, that

‖Φp(x)− Φp(x
′)‖ = ‖r(ϕ(p, x))− r(ϕ(p, x′))‖ ≤ γ‖ϕ(p, x)− ϕ(p, x′)‖ ≤ γµ‖x− x′‖ < ‖x− x′‖.

We are in position then to apply the Banach fixed point theorem and to conclude from it that
Φp has a unique fixed point in IBa(x̄).

Denoting that fixed point by s(p), and doing this for every p ∈ U , we get a function s : U →
IBa(x̄). But having x = Φp(x) is equivalent to having x = r(ϕ(p, x)) = M(ϕ(p, x)) ∩ IBa(x̄).
Hence s is the function in (19). Moreover, since s(p) = r(ϕ(p, s(p))), we have from the Lipschitz
continuity of r and (17) that, for any p, p′ ∈ U ,

‖s(p′)− s(p)‖ = ‖r(ϕ(p′, s(p′)))− r(ϕ(p, s(p)))‖
≤ ‖r(ϕ(p′, s(p′)))− r(ϕ(p′, s(p)))‖+ ‖r(ϕ(p′, s(p)))− r(ϕ(p, s(p)))‖
≤ γ‖ϕ(p′, s(p′))− ϕ(p′, s(p))‖+ γ‖ϕ(p′, s(p))− ϕ(p, s(p))‖
≤ γµ‖s(p′)− s(p)‖+ γ‖ϕ(p′, s(p))− ϕ(p, s(p))‖.

Since γµ < 1, we see that s satisfies (20), as needed.

It’s worth noting that, although the Banach fixed point theorem was utilized in proving
Lemma 2.2, it can in turn be derived from Lemma 2.2. For that, the data in the lemma need to
be specified as follows: P = Y = X, µ = θ, a is unchanged, b = ‖Φ(x̄)− x̄‖, p̄ = 0, U = IBb(0),
ϕ(p, x) = Φ(x) + p, ȳ = Φ(x̄), M(y) = y + x̄−Φ(x̄), and consequently γ = 1. All the conditions
of Lemma 2.2 hold for such data under assumptions (a)(b) of the Banach fixed point theorem,
hence for p = Φ(x̄)− x̄ ∈ U the set {x ∈ IBa(x̄) |x = M(ϕ(p, x)) = Φ(x)} consists of exactly one
point; that is, Φ has a unique fixed point in IBa(x̄). Thus, Lemma 2.2 is actually equivalent4 to
the Banach fixed point theorem.

Proof of Theorem 2.1. Choose any µ > lip(σ; 0) and γ > l̂ipx(f −h; (p̄, x̄)) such that µγ < 1,
as is possible under (14). Choose κ ≥ (γ−1−µ)−1; then κ satisfies (15). Let a, b and c be positive
numbers such that

‖σ(y)− σ(y′)‖ ≤ µ‖y − y′‖ for y, y′ ∈ IBµa+b(0),

‖ − f(p, x) + h(x) + f(p, x′)− h(x′)‖ ≤ γ‖x− x′‖ for x, x′ ∈ IBa(x̄) and p ∈ IBc(p̄),

and

(21) ‖f(p, x̄)− f(p̄, x̄)‖ ≤ b for p ∈ IBc(p̄).

4As mentioned at the end of Section 1, Theorem 2.1 and, consequently, Lemma 2.2 can be stated in a complete
metric space X. Such a formulation would be equivalent to the standard statement of the Banach fixed point
theorem in a complete metric space.
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Take b smaller if necessary so that bγ ≤ a(1 − γµ), and accordingly adjust c to ensure having
(21). Now apply Lemma 2.2 with r = σ, M = (h+F )−1 and ϕ = −f +h, keeping the rest of the
notation the same. It’s straightforward to check that the estimates in (17) and the conditions
(a) and (b) hold for the function in (18). Then, through the conclusion of Lemma 2.2 and the
observation that

x ∈ (h + F )−1(−f(p, x) + h(x)) ⇐⇒ x ∈ S(p)

we obtain that the solution mapping S in (2) has a single-valued graphical localization s at p̄
for x̄. Since (γ−1 − µ)−1 ≤ κ, the estimate in (16) is confirmed for U = IBc(p̄). That estimate
implies the continuity of s at p̄, in particular.

3 Solution Approximations and Semidifferentiability

The featured result of this section, the theorem coming next, demonstrates that if we add some
relatively mild assumptions about the function f (but still allow F to be arbitrary!), we can
develop a first-order approximation of the localized solution mapping s in Theorem 2.1. In this
way differentiability properties of s can be obtained, for example.

Theorem 3.1 (extended implicit function theorem with solution approximations). Specialize
the assumptions in Theorem 2.1 to the case where, in (a), h is a strict first-order approximation
of f with respect to x uniformly in p at (p̄, x̄); in other words, suppose (13) holds with

l̂ipx(f − h; (p̄, x̄)) = 0.

Add the further assumptions that clm (f(·, x̄); p̄) < ∞ and that f(·, x̄) has a first-order approx-
imation r at p̄. Let U be as in (16).

Then, added to the conclusions in Theorem 2.1 in relation to the Lipschitz localization σ in
(b) of that theorem is the fact that the function η : U → X defined by

(22) η(p) = σ(r(p̄)− r(p))) for p ∈ U, where σ(0) = x̄, r(p̄) = f(p̄, x̄),

is a first-order approximation at x̄ to the localized solution mapping s in Theorem 2.1.
If in addition σ is affine, i.e., σ(y) = x̄ + Ay for some A ∈ L(Y,X), and furthermore

l̂ipp(f ; (p̄, x̄)) < ∞ and the first-order approximation r is strict with respect to p uniformly
in x at (p̄, x̄), then η is a strict first-order approximation of s at p̄ in the form

η(p) = x̄ + Ar(p̄)− Ar(p) for p ∈ U.

Proof. Let the constants a and c be as in the proof of Theorem 2.1; then U = IBc(p̄). Let
V = IBa(x̄). For p ∈ U we have

(23) s(p) = σ(− f(p, s(p)) + h(s(p)))
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along with x̄ = s(p̄) = σ(0). Let µ > lip(σ; 0); then we can take κ = µ in (16). Let p ∈ U ,
p 6= p̄ and p′ = p̄ in (16), and divide both sides of (16) by ‖p− p̄‖. Take the limit as p → p̄ and
µ → lip(σ; 0). This gives

(24) clm(s; p̄) ≤ lip(σ; 0) · clm(f(·, x̄); p̄).

Then, by our assumptions, s is calm at p̄.
Consider any λ > clm(s; p̄) and ε > 0. Make the neighborhoods U and V smaller if necessary

so that, for all p ∈ U and x, x′ ∈ V ,

(25) ‖s(p)− s(p̄)‖ ≤ λ‖p− p̄‖

and

(26)

{
‖ − f(p, x) + h(x) + f(p, x̄)− h(x̄)‖ ≤ ε‖x− x̄‖,
‖f(p, x̄)− r(p)‖ ≤ ε‖p− p̄‖.

Then, for p ∈ U we get by way of (23), the Lipschitz continuity of σ, the inequality in (25), plus
(26) and the fact that h(x̄) = f(p̄, x̄), the estimate that

‖s(p)− σ(−r(p) + f(p̄, x̄))‖ = ‖σ(−f(p, s(p)) + h(s(p)))− σ(−r(p) + f(p̄, x̄))‖
≤ µ(‖ − f(p, s(p)) + h(s(p)) + f(p, x̄)− h(x̄)‖+ ‖f(p, x̄)− r(p)‖)
≤ µε‖s(p)− x̄‖+ µε‖p− p̄‖ ≤ εµ(λ + 1)‖p− p̄‖.

Since ε can be arbitrarily small, the function η defined in (22) is a first-order approximation of
s at p̄.

Moving on to the second part of the theorem, suppose σ(y) = x̄ + Ay. Again, choose any
ε > 0 and adjust the neighborhoods U of p̄ and V of x̄ so that (25) holds and

(27)

{
‖ − f(p, x) + h(x) + f(p, x′)− h(x′)‖ ≤ ε‖x− x′‖ for all x, x′ ∈ V and p ∈ U,
‖f(p′, x)− r(p′)− f(p, x) + r(p)‖ ≤ ε‖p′ − p‖ for all p′, p ∈ U and x ∈ V.

Let p, p′ ∈ U . Using (25) and (27), we obtain

‖s(p)− s(p′)− σ(−r(p) + f(p̄, x̄)) + σ(−r(p′) + f(p̄, x̄))‖
= ‖σ(−f(p, s(p)) + h(s(p)))− σ(−f(p′, s(p′)) + h(s(p′)))

−σ(−r(p) + f(p̄, x̄)) + σ(−r(p′) + f(p̄, x̄))‖
= ‖A(−f(p, s(p)) + h(s(p)) + f(p′, s(p′))− h(s(p′)) + r(p)− r(p′))‖
≤ ‖A‖‖ − f(p, s(p)) + h(s(p)) + f(p, s(p′))− h(s(p′))‖
+‖A‖‖f(p′, s(p′))− r(p′)− f(p, s(p′)) + r(p)‖
≤ ‖A‖(ε‖s(p)− s(p′)‖+ ε‖p′ − p‖) ≤ ‖A‖ε(λ + 1)‖p− p′‖,

where now λ ≥ lip(s; p̄). Since ε can be arbitrary small, the proof is complete.
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Inequality (24) gives us a bound for the calmness modulus of the localized solution mapping s
at p̄. Moreover, from the conclusion of Theorem 3.1 we obtain an exact formula for this modulus,
namely

clm(s; p̄) = clm(η; p̄).

(This follows from having clm(s − η; p̄) = 0.) Under the additional assumptions in the second
part of Theorem 3.1, an analogous formula gives us the Lipschitz modulus of s, namely

(28) lip(s; p̄) = lip(η; p̄).

Note that the assumption in the second part of Theorem 3.1 that the Lipschitz localization σ of
G−1 = (h + F )−1 at 0 for x̄ is affine can be interpreted as a sort of differentiability condition on
G−1 at 0 with A as the derivative mapping.

Corollary 3.2 (utilization of strict differentiability). Suppose in the generalized equation (1)
with solution mapping S given by (2), that x̄ ∈ S(p̄) and f is strictly differentiable at (p̄, x̄).
Assume that the inverse G−1 of the mapping

G(x) = f(p̄, x̄) + Dxf(p̄, x̄)(x− x̄) + F (x),

with G(x̄) 3 0, has a Lipschitz localization σ at 0 for x̄.
Then not only do the conclusions of Theorem 2.1 hold for a solution localization s, but also

there is a first-order approximation η to s at p̄ given by

η(p) = σ(−Dp(p̄, x̄)(p− p̄)).

If in addition F ≡ 0, then this conclusion holds with η being the strict first-order approximation
to s at p̄ given by

(29) η(p) = x̄−Dxf(p̄, x̄)−1Dp(p̄, x̄)(p− p̄),

so s is strictly differentiable at p̄; in other words, Theorem 1.5 is recovered from Theorem 3.1.

Proof. In this case Theorem 3.1 is applicable with h taken to be the linearization of f(p̄, ·) at
x̄ and r taken to be the linearization of f(·, x̄) at p̄. When F ≡ 0, σ(y) can be identified with
x̄ + Dxf(p̄, x̄)−1y, and η is the affine function given by (29). Strict first-order approximation by
an affine function means strict differentiability.

Corollary 3.2 confirms that we have achieved, in Theorem 3.1, an implicit function theorem
which adds to our extension of Robinson’s theorem in Theorem 2.1 in such a manner as to obtain
full coverage of the classical implicit function theorem, Theorem 1.1, by way of its sharpening in
Theorem 1.5.

Next, though, we’ll present an application of Theorem 3.1 that goes beyond strict differentia-
bility to strict semidifferentiability. Recall that a function g : X → Y is said to be semidifferen-
tiable at x̄ if it has a first-order approximation at x̄ of the form h(x) = g(x̄)+H(x− x̄) in which
the function H : X → Y is continuous and positively homogeneous. It is strictly semidifferen-
tiable at x̄ if this is a strict first-order approximation. Either way, H is uniquely determined; for
want of a better notation we can denote it here by D̃g.
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However, we need to adapt such terminology and notation to our framework of a function
f : P × X → Y . Semidifferentiability of f at (p̄, x̄) comes out then in terms of a first-order
approximation f(p̄, x̄) + D̃f(p̄, x̄)(p − p̄, x − x̄) of f at (p̄, x̄) in which D̃f(p̄, x̄) is a continuous,
positively homogeneous function from P × X to Y . Likewise for strict semidifferentiability.
(These notions reduce to differentiability and strict differentiability when the approximation is
affine.) It will be convenient to let

D̃p(p̄, x̄) = D̃f(p̄, x̄)(·, 0) and D̃x(p̄, x̄) = D̃f(p̄, x̄)(0, ·).

These “partial semiderivatives” give first-order approximations of f separately in p and x at
(p̄, x̄).

In these terms, Theorem 3.1 can be specialized to the following result, which was foreshadowed
in [4, Corollary 2.10], without proof, in a slightly weaker form but also an inadequate hypothesis.
That shortcoming is hereby corrected.

Theorem 3.3. For a generalized equation (1) with solution mapping S as in (2), and x̄ ∈ S(p̄),
suppose that f is strictly semidifferentiable at (p̄, x̄). Assume that the inverse G−1 of the mapping

G(x) = f(p̄, x̄) + D̃xf(p̄, x̄)(x− x̄) + F (x),

for which 0 ∈ G(x̄), has a single-valued graphical localization σ at 0 for x̄ which is semidifferen-
tiable at 0 (hence Lipschitz continuous around 0).

Then S has a Lipschitz localization s at p̄ which is semidifferentiable at p̄, and a composition
formula for the semiderivative is available:

D̃s(p̄) = D̃σ(0) ◦ (−D̃pf(p̄, x̄)).

Proof. We proceed as in the proof of Corollary 3.2 with h and r. Then

‖s(p)− s(p̄)− D̃σ(0) ◦ (−D̃pf(p̄, x̄))(p− p̄)‖
≤ ‖s(p)− σ(−r(p) + f(p̄, x̄))− s(p̄)− σ(0)‖

+‖σ(−D̃pf(p̄, x̄)(p− p̄))− σ(0)− D̃σ(−D̃pf(p̄, x̄)(p− p̄))‖.

According to Theorem 3.1 the first term on the right side of this inequality is of order o(‖p− p̄‖)
when p is close to p̄. Such a property holds also for the second term, since σ is assumed to be
semidifferentiable. It remains only to observe that the composition of two continuous, positively
homogeneous mappings is again continuous and positively homogeneous.

When f has the special form in the classical inverse function theorem, we obtain from Theo-
rems 2.1 and 3.1 an extended inverse function theorem which generalizes Theorem 1.3 to include
a set-valued mapping F .

Theorem 3.4 (inverse version). In the case of the generalized equation (1) where f(p, x) =
g(x) − p for a function g : X → Y = P , so that S(p) = {x | p ∈ g(x) + F (x)} = (g + F )−1(p),
consider any pair (p̄, x̄) with x̄ ∈ S(p̄). Let h be any strict first-order approximation to g at x̄.
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Then (g+F )−1 has a Lipschitz localization s at p̄ for x̄ if and only if (h+F )−1 has a Lipschitz
localization σ at p̄ for x̄, in which case σ is a first-order approximation of s at p̄ and

lip(s; p̄) = lip(σ; p̄).

If, in addition, σ(y) is affine, σ(y) = x̄+Ay, then s is strictly differentiable at p̄ with Ds(p̄) = A.

Proof. For the “if” part, suppose that (h+F )−1 has a Lipschitz localization σ at p̄ for x̄. Then
from (16) we get lip(s; p̄) < ∞. The “only if” part is completely analogous because g and h play
symmetric roles in the statement. Through the observation that r(p) = g(x̄) − p + p̄, it’s clear
that the rest follows from Theorem 3.1 and (28).

A version of Theorem 3.4 with semidifferentiability, parallel to Theorem 3.3, could be stated
as well.
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