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1 Introduction

For a wide range of applications in finance and engineering, it is desirable to make decisions which
minimize “risk” within the circumstances that are faced. There are many different ways of looking at
risk and quantifying it, however. Risk can be identified either with the extent to which an outcome can
deviate from expectations or with some assessment of the potential for absolute loss. The first of these
two approaches to risk has long been central to much of portfolio analysis, especially in relying on the
historical expectations and standard deviations of securities to put together “master funds” that may
summarize the tendencies in a financial market [12]. The second approach, on the other hand, brings
in notions like value-at-risk, conditional value-at-risk, and the “coherent measures of risk” of Artzner,
Delbaen, Eber and Heath [3]. It is seen also in models that introduce penalties for failure to meet
performance targets and aim at minimizing the expected values of those penalties.

In our recent paper [20], we worked at extending the first approach. We showed that most of
the fundamental results of portfolio theory remain valid, in appropriate formulation, when standard
deviation is replaced by a more general, nonstandard “measure of deviation,” which does not have
to be symmetric about the mean. We ascertained the existence of generalized “master funds” and
determined their behavior in relation to the risk-free rate of return. Although other researchers had
already ventured in that direction in special cases, we were able to proceed much further, avoiding
restrictive assumptions. In [19], we delved more deeply into deviation measures and their partial
connection with coherent risk measures, providing axiomatic foundations and numerous examples.
These included measures derived from conditional value-at-risk and others coming directly or one-
sidedly from Lp norms.

Here, we continue in that vein by determining conditions for optimality in problems where general
deviation measures are minimized. In the setting we work with, “portfolios” are construed as combi-
nations x1r1 + · · · + xnrn of given random variables ri, which could stand for the uncertain rates of
return of some collection of securities. The task is choose the coefficients xi, subject to constraints
on expectation or other indicators, that optimize x1r1 + · · ·+ xnrn with respect to some specification
of the deviation measure. Having characterized the desired coefficients in this general setting, we go
on to apply the results to the more basic portfolio model we studied in [20]. In that way we arrive in
particular at conditions that describe the generalized master funds developed in [20].

In classical portfolio theory, where standard deviation is minimized, the conditions describing a
master fund furnish what is called the capital asset pricing model (CAPM). Those conditions, in terms
of expected returns and covariances, are believed to offer guidance on predicting the market behavior
of financial instruments [25, 24]. An overview of CAPM results is available in [8]. Extensions to
account for higher moments than variance were made in [23].

The classical CAPM relations are widely used in factor analysis, but what should be the status of
the corresponding relations that come from different, nonstandard deviation measures, yielding a whole
array of different master funds? This question has no simple answer. Whether certain master funds
beyond the classical may turn out to be equally, or more, valuable in factor analysis, individually or
collectively, is an issue outside the scope of this paper. To facilitate comparisons, however, we anyway
present our CAPM-like results with their generalized β coefficients in a format similar to the classical,
from which the results of other researchers on particular examples of nonstandard deviation measures
can readily be derived. Covered in that manner are results associated with mean-lower partial moments
[4, 11], conditional value-at-risk [26, 5, 2], and mean absolute deviation [9], in particular.

In contrast though to such earlier work, our CAPM-like results have far fewer restrictions, even in
those special cases. They do not rely on the existence of density functions for the distributions that
arise, or on the absence of probability atoms (corresponding to jumps in the distribution functions),
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which would preclude applications to discrete random variables or even to financial instruments in-
volving options (as we demonstrated in [20]). They do not require the differentiability of the deviation
with respect to the parameters specifying the relative weights of the instruments in the portfolio.

After reviewing the fundamentals of deviation measures in the remainder of this section, we present
in Section 2 a number of key examples of deviation measures and their associated risk envelopes. New
information is provided about the “risk identifers” that can be extracted from these risk envelopes
in assessing a specific random variable. We go on then, in Section 3, to the characterization of
minimum deviation, where we concentrate on a system of linear constraints on the coefficients xi in
a portfolio random variable x1r1 + · · · + xnrn. We develop necessary and sufficient conditions for
optimality in terms of risk identifiers. These risk identifiers relate closely to subgradients in the sense
of convex analysis but furnish probabilistic interpretations which are neatly tailored to deviation and
are especially attractive in this setting.

This work on optimality draws on unpublished material in our 2001 working paper [18]. Recently,
Ruszczynski and Shapiro [22] have produced optimality conditions of subgradient type for “convex
risk functionals” which extend beyond the coherent risk measures of [3] and, through a certain trans-
formation [18, 19], could be viewed as encompassing deviation measures. They analyzed optimality
for composite functionals connected to nonlinear as well as linear constraint set-ups for their risk
functionals and made other innovations besides. They did not, however, get into the specifics of what
their results would say if translated to deviation measures and risk identifiers, nor did they turn an
eye to the specifics of portfolios and the development of CAPM-like results such as we give in Sections
4 and 5.

We proceed now with some background in notation and definitions. For the purposes of this paper,
a random variable (r.v.) will be an element of L2(Ω) = L2(Ω,M, P ), where Ω denotes the designated
space of future states ω, M is a field of sets in Ω, and P is a probability measure on (Ω,M). The
inner product between two elements X and Y in L2(Ω) is

〈X, Y 〉 = E[XY ] =
∫
Ω

X(ω)Y (ω)dP (ω).

We consistently use C to stand equally for a real number or the corresponding constant r.v. An
inequality like X ≥ C or X ≤ Y is to be interpreted in an almost everywhere sense.

We let supX and inf X stand for the essential supremum and infimum of X. (The first might be
∞, whereas the second might be −∞.) We adopt the notation that

X = X+ −X− with X+ = max{0, X}, X− = max{0,−X}

By allowing ∞ to be a value of

||X||p =

{
(E[Xp])1/p when 1 ≤ p < ∞,
sup |X| when p = ∞,

we are able to utilize these Lp norm expressions for all p, even though we work only in L2(Ω).
In line with our earlier efforts in [20], [19] (and [18]), we take a deviation measure to be a functional

D : L2(Ω) → [0,∞] satisfying the axioms
(D1) D(X + C) = D(X) for all X and constants C,
(D2) D(0) = 0, and D(λX) = λD(X) for all X and all λ > 0,
(D3) D(X + X ′) ≤ D(X) +D(X ′) for all X and X ′,
(D4) D(X) > 0 for all nonconstant X, whereas D(X) = 0 for constant X.

3



These properties are modeled after those of standard deviation, but they do not require symmetry:
perhaps D(−X) 6= D(X). Indeed, a major motivation for moving to nonstandard deviations is the
need for flexibility in treating outcomes with X(ω) < EX different from ones with X(ω) > EX. They
imply in particular that D is a convex functional. On the other hand, they allow D(X) to be ∞ in
some situations. The import of axioms D1–D4 is thoroughly discussed in [19] along with other ways
of constituting them.

A deviation measure D is called lower semicontinuous if every subset of L2(Ω) having the form
{X | D(X) ≤ c} for some c ∈ IR is closed. (These sets are convex, so closedness in the weak topology
is the same as closedness in the strong topology.) When a lower semicontinuous deviation measure
D is finite, i.e. has D(X) < ∞ for all X ∈ L2(Ω), it must actually be continuous on L2(Ω); cf. [19,
Proposition 2]. Of course, when Ω is a finite set, so that L2(Ω) is finite-dimensional, finiteness already
implies continuity.

Lower semicontinuous deviation measures D on L2(Ω) have an important dualization in terms of
subsets Q of L2(Ω), called risk envelopes, which satisfy

(Q1) Q is a nonempty, closed and convex,
(Q2) for every nonconstant X there is some Q ∈ Q having E[XQ] < EX,
(Q3) EQ = 1 for all Q ∈ Q.

We established in [19, Theorem 1] that there is a one-to-one correspondence between such D and Q
in which

D(X) = EX − inf
Q∈Q

E[XQ], (1.1)

and on the other hand,
Q =

{
Q

∣∣∣D(X) ≥ EX − E[XQ] for all X
}
. (1.2)

Note that EX−E[XQ] can equivalently be written at E[(EX−X)Q] under Q3. A variety of examples
of D ↔ Q pairs will be recalled in the next section.

The relationship between a deviation measure D and its risk envelope Q can best be understood
in the case where D has the additional property of being lower range dominated , which means

(D5) D(X) ≤ EX − inf X for all X.
The significance of this property stems from our result in [19, Theorem 1] that, on top of the other
axioms, one has

Q ≥ 0 for all Q ∈ Q ⇐⇒ D satisfies D5. (1.3)

Then each Q ∈ Q can be viewed as the density dP ′/dP of some probability measure P ′ which may be
an alternative to P , and E[XQ] comes out as the expectation of X with respect to P ′ instead of P .
In that setting, Q stands for a set of alternative probability measures forming a kind of neighborhood
of P , and formula (1.1) expresses D(X) as giving the greatest amount by which the expectation under
P ′ can fall short of the expectation under P .

A sharper understanding of the relationship between D and Q in (1.1) and (1.2) can be achieved
through study of an additional concept which we bring to center stage here for the first time.

Definition 1 (risk identifiers). For each X ∈ L2(Ω), the elements Q of the set

Q(X) = argmin
Q∈Q

E[XQ] = argmax
Q∈Q

E[(EX −X)Q] =
{

Q ∈ Q
∣∣∣D(X) = EX − E[XQ]

}
, (1.4)

will be called the risk identifiers for X with respect to D.

In the framework of coherency with its probabilistic interpretation, the risk identifiers for X are
the densities Q of the probability measures P ′, among the admitted alternatives to P in association
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with D, that bring out the worst in X. Other insight into how to think about risk identifiers can be
gained by noting that the r.v. EX −X stands for the downside of X and observing that

E[ (EX −X)Q ] = covar (EX −X, Q) = covar (−X, Q) (1.5)

(through the rule that E[Y Z] = covar(Y, Z) when EY = 0 or EZ = 0). The elements Q ∈ Q(X) are
thus the ones that track the downside of X as closely as possible.

Risk identifiers will have a crucial role for us in descriptions of optimality. It will be important,
therefore, to know what they are for given D and X. Trivially,

Q(X) = Q when X is constant, (1.6)

so effort needs mainly to be directed toward the determination of Q(X) for nonconstant X.
The relationship between deviation measures D and the coherent risk measures of Artzner et al. in

[3] has been explained fully in our paper [19]. However, a brief overview may help in placing our current
efforts in a broader context. In the definition we adopt, recast from [3] with minor modifications, a
coherent risk measure is a functional R : L2(Ω) → (−∞,∞] that satisfies

(R1) R(X + C) = R(X)− C for all X and constants C,
(R2) R(0) = 0 and R(λX) = λR(X) for all X and all λ > 0,
(R3) R(X + X ′) ≤ R(X) +R(X ′) for all X and X ′,
(R4) R(X) ≤ R(X ′) when X ≥ X ′.

On the other hand, a strictly expectation bounded risk measure in our parlance is a functional R that
satisfies R1, R2, R3 and

(R5) R(X) > E[−X] for all nonconstant X, whereas R(X) = E[−X] for constant X.
As laid out in [19], there is a one-to-one correspondence between deviation measures D and strictly
expectation bounded risk measures R in which

D(X) = R(X − EX), R(X) = E[−X] +D(X). (1.7)

In this correspondence, R is coherent if and only if D is lower range dominated as in D5. Lower
semicontinuity, or continuity, carries over from one functional to the other, of course.

In general, a risk measure R can be coherent without being strictly expectation bounded, or vice
versa, but the risk measures of greatest interest have both properties. This will be clear from the
examples below in which D is identified as being lower range dominated.

Despite the similarities in (1.7), minimizing a deviation measure is inherently different from mini-
mizing a risk measure, in which thresholds of risk acceptance can lead to the optimal value being −∞
and the nonexistence therefore of an optimal solution. We leave the investigation of such phenomena
for later work.

2 Key Deviation Examples With Their Risk Identifiers

Some of the potentially most interesting deviation measures D and their associated risk envelopes Q
will now be listed. These examples are taken from our paper [19], where even more such pairings
are developed and their properties are elaborated. However, the description of the corresponding risk
identifiers Q ∈ Q(X) in each case is offered here as a fresh contribution. Because of the general rule
for constant X in (1.6), only the case of nonconstant X requires attention.
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Example 1 (risk identifiers for standard deviation and semideviations). An instance of a finite,
continuous deviation measure on L2(Ω) with its associated risk envelope is furnished by standard
deviation:

D(X) = σ(X) = ||X − EX||2, Q =
{

Q
∣∣∣ EQ = 1, σ(Q) ≤ 1

}
. (2.1)

The risk identifier set for any nonconstant X is then the singleton

Q(X) =
{

1− σ(X)−1[X − EX]
}
. (2.2)

Another such pair is furnished by standard lower semideviation,

D−(X) = σ−(X) = || [X − EX]− ||2, Q− =
{

Q
∣∣∣ EQ = 1, inf Q > −∞, ||Q− inf Q||2 ≤ 1

}
, (2.3)

where the risk identifier set for any nonconstant X is the singleton

Q−(X) =
{

1− σ−(X)−1
(
E[X − EX]− − [X − EX]−

)}
. (2.4)

Yet another such pair is furnished by standard upper semideviation,

D+(X) = σ+(X) = || [X − EX]+ ||2, Q+ =
{

Q
∣∣∣ EQ = 1, supQ < ∞, || supQ−Q||2 ≤ 1

}
, (2.5)

where the risk identifier set for any nonconstant X is the singleton

Q+(X) =
{

1− σ+(X)−1
(
[X − EX]+ − E[X − EX]+

)}
. (2.6)

Of these three deviation measures, only D− is lower range dominated, in general.

Detail. These deviation measures and risk envelopes fit into a category covered by [19, Example
7]. The risk envelope in (2.1) has the equivalent description that Q ∈ Q if and only if EQ = 1 and
there is a constant C for which ||C − Q||2 ≤ 1. In terms of Z = C − Q, where having EQ = 1
corresponds to having C = 1 + EZ, we can think of Q as consisting of all Q of the form 1 + EZ − Z
with ||Z||2 ≤ 1. Maximizing E[(EX − X)Q] over Q ∈ Q for arbitrary X, as we wish to do in
order to determine Q(X), can be translated to maximizing E[(EX − X)(1 + EZ − Z)] subject to
||Z||2 ≤ 1. Since E[(EX − X)(1 + EZ − Z)] = E[(X − EX)Z], this is the same as choosing Z to
maximize E[(X − EX)Z] subject to ||Z||2 ≤ 1. For nonconstant X, the r.v. X − EX is not the zero
r.v. and the maximum is uniquely attained when Z = (X − EX)/||X − EX||2 = σ(X)−1(X − EX).
Correspondingly, then, the unique Q ∈ Q(X) is Q = 1 + EZ − Z = 1− σ(X)−1[X − EX].

The pattern of argument for the other deviation measures is similar. The risk envelope Q− in
(2.3) can be described equivalently as the set of Q for which EQ = 1 and there is a constant C ≤ Q
such that ||Q − C||2 ≤ 1. The same change of variables turns this into the set of Q having the form
1 + EZ −Z for some Z ≤ 0 with ||Z||2 ≤ 1. The maximization of E[(EX −X)Q] over Q ∈ Q thereby
translates to the maximization of E[(X−EX)Z] subject to Z ≤ 0 and ||Z||2 ≤ 1. For nonconstant X,
the unique solution is Z = −[X − EX]−/||[X − EX]−||2, which yields the singleton Q−(X) in (2.4).

For D+, the only difference is that we instead maximize E[(X − EX)Z] subject to Z ≥ 0 and
||Z||2 ≤ 1. For nonconstant X, the maximum is attained uniquely by Z = [X −EX]+/||[X −EX]+||,
and we get Q+(X) as in (2.6).

In order to express the risk identifiers in the next example succinctly, we introduce the notion of
the sign of an r.v. Y by:

signY = set of all Z ∈ L2(Ω) such that


Z(ω) = 1 when Y (ω) > 0,
Z(ω) = −1 when Y (ω) < 0,
Z(ω) ∈ [−1, 1] when Y (ω) = 0

(2.7)
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(almost surely). Note that if Y (ω) = 0 with probability 0, signY consists of a Z that is essentially
unique (i.e., almost surely), taking on only 1 or −1 according to the positivity or negativity of Y .

Example 2 (risk identifiers for mean absolute deviation and semideviations). An instance of a finite,
continuous deviation measure on L2(Ω) with its associated risk envelope is furnished by mean absolute
deviation,

D(X) = E|X − EX| = ||X − EX||1, Q =
{

Q
∣∣∣ EQ = 1, supQ− inf Q ≤ 2

}
. (2.8)

The risk identifer set for any nonconstant X is given then in the notation (2.7) by

Q(X) =
{

Q = 1 + EZ − Z
∣∣∣ Z ∈ sign [X − EX]

}
. (2.9)

The same holds also for lower and upper semideviations

D−(X) = ||[X − EX]−||1, D+(X) = ||[X − EX]+||1, (2.10)

but actually ||[X − EX]−||1 = ||[X − EX]+||1 = 1
2 ||X − EX||1, so that D− and D+ offer little that is

different, except that they are lower range dominated, whereas D is not. Their risk envelopes Q− and
Q+ come out in the rescaled form

Q− = Q+ =
{

Q
∣∣∣ EQ = 1, supQ− inf Q ≤ 1

}
, (2.11)

where the conditions entail Q ≥ 0. Their risk identifiers similarly come out as

Q−(X) = Q+(X) =
{

Q = 1 + 1
2(EZ − Z)

∣∣∣ Z ∈ sign [X − EX]
}
. (2.12)

Detail. Again, these deviation measures and risk envelopes fit into the broader statement in [19,
Example 7], where the lower range dominance is addressed as well. The lower range dominance can
also be confirmed through the risk envelope characterization (1.3) for that property by noting that if
EQ = 1 then necessarily inf Q ≤ 1 ≤ supQ, so the inequality in (2.11) entails inf Q ≥ 0, which is the
same as Q ≥ 0.

We concentrate now on the characterization of the risk identifiers. In (2.8), having supQ−inf Q ≤ 2
corresponds to having minC ||C−Q||∞ ≤ 1, inasmuch as that minimum equals 1

2(supQ− inf Q). As in
Example 1, we approach the maximization in the definition of Q(X) by using the change of variables
Q = 1 + EZ − Z to translate it into the maximization of E[(EX − X)Z] subject to ||Z||∞ ≤ 1,
i.e., −1 ≤ Z ≤ 1. This maximum is achieved by Z if and only if Z(ω) = 1 almost surely when
X(ω) − EX > 0, whereas Z(ω) = −1 almost surely when X(ω) − EX < 0 (and both cases must
indeed occur with positive probability for nonconstant X). This means Z ∈ sign [X − EX]. The
corresponding elements Q ∈ Q are then the ones described in (2.9).

The very definition of EX entails having E[X − EX]+ = E[X − EX]−, and since E|X − EX| =
E([X − EX]+ + [X − EX]−), it follows that || [X − EX+ ||1 = || [X − EX− ||1 = 1

2 ||X − EX||1.
The assertions about risk envelopes and risk identifiers for these semideviations are supported by the
principle that when a deviation measure D is rescaled to D′ = λD for some λ > 0, its risk envelope Q
is replaced by the set of elements Q′ = (1− λ) + λQ as Q ranges over Q; cf. [19, Proposition 4(c)].

For the next example we will make use of the generalized median of a random variable X, this
being defined by

medX = argmin
C

E|X − C| = argmin
C

||X − C||1, (2.13)
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which is the same as

medX =
{

C
∣∣∣ prob [X ≤ C] ≥ prob [X > C], prob [X ≥ C] ≥ prob [X < C]

}
.

Because ||X−C||1 thus has the same value for every C ∈ medX (when med X is not just a singleton),
we denote that common value simply by ||X −medX||1 so that

||X −medX||1 = min
C
||X − C||1 by definition.

Example 3 (risk identifiers for worst-case deviation and semideviations). An instance of a lower semi-
continuous (but not necessarily finite) deviation measure on L2(Ω) with its risk envelope is furnished
by worst-case deviation,

D(X) = sup |X − EX| = ||X − EX||∞, Q =
{

Q
∣∣∣ EQ = 1, ||Q−medQ||1 ≤ 1

}
, (2.14)

The corresponding risk identifier set for nonconstant X is characterized by

Q ∈ Q(X) ⇐⇒ Q = 1 + EZ − Z with


E|Z| = 1,
Z+(ω) = 0 when X(ω)− EX < ||X − EX||∞,
Z−(ω) = 0 when EX −X(ω) < ||X − EX||∞

(2.15)

(almost surely). Another instance of such a pair is furnished by lower worst-case deviation,

D−(X) = EX − inf X = || [X − EX]− ||∞, Q− =
{

Q
∣∣∣ EQ = 1, Q ≥ 0

}
, (2.16)

where the risk identifier set for any nonconstant X is characterized by

Q ∈ Q−(X) ⇐⇒
{

Q ≥ 0, EQ = 1,
Q(ω) = 0 when X(ω) > inf X.

(2.17)

Yet another instance of such a pair is furnished by upper worst-case deviation,

D+(X) = supX − EX = || [X − EX]+ ||∞, Q+ =
{

Q
∣∣∣ EQ = 1, supQ ≤ 2

}
, (2.18)

where the risk identifier set for any nonconstant X is characterized by

Q ∈ Q+(X) ⇐⇒
{

Q ≤ 2, EQ = 1,
Q(ω) = 2 when X(ω) < supX.

(2.19)

Of these three deviation measures, D− is lower range dominated but the others are generally not.

Proof. Once more, these deviation measures and their risk envelopes emerge from [19, Example 7].
The condition ||Q−medQ||1 ≤ 1 in the formula for Q in (2.14) corresponds to minC ||C−Q||1 ≤ 1, as
seen through the definition of medQ above. To get the risk identifier formula in (2.15), we use this to
view the maximization of E[(EX −X)Q] over Q ∈ Q as referring to the maximization over all Q for
which EQ = 1 and there is a constant C such that ||C −Q||1 ≤ 1. We approach that as in Examples
1 and 2 by changing the maximization variable to Z under Q = 1 + EZ − Z, where having ||Z||1 ≤ 1
corresponds to having Q ∈ Q. Under this change of variables, E[(EX−X)Q] becomes E[(X−EX)Z],
which we have to maximize subject only to ||Z||1 ≤ 1. Since X is not constant, cannot furnish the
maximum without having ||Z||1 ≤ 1, i.e., E|Z| = 1, so that |Z| is a probability density. Attainment
corresponds to having this density concentrated (almost surely) in the subset of Ω where |X(ω)−EX|
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equals sup |X −EX|, with the sign of Z(ω) conforming to the sign of X(ω)−EX. This prescription
for Z is captured by the conditions in (2.15), and the corresponding elements Q = 1 + EZ − Z then
make up Q(X).

The case of Q− in (2.16) is simpler. We can directly appeal to the fact that the elements Q of
Q−(X) minimize E[XQ] subject to Q ≥ 0, EQ = 1, and see that they have the form in (2.17).

The condition supQ ≤ 2 in the formula for Q+ in (2.18) is equivalent in the presence of EQ = 1 to
supQ−EQ ≤ 1 and therefore to the existence of a constant C ≥ Q with ||C−Q||1 ≤ 1. In this case, the
maximization of E[(EX−X)Q] over Q ∈ Q converts under the change of variables Q = 1+EZ−Z to
the maximization of E[(X−EX)Z] subject to Z ≥ 0 and EZ ≤ 1. Since X−EX must take on positive
values with nonzero probability when X is not constant, the maximum is attained by the nonnegative
elements that have EZ = 1 and are concentrated in {ω |X(ω) = supX}. The corresponding elements
Q are given then by (2.19).

Of course, when the state space Ω is finite, the deviation measures in Example 3 really are finite
on L2(Ω) and therefore also continuous.

Our next examples draw on the concept of the conditional value-at-risk of X at a level α ∈ (0, 1),
which has several equivalent expressions, reviewed now briefly. First, in terms of the cumulative
distribution function FX on IR, recall that the value-at-risk of X at level α is defined by

VaRα(X) = − inf{ z |FX(z) > α}. (2.20)

The corresponding conditional value-at-risk , CVaRα(X) equals the conditional expectation of −X
subject to −X > VaRα(X) when FX is continuous at z = −VaRα(X). But in general, to account
properly for a possible discontinuity, it needs to be construed in expectation terms as −

∫∞
−∞ zdFα

X(z),
where Fα

X gives the lower α-tail distribution associated with X; namely Fα
X(z) = α−1FX(z) when

z < VaRα(X), but Fα
X(z) = 1 when z ≥ VaRα(X). For the details, see [17], where the theoretical

foundations for conditional value-at-risk were first laid out in full generality; the term “conditinal
value-at-risk” itself originated in our earlier paper [16]. Alternatively there is the expression

CVaRα(X) =
1
α

∫ α

0
VaRp(X)dp, (2.21)

which, before it was identified as representing CVaRα(X), was used by Acerbi [1] to define what he
called “shortfall.” Furthermore there is the minimization formula we brought to light in [16, 17],

CVaRα(X) = min
C

{
C + α−1E[X + C]−

}
, (2.22)

which promotes to major simplifications in computing solutions to optimization problems involving
CVaR expressions. It is notable that in (2.22) the argmin set is a C interval having VaRα(X) as its
right endpoint; cf. [16, 17]. Still more on conditional value-at-risk can be found in [13] and the book
of Föllmer and Schied [7] (who altered the name from “conditional” to “average”).

Example 4 (risk identifiers for deviations from conditional value-at-risk). For any α ∈ (0, 1), a finite,
continuous, lower range dominated deviation measure is furnished with its risk envelope by

Dα(X) = CVaRα(X − EX), Qα =
{

Q
∣∣∣ EQ = 1, 0 ≤ Q ≤ α−1

}
. (2.23)

The risk identifier set for any nonconstant X is characterized then by

Q ∈ Qα(X) ⇐⇒


0 ≤ Q ≤ α−1, EQ = 1,
Q(ω) = 0 when X(ω) > −VaRα(X),
Q(ω) = α−1 when X(ω) < −VaRα(X)

(2.24)
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(almost surely). More generally, for any levels αk in (0, 1) and weights λk > 0 with
∑m

k=1 λk = 1, a
finite, continuous, lower range dominated deviation measure D and its risk envelope Q are given in
terms of deviation measures Dαk

and their risk envelopes Qαk
in the preceding notation by

D(X) =
∑m

k=1
λkDαk

(X), Q =
{

Q
∣∣∣ Q =

∑m

k=1
λkQk with Qk ∈ Qαk

}
. (2.25)

The risk identifier sets are given then by

Q ∈ Q(X) ⇐⇒ Q =
∑m

k=1
λkQk for some choice of Qk ∈ Qαk

(X). (2.26)

Detail. The risk envelope Qα for Dα was already been noted in [19, Example 4]. In determining
Qα(X) for nonconstant X from the minimization or E[XQ] subject to 0 ≤ Q ≤ α−1 and EQ = 1, we
recall that, by the definition of VaRα(X), we have

prob
{

ω
∣∣∣ X(ω) < −VaRα(X)

}
≤ α, prob

{
ω

∣∣∣ X(ω) ≤ −VaRα(X)
}
≥ α.

It is clear, therefore, that the minimum in question is achieved by Q if and only if, in addition to
satisfying 0 ≤ Q ≤ α−1 and EQ = 1, it takes on the highest possible value α−1 almost surely when
X(ω) < −VaRα(X), but on the other hand vanishes almost surely when X(ω) > −VaRα(X).

The pair in (2.25) specializes [19, Proposition 4]. To get the risk identifier set for X, we only have
to observe that the minimum of E[X(λ1Q1 + · · ·+ λrQr)] over all Qk ∈ Qk, k = 1, . . . , r, is achieved
by separately minimizing E[XQk] over Qk ∈ Qk for k = 1, . . . , r.

The deviation measure in (2.23) of Example 4 has previously been investigated by Bertsimas,
Lauprete and Samarov [5], but only relative to special finite-dimensional subspaces of L2(Ω). The
distribution functions of the nonconstant elements X in these subspaces must be continuous and
(strictly) increasing between 0 and 1. No such restrictions are imposed here. Our result is applicable
to discretely distributed random variables too, for instance.

3 Conditions for Minimum Deviation

We now take up the study of optimality in problems where a deviation measure D is minimized over
a subset X of L2(Ω). With a view towards applications in finance in particular, we focus on the case
where X is comprised of linear combinations of a given collection or r.v.’s,

ri ∈ L2(Ω), i = 1, . . . , n,

which may give the rates of return of various financial instruments indexed by i. Thus, we take

X =
{

X = x1r1 + · · ·+ xnrn

∣∣∣ (x1, . . . , xn) ∈ S
}
, (3.1)

where S is in turn a subset or IRn giving the admissible coefficient vectors (x1, . . . , xn). Moreover we
suppose here that S is described by linear constraints on the coefficients:

x = (x1, . . . , xn) ∈ S ⇐⇒
∑n

i=1
akixi

{
≥ bk for k = 1, . . . , s,
= bk for k = s + 1, . . . ,m.

(3.2)

The optimization problem we aim to study can be posed then as one in the variables xi:

(P) minimize D(x1r1 + · · ·+ xnrn) over all x = (x1, . . . , xn) in S.
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In the financial setting, each choice of a vector x = (x1, . . . , xn) in S corresponds to an admissible
portfolio formed from the available instruments i = 1, . . . , n. The uncertain rate of return of this
x-portfolio is given by the r.v. X = x1r1 + · · · + xnrn. The constraints (3.2) could involve expecta-
tions or requirements like xi ≥ 0 (for instruments that cannot be shorted). They could also enforce
diversification requirements.

Theorem 1 (existence of deviation-minimizing portfolios). In problem (P) with D lower semicontin-
uous and such that D is finite somewhere on X , an optimal solution x∗ always exists.

Proof. Let S be the finite-dimensional subspace of L2(Ω) generated by the constant functions along
with the r.v.’s ri. We can identify (P) with minimizing over X (which is a polyhedral convex subset
of S) the restriction of D to S (which is a lower semicontinuous convex function on S that is finite
somewhere on X ). In that finite-dimensional setting, we can apply the following criterion in [14, Cor.
27.3.1] for guaranteeing the existence of an X∗ ∈ X at which the minimum of D over X is attained:
if an element Y ∈ S has the property that

D(X + Y ) ≤ D(X) for all X ∈ S, (3.3)

then −Y also has that property, i.e.,

D(X − Y ) ≤ D(X) for all X ∈ S. (3.4)

In our setting, (3.3) entails D(Y ) ≤ D(0) = 0 because S contains the zero r.v. in particular, so that
Y must be a constant C by D4. Then, however, (3.4) holds as well because S contains the constant
r.v.’s C, and D(X ± C) = D(X) by D1.

Although problem (P) has a familiar appearance, with its system of m linear constraints on n
variables, the difficulty to be kept in mind is that the objective function

fD(x) = fD(x1, . . . , xn) = D(x1r1 + · · ·+ xnrn) (3.5)

cannot be counted on as being differentiable. This phenomenon can be traced to the risk envelope
representation of D in (1.1) in recalling that Q can even be a polyhedral convex set when Ω is a finite
set, and then only the finitely many extreme points of Q really need to enter in the maximization.
However, another source for a lack of differentiability of fD in finance has been demonstrated out at
the end of our paper [20]. The trouble there arises because of options. The underlying ri’s come from
derivative instruments, which can create portfolios having discontinuously distributed returns.

The convexity of fD, which follows from axioms D2 and D3 on D, does at least entail fD being
differentiable almost everywhere when it is finite on IRn [14, Theorem 25.1]. But that is of little help,
since there is no way to guarantee that a solution x∗ lies at one of the points of differentiability.

Rather than getting into the properties of fD associated with its expression in terms of D, our
tactic for handling this difficulty will be to work directly and more simply with D itself. Convex
analysis provides a robust substitute for the differentiability of D in the notion of a subgradient. For
D, like any other convex functional on L2(Ω), a subgradient at X is by definition an element Y of
L2(Ω) such that

D(X ′) ≥ D(X) + E[(X ′ −X)Y ] for all X ′. (3.6)

The set of such subgradients Y at X is denoted by ∂D(X). It is always a closed, convex set, possibly
reducing to a single element, but in some situations it could be empty, as in particular whenD(X) = ∞.
The representation of D in (1.1) leads through the basics of convex analysis to a convenient description
of subgradients by way of the risk envelope Q, or more specifically, the various risk identifier sets Q(X).
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Proposition 1 (subgradients of deviation measures). For a lower semicontinuous deviation measure
D, the set of subgradients of D at X is expressible through the risk identifier set Q(X) as

∂D(X) = 1−Q(X) =
{

Y
∣∣∣ Y = 1−Q for some Q ∈ Q(X)

}
. (3.7)

In particular, therefore,

∂D(X) = 1−Q =
{

Y
∣∣∣ Y = 1−Q for some Q ∈ Q

}
when X is constant. (3.8)

Proof. Under the change of variables Q = 1− Y and X ′ = X + Z, the subgradient inequality (3.6)
for Y becomes the condition on Q that

D(X + Z) ≥ D(X) + EZ − E[ZQ] for all Z. (3.9)

Our task is to demonstrate that this is equivalent to having Q ∈ Q(X). First, suppose Q ∈ Q(X).
Then by (1.1) and (1.4) we have D(X) = E[(EX −X)Q] while, for all Z,

D(X + Z) ≥ E[(E(X + Z)− (X + Z))Q] = E[(EX −X)Q] + EZ − E[ZQ].

This gives (3.9). Second, suppose instead that Q satisfies (3.9). From the special case of (3.9) where
Z = −X, so D(X + Z) = 0 by D2, we have

D(X) ≤ EX − E[XQ] < ∞. (3.10)

On the other hand, because D(X +Z) ≤ D(X)+D(Z) by D3, we see from (3.9) that D(X)+D(Z) ≥
D(X) + EZ −E[ZQ], where the finiteness of D(X) guaranteed by (3.10) allows cancellation of D(X)
from both sides. This being true for all Z, we have

D(Z) ≥ EZ − E[ZQ] for all Z, (3.11)

hence Q ∈ Q by (1.2). Moreover by combining the inequality in (3.11) for Z = X with the one in
(3.10) we get D(X) = EX −E[XQ], so actually Q ∈ Q(X) by (1.4). The special case in (3.8) reflects
(1.6).

Proposition 2 (subgradient condition for optimality). In the minimization of a lower semicontinuous
deviation measure D over X , a subset of L2(Ω) that is convex and closed, a sufficient condition for an
element X∗ to be optimal is that

X∗ ∈ X and there exists Y ∗ ∈ ∂D(X∗) such that E[XY ∗] ≥ E[X∗Y ∗] for all X ∈ X . (3.12)

This condition is necessary for X∗ to be optimal when D is not just lower semicontinuous but also
finite (hence continuous).

Proof. This general form of optimality result would be valid for minimizing any lower semicontinuous
convex functional, aside from its expression adapted to the expectation inner product we are utilizing
here in L2(Ω). The sufficiency is elementary: by combining the subgradient inequality behind having
Y ∗ ∈ ∂D(X∗), namely that D(X) ≥ D(X∗) + E[(X − X∗)Y ∗] for all X ∈ L2(Ω), together with the
inequality in (3.12) that E[(X−X∗)Y ∗] ≥ 0 for all X ∈ X , we see that D(X) ≥ D(X∗) for all X ∈ X .
The necessity is not so immediate but is likewise well known; see [15, Example 1, p. 57].
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Theorem 2 (portfolios that minimize deviation). Let D be lower semicontinuous. Suppose that
x∗ = (x∗1, . . . , x

∗
n) satisfies the constraints in (3.2), and let X∗ = x∗1r1 + · · · + x∗nrn. A sufficient

condition then for x∗ to be optimal in problem (P) is the existence of a risk identifier

Q∗ ∈ Q(X∗) = Q(x∗1r1 + · · ·+ x∗nrn) (3.13)

together with multipliers λ1, . . . , λm such that

E
[
(Eri − ri)Q∗

]
=

∑m

k=1
λkaki for i = 1, . . . , n (3.14)

with λk arbitrary in sign for k ∈ {s + 1, . . . ,m} but

λk

{≥ 0 for k ∈ {1, . . . , s} such that
∑n

i=1 akix
∗
i = bk,

= 0 for k ∈ {1, . . . , s} such that
∑n

i=1 akix
∗
i > bk.

(3.15)

This condition, which entails having

D(X∗) = D(x∗1r1 + · · ·+ x∗nrn) =
∑m

k=1
λkbk, (3.16)

is moreover necessary for optimality when D is everywhere finite and continuous.

Proof. The set X in (3.1)–(3.2) is convex and closed in L2(Ω). For the minimization of D over
X , Propositions 1 and 2 combine to give us an optimality condition in terms of the existence of
Q∗ ∈ Q(X∗) (hence with EQ∗ = 1) such that

E[X(1−Q∗)] ≥ E[X∗(1−Q∗)] for all X ∈ X , (3.17)

this condition being sufficient in general and necessary when D is finite and continuous. Our job is to
translate the inequality in (3.17) into the multiplier condition in (3.14)–(3.15).

First, we rewrite the inequality in (3.17) in terms of X = x1r1+· · ·+xnrn and X∗ = x∗1r1+· · ·+x∗nrn

as saying that

(x∗1, . . . , x
∗
n) minimizes x1E[r1(1−Q∗)] + · · ·+ xnE[rn(1−Q∗)] over (x1, . . . , xn) ∈ S,

or in other words, minimizes over the constraints in (3.2). This minimization is an instance of linear
programming in the variables xi for which optimality is captured by Lagrange multipliers satisfying
the sign conditions in (3.15) along with

E[ri(1−Q∗)] =
∑m

k=1
λkaki for i = 1, . . . , n.

It remains then only to observe that, since EQ∗ = 1, we have E[ri(1−Q∗)] = E[(Eri − ri)Q∗].
The theorem’s final claim in (3.16) is justified from the fact that D(X∗) = E[(EX∗ −X∗)Q∗] by

(1.5), whereas E[(EX∗ −X∗)Q∗] =
∑n

i=1 x∗i E[(Eri − ri)Q∗]. On the basis of (3.14), this sum equals∑n

i=1
x∗i

( ∑m

k=1
λkaki

)
=

∑m

k=1
λk

( ∑n

i=1
akix

∗
i

)
,

which in turn comes out as
∑m

k=1 λkbk by virtue of the constraints satisfied by the coefficients x∗i and
the sign conditions on the multipliers λk.

Theorem 2 can be applied to a wide range of deviation measures by drawing on the examples in
the preceding section and in particular the formulas provided there for the risk identifiers, which enter
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through (3.13). An especially interesting feature of the optimality condition in Theorem 2 is the way
that the expressions

E[(Eri − ri)Q∗] = covar(Eri − ri, Q
∗), (3.18)

involving the downsides of the r.v.’s ri, invite comparison with the corresponding expression for the
portfolio r.v. X∗, which in fact yields the optimal deviation: since Q∗ ∈ Q(X∗), we have from (1.4)
that

D(X∗) = E[(EX∗ −X∗)Q∗] = covar (EX∗ −X∗, Q∗). (3.19)

Theorem 2 leads to an interesting duality involving not only multipliers λk but also elements of
the risk envelope Q. We can consider, as dual to (P), the problem

(Pd)
{

choose Q ∈ Q and λ1, . . . , λm with λk ≥ 0, k = 1, . . . , s, to maximize∑m
k=1 λkbk subject to E[(Eri − ri)Q]−

∑m
k=1 λkaki = 0, i = 1, . . . , n.

This is suggested by the tight connection that emerges between the optimal values in (P) and (Pd),
i.e., between the minimum deviation in (P) and the maximum in (Pd), along with other relationships.

Theorem 3 (dual problem in risk envelope format). Let D be everywhere finite and continuous,
and let x∗ furnish a solution to problem (P). Then the elements Q∗ and λ1, . . . , λm that furnish a
solution to problem (Pd) are the ones which satisfy, with x∗, the optimality condition in Theorem 2.
Furthermore,

[ optimal value in (P) ] = [ optimal value in (Pd) ]. (3.20)

Proof. First consider any x satisfying the constraints in (P) and any Q, λ1, . . . , λm satisfying the
constraints in (Pd). Let X = x1r1 + · · ·+ xnrn. We have from (1.1) that

D(X) ≥ E[(EX −X)Q] =
∑n

i=1
xiE[(Eri − ri)Q]

where the equations in (Pd) turn this sum into∑n

i=1
xi

[∑m

k=1
λkaki

]
=

∑m

k=1
λk

[∑n

i=1
akixi

]
≥

∑m

k=1
λkbk.

The outer inequality in this chain, D(X) ≥
∑m

k=1 λkbk, reveals that the minimum in (P) cannot be
less than the maximum in (Pd). The optimality condition in Theorem 2, however, turns the inequality
into an equation. Hence the minimum in (P) must equal the maximum in (Pd), and the elements
satisfying the optimality condition achieve these extremes.

Theorem 3 could be of particular interest when (Pd) is a problem of linear programming, which
occurs whenever the future state space Ω is finite and the risk envelope Q is polyhedral, it being
specified by additional linear constraints. This would hold in Examples 2, 3 and 4, for instance.

4 Applications to Basic Portfolio Theory

The applications of Theorem 2 that we especially wish to pursue concern the classical paradigm for
balancing the expected return in a portfolio against the uncertainty in that return as captured by its
standard deviation. What happens when standard deviation is replaced by some other measure of
deviation?

14



In [20], we studied this question in depth and provided answers revolving around a generalized
“one-fund theorem” and the existence of special portfolios, called “master funds,” which can serve
the interests of all the investors who regard uncertainty as suitably captured by the same deviation
measure D. We did not, however, have the tools in [20] to characterize the master funds by conditions
resembling those in the standard “capital asset pricing model” (CAPM). Now we do have the right
tools, and we want to use them to complete the picture of master funds by providing generalized
CAPM-like conditions tailored to any choice of D.

In the classical situation we wish to address, the r.v.’s ri for i = 1, . . . , n give the rates of return
of financial instruments, as already suggested, but there is also a special instrument having a riskless
rate of return r0, which can be interpreted as a constant r.v. It is assumed here that, in contrast,
the other instruments are risky, and indeed that no positive risk-free return can be constructed from
them. Specifically,

X = x1r1 + · · ·+ xnrn is assumed to be nonconstant for every nonzero x = (x1, . . . , xn). (4.1)

The basic problem in these circumstances, with respect to a parameter value ∆ > 0, is to choose
x0, x1, . . . , xn to

P(∆) minimize D(x0r0 + x1r1 + · · ·+ xnrn) subject to
{

x0 + x1 + · · ·+ xn = 1,
x0r0 + x1Er1 + · · ·+ xnErn ≥ r0 + ∆.

The first constraint requires that the xi’s, all together, must constitute a “unit investment.” The
second constraint requires the expected rate of return of the x-portfolio to exceed the risk-free rate
r0 by at least the given amount ∆ > 0. There are no sign constraints or bounds on the xi’s in this
formulation. (A negative xi refers to a “short position” in the instrument in question.)

Problem P(∆) can be reconstituted in a simpler form which facilitates the analysis. First, of
course, we have

D(x0r0 + x1r1 + · · ·+ xnrn) = D(x1r1 + · · ·+ xnrn) (4.2)

in view of axiom D1. On the other hand, the unit investment equation in P(∆) makes the x0 variable
redundant:

x0 = 1− x1 − · · · − xn. (4.3)

This expression for x0 can be substituted into the constraint on rate of return in P(∆). The resulting
problem is then one in x1, . . . , xn alone:

P0(∆) minimize D(x1r1 + · · ·+ xnrn) subject to x1(Er1 − r0) + · · ·+ xn(Ern − r0) ≥ ∆.

This problem fits into the format of (3.2) as concerned with a single linear inequality constraint. The
way is then open to applying Theorem 2.

Theorem 4 (optimality rule for classical portfolios). In problem P0(∆) for a lower semicontinuous
deviation measure D and any ∆ > 0, a sufficient condition for the optimality of an x∗-portfolio for
which X∗ = x∗1r1 + · · ·+ x∗nrn satisfies the constraint in P0(∆) is the existence of a risk identifier

Q∗ ∈ Q(X∗) = Q(x∗1r1 + · · ·+ x∗nrn) (4.4)

together with a multiplier λ > 0 such that

E
[
(Eri − ri)Q∗

]
= λ[Eri − r0] for i = 1, . . . , n. (4.5)
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In fact the multiplier then has to be
λ = D(X∗)/∆ > 0, (4.6)

and the constraint in P0(∆) must actually be satisfied as an equation. When D is finite and continuous,
this sufficient condition is also necessary for optimality.

Proof. In expressing the constraint in P0(∆) in the pattern of (3.2), we take a1i = (Eri − r0) and
b1 = ∆. For x∗ fulfilling this constraint, optimality corresponds to the existence of Q∗ ∈ Q(X∗) and
a multiplier λ such that

E
[
(Eri − ri)Q∗

]
= λ(Eri − r0) for i = 1, . . . , n, (4.7)

where λ ≥ 0, but if the constraint is slack then necessarily λ = 0. Theorem 2 also notes that this
implies D(X∗) = λ∆, hence λ = D(X∗)/∆. The constraint in P0(∆) could not be satisfied with
x∗ = 0, inasmuch as ∆ > 0, hence necessarily D(X∗) > 0 by (4.1). Therefore λ > 0, and the
constraint must hold as an equation.

For problem P0(∆) with ∆ ≤ 0, incidently, a solution is obtained by taking x∗ = 0. This is evident,
but note also that this is the only solution, due to (4.1).

Our “one-fund” result in [20] confirms that if x∗ solves P0(∆) for some ∆ > 0, then cx∗ solves
P0(c∆) for any scaling factor c > 0. This suggests a normalization in which the focus is on ∆∗ being
such that P0(∆∗) has a solution x∗ satisfying x∗1 + · · ·+ x∗n = 1. Then for any ∆ > 0 a solution x to
P0(∆) can be obtained by taking x = cx∗ for c = 1/(x∗1 + · · ·+x∗n). The trouble is, though, that there
is no guarantee of the existence of ∆∗ > 0 having the targeted property (although this seems to be
taken for granted in textbooks on the subject).

It is possible for a solution x to P0(∆) to fail to have x1 + · · · + xn > 0 and hence not be
representable through such rescaling. Moreover, as we laid out in detail in [20], instances where
solutions have x1 + · · ·+ xn = 0 or x1 + · · ·+ xn < 0 are unavoidable when a full range of possibilities
for the risk-free interest rate r0 is allowed. That analysis gave rise to the following definition, relative
to the positive and negative cases, to which we now add a term covering the case where the sum is 0.

Definition 2 (master funds). The x∗-portfolio for x∗ = (x∗1, . . . , x
∗
n) provides a master fund of positive

type with respect D if x∗ solves P0(∆∗) for some ∆∗ > 0, and x∗1+ · · ·+x∗n = 1. In contrast, it provides
a master fund of negative type if instead it has x∗1 + · · ·+ x∗n = −1, whereas it provides a master fund
of threshold type if instead it has x∗1 + · · ·+ x∗n = 0.

Whether a master fund of one of these types exists depends on the size of r0. When r0 is below
a certain level, a master fund of positive type exists, but no other type. When r0 is above a certain
level, a master fund of negative type exists, but no other type. In the transition between these cases,
master funds of threshold type (not previously given a name) can exist and sometimes other types as
well. The facts of the matter have thoroughly been brought out in our paper [20] and need not be
restated here.

Rather, we move directly to characterizing the master funds from the standpoint of Theorem 4.
In order put the result on a close footing with the classical one for D = σ, we introduce coefficients
which reduce to the classical “betas” in that case but can serve more widely.

Definition 3 (generalized betas). For any nonzero x∗ = (x∗1, . . . , x
∗
n), let B(x∗) = B(x∗1, . . . , x

∗
n)

denote the set of vectors β = (β1, . . . , βn) that are obtainable by taking a risk identifier Q∗ ∈ Q(X∗),
where X∗ = x∗1r1 + · · ·+ x∗nrn, and setting

βi =
E[(Eri − ri)Q∗]

E[(EX∗ −X∗)Q∗]
=

covar(−ri, Q
∗)

D(X∗)
for i = 1, . . . , n. (4.8)
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The two ways of expressing βi agree, and make sense, because covar(EX∗ −X∗, Q∗) = D(X∗) by
(1.4), and D(X∗) > 0 under (4.1) and our assumption that x∗ 6= 0. Observe that

β1x
∗
1 + · · ·+ βnx∗n = 1 when β ∈ B(x∗). (4.9)

This can be seen by multiplying the equations in (4.8) by x∗i and then adding them up, since

x∗1(Er1 − r1) + · · ·+ x∗n(Ern − rn) = EX∗ −X∗.

Theorem 5 (characterization of master funds). Let the deviation measure D be finite and continuous.
(a) An x∗-portfolio with x∗1 + · · · + x∗n = 1 furnishes a master fund of positive type if and only if

EX∗ > r0 for X∗ = x∗1r1 + · · ·+ x∗nrn and there is a vector β ∈ B(x∗) such that

Eri − r0 = βi [EX∗ − r0] for i = 1, . . . , n. (4.10)

(b) An x∗-portfolio with x∗1 + · · ·+ x∗n = −1 furnishes a master fund of negative type if and only if
EX∗ > −r0 for X∗ = x∗1r1 + · · ·+ x∗nrn and there is a vector β ∈ B(x∗) such that

Eri − r0 = βi [EX∗ + r0] for i = 1, . . . , n. (4.11)

(c) An x∗-portfolio with x∗1 + · · ·+ x∗n = 0 furnishes a master fund of threshold type if and only if
EX∗ > 0 for X∗ = x∗1r1 + · · ·+ x∗nrn and there is a vector β ∈ B(x∗) such that

Eri − r0 = βi [EX∗] for i = 1, . . . , n. (4.12)

Proof. In the light of Definition 2, the issue in (a) is whether, in combination with x∗1 + · · ·+x∗n = 1
and EX∗ > r0, the existence of β ∈ B(x∗) satisfying (4.10) is equivalent to the existence of ∆∗ > 0
such that X∗ solves P0(∆∗). We approach this through the optimality condition for P0(∆∗) that
emerges from Theorem 4, which is both necessary and sufficient by our assumption that D is finite
and continuous.

When the optimality condition in Theorem 4 is fulfilled with respect to x∗ for some ∆∗ > 0, we
can use the fact that the multiplier has to be λ = D(X∗)/∆∗ > 0 to rewrite the equations (4.5) in the
form [

∆∗

D(X∗)

]
E

[
(Eri − ri)Q∗

]
= Eri − r0 for i = 1, . . . , n. (4.13)

We also know from Theorem 4 that the optimality condition entails having the constraint in P0(∆∗)
hold with equality: x∗1(Er1 − r0) + · · ·+ x∗n(Ern − r0) = ∆∗. Since

x∗1(Er1 − r0) + · · ·+ x∗n(Ern − r0) = EX∗ − r0 when x∗1 + · · ·+ x∗n = 1, (4.14)

it follows that EX∗ − r0 = ∆∗. Hence EX∗ − r0 > 0, and we can put EX∗ − r0 in place of ∆∗ in
(4.13). The equations in (4.13) then become the desired ones in (4.10) by virtue of definition of the
coefficients βi. Thus, we have the properties in (a).

Conversely, suppose the properties in (a) hold for x∗. By taking ∆∗ to be EX∗−r0, we have ∆∗ > 0,
and the constraint in P0(∆∗) is fulfilled with equality, due to (4.14). By setting λ = D(X∗)/∆∗ > 0,
we can next rewrite the equations in (4.10) in the form of the multiplier equations in Theorem 4. The
conclusion then from Theorem 4 is that x∗ yields optimality in P0(∆∗).

In (b), we instead need to work with the fact that x∗1(Er1 − r0) + · · ·+ x∗n(Ern − r0) = EX∗ + r0

when x∗1 + · · ·+ x∗n = −1, but otherwise the argument is virtually identical. That is the case similarly
in (c), where x∗1(Er1 − r0) + · · ·+ x∗n(Ern − r0) = EX∗ when x∗1 + · · ·+ x∗n = 0.
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The generality of Theorems 4 and 5 deserves emphasis. Other researchers studying nonstandard
deviations have dealt with special classes of measures and generally have narrowed the scope of their
results by supposing the uniqueness of the optimal portfolio in question, or additionally in the case
of a master fund, that it is of positive type. They have also relied on the function fD in (3.5)
being differentiable. Theorems 4 and 5, in contrast, do not have these limitations. In particular, the
characterization of master funds in Theorem 5 is both necessary and sufficient, in contrast to other
work (focused anyway just on master funds of positive type) in which only the necessity is developed,
under various special assumptions.

5 Examples of CAPM-like Relations

We now explore the CAPM-like characterization of master funds with respect to a variety of choices
of the deviation measure D. We retain the notation that

X∗ = x∗1r1 + · · ·+ x∗nrn for x∗ = (x∗1, . . . , x
∗
n)

and work toward insights into various realizations of β-equations in (4.10) and (4.11). The main issue
in our examples for each of the choices of D is the form of the β coefficients of Definition 3 that appear
in the equations of Theorem 5. Although we hold back here from any pricing interpretation of these
CAPM-like equations, we note comparisons in some cases with the “beta” formulas derived by other
researchers who may have been motivated by such an interpretation.

Example 5 (master funds for standard deviation and semideviations). WhenD = σ, the β coefficients
in Definition 3 and in the master fund characterization in Theorem 5 are uniquely determined and
take the form

βi =
covar(ri, X

∗)
σ2(X∗)

. (5.1)

For the standard lower semideviation D− = σ−, the form is instead

βi =
covar(−ri, [X∗ − EX∗]−)

σ2
−(X∗)

, (5.2)

whereas for the standard upper semideviation D+ = σ+ it is

βi =
covar(ri, [X∗ − EX∗]+)

σ2
+(X∗)

. (5.3)

Detail. This comes from invoking the risk identifiers of Example 1 in the β coefficients of Definition
1. For D = σ, the unique element of Q(X∗) according to (2.2) is Q∗ = 1−σ(X∗)−1[X∗−EX∗], which
makes covar(−ri, Q

∗) = covar (ri, σ(X∗)−1[X∗ − EX∗]). Then βi = σ(X∗)−2 covar(ri, X
∗ − EX∗),

where the EX∗ can be dropped as making no difference.
For D− = σ−, the only Q∗ ∈ Q(X∗) is Q∗ = 1−σ−(X∗)−1(E[X∗−EX∗]− [X∗−EX∗]−) by (2.4).

Then covar(−ri, Q
∗) = covar(−ri, σ−(X∗)−1[X∗−EX∗]−), so βi = σ−(X∗)−2 covar(−ri, [X∗−EX∗]−).

This time the EX∗ cannot be dropped. For D+ = σ+ the pattern is the similar.

In this framework of σ, σ− and σ+, a unique master fund of positive type exists only as long as the
risk-free rate r0 is not too high, i.e., not above threshold in [20, Theorem 6]. Beyond that threshold,
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a unique master fund of negative type exists instead.4

For standard deviation σ itself, the coefficients βi in (5.1) turn the relations in (4.10) into the
standard CAPM equations in terms of the expected rate of return of this master fund (or so-called
“market portfolio”). These classical covariance relations have been interpreted as furnishing a one-
factor predictive model in the form

ri − r0 ≈ βi[X∗ − r0] for i = 1, . . . , n. (5.4)

This is based conceptually on a supposition that all investors seek essentially to minimize standard
deviation when they put together a portfolio at a specified level of expected gain.

It is tempting to think that the CAPM-like equations in (4.10) of Theorem 5 might be able to take
on such a role as in (5.4) more widely, for other deviation measures. For instance, why not view the
version with βi as in (5.2), or the version from (5.3), in this same light? One must be careful not to
jump directly to such an interpretation. We are operating here from a distinctly different standpoint,
where the investors employing any particular deviation measure D are viewed only as a subgroup of
all the investors, perhaps just a small subgroup. There is little basis for believing that the actions of
such a subgroup ought to have a determining influence on market behavior as a whole.

Another issue which must not be ignored, in the general picture of our CAPM-like equations
(4.10), is that the coefficients βi might not be uniquely determined by D and r0, r1, . . . , rn. This might
happen because, in contrast to the case for standard deviation, the set B(x∗) from which the β vector
is selected need not be a singleton, and more than one candidate β could conceivably work for x∗.
It could also happen, perhaps, because x∗ itself is not uniquely determined through the criterion of
optimality. Yet another possibility is that x∗ might be the unique solution to P0(∆∗) for a particular
∆∗, but another portfolio, corresponding to a ∆ different from ∆∗, might furnish a different master
fund. This could arise from a “flat spot” on the efficient frontier; cf. [20, Figures 3 and 3a].

Of course, it is conceivable nonetheless that, through statistical analysis, the CAPM-like relations
with respect to one or maybe several alternative deviation measures in combination, may lead to
interesting predictive models of type (5.4) with advantages over the classical CAPM. (The underlying
assumption of the classical model is anyway not beyond controversy.) That is not a topic to be taken
up in this paper, however.

It may be noted, though, that the use of σ− in place of σ was advocated early in the development
of portfolio theory by its star founder, Markowitz, in [12]. Perhaps, therefore, the generalized CAPM
relations for σ−, with the coefficients βi as in (5.2), might be regarded as covered by the classical
market argument. The generalized β’s for σ− in Example 5 have not, prior to this, been identified.

Standard lower semideviation σ− was among the measures covered by Malevergne and Sornette
[11]. Those authors, although concerned especially with “moments,” based their results on axioms
aimed at covering a wide class of measures of “deviation” type. They did not require convexity or
continuity, or invoke either of those properties anywhere, so the underpinnings to their assertions of
the existence and uniqueness of optimal portfolios appear to be without foundation. The same is true
of their claims of having determined master funds of positive type without making any restriction on
the risk-free rate.

4Little, if any, attention has been paid in the classical context to the potential nonexistence of a positive master
fund. The availability of such a fund is generally just taken for granted, and this is reinforced by finance textbooks
aimed at presenting basic material without going through rigorous arguments. For instance, in Luenberger’s derivation
in [10, p. 168], a master fund of positive type is produced by tacitly assuming that a certain nonconvex function attains
a minimum, and that the vanishing of first partial derivatives is adequate for determining where that minimum occurs.
The threshold phenomenon with the risk-free rate is thereby missed entirely.
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Example 6 (master funds for mean absolute deviation). In the case of the deviation measure D(X) =
||X − EX||1 = 2||[X − EX]−||1 = 2||[X − EX]+||1, the β coefficients in Definition 3 and the master
fund characterization in Theorem 5 take the form, in the sign notation of (2.7), that

βi =
covar(ri, Z)
||X∗ − EX∗||1

for some Z ∈ sign [X∗ − EX∗]. (5.5)

This entails having

covar(ri, Z) =


E

[
ri − Eri

∣∣∣X∗ − EX∗ > 0
]
·prob{X∗ − EX∗ > 0}

+E
[
ri − Eri

∣∣∣X∗ − EX∗ < 0
]
·prob{X∗ − EX∗ < 0}

+E
[
(ri − Eri)Z

∣∣∣X∗ − EX∗ = 0
]
·prob{X∗ − EX∗ = 0},

(5.6)

with the values of Z on {ω |X∗(ω)−EX∗ = 0} being restricted only by the requirement that |Z| ≤ 1.

Detail. Here we specialize βi in (4.8) by taking Q∗ to belong to the set in (2.9): Q∗ = 1 + EZ −Z
for some Z ∈ sign [X∗ − EX∗]. Then covar(−ri, Q

∗) comes out simply as covar(ri, Z).

Konno [9] investigated mean absolute deviation under the extra assumption that the ri’s have
a multivariate distribution given by a density function on IRn. With that he obtained similar βi’s
without confronting the possibility of the third term in (5.6). Such a nonzero term could lead more
generally to nonuniqueness of the βi’s, but anyway, even in the setting of [9], the uniqueness of a
master fund is not clearly assured, since mean absolute deviation lacks the kind of strict convexity
that could guarantee that.

Another special feature in [9] which complicates comparisons with our broader contribution in
Example 6 is that short positions are said to be excluded; in other words, the constraints xi ≥ 0 are
imposed on the portfolio weights, whereas we do not impose them in our adoption of P(∆) and P0(∆)
as the basic models. But these constraints against shorting are anyhow suppressed in the developments
of [9] by assuming that the Lagrange multipliers associated with them can merely be taken to be 0,
which amounts to a claim that nonnegativity will automatically follow from optimality. No support
for such a claim is offered. In the absence of shorting, of course, the potential need for a master fund
of negative type does not come into view, either.

Example 7 (master funds for worst-case deviation and semideviations). Let the state space Ω be
finite, so that inf X and supX are finite for all X ∈ L2(Ω). Then for D(X) = ||X−EX||∞, which is in
this case is finite and continuous, the β coefficients in Definition 3 and the master fund characterization
in Theorem 5 take the form

βi =
covar(ri, Z)

||X∗ − EX∗||∞
for some Z with


E|Z| = 1,
Z+(ω) = 0 when X(ω)− EX < ||X − EX||∞,
Z−(ω) = 0 when EX −X(ω) < ||X − EX||∞

(5.7)

(almost surely). For the corresponding lower semideviation, D−(X) = EX− inf X, they take the form

βi =
covar(−ri, Q

∗)
EX∗ − inf X∗ for some Q∗ with

{
Q∗ ≥ 0, EQ∗ = 1,
Q∗(ω) = 0 when X∗(ω) > inf X∗.

(5.8)

For the corresponding upper semideviation, D+(X) = supX − EX, they are instead

βi =
covar(−ri, Q

∗)
supX∗ − EX∗ for some Q∗ with

{
Q∗ ≤ 2, EQ∗ = 1,
Q∗(ω) = 2 when X∗(ω) < supX∗.

(5.9)
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Detail. Drawing on Example 3, we note in obtaining (5.7) that when Q∗ = 1 + EZ − Z we have
covar(−ri, Q

∗) = covar(ri, Z). For the semideviations, the risk identifiers in Example 3 are utilized
directly.

Example 8 (master funds for CVaR deviations). For Dα(X) = CVaRα(X−EX), obtained from any
choice of α ∈ (0, 1), the β coefficients in Definition 3 and the master fund characterization in Theorem
5 take the form

βi =
E[(Eri − ri)Q∗]

CVaRα(X∗ − EX∗)
for some Q∗ with


0 ≤ Q∗(ω) ≤ α−1, EQ∗ = 1,
Q∗(ω) = 0 when X∗(ω) > −VaRα(X∗),
Q∗(ω) = α−1 when X∗(ω) < −VaRα(X∗).

(5.10)

When prob{X∗ = −VaRα(X∗) } = 0, this reduces to a ratio of conditional probabilities:

βi =
E

[
Eri − ri

∣∣∣ X∗ ≤ −VaRα(X∗)
]

E
[
EX∗ −X∗

∣∣∣ X∗ ≤ −VaRα(X∗)
] . (5.11)

Detail. In (5.10) we directly invoke the risk identifiers in Example 4. When there is zero probability
of X∗ taking on the value −VaRα(X∗), we know that CVaRα(X∗ − EX∗) is simply the conditional
expectation of EX∗ − X∗ subject to X∗ − EX∗ < −VaRα(X∗ − EX∗), which is the same as X∗ <
−VaRα(X∗), so the denominator in (5.10) can be written as in (5.11). Then too, Q is uniquely
determined by the prescription in (5.10) (in the almost sure sense), with α being the probability that
X∗ < −VaRα(X∗). The numerator in (5.10) comes out in that case as just the conditional expectation
of Eri − ri subject to X∗ < −VaRα(X∗).

Previous work on CVaR-based master funds in [26, 5, 2] has avoided the issue of discontinuities
coming up in the probability distributions and has moreover needed the differentiability of the compos-
ite function fD in (3.5). Such differentiability is lacking when X∗ can equal −VaRα(X∗) with positive
probability. The need for a threshold assumption on the risk-free rate r0, in order to be assured of the
existence of a master fund of positive type (the only type considered), did not get addressed, nor did
the issue of nonuniqueness of such a fund, even when it exists.
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