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Abstract General deviation measures are introduced and studied sys-
tematically for their potential applications to risk management in areas like
portfolio optimization and engineering. Such measures include standard de-
viation as a special case but need not be symmetric with respect to ups
and downs. Their properties are explored with a mind to generating a large
assortment of examples and assessing which may exhibit superior behavior.
Connections are shown with coherent risk measures in the sense of Artzner,
Delbaen, Eber and Heath, when those are applied to the difference between
a random variable and its expectation, instead of to the random variable
itself. However, the correspondence is only one-to-one when both classes
are restricted by properties called lower range dominance, on the one hand,
and strict expectation boundedness on the other. Dual characterizations in
terms of sets called risk envelopes are fully provided.

Key words risk management – deviation measures – coherent risk mea-
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1 Introduction

The uncertainty inherent in a random variable is most commonly measured
by its standard deviation, although other indicators, such as mean absolute
deviation, have sometimes been utilized instead. In many situations, how-
ever, there is interest in treating the extent to which a random variable falls
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short of its expected value differently from the extent to which it exceeds
its expected value. This suggests the study we undertake here, of general
deviation measures that resemble the classical ones in some major respects,
but need not be symmetric between “ups” and “downs.”

The analysis of risky portfolios in finance provides one of the major
motivations. How far could one go in replacing standard deviation, around
which so much of that subject revolves, by something else, and what ad-
vantages, if any might be gained? In what way would the optimality of a
portfolio change, and what would it mean in connection with the concepts
of capital asset pricing (CAPM)? How would it tie in with techniques that
utilize value-at-risk (VaR) and conditional value-at-risk (CVaR)? Of course,
risk analysis can go far beyond portfolios, and advances in the subject can
be beneficial in other areas of management and engineering. Another poten-
tial area of application for general deviation measures could be alternative
forms of statistical regression tailored to various specifications.

Our aim is to develop a theory of deviation measures axiomatically, pre-
senting key examples and tracing the relationships with concepts like that
of coherent risk measures, which have recently attracted much attention. An
accompanying theme is the characterization of deviation measures through
duality. This is essential groundwork for understanding problems in which
deviation is minimized subject to constraints, and optimality conditions
have to be derived, although we will not go into such derivations yet here.

For applications in finance, many researchers have already delved into
particular deviations other than standard deviation, in one aspect or an-
other. Markowitz [16] suggested the use of a downside form of standard
deviation. Possible advantages of mean absolute deviation and its down-
side version, most notably in relation to linear programming computations
of optimal portfolios, have been explored in [9], [12], [13], [17], [27]. What
contrasts here with those contributions is our general axiomatic approach,
opening up and elucidating a larger territory. In particular, this effort is
intended as support for our work in [24] on building a broader form of basic
portfolio theory. Deviation-like axioms have also been considered recently
by De Giorgi [6], but from another, more special point of view, having only
partial overlap with what we consider essential for a “deviation.”

Dual characterizations are well known for coherent risk measures in the
sense of Artzner, Delbaen, Eber and Heath [3], but they do not translate
fully to our context. Although some deviation measures in our sense corre-
spond, under a certain transformation, with some coherent risk measures, a
direct study of duality with respect to deviation is needed to get a complete
picture.

The plan of the paper is as follows. After fixing some notation in the
remainder of this section, we go on in Section 2 to define deviation measures
axiomatically and develop their dual counterparts, which we call “risk en-
velopes.” They too are described axiomatically. Key issues of geometry and
semicontinuity are clarified. Questions are answered about how operations
performed on deviation measures affect the associated risk envelopes.
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Next, in Section 3, we take up the relationship between deviation mea-
sures and coherent risk measures. We demonstrate a one-to-one correspon-
dence between deviation measures and “strictly expectation bounded risk
measures,” which in general form a class that neither includes, nor is in-
cluded in, the class of coherent risk measures, although there is a major
intersection. By bringing out the distinction between these classes, we hope
to turn a brighter light on a part of risk analysis that has seemed to be
little appreciated. We show that the deviation measures that correspond to
risk measures in the intersection of the two classes are characterized by the
heretofore unidentified property of being “lower range dominated.”

Also in Section 3, we use the relation to risk measures to pin down a
number of valuable examples of deviation measures that arise from CVaR,
mixed CVaR, and worst-case CVaR. We provide a rigorous proof of the
extent to which mixed CVaR has a “spectral” representation in the sense
of Acerbi [1]. (In [10] there is an allusion to such a connection, but without
details.)

Finally, in Section 4, we produce another wide array of examples of
deviation measures by introducing “basic error functionals” and applying
them in two different ways. For these deviation measures we fully determine
the risk envelopes and the exact cases in which lower range dominance is
enjoyed. That has the side benefit of simultaneously yielding new examples
of coherent risk measures.

In line with this agenda, we adopt the setting of a probability space
(Ω,M, P ), where the elements ω of Ω represent future states, or individ-
ual scenarios (perhaps just finitely many); M is the field of measurable
subsets of Ω, and P is a probability measure on M. We treat as random
variables (r.v.’s) the functions X : Ω → IR that belong to the linear space
L2(Ω) = L2(Ω,M, P ), i.e., the (measurable) functions for which the mean
and variance

µ(X) = EX =
∫

Ω

X(ω)dP (ω),

σ2(X) = E[X − EX]2 =
∫

Ω

[X(ω)− µ(X)]2dP (ω),

exist (i.e., these integrals are well defined). The inner product in L2(Ω)
between any X and Y is E[XY ], which can be identified with covar(X,Y )+
µ(X)µ(Y ). The corresponding norm is ||X|| =

(
E[X2])1/2. Convergence

Xk → X of a sequence of r.v.’s Xk for k = 1, 2, . . . , to an r.v. X in the
sense of ||Xk −X|| → 0 is equivalent to having both µ(Xk −X) → 0 and
σ(Xk −X) → 0.

In particular, of course, the space L2(Ω) contains all constant r.v.’s,
X ≡ C. To assist in working with such r.v.’s, the letter C will always stand
for a constant in the real numbers IR, and when C or a number like 0, 1,
or −1 appears in the position of some r.v. X, it will signify the r.v. has
that constant value almost surely. Similarly, an inequality like X ≥ C or
X ≤ C, or X1 ≤ X2 is to be viewed in the sense of holding almost surely.
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The essential infimum and supremum of X will be denoted simply by infX
and supX.

Our choice of L2(Ω) rather than some other linear space of random
variables is dictated by a desire to maintain easy access to tools associated
with duality. It is natural too because we want to operate in a context
centered on comparisons between nonstandard deviations and an underlying
standard deviation. However, this does not prevent us from working with
the general Lp norms

||X||p =

{(
E

[
|X|p

])1/p for p ∈ [1,∞),
sup |X| for p = ∞,

where ||X||2 = ||X||. These expressions are well defined for X ∈ L2(Ω),
except that they could be ∞. Of course, they are sure to be finite for all
X ∈ L2(Ω) when the probability space is essentially finite in the sense that
the probability measure P takes on only finitely many different values on the
field M of measurable sets, which holds in particular when Ω is a finite set
(as comes up in scenario models, for instance). But in the complementary
case of the probability space being essentially infinite, ||X||p is bound to
take on ∞ for some X ∈ L2(Ω) when p > 2.

In dealing with possibly ∞-valued functionals F on L2(Ω) like F(X) =
||X||p or F(X) = supX, it will be valuable to have the notion of lower
semicontinuity . This means that all the subsets of L2(Ω) having the form{
X

∣∣F(X) ≤ c
}

for c ∈ IR are closed, or in other words that

Xk → X with F(Xk) ≤ c implies F(X) ≤ c. (1)

Upper semicontinuity corresponds to the opposite inequalities. The combi-
nation of lower semicontinuity with upper semicontinuity is continuity, i.e.,
the property that Xk → X entails F(Xk) → F(X).

For F(X) = ||X||p we have continuity when p ∈ [1, 2] or when the prob-
ability space is essentially finite, but otherwise only lower semicontinuity.
For F(X) = supX we have lower semicontinuity, whereas for F(X) = infX
we have upper semicontinuity. Later we will additionally be involved, for in-
stance, with expressions like ||aX+ + bX−||p for a ≥ 0 and b ≥ 0, where the
notation is used that

X = X+ −X− with X+ = max{0, X}, X− = max{0,−X}. (2)

Also of fundamental interest to us below will be certain other quantities
defined in terms of the distribution function FX of X, namely

FX(z) = P{X ≤ z}.

The value-at-risk of X for any α ∈ (0, 1) is

VaRα(X) = − inf
{
z

∣∣FX(z) > α
}
. (3)
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The corresponding conditional value-at-risk is given by

CVaRα(X) = −E[X|X ≤ −VaRα(X)]
when FX is continuous at −VaRα(X),

(4)

but requires a more subtle definition to be able to handle possible dis-
continuities. One approach, first followed by Pflug [18] is to rely even for
discontinuous FX on the minimization formula we developed for the case
of continuous FX in [21], where the term “conditional value-at-risk” was
coined:

CVaRα(X) = min
C

{
C + α−1E[X + C]−

}
, (5)

We proved in [22] that, for possibly discontinuous FX , this approach coordi-
nates with the original one by being equivalent to replacing the conditional
expectation in (4) by the “generalized α-tail” expectation

CVaRα(X) = −
∫ ∞

−∞
zdFα

X(z),

where Fα
X(z) =

{
α−1FX(z) when FX(z) < α,

1 when FX(z) ≥ α.

(6)

A different track was followed by Acerbi [1], in observing that CVaR can
equivalently be expressed as a VaR average:

CVaRα(X) =
1
α

∫ α

0

VaRβ(X)dβ. (7)

(Acerbi began by using the expression on the right as the definition of a
functional he called “expected shortfall,” but subsequently realized its con-
nection with CVaR; cf. also [2], [25]. Because of (7), Föllmer and Schied [10]
have proposed yet another name: “average value-at-risk.”) Limit analysis in
these formulas as α tends to 0 or 1 leads to the conventions that

CVaR0(X) = − infX, CVaR1(X) = −EX. (8)

2 Deviation Measures

In focusing on generalized deviations, our goal is to investigate functionals
D on L2(Ω) that obey certain axioms taken from the properties of standard
deviation.

Definition 1 (general deviation measures). By a deviation measure will be
meant any functional D : L2(Ω) → [0,∞] satisfying

(D1) D(X + C) = D(X) for all X and constants C,
(D2) D(0) = 0, and D(λX) = λD(X) for all X and all λ > 0,
(D3) D(X +X ′) ≤ D(X) +D(X ′) for all X and X ′,
(D4) D(X) ≥ 0 for all X, with D(X) > 0 for nonconstant X.



6 R. Tyrrell Rockafellar et al.

Under these axioms, D(X) depends only on X − EX (from the case of
D1 where C = −EX), and it vanishes only if X−EX = 0 (as seen from D4
with X − EX in place of X; note that the property in D4 for constant X
already follows from D1 and D2). This captures the idea that D measures
the degree of uncertainty inX. Indeed, D acts as a sort of norm on the “pure
uncertainty” subspace of L2(Ω) consisting of all X with EX = 0, except
that the symmetry required by the definition of a norm — the additional
condition that D(−X) = D(X) for all X — may be absent. Note, however,
that if D is a deviation measure then so too are its reflection D̃ and its
symmetrization ˜̃D, given by

D̃(X) = D(−X), ˜̃D(X) = 1
2 [D(X) + D̃(X)].

Axiom D2 is positive homogeneity . The combination of D2 with D3 is
the property known as sublinearity . It implies that D is a convex functional
on L2(Ω).

Definition 1 allows a deviation measure D to have D(X) = ∞ for some
r.v.’s X. When this is excluded, we have a finite deviation measure. In D2
and D3, infinite values are to be handled in the obvious way: α +∞ = ∞
for any α ∈ (−∞,∞], and λ∞ = ∞ for any λ > 0, whereas 0∞ = 0. (These
conventions are standard in convex analysis [19].)

Example 1 (standard deviation and semideviations). For D(X) = σ(X) =
||X − EX||, all the properties D1, D2, D3 and D4 hold. This deviation
measure is symmetric. The standard upper and lower semideviations σ+

and σ−, where

σ+(X) = ||[X − EX]+||, σ−(X) = ||[X − EX]−||,

satisfy all the conditions as well, but are not symmetric. All three are finite
and continuous.

Example 2 (range-based deviations). A deviation measure that is lower
semicontinuous is defined by

D(X) = EX − infX = sup[EX −X].

It gives the size of the lower range of X. Its reflection,

D̃(X) = supX − EX = sup[X − EX],

giving the size of the upper range of X, is likewise a deviation measure that
is lower semicontinuous, and so too is their sum, giving the full range of X,

D(X) + D̃(X) = supX − infX.

Unless the probability space is essentially finite, these deviation measures
can take on ∞ and need not be continuous.
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It is interesting to note, before proceeding, that axiom D1 in Definition 1
could be replaced by a seemingly much weaker property, complementary to
D4 (subsuming its equality part), without changing the class of functionals
D that is described.

Proposition 1 (simplified axioms). Under D3, the requirements in D1 and
D2 are implied by the simpler conditions that

(D1′) D(C) = 0 for constants C,
(D2′) D(λX) = λD(X) for all X and all λ > 0.

Proof Obviously D1′ furnishes the condition D(0) = 0 needed to convert D2′

into D2. Then for any X and constant C we have through D3 that D(X) =
D(X+C−C) ≤ D(X+C)+D(−C) = D(X+C) ≤ D(X)+D(C) = D(X).
This chain yields D(X) ≤ D(X + C) ≤ D(X), so we have D1. ut

Proposition 2 (continuity of deviation measures). A finite deviation mea-
sure D on L2(Ω) that is lower semicontinuous must be continuous.

Proof In view of deviation measures being convex functionals in particular,
this merely specializes a result that is known for any convex functional on
a Banach space such as L2(Ω); see Rockafellar [20, Corollary 8B]. ut

Another property of a deviation measure will sometimes have a major
role along with D1–D4 in the theory we are building up, most notably in
connection with duality.

Definition 2 (lower range dominance). A deviation measure D will be called
lower range dominated when it satisfies

(D5) D(X) ≤ EX − infX for all X.

In singling out the downside of X for special attention, the lower range
dominance property D5 is clearly directed toward concerns about outcomes
of X possibly falling short of EX. This will be seen below to support a
probabilistic interpretation of D in terms of downside risk. In the deviation
measure examples so far, lower range dominance holds of course for D(X) =
EX − infX but not for D(X) = supX − EX; it holds for D(X) = σ−(X)
but not for D(X) = σ(X) or D(X) = σ+(X).

Theorem 1 (dual characterization of deviation measures). A functional D :
L2(Ω) → [0,∞) is a lower semicontinuous deviation measure if and only if
it has a representation of the form

D(X) = EX − inf
Q∈Q

E[XQ] (9)

in terms of a subset Q of L2(Ω) such that
(Q1) Q is nonempty, closed and convex,
(Q2) for every nonconstant X there is some Q ∈ Q with E[XQ] < EX,
(Q3) EQ = 1 for all Q ∈ Q.
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In this representation, Q is uniquely determined by D through

Q =
{
Q

∣∣D(X) ≥ EX − E[XQ] for all X
}
, (10)

and the finiteness of D is equivalent to the boundedness of Q. Furthermore,
D is lower range dominated if and only if Q has the additional property that

(Q4) Q ≥ 0 for all Q ∈ Q.

Proof It is well known in convex analysis (cf. [5], [19]) that the lower semi-
continuous functionals D on L2(Ω) satisfying D2 and D3 are the support
functions of the nonempty closed convex subsets Y of L2(Ω). In our present
notation, this refers to a representation of the type

D(X) = sup
Y ∈Y

E[XY ] (11)

in terms of such a set Y, from which Y can be recovered by

Y =
{
Y

∣∣D(Y ) ≥ E[XY ] for all X
}
. (12)

For D to satisfy axiom D1, the extra condition on Y is that EY = 0 for
all Y ∈ Y. These properties of Y translate into conditions Q1 and Q3 on
Q under the arrangement that Q =

{
Q = 1 − Y

∣∣Y ∈ Y
}
, or conversely

Y =
{
Y = 1 −Q

∣∣Q ∈ Q
}
. Then E[XY ] = E[X(1 −Q)] = EX − E[XQ],

whereby the formulas in (11) and (12) translate into (9) and (10). Axiom
D4 is equivalent then to Q2.

In (11), the finiteness of D means that, for every X, the continuous
linear functional on L2 associated with X is bounded from above on the
set Y. In functional analysis, that property is known to correspond by the
Banach-Steinhaus theorem to Y be bounded (with respect to the norm).
The boundedness of Y is equivalent to the boundedness of Q under the
specified transformation between them.

As for the claim about D5, we have D(X) ≤ EX − infX under formula
(9) if and only if EX − infQ∈QE[XQ] ≤ EX − infX, or in other words
infQ∈QE[XQ] ≥ infX. This holds for every X ∈ L2(Ω) when Q satisfies
Q4, but it fails otherwise, since if Q contains a Q0 with inf Q0 < 0 we can
take X0 = −min{Q0, 0} and get E[X0Q0] < 0 even though infX0 ≥ 0. ut

Definition 3 (risk envelopes). The uniquely determined set Q in Theorem
1 will be called the risk envelope corresponding to the lower semicontinuous
deviation measure D.

The risk envelope Q can be interpreted most clearly when D is lower
range dominated, since that corresponds by Theorem 1 to Q4 being satisfied
along with Q1–Q3. Through Q3 and Q4, each Q ∈ Q may be regarded as
the density relative to P of some probability measure P ′ on Ω:

Q =
dP ′

dP
, P ′ = QP, (13)
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with expectation functional

EP ′(X) =
∫

Ω

X(ω)dP ′(ω) =
∫

Ω

X(ω)Q(ω)dP(ω) = E[XQ]. (14)

We can think of these probability measures as designating alternatives to
the underlying probability measure P which a modeler might wish to take
into account. The difference

EX − E[XQ] = EX − EP ′X

assesses how much worse the expectation of X might be under P ′ than
under P . In this sense, D performs a worst-case analysis over the probability
alternatives that have been selected. Observe, in the same vein, that from
(9) we get

D(X) + D̃(X) = sup
Q∈Q

E[XQ]− inf
Q∈Q

E[XQ],

which assesses the difference between the best and worst possible expecta-
tions for X relative to the risk envelope Q.

A richer range of examples will emerge in due course, but the most
extreme case of a lower range dominated deviation measure can immediately
be seen as associated with the largest possible set Q satisfying Q1–Q4:

D(X) = EX − infX corresponds to Q =
{
Q

∣∣Q ≥ 0, EQ = 1
}
. (15)

This deviation measure thus performs a worst-case analysis of EX −EP ′X
by looking at all the possible alternatives P ′ to P in this scheme. In contrast,

D(X) = σ(X) corresponds to Q =
{
Q

∣∣σ(Q− 1) ≤ 1, EQ = 1
}
, (16)

as can be seen from the fact that σ(X) = sup
{
E[XY ]

∣∣σ(Y ) ≤ 1, EY = 0
}

by way of the change of variables Y = Q−1 utilized in the proof of Theorem
1. In this case the elements Q of Q fail to necessarily satisfy Q ≥ 0, as is
consonant with the lack of lower range dominance of D = σ. Identification
of the risk envelopes associated with D = σ+ or D = σ− will have to wait
until later (in Example 6).

In the framework of (13) and (14) the probability measure P itself corre-
sponds to the density function Q = 1. From (10), every risk envelope Q has
to have this constant density as one of its elements. Thus, in the probabilis-
tic interpretation when Q, associated with a lower semicontinuous deviation
measure D, satisfies Q4, the specified collection of probability measures P ′

must in particular include P . In fact, through Q2 it must constitute a kind
of neighborhood of P , in the sense explained next.

Proposition 3 (risk envelope geometry). Conditions Q1–Q3 mean that Q
is a closed, convex subset of the closed hyperplane H0 =

{
Q

∣∣EQ = 1
}

in
L2(Ω) that contains the constant 1 in its quasi-interior relative to H0; in
other words, 1 ∈ Q but every closed hyperplane H 6= H0 containing 1 has
elements of Q in both of its associated open half-spaces.
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Proof We already know from Theorem 1, via the observation just made, that
risk envelopesQ comprise a class of closed, convex setsQ ⊂ H0 containing 1.
These properties correspond through the representation in (9) to D being a
nonnegative, lower semicontinuous functional that satisfies D1, D2 and D3.
The issue is what additional feature of Q makes the inequalities in D4 be
strict.

For this, we recall that the closed hyperplanesH in L2(Ω) are the subsets
expressible in the formH =

{
Q

∣∣E[XQ] = c
}

for someX 6= 0 and c. Having
1 ∈ H amounts to having c = EX, whereas having H 6= H0 amounts to
X being nonconstant. Axiom D4, in requiring for every nonconstant X the
existence of some Q ∈ Q for which E[XQ] < EX, also requires, through the
application to X ′ = −X, the existence for each such X of some Q ∈ Q for
which E[XQ] > EX. Thus it is equivalent requiring, for each hyperplane
H =

{
Q

∣∣E[XQ] = EX
}

with X nonconstant, the existence of elements of
Q lying on both sides of H. ut

It is worth noting that, although Q1 is essential in getting the one-to-one
correspondence between functionals D and sets Q in Theorem 1, formula (9)
would still define a lower semicontinuous deviation measure D if Q merely
satisfied Q2 and Q3. The risk envelope associated with D would then be
the closure of the convex hull of Q.

Proposition 4 (operations on deviation measures). Let D1, . . . ,Dm be de-
viation measures for which the associated risk envelopes are Q1, . . . ,Qm.

(a) If D(X) = λ1D1(X) + · · · + λmDm(X) with coefficients λk > 0,
λ1 + · · · + λm = 1 then D is another deviation measure. It is lower range
dominated if each Dk is lower range dominated. The corresponding risk
envelope is

Q = closure of λ1Q1 + · · ·+ λmQm, (17)

where set is closed (and the closure operation thus superfluous) when all but
perhaps one of the Dk’s is finite.

(b) If D = max
{
D1(X), . . . ,Dm(X)

}
, then D is another deviation mea-

sure. It is lower range dominated if each Dk is lower range dominated. The
corresponding risk envelope is

Q = closure of the convex hull of Q1 ∪ · · · ∪ Qm, (18)

where convex hull is itself already closed (and the closure operation thus
superfluous) when all of the Dk’s are finite.

(c) If D = λD0 for λ > 0 and a deviation measure D0 with risk envelope
Q0, then D is a deviation measure with risk envelope

Q =
{
Q

∣∣∣Q = (1− λ) + λQ0 for some Q0 ∈ Q0

}
. (19)

Proof The claims about D are in each case elementary consequences of
the definitions. The risk envelope formulas immediately come out of the
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uniqueness of the representation in Theorem 1 by observing that the Q
satisfies Q1, Q2 and Q3, and yields the designated D through (9).

When Dk is finite, the set Qk is bounded by Theorem 1. Since Qk is
closed and convex, it must therefore be weakly compact, inasmuch as closed-
ness coincides with weak closedness for convex sets (due to the separation
principle), and weakly closed, bounded, convex subsets of L2(Ω) are always
weakly compact. Any multiple λkQk is then likewise convex and weakly
compact. The sum of finitely many weakly closed sets, all but perhaps one
of which is weakly compact, is known to be another weakly closed set, and
convexity is preserved under addition as well. On the other hand, the union
of any finite collection of weakly compact sets is again weakly compact, and
its convex hull is therefore weakly compact. ut

3 Relation to Coherent Risk Measures

Although deviation measures are designed for applications to problems in-
volving risk, they are not “risk measures” in the sense proposed by Artzner,
Delbaen, Eber and Heath [3] in their landmark paper. The connection be-
tween deviation measures and risk measures is close, but a crucial distinction
must be appreciated clearly. Instead of measuring the uncertainty in X, in
the sense of nonconstancy, a risk measure evaluates the “overall seriousness
of possible losses” associated with X, where a loss is an outcome below 0, in
contrast to a gain, which is an outcome above 0. In applying a risk measure,
this orientation is crucial; if the concern is over the extent to which a given
r.v. X might have outcomes X(ω) that drop below a threshold C, one needs
to replace X by X − C.

The touchstone for this section is the following concept of “coherent”
risk measure, adopted essentially from [3].

Definition 4 (coherent risk measures). By a coherent risk measure will be
meant any functional R : L2(Ω) → (−∞,∞] satisfying

(R1) R(X + C) = R(X)− C for all X and constants C,
(R2) R(0) = 0, and R(λX) = λR(X) for all X and all λ > 0,
(R3) R(X +X ′) ≤ R(X) +R(X ′) for all X and X ′,
(R4) R(X) ≤ R(X ′) when X ≥ X ′.

Once more, R2 is positive homogeneity, R3 is subadditivity, and the
combination of R2 and R3 is sublinearity, implying convexity. Again too,
R(X) = ∞ is allowed (under the arithmetic conventions already noted,
which now affect R1 as well as R2 and R3). Property R4 is monotonicity.

Interestingly, by an argument along the lines of Proposition 1, axioms
R1 and R2 could be replaced equivalently by the simpler conditions

(R1’) R(C) = −C for constants C,
(R2’) R(λX) = λR(X) for all X and λ > 0.
Actually, only finite risk measures were considered originally in [3], and

axiom R1 was slightly different, involving investment in a reference r.v.;
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moreover the state space Ω was assumed to be a finite set. Extensions to
the present context and formulation were made, however, in follow-up work
by Delbaen [7], [8]. That format was adopted also in the presentation of the
subject furnished by Föllmer and Schied in [10].

The rationale behind coherent risk measures was very well argued in [3],
but how are they related to the deviation measures we have introduced?
Although the R2 and R3 for a risk measure agree with the D2 and D3 for a
deviation measure, R1 and D1 are entirely different, in fact mutually incom-
patible — no functional on L2(Ω) can satisfy both R1 and D1. Despite this,
there is a simple relationship between the two notions. In order to explain
it clearly, however, we have to consider also a slightly different concept of
risk measure.

Definition 5 (strictly expectation bounded risk measures). By a strictly
expectation bounded risk measure will be meant any functional R : L2(Ω) →
(−∞,∞] satisfying the axioms R1, R2 and R3 (but not necessarily R4) of
Definition 4, along with

(R5) R(X) > E[−X] for all nonconstant X.

When all the axioms R1, R2, R3, R4 and R5 are satisfied, we speak of
course of a coherent, strictly expectation bounded risk measure.

The strict inequality in R5 is the key, since R1 already guarantees that
R(X) = E[−X] when X is a constant r.v. This is why we speak of “strict
expectation boundedness”. The version with a weak inequality in place of
the strict inequality would accordingly just be “expectation boundedness.”1

Neither version was contemplated in Artzner et al. in [3], where no reference
probability distribution was assigned to the state space Ω.

Theorem 2 (strictly expectation bounded risk measures). Deviation mea-
sures correspond one-to-one with strictly expectation bounded risk measures
under the relations

(a) D(X) = R(X − EX),
(b) R(X) = E[−X] +D(X).

Specifically, if R is a strictly expectation bounded risk measure and D is
defined by (a), then D is a deviation measure that yields back R through
(b). On the other hand, if D is any deviation measure and R is defined by
(b), then R is a strictly expectation bounded risk measure that yields back D
through (a). In this correspondence, the risk envelope associated with D (in
the presence of lower semicontinuity) furnishes for R the representation

R(X) = − inf
Q∈Q

E[XQ]. (20)

1 In our working paper [23], from which some of the present paper is derived,
we used this simpler term for the strict version, but have since thought better
of it. The weak version has recently been called “risk relevance” in [14], and this
could be a still better term, but referring to a “risk relevant risk measure” seems
awkward.
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Furthermore, R is coherent if and only if D is lower range dominated. Thus,
lower range bounded deviation measures (satisfying D1, D2, D3, D4, D5)
correspond one-to-one with coherent, strictly expectation bounded risk mea-
sures (satisfying R1, R2, R3, R4, R5) under (a) and (b).

Proof In passing from R to D by way of (a), D1 is immediate (since R([X+
C]−E[X +C]) = R(X −EX); axioms D2 and D3 follow from R2 and R3,
while D4 comes out of R5. Because R1 implies R(X −EX) = R(X)+EX,
we also get (b). On the other hand, in passing from D to R by way of (b),
the properties in R2 and R3 are immediate from D2 and D3. We have

R(X + C) = D(X + C)− E[X + C] = D(X)− EX − C = R(X)− C

via D1, so that R satisfies R1. That also shows that (a) will give back D.
Axiom D4 clearly corresponds to R5 through (b).

The risk envelope representation of D in Theorem 1 clearly translates
through (a) and (b) into the representation of R in (20).

In the presence of R2 and R3, the monotonicity property R4 implies
that R(X) ≤ 0 when X ≥ 0 and in fact it is equivalent to that seemingly
weaker property, since if X ≥ X ′ we have X = X ′ + X ′′ for X ′′ ≥ 0
and consequently R(X) ≤ R(X ′) + R(X ′′), hence R(X) ≤ R(X ′) when
R(X ′′) ≤ 0. In the (a)(b) correspondence, the condition that R(X) ≤ 0
when X ≥ 0 comes out as requiring D(X) ≤ EX when X ≥ 0. That is
definitely true under D5, but in turn it actually guarantees D5. Indeed, to
say that D(X) ≤ EX − infX is to say that D(X) ≤ EX − C whenever
X ≥ C, and through D1 that is the same as having D(X −C) ≤ E[X −C]
whenever X − C ≥ 0. ut

Under the (a)(b) correspondence in Theorem 1, D can be called the devi-
ation measure associated with R, whereas R can be called the risk measure
associated with D. Note that R is finite if and only if D is finite. Likewise,
R is lower semicontinuous, or for that matter continuous, if and only if D
has that property.

The degree to which strict expectation boundedness imposes a restriction
on a risk measure R can readily be understood through the risk envelope
characterization in Theorem 2: the associatedQmust satisfy Q1, Q2 and Q3
of Theorem 1, which have been identified with the geometry in Proposition
3. Plain expectation boundedness, with the inequality in R5 no longer strict,
would relax the “quasi-interior” requirement in Proposition 3 to simply
having the constant 1 belong to Q. In contrast, the representation of type
(20) that characterizes general coherent risk measures R centers on sets Q
that satisfy Q1, Q3 and Q4, with no mention of Q2; cf. [3], [10].2 Since
it is easy to come up with examples of sets Q satisfying Q1, Q3 and Q4
that contain 1 but not in their quasi-interior, or do not contain 1 at all,

2 In those works, no name was given to the set appearing in this formula. The
term “risk envelope” was introduced in our working paper [23].
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it is evident that coherent risk measures may or may not be expectation
bounded, and if so, need not, in general, be strictly expectation bounded.

For instance, the functional R(X) = E[−X] is a coherent risk measure
which is expectation bounded but not strictly expectation bounded, whereas
the functional R(X) = −E[XQ0] for a fixed Q0 ≥ 0 with Q 6= 1 but EQ0 =
1 is a coherent risk measure which is not even expectation bounded. On the
other hand, it has been shown in [10, p. 118] that, when the probability
space is atomless, R(X) ≥ E[−X] must hold if R depends only on the
distribution function FX of X and has a monotone convergence property
called “continuity from above.”

There are echoes of the relationships in Theorem 2 in [13], [14], but those
researchers focus on several examples rather than axiomatic definitions and
proofs.3 In [6], certain functionals are considered that have the form of D
in (a) of Theorem 2 for an R that is not strictly expectation bounded,
but on the other hand is a coherent risk measure which furthermore is
required to be monotone with respect to second-order stochastic dominance.
As seen in Theorem 2, such functionals D fail in general to be nonnegative,
as demanded by our axiom D4, and thus are not deviation measures in our
sense, nor even when they happen to be nonnegative, would they include
all our deviation measures.

For coherent risk measures, the representation in (20) can be interpreted
like the one for deviation measures in (9). The elementsQ ∈ Q can be viewed
as the densities with respect to P of alternative probability measures P ′ as
in (13) and (14). The quantity −E[XQ] = EP ′ [−X] then designates the loss
under that alternative, and R identifies the worst possible loss with respect
to the specified class of alternatives; cf. [3], [10, Proposition 4.11].

We proceed now to bring out further examples of deviation measures by
way of examples of coherent risk measures and some elementary operations.

Example 3 (CVaR-deviation). For any α ∈ (0, 1), the functional

D(X) = CVaRα(X − EX) (21)

is a continuous, lower range dominated deviation measure on L2(Ω) for
which the risk envelope is

Q =
{
Q

∣∣ 0 ≤ Q ≤ α−1, EQ = 1
}
. (22)

It corresponds to the coherent, strictly expectation bounded risk measure

R(X) = CVaRα(X). (23)

Detail. This R is already known to furnish a finite, coherent risk measure,
cf. [22], and D corresponds to it as in (a) of Theorem 2. A representation
for R of type (21) has already been developed in terms of the convex set
Q in (22), cf. [10, Theorem 4.39]. This set Q enjoys Q1, Q2, Q3 and Q4
of Theorem 1, so the claims about D are correct in view of the facts in
Theorem 2. ut

3 Their terminology has −R as a “safety measure” and D as a “risk measure.”
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Example 4 (mixed CVaR-deviation). For a weighting measure λ on (0, 1)
(nonnegative with total measure 1), the functional

D(X) =
∫ 1

0

CVaRα(X − EX)dλ(α) (24)

is a finite, lower range bounded deviation measure, and the functional

R(X) =
∫ 1

0

CVaRα(X)dλ(α) (25)

is a finite, coherent, strictly expectation bounded risk measure. In particular,
in taking λ to be comprised of atoms having weights λi at points αi for
i = 1, . . . ,m, with λi > 0 and λ1 + · · ·+ λm = 1, one gets

D(X) = λ1CVaRα1(X − EX) + · · ·+ λmCVaRαm
(X − EX), (26)

R(X) = λ1CVaRα1(X) + · · ·+ λmCVaRαm
(X). (27)

Detail. This is evident from Example 3 and the way that properties D1–D5
are propagated by the integration. ut

Example 5 (worst-case mixed-CVaR deviation). For any collection Λ of
weighting measures λ on (0, 1), the functional

D(X) = sup
λ∈Λ

∫ 1

0

CVaRα(X − EX)dλ(α) (28)

is a lower range bounded deviation measure; correspondingly the functional

R(X) = sup
λ∈Λ

∫ 1

0

CVaRα(X)dλ(α) (29)

is a coherent, strictly expectation bounded risk measure. As a special case,
the mixed CVaR elements in the maximization can be taken to be simple
CVaR elements:

D(X) = max
{

CVaRα1(X − EX), . . . ,CVaRαm
(X − EX)

}
, (30)

R(X) = max
{

CVaRα1(X), . . . ,CVaRαm
(X)

}
. (31)

Detail. Again, this follows out of Example 3 and the observation that the
properties in question are preserved under the supremum operation. ut

Risk measures of the special worst-case CVaR type in (31) have recently
been utilized in [14].

Observe that all the measures in Examples 4, 5 and 6 are distribution-
independent ; D(X) and R(X) depend only on the distribution function
FX . For additional insight into their importance, we provide a “spectral”
characterization of them which relates to the contributions of Acerbi [1].
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Proposition 5 (spectral representation for mixed-CVaR). As long as the
weighting measure λ satisfies

∫ 1

0
p−1dλ(p) < ∞, the functionals D and R

in Example 4 can equivalently be expressed in the form

D(X) =
∫ 1

0

VaRα(X − EX)ϕ(α)dα, (32)

R(X) =
∫ 1

0

VaRα(X)ϕ(α)dα, (33)

for the function ϕ defined on (0, 1) by

ϕ(α) =
∫

[α,1)

p−1dλ(p). (34)

This function ϕ is left-continuous and nonincreasing with ϕ(0+) < ∞,
ϕ(1−) = 0 and

∫ 1

0
ϕ(α)dα = 1. Conversely, any function ϕ having those

properties arises from a unique choice of λ as described.

Proof The formula for ϕ yields immediately the fact that ϕ is left-continuous
and nonincreasing on (0, 1) with boundary limits ϕ(1−) = 0 and ϕ(0+) <∞;
the finiteness of ϕ(0+) comes from the assumption that

∫ 1

0
p−1dλ(p) < ∞.

The Radon-Stieltjes measure dϕ derived from ϕ relates to the weighting
measure λ by dϕ(α) = −α−1dλ(α).

Conversely, for any function ϕ that is left-continuous and nonincreasing
on (0, 1) with ϕ(1−) = 0 and ϕ(0+) < ∞, consider the measure λ on (0, 1)
defined by dλ(α) = −αdϕ(α). This is nonnegative with∫ 1

0

p−1dλ(p) = −
∫ 1

0

p−1pdϕ(p) = −[ϕ(1−)− ϕ(0+)] = ϕ(0+) <∞.

To establish that
∫ 1

0
dλ(p) = 1 as well, we appeal to integration-by-parts

(cf. [4, Prop. 8.5.5] for this rule in a Radon-Stieltjes framework):∫ 1

0

dλ(p) = −
∫ 1

0

pdϕ(p) = −[pϕ(p)]1
−

0+ +
∫ 1

0

ϕ(p)dp,

where the boundary expressions both vanish (because ϕ(0+) < ∞ and
ϕ(1−) = 0) and the final integral has been assumed to equal 1.

In preparation for confirming the formula in (33) for the risk measure R
in (27), which is all that will be needed, we introduce ψ(α) = αCVaRα(X).
On the basis of the CVaR integral formula (7), which entails the integrability
of VaRα(X) with respect to α, this function also has the expression ψ(α) =∫ α

0
VaRα(X)dα. That implies that ψ is continuous and nonincreasing on

(0, 1) with ψ(0+) = 0, ψ(1−) = E[−X] and dψ(α) = VaRα(X)dα. Utilizing
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integration-by-parts once more, along with the relation dλ(α) = −αdϕ(α),
we see that∫ 1

0

CVaRα(X)dλ(α) = −
∫ 1

0

[αCVaRα(X)]dϕ(α) = −
∫ 1

0

ψ(α)dϕ(α)

= −ψ(1−)ϕ(1−) + ψ(0+)ϕ(0+) +
∫ 1

0

ϕ(α)dψ(α) =
∫ 1

0

ϕ(α)VaRα(X)dα.

Thus, the spectral formula is correct. The integrability of VaRα(X) with
respect to α, along with fact that ϕ is nonnegative with finite upper bound
ϕ(0+), ensures moreover that

∫ 1

0
ϕ(α)VaRα(X)dα < ∞, and hence that∫ 1

0
CVaRα(X)dλ(α) <∞. ut

In the “spectral” representations in (32) and (33), the function ϕ on
(0, 1) is said to provide the risk profile. The case of Example 4 where the λ is
concentrated in finitely many points αi, giving them weights λi, corresponds
to the risk profile function ϕ(α) = Σαi≥αλi. The functionals in Example
5 can be interpreted as arising from worst-case analysis with respect to a
collection of different risk profiles.

Functionals R directly defined by the spectral formula in (33) were stud-
ied in 1987 by Yaari [28] and Roell [26] in connection with a theory of “dual
utility”. (In those days, before VaR assumed such importance in finance,
the expression being integrated along with ϕ was only regarded as a form
of the inverse of the distribution function FX .) Acerbi [1] showed that the
properties of ϕ listed in Proposition 5 are necessary for such a functional R
to be a coherent risk measure, which he then termed a spectral risk measure.
He identified spectral risk measures to some degree with CVaR mixtures,
although not under the full generality here, where the mixture is given by
a weighting measure. The existence of a general spectral characterization
as in (33) was indicated in a remark of Fölmer and Schied [10, p. 190], but
without a precise statement or proof.

The risk profile for an “unmixed” risk measure CVaRα itself is of course
the function ϕ that has the value α−1 on (0, α] but 0 on (α, 1). This corre-
sponds to Acerbi’s basic formula (7).

Mixed CVaR can be generalized to a weighting measure λ on [0, 1] in-
stead of (0, 1). That amounts to admitting the limit cases CVaR0(X) =
− infX and CVaR1(X) = −EX in some proportions. As long as the weight
is not all placed on the endpoint 1, and weight is placed on 0 only in the
finite-dimensional case of L2(Ω) (corresponding to a finite space Ω), one still
gets a finite, coherent risk measure R that is strictly expectation bounded,
and a lower range bounded deviation measure D that is coherent.

4 Deviations from Error Expressions

Next in our project are results leading to another broad class of examples of
deviation measures. For any X ∈ L2(Ω), both X+ and X−, as defined in (2),
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likewise belong to L2(Ω). So too then does aX+ + bX− for any coefficients
a and b. Throughout this section, we take a ≥ 0 and b ≥ 0 and work with
the functional Ea,b,p from L2(Ω) that is defined for any p ∈ [1,∞] by

Ea,b,p(X) = || aX+ + bX− ||p. (35)

We wish to think of Ea,b,p as a simple “error functional” that penalizes in a
particular manner the extent to which the r.v. X differs from the constant
r.v. 0. Observe, for instance, that

Ea,b,p(X) =


||X|| for a = 1, b = 1, p = 2,
||X+|| for a = 1, b = 0, p = 2,
||X−|| for a = 0, b = 1, p = 2,

while on the other hand

Ea,b,p(X) =


supX for a = 1, b = 1, p = ∞,

supX+ for a = 1, b = 0, p = ∞,

supX− for a = 0, b = 1, p = ∞.

These cases hint strongly at connections with some examples of deviation
measures that were mentioned earlier.

Along these lines and beyond, our plan is to use the functionals Ea,b,p in
two broad schemes for generating deviation measures D, and incidentally,
by way of Theorem 2, corresponding risk measures R.

Proposition 6 (error functional basics). Each functional Ea,b,p is nonnega-
tive and lower semicontinuous on L2(Ω), and furthermore is sublinear, i.e.,
satisfies

Ea,b,p(0) = 0, Ea,b,p(λX) = λEa,b,p(X) when λ > 0, (36)

as well as

Ea,b,p(X +X ′) ≤ Ea,b,p(X) + Ea,b,p(X
′) for all X, X ′. (37)

If both a > 0 and b > 0, then Ea,b,p(X) > 0 for all Y 6= 0.

Proof All these properties are evident from the definition of Ea,b,p except
for the lower semicontinuity. We can get that by verifying the closedness
of the subsets of L2 having the form

{
Y

∣∣ Ea,b,p(X) ≤ δ
}

for a choice of
δ ∈ [0,∞). That comes from the closedness of the sets

{
Y

∣∣ ||Y ||p ≤ δ
}

and
the continuity of the mapping X 7→ aX+ + bX− from L2(Ω) into itself. ut

It can be seen from Proposition 6 that Ea,b,p behaves like a norm on
L2(Ω), except that it lacks symmetry (unless a = b) and can sometimes have
Ea,b,p(X) = 0 when X 6= 0 (unless a > 0 and b > 0). Also, Ea,b,p(X) might
be ∞ in some situations. Nonetheless, it is possible to think of Ea,b,p(X−Y )
as standing for a sort of “error distance” between the r.v.’s X and Y .
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Proposition 7 (error functional duality). There is a nonempty, closed, con-
vex subset Ba,b,p of L2(Ω) yielding the representation

Ea,b,p(X) = sup
{
E[XY ]

∣∣∣Y ∈ Ba,b,p

}
. (38)

This set is uniquely determined and has the following forms. If both a > 0
and b > 0, then

Ba,b,p =
{
Y

∣∣∣ || a−1Y+ + b−1Y−||q ≤ 1
}

(39)

for q ∈ [1,∞] satisfying 1
p + 1

q = 1 under the usual convention. If a > 0 but
b = 0, then

Ba,0,p =
{
Y

∣∣∣Y ≥ 0, ||Y ||q ≤ a
}
, (40)

whereas if a = 0 but b > 0, then

B0,b,p =
{
Y

∣∣∣Y ≤ 0, ||Y ||q ≤ b
}
. (41)

Proof The existence of a uniquely determined set Ba,b,p which is nonempty,
closed, convex, and expresses Ea,b,p as in (38) follows from the lower semi-
continuity and sublinearity of Ea,b,p in Proposition 6 and the general duality
principle of convex analysis that was put to work already in Theorem 1; cf.
[5], [19]. The question here is how that set can be described in accordance
with the particular structure of Ea,b,p. We can start with the standard fact

that ||U ||p = sup
{
E[UV ]

∣∣∣ ||V ||q ≤ 1
}
, which yields for us the expression

Ea,b,p(X) = sup
{
E

[
(aX+ + bX−)V

] ∣∣∣ ||V ||q ≤ 1
}
.

Since ||V ||q is unaffected by switching the sign of V (ω) for any set of ω’s inΩ,
this formula says equivalently that Ea,b,p(X) is the supremum of E[XY ] over
all Y that can be obtained from functions V satisfying ||V ||q ≤ 1 by setting
Y (ω) = aV (ω) when V (ω) ≥ 0 but Y (ω) = bV (ω) when V (ω) < 0. In the
cases where b = 0 or a = 0, we immediately get from this the expressions
for Ba,b,p in (40) and (41), respectively, but more work is needed in the case
where both a > 0 and b > 0.

In that situation the functions Y in question are the ones such that
a−1Y+ + b−1Y− is a function V with ||V ||q ≤ 1. Thus, in denoting the set
on the right side of (39) by B′a,b,p, we do have the representation of Ea,b,p in
terms of B′a,b,p in place of Ba,b,p. That tells us, at least, that Ba,b,p has to
be the closed, convex hull of B′a,b,p. But B′a,b,p is itself closed. Therefore, all
that is missing still is the confirmation that B′a,b,p is actually convex.

That will be obtained from the fact that the mapping F : Y 7→ a−1Y+ +
b−1Y− is sublinear: it satisfies F(0) = 0, F(λY ) = λF(Y ) when λ > 0,
and F(Y + Y ′) ≤ F(Y ) + F(Y ′) in the ordering of L2(Ω). With that in
hand, consider any Y0 and Y1 in B′a,b,p; the functions V0 = F(Y0) and
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V1 = F(Y1) satisfy ||V0||q ≤ 1 and ||V1||q ≤ 1. For arbitrary λ ∈ (0, 1) let
Yλ = (1−λ)Y0 +λY1 and Vλ = F(Yλ). The question is whether ||Vλ||q ≤ 1.
The sublinearity of F implies that Vλ ≤ (1− λ)V0 + λV1, where moreover

||(1− λ)V0 + λV1||q ≤ (1− λ)||V0||q + λ||V1||q ≤ (1− λ) + λ = 1.

Then ||Vλ||q ≤ 1 because ||V ||q ≤ ||V ′||q when 0 ≤ V ≤ V ′. ut

To make it simpler to state our results about deviation measures in
this framework, we make use of our terminology in Section 1, that the
probability space (Ω,M, P ) is essentially infinite if P takes on infinitely
many different values over the sets in M, or equivalently that there exist
subsets of M having arbitrarily small positive probability.

Theorem 3 (deviation measures from penalties relative to expectation).
For any p ∈ [1,∞] and a ≥ 0, b ≥ 0, with a+ b > 0, let

D(X) = Ea,b,p(X − EX) = || a[X − EX]+ + b[X − EX]− ||p. (42)

Then D is a lower semicontinuous deviation measure which is finite on
L2(Ω) as long as Ea,b,p is finite on L2(Ω). It is lower range dominated
when a = 0 and b ≤ 1, or when merely a+ b ≤ 1 if p = 1, but not otherwise
(when the probability space is essentially infinite). The risk envelope for D
is given by

Q =
{
Q

∣∣∣EQ = 1 and a constant C exists with C −Q ∈ Ba,b,p

}
, (43)

while the strictly expectation bounded risk measure associated with D is

R(X) = E[−X] + || a[X − EX]+ + b[X − EX]− ||p. (44)

Proof By its formula, D(X) depends only onX−EX, so D satisfies D1. The
sublinearity properties of Ea,b,p in (36) of Proposition 6 turn into D2 and
D3 for D. We have D4 when a > 0 and b > 0 since in that case Ea,b,p(Z) > 0
unless Z = 0. But even when a > 0 and b = 0 we have D4, inasmuch as
then Ea,b,p(Z) > 0 unless Z ≤ 0, and it is impossible to have X − EX ≤ 0
without X being constant. Similarly, we have D4 when a = 0 and b > 0.

To determine the risk envelope associated with D, we apply the repre-
sentation in Proposition 7 to see that

D(X) = sup
{
E[(X − EX)Y ]

∣∣∣Y ∈ Ba,b,p

}
,

where E[(X − EX)Y ] = E[X(Y − EY )]. In terms of Q = 1 + EY − Y ,
which converts E[X(Y − EY )] into EX − E[XQ], we identify D(X) with
EX − inf

{
E[XQ]

∣∣Q ∈ Q
}

for the set Q consisting of all Q of the form
1 + EY − Y for some Y ∈ Ba,b,p. That is identical to the set Q in (43).

This set inherits the convexity of Ba,b,p in Proposition 7, so if it also
is closed, it will have to be the risk envelope in question by virtue of the
uniqueness in Theorem 1. The closedness is immediate from (43) and the
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closedness of Ba,b,p in Proposition 7 in cases where Ba,b,p is sure to be a
bounded subset of L2(Ω), since then, from the convexity, we have Ba,b,p

weakly compact. That covers p ∈ [1, 2] (q ∈ [2,∞]) and situations where Ω
is finite (or just not essentially infinite).

Another closedness argument must anyway be brought in, however, to
cover all cases without exception. The crux of the matter is showing that if
{Qk}∞k=1 and {Ck}∞k=1 satisfy Ck−Qk ∈ Ba,b,p, and Qk converges in L2(Ω)
to some Q, then there is a constant C such that C −Q ∈ Ba,b,p. For this, it
will suffice to establish that the sequence {Ck}∞k=1 is bounded, since then,
by passing to subsequences if necessary, we can suppose this sequence of
constants has a limit, and then by taking that limit to be C, conclude that
C −Q ∈ Ba,b,p, as required.

By rescaling, we can harmlessly reduce to having max{a, b} = 1. Then,
through the fact that || · ||1 ≤ || · ||p ≤ || · ||∞ (because we are dealing with
a probability measure P on Ω), we have Ea,b,p(X) ≤ E1,1,∞(X) = ||X||∞
and consequently Ba,b,p ⊂ B1,1,∞ =

{
Y

∣∣ ||Y ||1 ≤ 1
}
. Hence, from our

assumption that Ck−Qk ∈ Ba,b,p, we have ||Ck−Qk||1 ≤ 1, where moreover
||Ck −Qk||1 ≥ ||Ck||1 − ||Qk||1 = |Ck| − ||Qk||1. Thus |Ck| ≤ 1 + ||Qk||1 ≤
1 + ||Qk||2. Since Qk converges to Q in L2(Ω), we know ||Qk||2 → ||Q||2,
and the sequence

{
||Qk||2

}∞
k=1

is thus bounded. It follows then that the
sequence

{
|Ck||

}∞
k=1

is bounded too, which is what we needed.
It remains to explore the possibilities for D to have the lower range

dominance property D5. Recall that whenever 0 ≤ U ≤ V we have ||U ||p ≤
||V ||p ≤ ||V ||1 = EV . From this and the fact that

0 ≤ a[X − EX]+ + b[X − EX]− ≤ a[supX − EX] + b[EX − infX],

we see that

D(X) ≤ a[supX − EX] + b[EX − infX]
always, with equality holding when p = ∞.

(45)

Hence D is assured of being lower range dominated for any p if a = 0 and
b = 1, but for p = ∞ this is the only guarantee. When p = 1, so that
D(X) = aE[X − EX]+ + bE[X − EX]−, we can appeal to the fact that
E[X − EX]+ = E[X − EX]− ≤ EX − infX to confirm that D(X) ≤
EX − infX as long as a+ b ≤ 1.

To see how lower range dominance fails otherwise, for p <∞ when the
probability space is essentially infinite, consider a subset Ω0 of Ω having
probability π ∈ (0, 1), and define X ∈ L2(Ω) by setting X(ω) = 1 for
ω ∈ Ω0 and X(ω) = 0 for ω /∈ Ω0. This yields supX = 1, infX = 0 and
EX = π, and makes the expression a[X(ω)−EX]+ + b[X(ω)−EX]− take
the value a(1−π) with probability π and the value bπ with probability 1−π.
Then D(X) =

[
ap(1 − π)pπ + bpπp(1 − π)

]1/p while EX − infX = π, so
coherency would require that ap(1−π)pπ+bpπp(1−π) ≤ πp, or on dividing
both sides by πp, that ap(π−1−1)pπ+bp(1−π) ≤ 1. By choosing values of π
nearer and nearer to 0 (under the assumption that Ω is essentially infinite),
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we can produce a violation of this inequality for p = 1 unless a + b ≤ 1.
In the case of p > 1, we can likewise produce a violation unless a = 0 and
b ≤ 1, due to the fact that (π−1 − 1)pπ tends to ∞ as π tends to 0 (as seen
through the change of variables s = π−1 − 1, π = (1 + s)−1, by taking the
limit as s tends to ∞). Thus, without the specified restrictions on a and b,
lower range dominance is impossible (for essentially infinite Ω). ut

Example 6 (deviation measures of Lp and semi-Lp type). For any p ∈
[1,∞], a lower semicontinuous deviation measure and its associated risk
envelope are given by

D(X) =
∥∥X − EX

∥∥
p
,

Q =
{
Q

∣∣∣EQ = 1 and a constant C exists with ||C −Q||q ≤ 1
}
,

(46)

and also by

D+(X) =
∥∥[X − EX]+

∥∥
p
,

Q+ =
{
Q

∣∣EQ = 1, supQ <∞, || supQ−Q||q ≤ 1
}
,

(47)

as well as by

D−(X) =
∥∥[X − EX]−

∥∥
p
,

Q− =
{
Q

∣∣EQ = 1, inf Q > −∞, ||Q− inf Q||q ≤ 1
}
.

(48)

Of these deviation measures, only D− is lower range dominated (when the
probability space is essentially infinite), except for the case of p = 1 (which
actually has D+ = D− = 1

2D).

Detail. This applies Theorem 3 to the cases of a = 1 and b = 1 first, a = 1
and b = 0 second, and a = 0 and b = 1 third. The formulas in Proposition
7 are utilized in obtaining the risk envelopes. The specifics behind (47) are
that the condition on C in (43) reduces for a = 1, b = 0, to having C−Q ≥ 0
and ||[C −Q]+||q ≤ 1. Of course, [C −Q]+ = C −Q when C −Q ≥ 0. On
the other hand, having C − Q ≥ 0 is equivalent to having supQ < ∞ and
C ≥ supQ. Since ||C − Q||q ≥ || supQ − Q||q when C ≥ supQ, it is clear
that the existence of C satisfying C−Q ≥ 0 and ||C−Q||q ≤ 1 comes down
simply to having supQ <∞ and || supQ−Q||q ≤ 1. ut

Specialization of Example 6 to p = 2 confirms that σ− is a lower range
dominated deviation measure, whereas σ and σ+ are not (for general Ω
as described). In portfolio theory, the standard deviation σ has long been
central [15], although the idea of using the lower semideviation σ− instead
likewise goes back to the early times [16]. More recently, the case of D(X) =∥∥X − EX

∥∥
1
, known as mean absolute deviation, has been investigated; cf.

[12], and for the equivalent format with D−(X) =
∥∥ [X − EX]−

∥∥
1
, also

[9], [27], [17]. This too is a finite, lower semicontinuous (hence continuous)
deviation measure on L2(Ω), and by our results it is lower range dominated.
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Example 7 (coherent risk measures of semi-Lp type). For any p ∈ [1,∞]
and any ρ ∈ (0,∞), a coherent, strictly expectation bounded risk measure
that is lower semicontinuous is given by

R(X) = E[−X] + ρ
∥∥[X − EX]−

∥∥
p
. (49)

The coherence would fail, however (for probability spaces that are essentially
infinite), if [X − EX]− were replaced by [X − EX]+ or by X − EX.

Detail. In this case we combine Example 6 with the facts of Theorem 3. ut

Theorem 4 (deviation measures from distances to constancy). For any p ∈
[1,∞], a > 0 and b > 0, let

D(X) = inf
C
Ea,b,p(X − C). (50)

Then for each X this infimum is attained by some constant C, and D is a
lower semicontinuous deviation measure which is finite on L2(Ω) as long as
Ea,b,p is finite on L2(Ω). It is lower range dominated when p = 1 and a ≤ 1,
but (for essentially infinite Ω) not otherwise. The risk envelope for D is

Q =
{
Q

∣∣ 1−Q ∈ Ba,b,p, EQ = 1
}
. (51)

Proof First we show the infimum in (50) is always attained (although per-
haps not uniquely). For fixed X, let ϕ(C) = Ea,b,p(X − C). Since Ea,b,p is
lower semicontinuous by Proposition 6, ϕ is lower semicontinuous on IR.
We have ϕ(C) ≥ min{a, b}||X −C||p with min{a, b} > 0, hence ϕ(C) →∞
as |C| → ∞. All sets of the form

{
C

∣∣ϕ(C) ≤ d
}
, d ∈ IR, are therefore

bounded in IR, so the existence of a minimizing value of C is assured.
The verification of axioms D1, D2 and D3 is elementary on the basis

of the properties of Ea,b,p in Proposition 6. Through the attainment just
established, D4 comes out as well: we cannot have D(X) = 0 without a
constant C for which Ea,b,p(X−C) = 0, but that holds only whenX−C = 0.

For the proof that D is lower semicontinuous, we distinguish two cases:
p ∈ [1, 2] and p > 2. When p ∈ [1, 2], we have

D(X) ≤ Ea,b,p(X) ≤ max{a, b}||X||p ≤ max{a, b}||X||,

so D is finite and bounded from above in a neighborhood of the origin. Any
finite convex functional on that is bounded from above in a neighborhood
of some point is everywhere continuous; cf. [5], [19]. For the case of p > 2,
we utilize instead the attainment of the infimum to see that, for any c ∈ IR,{

X
∣∣D(X) ≤ c

}
=

{
X ′ + C

∣∣C constant, Ea,b,p(X ′) ≤ c
}
.

This says that the level set
{
X

∣∣D(X) ≤ c
}
, whose closedness we must

demonstrate in order to conclude the lower semicontinuity of D, is the
sum of the one-dimensional “constant subspace” of L2(Ω) and the level
set

{
X ′

∣∣ Ea,b,p(X ′) ≤ c
}
. That second level set is known from Proposition
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6 to be closed and convex. If we can ascertain that it is also bounded in
L2(Ω), it will follow that it is weakly compact, and then the sum in ques-
tion is sure to be closed, as needed. To see this boundedness we note that
Ea,b,p(X ′) ≥ min{a, b}||X ′||p ≥ min{a, b}||X ′|| with min{a, b} > 0, so{

X ′ ∣∣ Ea,b,p(X ′) ≤ c
}
⊂

{
X ′ ∣∣ ||X ′|| ≤ c/min{a, b}

}
.

Next we target the risk envelope representation. According to (10) of Theo-
rem 1 and the definition of D, we have Q ∈ Q if and only if Ea,b,p(X−C) ≥
EX − E[XQ] for all X and C. Therefore

Q =
{
Q

∣∣ Ea,b,p(X ′) ≥ E[(X ′ + C)(1−Q)] for all X ′, C
}
.

This reveals that Q ∈ Q if and only if E[C(1−Q)] = 0 for all C and, on the
other hand Ea,b,p(X ′) ≥ E[X ′(1 − Q)] for all X ′. The former is equivalent
to E(1 − Q) = 0, whereas the latter means through Proposition 7 that
1−Q ∈ Ba,b,p. Hence the formula claimed for Q in (51) is correct.

Because the lower range dominance of D corresponds by Theorem 1 to
the elements of Q being nonnegative, we see it holds if and only if the
conditions 1−Q ∈ Ba,b,p and EQ = 1 necessitate Q ≥ 0, or in other words,
when the conditions Y ∈ Ba,b,p and EY = 0 necessitate Y ≤ 1. In view of
the description of Ba,b,p in Proposition 7, that is true (for essentially infinite
probability spaces) only when p = 1 (so q = ∞) and a ≤ 1. ut

Example 8 (CVaR-deviation reinterpreted). For α ∈ (0, 1), the deviation
measure D(X) = CVaRα(X − EX) corresponds to the case of Theorem 4
where p = 1, a = 1, b = α−1 − 1. Its risk envelope Q, expressed in Example
3, thus can be derived alternatively from the prescription in Theorem 4.

Detail. From (5) we have D(X) = minC

{
C + α−1E[X − EX + C]−

}
.

By shifting the variable from C to C ′ = EX − C, we can rewrite this as
D(X) = minC′

{
EX −C ′ +α−1E[X −C ′]−

}
. Since EX −C ′ = E[X −C ′]

with X − C ′ = [X − C ′]+ − [X − C ′]−, this is the same as

D(X) = min
C′

E
{

[X − C ′]+ + (α−1 − 1)[X − C ′]−
}
, (52)

which corresponds to the indicated case of Theorem 4. ut

The minimum distance expression in (52) relates closely to one that has
been utilized by Koenker and Basset in quantile regression [11].

The classical D(X) = σ(X) fits as a special case of Theorem 4 as well,
namely with a = 1, b = 1, and p = 2, which makes Ea,b,p(X) = ||X||.
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