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Abstract
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Variational inequalities and even quasi-variational inequalities, as means of ex-
pressing constrained equilibrium, have utilized geometric properties of convex
sets, but thetheory of tangent conesand normal coneshasyet to befully exploited.
Much progress has been made in that theory in recent yearsin understanding the
variational geometry of nonconvex as well as convex sets and applying it to
optimization problems. Parallel applications to equilibrium problems could be
pursued now as well.

This article explains how normal cone mappings and their calculus offer an
attractive framework for many purposes, and how the variational geometry of
the graphs of such mappings, as nonconvex sets of a specia nature, furnishes
powerful tools for use in ascertaining how an equilibrium is affected by per-
turbations. An application to aggregated equilibrium models, and in particular
multi-commodity traffic equilibrium, is presented as an example.
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1 INTRODUCTION

The concept of equilibrium has long had a close connection with optimiza-
tion. Traditionally, anequilibrium point £ hasoften been construed asasol ution
to avector equation F'(z) = 0. Inthat case, if F'isthegradient V f of afunction
f, the equilibrium satisfies V f (z) = 0 and is said to be described by a“varia-
tional principle” The function f might have alocal minimum or maximum at
z, and indeed variational principles have often centered on minimum energy,
but of course z could merely be a“stationary point” of f.

The connection between equilibrium and optimization hasreally alwaysbeen
onthislevel. Equilibrium conditionstypically are properties that resemblefirst-
order conditionsfor optimality. They do correspond tolocal optimality in many
cases, or at |east to acompetitive balance among various optimizing agents, but
not in every case.

The question of how to account for constraintsin formulations of equilibrium
has gained in importance in modern times. Some constraints can be handled
through the introduction of Lagrange multipliers. Others, though, fit poorly
with classical techniques and demand new mathematics in order to achieve sat-
isfactory treatment. Anyway, Lagrange multipliers are something “ secondary.”
Thebasic issueis how to relativize an equilibrium to aset C, but there is great
diversity inthewaysthat C might be specified. Such diversity should somehow
be accommodated in a“primary” manner.

A magjor advance came with the notion of a variationa inequality over a
convex set C, whatever the structure of that set. This innovation, in the era
when convex analysiswas starting up, provided abroad approach to generalized
constraints of convex type. Moreover, through restatements in a Lagrangian
setting, it supported treatment of some constraints of nonconvex type aswell—
provided that those constraints could be represented by multipliers which in
turn would be incorporated among the equilibrium variables.

Since then, work on variational inequalities has led to many successes. Ex-
tensions such as to quasi-variational inequalities have carried this further. But
equilibrium theory has yet to take advantage of some of the recent progress in
optimization, where much has been learned about how to handle very general
classes of sets C' directly, without necessarily introducing multipliers or relying
on excursions through convex analysis.

The key to those accomplishments in optimization theory has come from
variational geometry, i.e., the study of tangent cones and normal cones to a
genera set C, their properties, relationships, and calculus. Variational geometry
has proved to be valuable not only in characterizing optimality but aso in
understanding how solutions are affected by parametric perturbations. In the
latter role it has required abandoning the preconception from convex analysis
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that tangent cones and normal cones, once they have “rightly” been defined,
should themselves aways be convex.

The aim of this article is to indicate how ideas of variational geometry can
more fully be put to use in understanding equilibrium, thereby perhaps opening
new avenues of development as well as consolidating some of the theory that
aready exists.

We begin by reviewing the way that a variational inequality reflects the
concept of anormal cone in convex analysis. We go on then to discuss normal
cones to noncornvex sets as they are now understood, demonstrating that quasi-
variational inequalities correspond, at least sometimes, to normal cones in that
wider framework. The crucial object in both cases is a set-valued normal cone
mapping N¢, yet such mappings are often quite out of sight when peopl e speak
of variational or quasi-variational inequalities.

Properties of a normal cone mapping can be very powerful, especialy in
sengitivity analysis of solutions. In fact the variational geometry of the graphs
of normal cone mappings is the mainstay for results in that direction.

We illustrate how that operates by means of a formula for perturbations of
equilibrium in atraffic model where the set C' is convex, but instead of being
specified directly by equations or inequalities, is expressed as a sum of sets
with those specifications. We show also, in a different example, how even
nonconvex sets C' can be amenable to perturbation treatment through their
associated normal cone mappings Nc.

2. VARIATIONAL INEQUALITIESAND NORMALS
TO CONVEX SETS

For simplicity, we focus in this article on equilibrium models in the space
IR" and, in other respects too, forgo possibilities for greater generality in order
to concentrate on the main points of our discussion.

Let F: R" — IR"™ beacontinuousmapping(single-valued) andletC' C IR’
be a nonempty, closed, convex set. The variational inequality for F' over C,
with solution z, is customarily posed as the condition

z e, (F(z),z—z)>0 foral z €C. (1)

Inthisformulation, avariational inequality iscomprised of aninfinite collection
of linear inequalitieswhich must be satisfied by Z inadditiontotheconditionz €
C, which itself could of course in turn be represented by an infinite collection
of linear inequalities, inasmuch as any closed convex set isthe intersection of a
collection of closed half-spaces. Nobody insists on always expressing a convex
set that way, however, since that would not be convenient and the picture of the
set and its geometry could get lost. For the same reason, (1) can fall short of
being the best way to think about a variational inequality, even though it is the
source of the “inequality” part of the name.



A better approach is to make use of the normal cone concept in convex
analysis[1], [2], which captures the inequality aspect of (1) in a manner more
conducive to geometric thinking and open-ended calculus. A vector v is said
to be normal to the convex set C at apoint z if z € C and

(v,z—z) <0 foral z e C. (2)

The set of al such vectorsis denoted by N (z) and is called the normal cone
toC at z. Itisindeed acone (aset containing the origin and including for each
of itselements v # 0, if any, theray {\v| X > 0}). Moreover it is closed and
convex. For pointsz ¢ C, itisexpedient totake No-(z) = () so asto get afully
defined set-valued normal cone mapping N : IR" = IR™. This mapping can
be described directly by the optimization rule

v € No(Z) <= T € argmax (v,x). (3)
zeC
For v # 0, therelation v € N¢ (%) can aso seen pictorially as meaning that v
is an outward normal to a supporting half-spaceto C at z.
Intermsof thenormal cone mapping N¢, the variational inequality condition
in (1) can berecast in the form

—F(z) € N¢(z), or F(z)+ N¢(z) 30, (4)

with (3) then providing the popular interpretation of avariational inequality as
corresponding to optimization of alinear form.

Although the re-expression in (4) might, at first, seem to provide nothing
much beyond (1), it shiftsthe perspectivefrom asystem of inequalitiestofinding
a“zero” of aset-valued mapping F'+ N¢. It turns attention to the nature of that
mapping and the geometry of its graph. Furthermore, it provides guidance to
generalization by suggesting that, when the need arises to go beyond the case
of aconvex set C, the central issue ought to be what definition of normality to
adopt in the absence of convexity.

The graph of F' + N¢ depends heavily on the graph of No. Onehasy €
(F 4+ N¢)(z) ifandonly if y — F(x) € Ne(x), so that

gph(F 4+ N¢) = M~ '(gph N¢) for M : (z,y) — (z, y — F(z)). (5)

The mapping M is a homeomorphism of IR" with itself, since F' has been
assumed to be continuous, and it isactually adiffeomorphismwhen F' issmooth
(i.e., continuously differentiable). Therefore, the geometry of the graph of N~
holds critical information about the variational inequality.

What can be said about that geometry? First and foremost is the fact that
gph N¢ isagraphically Lipschitzian manifold in aglobal sense. A set issaid
to be such a manifold of dimension d at one of its points if there is a smooth
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change of coordinates that transforms it, locally around that point, into the
graph of aLipschitz continuous mapping from d coordinates into the remaining
coordinates. In the case of N¢, achange of coordinates that iswell known to
have this effect is

(z,v) +— (z,w) withz=2z+v, w=2—0v.

It sets up gph N¢ asthe graph of the mapping J : z — (Po(z), z — Po(2)),
where P isthe nearest-point projection mapping onto C"

gph No = {(Pc(2), z— Po(2)) |z € R"}. (6)

Indeed, the indicated mapping .J is one-to-one between z € R* and (xz,v) €
gph N andisglobally Lipschitz continuous in both directions. Thus, gph N
is globally agraphically Lipschitzian manifold of dimension n within ",

Therepresentation in (6) isthe Minty parameterization of gph Np. It stems
from N¢ being amaximal monotone mapping. Recall that aset-valued mapping
S : R™ = R" iscaled monotone if (v — v, ' —x) > 0 whenever v € S(z)
and v' € S(z'), and is said to be maximal in this respect if there is no mono-
tone mapping S’ : R" = IR" such that gph S’ D gph S, gph S’ # gph S.
Minty showed in 1962 [3] that the graph of any maxima monotone mapping
has aLipschitz continuous parameterization like (6), except with acertain other
mapping P in place of the projection F~. The maximal monotonicity of N¢ is
a property shared with the subgradient mappings associated with lower semi-
continuous, proper, convex functions in general and also enjoyed in many other
situations, but we will not go into that here. (See[2, Chapter 12], for instance.)

Onthe basis of (5), the graphically Lipschitzian property of N carries over
locally to F' + N¢ when F' is smooth. We will extract more from this later
when we turn to the sensitivity analysis of solutions to avariational inequality.
Obvioudly, for any property of N¢ to be usable in practice there must be ma-
chinery for working out in detail how the property is manifested in terms of the
specific structure of C'. We will come back to this once we have passed beyond
convexity to broader versions of variational geometry.

Another set-valued mapping that deserves mention here in connection with
N¢ isthe tangent cone mapping ¢ of convex analysis. The tangent coneto C'
atapointz € Cis

To(z) =cl{w =Xz —z)|z € C, A > 0}. (7)
Like N¢(Z), it too is a closed convex cone, and moreover these two cones are
polar to each other:
Neo(z) = {v]{v,w) <0, Yw € Te(z)}, (8)
To(z) = {w]|{v,w) <0, Vv € No(z)}.
The question of how far this polarity persists when normal cones and tangent
cones are generalized will occupy us as we proceed.



3. QUASI-VARIATIONAL INEQUALITIESAND
NORMALSTO GENERAL SETS

Suppose now that the set C' C IR"™, athough still nonempty and closed,
is not necessarily convex. What conditions on C and F' might be suitable
candidates as replacements for a variational inequality? One idea has been a
guasi-variational inequality. It depends on the intermediary of a mapping D
that assigns to each € C aset D(x) containing z. With respect to such a
mapping D, for which different choices may be admitted, the quasi-variational
inequality for F over ', with solution z, is the condition

7eC, (F(z), 2 —7) >0 foral z € D(z). 9)

Usually the requirement z € D(z) is added to the statement (9), but we will
assume here that

x € D(z) fordl z € C. (10)

In principle no generality islost by thisassumption—for conceptual purposes—
since we can arrange for it be satisfied by replacing C' in that situation by its
subset C" = {z € C'|z € D(x)}. Although possible fixed-point aspects of a
guasi-variational inequality in the more usual formulation are suppressed from
view by this device, we can hope then to focus more clearly on the equilibrium
aspects related to optimization. The theory of existence of solutions to aquasi-
variational, posedin our reduced manner, could well requireacareful utilization
of fixed-point technology through representing our C' as the truncation C' of
some larger, possibly convex set C' to which the mapping D can be extended,
but that is a separate matter which need not distract us from our present goals.
In the specia case where D(z) = C for al x € C, the quasi-variational

inequality reverts to avariational inequality. Beyond that, as long as the map-
ping D is closed-convex-valued, (9) can aptly beviewed asaroving variational
inequality for F' over a set that shifts with the solution candidate. Thisis ap-
pealing especially when D(x) is envisioned as a local approximation to C' at
xI.

For other insights, it will be helpful instead to think of a quasi-variational
inequality as maybe involving a“proposal for generalized normality,” at least
in some cases. At an arbitrary z € C, let

N(z) = {v|{v, 2 — 7) <0, Vo € D(7)}, (11)

noting that N (Z) isacertain closed, convex cone. For 7 ¢ C, take N (z) = 0.
A set-valued mapping N : IR" = IR" isthereby defined for which, in parallel
to (4), the quasi-variational inequality (9) comes out as equivalent to

—F(z) € N(z), or F(z)+ N(z)>0. (12)
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May the vectors v € N (z) rightly be regarded as “normals’ to C' at z, in
some reasonable sense? That has to depend on the choice of the mapping D;
without afiltering of possibilities, the results could betoo bizarre. Nonetheless,
choices of D consistent with “normality” do exist, as will be explained next,
even though not every useful example of a quasi-variationa would have to
conform to such an interpretation.

Threeversions of normal cone now dominate theory in thefinite-dimensional
context we are operating in. In describing them, we follow the patterns of
notation and terminology in the recent book or Rockafellar and Wets[2, Chapter
6]. Theregular normal coneto C a apoint Z € C, consisting of the regular
normal vectors v, is

Ne(z) = {v]| (v,  — z) < o(|z — z|) for z € C}, (13)

where | - | denotes the Euclidean norm and the “0” inequality stands for the
property that

The general normal coneto C at z, the elements v of which are simply called
the normal vectorsto C at z, is defined from this by

Ne(@) = {v|32” € C, v’ € No(z¥), with (z¥,0") = (z,v)}.  (14)

(We systematically use superscript v = 1,2,... to express sequences.) The
third object, B
N¢(z) = closed convex hull of Ng (%), (15)

is the Clarke normal cone (see [2, Chapter 6] for more on this cone and its
history). Although N¢ (%) and N¢(Z) are closed convex cones, N (z) isa
closed cone that need not be convex. Obviously

N¢ (%) C Ne(z) C Ne(@).

Theset Cissaid to be Clarkeregular at z if every normal vector isaregular
normal vector, i.e., if thelimit processin (14) generates no additional vectors v
at z. Inthat case, avery important one for many—abut not all—applications, all
three cones coincide. Such regularity prevails in particular when C'is convex;
then the “0” term in (13) can be replaced by 0, and normality reduces to the
single concept of convex analysis that we were dealing with previously.

To understand how these norma cones might be connected with quasi-
variational inequalities, ideas of tangency need to brought in. The general
tangent coneto C at z, the elements of which are ssimply called tangent vectors,
is defined through set limits as

1
Tc(Z) = limsup X(C —I), (16)
ANO
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whereas the regular tangent cone, consisting of the regular tangent vectors to
Caz,is .
To(Z) = liminf ~(C — ). 17
c(z) im in 5 (€ —12) (17)
r—T, xeC
Both T (%) and T () areclosed cones, thefirst also being called thecontingent
cone and the second the Clarke tangent cone. Evidently

Te(7) > T ().

When C' is convex, T¢ (%) and T (%) agree with the tangent cone of convex
analysis that was defined in (7).

Although T () can benonconvex, T () isalways convex. Thissurprising
property goes hand in hand with another remarkable facts of basic variational
geometry: R R

Te(z) =Te(z) <= Nc(z) = Ne(2). (18)

In other words, the case where every normal vector » to C at z is a regular
normal vector, which was taken above as the definition of Clarke regularity,
can equally well be portrayed as the case where every tangent vector w to C
at z isaregular tangent vector. (Thisiswhy the term “regular” is employed
systematically as above.) Besides, one has

To(z) = liminf To(z),  Ne(z) = limsup Ne(z), (19)
2el 2el

where the second limit merely restates the definition in (14) but the first is a
rather deep result. Through (18) and (19), Clark regularity can be identified
with a semicontinuity property of 7z as well as one of N¢. The reciprocity
goes further still with the fact that the following polarity relationships always
hold:
Ne(z) = {v]{v,w) <0, Yw € Te(Z)},
To(7) = {w|{v,w) <0, Yo € No(F)}.

Therefore, C isClarkeregular at z if and only if 7¢-(z) and N¢(z) are closed
convex cones polar to each other. On the other hand,

(20)

]\[C(E) = {v|(v,w) <0, Yw € Te:(Z)}, (21)
Te(x) = {w|{v,w) <0, Vv € Ne(#)},
so that T¢(z) and N¢(z) always form a pair of closed convex cones polar to
each other, regardless of Clarke regularity.

We can return now to quasi-variational inequalities. Let us observe that the
normal cone schemes generated in that setting by (11), which trandates the
guasi-variational inequality condition (9) into the mapping formulation in (12),
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are perhaps not as varied as they might appear. They can really be seen as
coming from the choice of a mapping 7' that assignsto any point z € C' a cone
T (z). Specifically, given D let

T(z) = {w = Xz — &) |z € D(z), A > 0}. (22)

The formulafor N(z) in (11) can then be rewritten equivaently as a polarity
relation:
N(z) ={v|{v,w) <0, Yw € T(z)}. (23)

Therefore, instead of speaking at all about a mapping D that assigns to each
x € C aset D(z) containing x, one could speak directly, from the start, about a
cone-valued mapping T'. No generality islost in this maneuver because, given
achoice of T, one can return to a D formulation by taking D(z) = T'(z) + z.
The putative normal cones N (Z) that underlie quasi-variational inequalities
can thus be interpreted as arising by duality from the introduction of putative
tangent cones T'(z).

Two speciaizations are now immediate. The choice T'(xz) = T¢(z) turns
the quasi-variational inequality into the case of (12) in which N (z) :Nc(z),
whereas the choice T'(z) = Tc(x) corresponds in (12) to N(z) = N¢(z).
When C' is Clarke regular, these cases coincide and the quasi-variational in-
equality comes out as

—F(z) € No(z), or F(Z)+ N¢c(z) 30, (24)

which exactly mirrors the variational inequality in (4), except that - is no
longer merely the normal cone mapping of convex analysis. When C' lacks
Clarke regularity, however, the problem of finding a solution z to (24) does
not amount to a quasi-variational inequality, since N (z) can fail then to be
convex, whereas any cone N (Z) coming from a quasi-variational inequality
must be convex by (23).

Theconditionin(24) inthecaseof agradient mapping F' = V f isrecognized
now as the generally best expression of first-order optimality in minimizing f
over C, irrespective of Clarke regularity. Research has shown that N> enjoys
amore robust calculus than N or N, and in addition has deep ties to certain
Lipschitz-type properties in geometry and analysis (see Theorem 9.41 of [2],
for example). This argues strongly that (24) should perhaps serve broadly as
the fundamental model for constrained equilibrium of F' relative to C'. From
that perspective, many quasi-variational inequalities would, in practice, emerge
as examples of (24) associated especialy with Clarke regular classes of sets C.

Other cones than T¢(Z) or T (%) are sometimes encountered as choices of
T'(z) inthe paradigm of quasi-variational inequalities. For instance, when C'is
expressed by a system of equations and inequalities, or even beyond that, one
can consider as T'(z) the set of vectors w for which there is a smooth curve
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z : [0,¢] = C with z(0) = 7 and 2/(0) = w. For most purposes, though,
this cone concept, familiar from the Kuhn-Tucker approach to Lagrange mul-
tipliersin nonlinear programming, is too feeble to provide much mathematical
traction unless some kind of “constraint qualification” is fulfilled. Constraint
gualifications typically guarantee, however, that C' is Clarke regular at £ with
clT(z) = Te(z) = Te(Z). This version of T'(z) fits squarely then with
the tangent cones already discussed and does not offer anything significantly
different.

A wesker property than Clarke regularity in this context is the derivability
of C'at z. It issaid to hold when the “lim sup” in definition (16) coincides
with the corresponding “lim inf” (with respect to A), or in other words, when
the sets [C' — Z]/A actually converge to something as A\.0. The elements of
T (z) are then the vectors w such that one can choose z(\) € C, for A inan
interval [0, €], so asto have 2(0) = z and #, (0) = w. Here z, (0) isthe limit
of [z(A) — z(0)]/A as A\0; only the existence of that one-sided derivative
a A = 0 isrequired, and at other A € [0, €], the “curve” need not even be
continuous. This is distinctly less restrictive than the curve property of the
vectors w in the Kuhn-Tucker cone above. In comparison, definition (16) itself
only requires of avector w € Tr-(z) that there be sequences \V \.0 and =¥ — z
with [z¥ — Z]/\Y — w.

4. CALCULUSAND SOLUTION PERTURBATIONS

No general formulation of equilibrium for a mapping F' relative to aset C
would help much unless there were ways of bringing the abstract condition
down to the particular structure of C. For equilibrium modelsin the form (4),
or (24), that we have been emphasizing, this means having a good calculus of
normal cone mappings N¢.

Many results are available in this calculus and can be found in [2, Chapter
6], but here we will state only two of the most fundamental. The first result
concerns sets that are inverse images of other sets under smooth mappings:

C=AYK)={z|A(zx) € K} (25)

where A : R™ — IR™ is continuoudly differentiable and K C IR™ is closed
and nonempty. We denote by VA(Z) them x n Jacobian matrix of A at z and
by VA(z)* itstranspose. If a point z € C satisfies the constraint qualification

y € Nk(A(Z)), VA@)'y=0 = y=0, (26)
then the (general) normal cone N (Z) at that point satisfies the inclusion
Nc(z) C {VA(Z)"y |y € Nk (A(Z))}- (27)

Moreover if K is Clarke regular at A(z) (as for instance when K is convex),
then C' is Clarke regular at z and the inclusion holds as an equation.



Variational Geometry and Equilibrium 11

For illustration, suppose K isthe cone IR™, which corresponds to C' being
specified by a system of m smooth inequality constraints. The constraint qual-
ification is equivalent then to the standard one of Mangasarian and Fromovitz,
and the elements y = (yi,...,ym) Of Nx(A(z)) give the Lagrange multi-
pliers associated with the constraints at z. An equilibrium expressed by (24)
would therefore involve such multipliers. Equations or mixtures of equations
and inequalities can be handled similarly by other choices of K as acone, but
the stated result covers more than just traditional constraint systems and indeed
supports an effective calculus of regularity.

Apart from the Clarke regularity case where all three types of normal cone
coincide anyway, there is no comparable result for regular normal cones. For
Clarke normal cones, the same calculus rule does stay valid; i.e., N¢(z) and
Nk (A(z)) canvalidly replace No(z) and N (A(z)) in (26) and (27). But the
corresponding constraint qualification,

y € Nk (A(2)), VA@Z)'y=0 = y=0, (28)

is much more restrictive than (26). Through polarity, (28) is equivalent to
requiring that the (convex) regular tangent cone7i(Z) cannot be separated
from the range of the linear transformation w — VA(z)w, which is asubspace
expressible as VA(z)IR", and this stipulation can be written in turn as

~

Te(z) + VA@Z)R" = R™ (29)

When T (z) = {0}, for instance, which is an all too frequent occurrence in
working with regular tangents in the absence of Clarke regularity, (29) insists
on VA(z) actually having full row rank m.

Incontrast, themoreversatile constraint qualification (26) isnot equivalentto
acondition in termsof tangent vectors (apart from the case of Clarkeregularity).
Tangency conditions are thus distinctly weaker and less far-reaching than nor-
mality conditions in variational geometry. Thisis counter to popular thinking
that tangent vectors ought to be “primary” and normal vectors “ secondary.”

The second of the fundamental rulesin the calculus of normal cone mappings
that we will look at here concerns images instead of inverse images. Suppose
that

C=AK)={A(u)|uve K} (30)

where A : R™ — IR™ is continuoudly differentiable and K C IR™ is closed
and nonempty. Under the assumption that A~!(B) N K isbounded in IR™ for
every bounded set B C IR", one hasfor any z € C that

Ne(@) c {v|Vue A Y(Z)NK: A(u)*v € Nk (u)

I3
Ne(#) C {v|Fue AN F) N K: Au)'s € Ny (u)} (31)
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If Aisaffineand K isconvex, so C is convex (hence Clarke regular), one has
Ne(z) = {v| A(u)*v € Ng(u)} foranysingle u € A~ (z)N K. (32)

The boundedness assumption is only needed for the second inclusion in (31);
it is superfluous for the validity of the first inclusion in (31) or for the convex
casein (32), provided that C'is closed.

Note that this second rule provides no normal cone equation or criterion
for Clarke regularity in a nonconvex setting, and in that way it contrasts with
the first rule. Both rules have many consequences, obtained through special
choicesof A and K.

Next wetake up thetopic of solution perturbations. Weadopt for thispurpose
the equilibrium model in (24), which we know covers variationa inegqualities
and amajor class of quasi-variational inequalities, but we now consider F'to be
parameterized by an element w belonging to an open set W  IRY. The object
of study isthe (generally set-valued) solution mapping

S:weWw {z|F(w,z) + No(z) 2 0}. (33)

Our analysiscenterson afixed pair (w, ) inthegraph of S,i.e, withz € S(w),
and the issue of what may happen to zZ under perturbations of .

We suppose that F' is continuoudly differentiable on W x IR* and denote its
Jacobians in the w and z arguments by V,, F(w, z) and V, F(w, z). We make
the following assumption of ample parameterization:

VuF (w,z) hasfull rank . (34)

This assumption is relatively unrestrictive, in the sense that the introduction of
additional “canonical” parameters can always force it to be satisfied. More on
this matter and the results quoted below can be found in the paper of Dontchev
and Rockafellar [5], in complement to the book of Rockafellar and Wets[2].

Ample parameterization guarantees in particular that .S is graphically Lip-
schitzian of dimension d around (w, z) when N is graphically Lipschitzian
of dimension n around (z,v), where v = —F(w, ). Aswe know from ear-
lier, No meets that provision when C' is convex, but it also doeswhen C' isa
nonconvex set expressible in the form (25) with K convex and the constraint
qualification (26) fulfilled at z. Through various choices of K, that covers
cases where C' is specified by smooth equations and inequalities under the
Mangasarian-Fromovitz constraint qualification.

We will be occupied by a concept of differentiation for set-valued mappings
that is based on the variational geometry of the graph of S in IR x R™. The
graphical derivative of S at @ for z is the mapping DS(wl|z) : RY = R"
defined by

7' € DS(w|z)(v') <= (v, 2') € Typh 5(0, T). (35)
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When z is the only element of S(w), the notation simplifies to DS(w) and
D*S(w). If S were actualy differentiable at w, these would be the linear
mappings associated with the Jacobian matrix and its transpose, but of course
we cannot count on that special case and have to proceed more generally.

Themapping S iscalled proto-differentiable at w for z when gph S isderiv-
able at (w,Z). This property is of particular interest when S is graphically
Lipschitzian, as we can commonly expect from of the observations above. If
S were single-valued and Lipschitz continuous on an neighborhood of @ (for
which criteria are available in some cases—see Dontchev and Rockafellar [5]
for an overview), proto-differentiability would reduce to semi-differentiability:
DS (w) would be asingle-valued, positively homogeneous, Lipschitz continu-
ous mapping such that

Sw) = S(®) + DS(w)(w — @) + ojw]). (36)

This is the same as classical differentiability, except for DS(w) not having
to be alinear mapping. An expansion like (36) is not characteristic of proto-
differentiability in general, but proto-differentiability nonetheless corresponds
to a strong kind of approximation when S is graphically Lipschitzian. In-
deed, with respect to a coordinate change as in the definition of the latter prop-
erty, which identifies gph S locally—from a different angle—as the graph of a
single-valued Lipschitz continuous mapping, proto-differentiability of S turns
into semi-differentiability of that mapping. Conditions guaranteeing the proto-
differentiability of S therefore have some importance.

These conceptsof graphical differentiation are applicabl eal sotothemapping
N¢, and this will be the key. The graphical derivatives of S are given by the
formula

DS(w|B(W) = {+'] — Gluf ) € DNC(* D))}, where o,
G(w',z') = Vy,F(w,z)w +V F(w,z)s!, ©v=—-F(w,xz).
Through this, S is proto-differentiable at w for z if and only if N is proto-
differentiable at z for . Moreover, that is true for instance when C' has a
general constraint representation asin (25) with K polyhedral convex and the
constraint qualification (26) satisfied at z; in particular, it istrue when C' itself
is polyhedral convex.

Theformulafor D N¢(Z | ©) inthe general case of aconstraint representation
of C asin (25) will not be presented; it is available in the book of Rockafellar
and Wets [2]. We concentrate rather on the case where C' itself is polyhedral
convex. The formulathen is appealingly simple:

DN¢(Z|9) = Ny forthecone T = To(z) N o, (38)
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where 5 denotes the subspace orthogonal to 3. The polyhedral cone 7" in (38)
isthe critical coneto C' at z for o and can be expressed equivalently by

T = argmax(v,z') = Tp(z) for D = argmax (v, z). (39)
z'€T(Z) zeC
It is revealed now by (37) that when C is polyhedral convex, the vectors
' € DS(w|z)(w'"), describing the differential perturbations of z associated
with a differential perturbation «/ of @, are then the solutions to an auxiliary
variational ineguality over the critical cone T

DS(wiz)(w") = {z'| — G(w',2") € Np(z') }, where
Gw',2') = VyF(w,z)w' + V,F(w,z)x,
T = To(z)NF(w,z)*
= Tp(z) for D = argmin, .o (F(w, ), z).

(40)

An aternative description of how the sensitivity analysis of a parameterized
variational inequality over apolyhedral set can be carried out has been presented
by Robinson [6]. It islikewise based in effect on (38) but in this case in terms
of “normal maps’ that express the Minty parameterization of the graphs of N\
and Np. For nonpolyhedral C, aframework of normal mapsis less attractive,
but formulas for D N (z |v) exist still in some major situations, as mentioned.

5. APPLICATION TO AN EQUILIBRIUM MODEL
WITH AGGREGATION

Thesecalculusresults, culminating for the polyhedral caseinthe perturbation
formula (40), have been elaborated by Patriksson and Rockafellar [4] in the
framework of aggregation, which underlies traffic equilibrium. Consider the
solutionmapping .S in (33) for the case of aparameterized variational inequality,
or equilibrium model, having

C =C)+---+ C, witheach Cj polyhedral convex. (41)

Here C is the image A(K) of theset K = C} x --- x C, under the linear
transformation A : (z1,...,2,) = =1 + --- + z,. The normal cone rulein
(32) applies and says that, for any £ € C' and any choice of vectors 5, € Cj,
withz =%z, +---+ ,,onehas

Ne(#) = Ne, (81) N -+~ N Ng, (2)- (42)

The normal cones in this formula are polyhedral convex and have the corre-
sponding tangent cones astheir polars, so by taking polars on both sides of (42)
one gets the dua formula

Te(z) = Te, (#1) + -+ + Te, (21), (43)
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again with all cones polyhedral convex. The especialy interesting thing now is
the form of the critical cone T', as described by (38), (39) or equivaently (40)
witho = —F(w, z):

T =T +---+T, witheach T} polyhedral convex (44)

for the cones

Ty, =Tg, (Zk) NF(0,7)*"

_ . o 45
=Tp, (%) for Dy = argmin,, -, (F(0,7), 7). (45)

The auxiliary variational inequality in (40) thus exhibits in this case an aggre-
gation structure mirroring that in the given variational inequality under (41).
We see further that the normal cone N;-(z') in (40) has the expression

Np(z') = Ny (#h) 0= 0 NTr (z.) (46)
forany zj € T, with ' =2} +--- + .
Therefore, the differential perturbations 2/ of z associated with a differential

perturbation w'’ of @ are the vectors of the form

' =z + -+, inwhich (47)
xj, minimizes (G(vw',z'), -) over Tj.

In our paper [4], we have worked out in detail the implications of this for
solution perturbations to network models of traffic equilibrium with origin-
destination pairs. Here we apply it to a simpler yet broader model of muilti-
commodity flow.

Let G = (N, A) beatransportation network, where N and A are the sets of
nodes and arcs (directed links). For k = 1,...,r, let 2;(j) denote the quantity
of flow of commodity type k inthearc j € A. Let b(7) be the given supply
of commodity type k at node « € N, with negative supply corresponding to
demand and zero supply expressing a conservation requirement. The flows
zy :+ A — IR of type k that we admit are the ones belonging to the polyhedral
convex set

Ci = {ax | 21(5) € (i) Vj € A,
S jeacli i)z (i) = bi(i) Vi e N},

wheree(i, j) istheincidence of nodes with arc j (thisbeing +1 if 7 istheinitial
node of 7, but —1 if 4 isthe terminal node of j, and 0 otherwise), and I.(j) isa
nonempty, closed interval constraining the flow values allowed for commodity
kinarc j. (Asaspecia case, one could have () = [0,0] in certain arcs
where commodity & is not permitted.)

(48)
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Equilibrium in the multi-commodity setting revolves around minimizing the
travel costsfor theindividual commodities while coping with the fact that those
costs depend on the aggregate flow contributed by these commaodities and thus
reflect an interdependence among the different kinds of traffic. The travel
cost in arc j isafunction t;(x) of the aggregate flow z = = + --- + z,. An
equilibrium consists, by definition, of acollection of commodity flowsz, € Cj,
fork =1,...,r suchthat

Zy € argmin »_ £(j)zx(5), with £(j) =t;(2), 2 =21+ - +2,. (49)
T €CY jEA

Traffic equilibrium, so defined, can be trandated into avariational inequality
in two ways, “extensive” or “aggregate.” Let

t:(w,z) = (..., t(w,z),...)

be the mapping that, for a given pair (w, z), assigns to the arcs j € A the
corresponding travel costs #;(w,z). The sum in (49) can be construed then
as (t(z,w), zr). In the extensive formulation of equilibrium, the focus is on
elements

(x1,...,2;) ET=C1 x--- x C,

and the mapping
D (w,z1,..., %) = (H(w,x),...,t(w,z)) (r copies).
Normal conesto I" are given by
Nr(Z1,...,%Z,) = N¢g, (%) X - -+ X N¢ (Zr),
so the condition in (49) comes out as
—®(w, z1,...,%,) € Np(Z1,...,%r), (50)

or in other words, the parameterized variational inequality over I" for .
In the aggregate formul ation of equilibrium, on the other hand, the condition
in (49) isrendered as

—t(w,Z) € No(z) for C=Cy+--- 4+ C,. (51)

It purely and simply refers to aggregate flows. The extensive and aggregate
formulations of equilibrium are equivalent on the basis of the normal cone
formula (42) that holds under (41). To pass from (51) to (50), an arbitrary
choice can be made of commodity flows z; suchthat z; +- - - + Z, = Z. (Such
flows z;, can be determined computationally by solving a system of linear
equations and inequalities.) Obviously the aggregate version involves vastly
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fewer variables, but the aggregate polyhedron C' does not come with a direct
specification in terms of linear constraints.

To see next what happens with perturbations of equilibrium in this traffic
situation, with emphasis on the aggregate model, suppose that the travel costs
depend on a parameter vector w € W C IR, so that we have tj(w,z) inarc
j and altogether a mapping ¢ : (w,z) — t(w,z). Consider the associated
solution mapping

S:w—{xelC|—t(w,z) € No(z)} with C=C1+---+C, (52)

along with aparticular w € W and a corresponding aggregate flow z € S(w).
Assume that the mapping ¢ is continuously differentiable and, asthe F' in (34),
satisfies our ample parameterization condition:

Vwt(w,z) hasfull rank n = |A|, (53)

where | 4| isthe cardinality of .4; in other words, for any choice of values?(j)
for j € A, there exists v’ such that V,t;(w, Z)w’ = t'(j) for al j.

We wish to specialize the perturbation formula (40) to this framework with
F = t. For thispurpose we make an arbitrary choice of flowsz;, € Cy, yielding
Z1+---+Z, =Fandlet

T=T)+---+T, with (54)

T, = TDk (:ﬁk) for D, = argminxkeck (t(ﬁ),a_c),xk>,
noting that Dy, isagain polyhedral. The aggregate cone T', likewise polyhedral,
is the critical cone on which the formula in (40) will operate, as we aready
have established. The mapping G in this formulawill be given by

G(w', ") = Vyt(w, 2)w' + Vt(w,z)z’ (55)
with ' =2 +--- 4z}, 2} € Tj.
Therefore, inthe networ k context the differential perturbationsz of z associated
with a differential perturbation «/ of w are the vectors of the form

' =z} + -+, inwhich zj, minimizes (56)
(Vpt(w,z)w' + Vyt(w,z)z', -) over Ty.

The question, though, is how to understand through (54) the specia nature
of the subcones T}, in this network context. In particular, we wish to know
whether the calculation of perturbations by way of (56) comes down to solving
another traffic equilibrium problem of reduced type.

In investigating that, we can invoke the known optimality conditions for a
linear min cost network flow problem as applied to the subproblemsin (56) that
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define the sets D,,. It will be demonstrated now constructively in this way that
the cones T}, in (54) have the form

Ty, = {:1:7,C

7 (4) € I(7) Vi € A,

S . (57)
Sjeaclis)m(i) =0¥ie N},
whereeach I}, (j) isaninterval of thetype [0, 0], [0, o), (—o0, 0], Or (—00, 00).
Since this form isjust like that of the sets C;. in (48), except that the intervals
I.(j) are much more special and the quantities (j) have become 0, it will
follow that the perturbation formul a(56) doesindeed amount to solving aspecial
traffic equilibrium subproblem.

Optimality conditions for the problem of minimizing the linear function
(t(w,x), -) over Cy, with C, having the general form in (48), are available
in [7, Chapter 7]. They involve the notion of a potential « : N' — IR and its
differentia Au : A — IR, where

Au(j) = = > u(i)e(i, j) = u(final node of j) — u(initial node of ;).
ieN

According to these results, a flow z; belongs to the argmin set Dy, in this
problem if and only if z; € C} and thereis a potential u;, such that

Aug(j) —tj(w,z) € Ny, (j)(zx(4)) foreveryarc j € A. (58)

Moreover the potentials v that fill this role for a particular z, € D; are
precisely the solutionsto acertain dual problem (asexplainedin[7]. Therefore,
we can arbitrarily select one such %, (obtained for instance as a by-product
of using algorithms such asin [7] to solve the cost minimization problem in
question), and the flows x;, € Dy will be characterized then as the ones for
which the values z;.(j) satisfy the condition in (58). But this is equivalent to
saying that in terms of the intervals

) { I (j) it Ad(j) — t;(@,5) = 0,
I.(j) = < {right endpoint of I;,(7)} if Aug(j) —tj(w,z) >0, (59)
{left endpoint of I, (7)}  if Aug(j) —t;(w,z) <0,
one has
Dy = {ax |ox(j) € Iu(j) Vi € A, )

S jeaclii)oi (i) = bi(i) Vi € N},

In other words, Dy is, like Cy, aflow polyhedron, but with respect to certain
smaller intervals I;(j) dictated by the optimality.
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Tangent cones to polyhedral convex sets specified by linear constraint sys-
tems are readily determined. We immediately get from (60) that, for any par-
ticular z;, € Dy, we have

Tp, (#) = {2}, | #4(5) € Ty, () (@ (5) Vi € A,

(61)
zﬁAdzwam>—OVzeN}
It remains then only to set I, (j) = Ty, ;) (zx(5)) for al j € A, so that
[0, 0] if Zx(4) isaninterior point of I (j),
() = [0, 00) if 71,(7) isthe left endpoint (only) of I (5), (62)
k)= (—00,0] if 7 () istheright endpoint (only) of I (j),
(—00,00) if I1,(j) isthe one-point interval {7 (5)}.

In summary, perturbations in this network setting can be calculated by re-
solving the equilibrium condition (56) for a “ differential” multi-commodity
flow problem having linear costs and constraints asin (57) and (62).

This equilibrium subproblem can itself be articulated further now in either
extensive or aggregate form and in that manner tackled as avariational inequal-
ity. In extensive form, there are many variables once more, in principle, but it
can be seen from the derivation of theintervals I, (4) in (62) from the intervals

I1.(4) in (59) that I;.(5) = [0, 0] whenever I (5) |saone~p0|nt interval. Infact,
that can be anticipated to most arcs j, in which case the flow variables ()
for those arcs can be suppressed by setting them equal to 0. Thus, the number
of variablesinvolved in the subproblem islikely really to be very much smaller
than in the origina problem.

In aggregate form, there are other possibilities for the equilibrium subprob-
lem that calculates perturbations. It has the form

—Vut(w,Z)w — Vi t(w,z)x’ € Np(z') for T=Ty +---+T,, (63)

the cones T}, being specified by the flow constraintsin (57) and (62). The usual
difficulty in this picture would be that such constraints do not carry over to a
direct constraint representation of 7', but because we are dealing with flows,
there are additional tools available. The flowsin 7;, are “circulations’ without
source or sink, and the intervals I, (j) merely impose “sign restrictions” on
what can pass through the various arcs j; when I, (j) reduces to 0, the arc
can effectively be deleted in consideration of commodity k. The theory of
conformal realization of flowsin [7, Chapter 4B] can be utilized to obtain—in
a constructive manner—a representation

Ty = { Zfzkl Aki€kl ‘ Akt € Akl}

in which each ey, is a so-called elementary flow (nonzero only on the arcs of
an elementary closed path) and each Ay, is either the interval [0,00) or the
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interval (—oo, 00). Having determined such representations for the cones 7,
one could combine them into one for T' and in that way arrive through a change
of variables at a version of the aggregate variational inequality in terms of the
variables Ay, of which there might not be very many.

Finally, something should be said about the role of quasi-variational in-
equalities in traffic equilibrium. Our discussion has centered on variational
inequalities only, but research on quasi-variational inequality models has aso
been carried out in this setting; seefor example De Lucaand Maugeri [8, 9, 10].
Such efforts have been directed toward more general model s than ours that treat
elastic supplies and demands; they can be construed as modelsin which the val-
ues by (7) are not fixed but rather can respond to the costs achieved at optimality.
In passing to that kind of framework, would the quasi-variational inequalities
so obtained, once “truncated” in the manner we adopted in Section 3, fit with
pattern of generalized tangent and normal cones that we have suggested?

That could well be the case, but there might be asimpler alternative. Elastic
supplies and demands can also be handled in many cases by expanding the
network to alow for additional arcs which connect supply nodes and demand
nodes to the “outside world” and then introducing further traffic costs on those
arcs. In this way, a quasi-variational inequality of such type can, at least in
typica cases like those with simple origin-destination pairs, be reformulated
as an ordinary variational inequality in the expanded network. The fact that
our model alows general intervals I;.(j) may help in that respect, since an arc
introduced for only one of the commaodities can be assigned the trivial interval
[0, 0] for the other commodities.
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