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Abstract Variational inequalities and even quasi-variational inequalities, as means of ex-
pressing constrained equilibrium, have utilized geometric properties of convex
sets, but the theory of tangent cones and normal cones has yet to be fully exploited.
Much progress has been made in that theory in recent years in understanding the
variational geometry of nonconvex as well as convex sets and applying it to
optimization problems. Parallel applications to equilibrium problems could be
pursued now as well.

This article explains how normal cone mappings and their calculus offer an
attractive framework for many purposes, and how the variational geometry of
the graphs of such mappings, as nonconvex sets of a special nature, furnishes
powerful tools for use in ascertaining how an equilibrium is affected by per-
turbations. An application to aggregated equilibrium models, and in particular
multi-commodity traffic equilibrium, is presented as an example.
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1. INTRODUCTION

The concept of equilibrium has long had a close connection with optimiza-
tion. Traditionally, an equilibrium point �� has often been construed as a solution
to a vector equation � ��� � �. In that case, if� is the gradient�� of a function
� , the equilibrium satisfies ������ � � and is said to be described by a “varia-
tional principle.” The function � might have a local minimum or maximum at
��, and indeed variational principles have often centered on minimum energy,
but of course �� could merely be a “stationary point” of � .

The connection between equilibrium and optimization has really always been
on this level. Equilibrium conditions typically are properties that resemble first-
order conditions for optimality. They do correspond to local optimality in many
cases, or at least to a competitive balance among various optimizing agents, but
not in every case.

The question of how to account for constraints in formulations of equilibrium
has gained in importance in modern times. Some constraints can be handled
through the introduction of Lagrange multipliers. Others, though, fit poorly
with classical techniques and demand new mathematics in order to achieve sat-
isfactory treatment. Anyway, Lagrange multipliers are something “secondary.”
The basic issue is how to relativize an equilibrium to a set � , but there is great
diversity in the ways that� might be specified. Such diversity should somehow
be accommodated in a “primary” manner.

A major advance came with the notion of a variational inequality over a
convex set � , whatever the structure of that set. This innovation, in the era
when convex analysis was starting up, provided a broad approach to generalized
constraints of convex type. Moreover, through restatements in a Lagrangian
setting, it supported treatment of some constraints of nonconvex type as well—
provided that those constraints could be represented by multipliers which in
turn would be incorporated among the equilibrium variables.

Since then, work on variational inequalities has led to many successes. Ex-
tensions such as to quasi-variational inequalities have carried this further. But
equilibrium theory has yet to take advantage of some of the recent progress in
optimization, where much has been learned about how to handle very general
classes of sets� directly, without necessarily introducing multipliers or relying
on excursions through convex analysis.

The key to those accomplishments in optimization theory has come from
variational geometry, i.e., the study of tangent cones and normal cones to a
general set� , their properties, relationships, and calculus. Variational geometry
has proved to be valuable not only in characterizing optimality but also in
understanding how solutions are affected by parametric perturbations. In the
latter role it has required abandoning the preconception from convex analysis
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that tangent cones and normal cones, once they have “rightly” been defined,
should themselves always be convex.

The aim of this article is to indicate how ideas of variational geometry can
more fully be put to use in understanding equilibrium, thereby perhaps opening
new avenues of development as well as consolidating some of the theory that
already exists.

We begin by reviewing the way that a variational inequality reflects the
concept of a normal cone in convex analysis. We go on then to discuss normal
cones to nonconvex sets as they are now understood, demonstrating that quasi-
variational inequalities correspond, at least sometimes, to normal cones in that
wider framework. The crucial object in both cases is a set-valued normal cone
mapping�� , yet such mappings are often quite out of sight when people speak
of variational or quasi-variational inequalities.

Properties of a normal cone mapping can be very powerful, especially in
sensitivity analysis of solutions. In fact the variational geometry of the graphs
of normal cone mappings is the mainstay for results in that direction.

We illustrate how that operates by means of a formula for perturbations of
equilibrium in a traffic model where the set � is convex, but instead of being
specified directly by equations or inequalities, is expressed as a sum of sets
with those specifications. We show also, in a different example, how even
nonconvex sets � can be amenable to perturbation treatment through their
associated normal cone mappings �� .

2. VARIATIONAL INEQUALITIES AND NORMALS
TO CONVEX SETS

For simplicity, we focus in this article on equilibrium models in the space
��� and, in other respects too, forgo possibilities for greater generality in order
to concentrate on the main points of our discussion.

Let� � ��� � ��� be a continuous mapping (single-valued) and let� � ���

be a nonempty, closed, convex set. The variational inequality for � over � ,
with solution ��, is customarily posed as the condition

�� � �� �� ����� �� ��� � � for all � � �� ���

In this formulation, a variational inequality is comprised of an infinite collection
of linear inequalities which must be satisfied by �� in addition to the condition �� �
� , which itself could of course in turn be represented by an infinite collection
of linear inequalities, inasmuch as any closed convex set is the intersection of a
collection of closed half-spaces. Nobody insists on always expressing a convex
set that way, however, since that would not be convenient and the picture of the
set and its geometry could get lost. For the same reason, (1) can fall short of
being the best way to think about a variational inequality, even though it is the
source of the “inequality” part of the name.
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A better approach is to make use of the normal cone concept in convex
analysis [1], [2], which captures the inequality aspect of (1) in a manner more
conducive to geometric thinking and open-ended calculus. A vector 	 is said
to be normal to the convex set � at a point �� if �� � � and

�	� �� ��� � � for all � � �� ���

The set of all such vectors is denoted by ������ and is called the normal cone
to � at ��. It is indeed a cone (a set containing the origin and including for each
of its elements 	 	� �, if any, the ray 

	 � 
 � ��). Moreover it is closed and
convex. For points �� �� � , it is expedient to take������ � 
 so as to get a fully
defined set-valued normal cone mapping �� � ��� �� ���. This mapping can
be described directly by the optimization rule

	 � ������ �� �� � �	
���
���

�	� ��� �
�

For 	 	� �, the relation 	 � ������ can also seen pictorially as meaning that 	
is an outward normal to a supporting half-space to � at ��.

In terms of the normal cone mapping�� , the variational inequality condition
in (1) can be recast in the form

�� ���� � ������� or � ���� ������� � �� ���

with (3) then providing the popular interpretation of a variational inequality as
corresponding to optimization of a linear form.

Although the re-expression in (4) might, at first, seem to provide nothing
much beyond (1), it shifts the perspective from a system of inequalities to finding
a “zero” of a set-valued mapping � ��� . It turns attention to the nature of that
mapping and the geometry of its graph. Furthermore, it provides guidance to
generalization by suggesting that, when the need arises to go beyond the case
of a convex set � , the central issue ought to be what definition of normality to
adopt in the absence of convexity.

The graph of � � �� depends heavily on the graph of �� . One has � �
�� ������� if and only if � � � ��� � �����, so that


���� ���� � 
���
����� for 
 � ��� �� �� ��� � � � ����� ���

The mapping 
 is a homeomorphism of ��� with itself, since � has been
assumed to be continuous, and it is actually a diffeomorphism when� is smooth
(i.e., continuously differentiable). Therefore, the geometry of the graph of ��
holds critical information about the variational inequality.

What can be said about that geometry? First and foremost is the fact that

���� is a graphically Lipschitzian manifold in a global sense. A set is said
to be such a manifold of dimension � at one of its points if there is a smooth
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change of coordinates that transforms it, locally around that point, into the
graph of a Lipschitz continuous mapping from � coordinates into the remaining
coordinates. In the case of �� , a change of coordinates that is well known to
have this effect is

��� 	� �� ��� �� with � � �� 	� � � �� 	�

It sets up 
���� as the graph of the mapping � � � �� ������� � � ������,
where �� is the nearest-point projection mapping onto �:


���� � 
������� � � ������ � � � ����� ���

Indeed, the indicated mapping � is one-to-one between � � ��� and ��� 	� �

���� and is globally Lipschitz continuous in both directions. Thus, 
����
is globally a graphically Lipschitzian manifold of dimension � within ����.

The representation in (6) is the Minty parameterization of 
���� . It stems
from�� being a maximal monotone mapping. Recall that a set-valued mapping
� � ��� �� ��� is called monotone if �	� � 	� �� � �� � � whenever 	 � ����
and 	� � �����, and is said to be maximal in this respect if there is no mono-
tone mapping �� � ��� �� ��� such that 
���� � 
���, 
���� 	� 
���.
Minty showed in 1962 [3] that the graph of any maximal monotone mapping
has a Lipschitz continuous parameterization like (6), except with a certain other
mapping � in place of the projection �� . The maximal monotonicity of �� is
a property shared with the subgradient mappings associated with lower semi-
continuous, proper, convex functions in general and also enjoyed in many other
situations, but we will not go into that here. (See [2, Chapter 12], for instance.)

On the basis of (5), the graphically Lipschitzian property of�� carries over
locally to � � �� when � is smooth. We will extract more from this later
when we turn to the sensitivity analysis of solutions to a variational inequality.
Obviously, for any property of �� to be usable in practice there must be ma-
chinery for working out in detail how the property is manifested in terms of the
specific structure of � . We will come back to this once we have passed beyond
convexity to broader versions of variational geometry.

Another set-valued mapping that deserves mention here in connection with
�� is the tangent cone mapping �� of convex analysis. The tangent cone to �
at a point �� � � is

������ � �� 
� � 
��� ��� � � � �� 
 � ��� ���

Like ������, it too is a closed convex cone, and moreover these two cones are
polar to each other:

������ � 
	 � �	� �� � �� �� � ��������
������ � 
� � �	� �� � �� �	 � ��������

���

The question of how far this polarity persists when normal cones and tangent
cones are generalized will occupy us as we proceed.
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3. QUASI-VARIATIONAL INEQUALITIES AND
NORMALS TO GENERAL SETS

Suppose now that the set � � ���, although still nonempty and closed,
is not necessarily convex. What conditions on � and � might be suitable
candidates as replacements for a variational inequality? One idea has been a
quasi-variational inequality. It depends on the intermediary of a mapping �
that assigns to each � � � a set ���� containing �. With respect to such a
mapping�, for which different choices may be admitted, the quasi-variational
inequality for � over � , with solution ��, is the condition

�� � �� �� ����� �� ��� � � for all � � ������ ���

Usually the requirement �� � ����� is added to the statement (9), but we will
assume here that

� � ���� for all � � �� ����

In principle no generality is lost by this assumption—for conceptual purposes—
since we can arrange for it be satisfied by replacing � in that situation by its
subset �� � 
� � � � � � �����. Although possible fixed-point aspects of a
quasi-variational inequality in the more usual formulation are suppressed from
view by this device, we can hope then to focus more clearly on the equilibrium
aspects related to optimization. The theory of existence of solutions to a quasi-
variational, posed in our reduced manner, could well require a careful utilization
of fixed-point technology through representing our � as the truncation �� of
some larger, possibly convex set � to which the mapping � can be extended,
but that is a separate matter which need not distract us from our present goals.

In the special case where ���� � � for all � � � , the quasi-variational
inequality reverts to a variational inequality. Beyond that, as long as the map-
ping� is closed-convex-valued, (9) can aptly be viewed as a roving variational
inequality for � over a set that shifts with the solution candidate. This is ap-
pealing especially when ���� is envisioned as a local approximation to � at
�.

For other insights, it will be helpful instead to think of a quasi-variational
inequality as maybe involving a “proposal for generalized normality,” at least
in some cases. At an arbitrary �� � � , let

����� � 
	 � �	� �� ��� � �� �� � ������� ����

noting that ����� is a certain closed, convex cone. For �� �� � , take ����� � 
.
A set-valued mapping � � ��� �� ��� is thereby defined for which, in parallel
to (4), the quasi-variational inequality (9) comes out as equivalent to

�� ���� � ������ or � ���� ������ � �� ����
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May the vectors 	 � ����� rightly be regarded as “normals” to � at ��, in
some reasonable sense? That has to depend on the choice of the mapping �;
without a filtering of possibilities, the results could be too bizarre. Nonetheless,
choices of � consistent with “normality” do exist, as will be explained next,
even though not every useful example of a quasi-variational would have to
conform to such an interpretation.

Three versions of normal cone now dominate theory in the finite-dimensional
context we are operating in. In describing them, we follow the patterns of
notation and terminology in the recent book or Rockafellar and Wets [2, Chapter
6]. The regular normal cone to � at a point �� � � , consisting of the regular
normal vectors 	, is

������� � 
	 � �	� �� ��� � ����� ���� for � � ��� ��
�

where � � � denotes the Euclidean norm and the “o” inequality stands for the
property that

��� ���
����

���� �����

�	� �� ���

��� ���
� ��

The general normal cone to � at ��, the elements 	 of which are simply called
the normal vectors to � at ��, is defined from this by

������ � 
	 � ��� � �� 	� � �������� with ��� � 	�� � ���� 	��� ����

(We systematically use superscript � � �� �� � � � to express sequences.) The
third object,

������� � closed convex hull of ������� ����

is the Clarke normal cone (see [2, Chapter 6] for more on this cone and its
history). Although ������� and ������� are closed convex cones, ������ is a
closed cone that need not be convex. Obviously

������� � ������ � ��������

The set � is said to be Clarke regular at �� if every normal vector is a regular
normal vector, i.e., if the limit process in (14) generates no additional vectors 	
at ��. In that case, a very important one for many—but not all—applications, all
three cones coincide. Such regularity prevails in particular when � is convex;
then the “o” term in (13) can be replaced by 0, and normality reduces to the
single concept of convex analysis that we were dealing with previously.

To understand how these normal cones might be connected with quasi-
variational inequalities, ideas of tangency need to brought in. The general
tangent cone to� at ��, the elements of which are simply called tangent vectors,
is defined through set limits as

������ � ��� ���
�� �

�



�� � ���� ����
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whereas the regular tangent cone, consisting of the regular tangent vectors to
� at ��, is

������� � ��� ���
�� �

����� ���

�



�� � ��� ����

Both������ and ��� ���� are closed cones, the first also being called the contingent
cone and the second the Clarke tangent cone. Evidently

������ � ��������

When � is convex, ������ and ������� agree with the tangent cone of convex
analysis that was defined in (7).

Although ������ can be nonconvex, ������� is always convex. This surprising
property goes hand in hand with another remarkable facts of basic variational
geometry:

������ � ������� �� ������ � �������� ����

In other words, the case where every normal vector 	 to � at �� is a regular
normal vector, which was taken above as the definition of Clarke regularity,
can equally well be portrayed as the case where every tangent vector � to �
at �� is a regular tangent vector. (This is why the term “regular” is employed
systematically as above.) Besides, one has

������� � ��� ���
����
���

������ ������ � ��� ���
����
���

������� ����

where the second limit merely restates the definition in (14) but the first is a
rather deep result. Through (18) and (19), Clark regularity can be identified
with a semicontinuity property of �� as well as one of ��� . The reciprocity
goes further still with the fact that the following polarity relationships always
hold:

������� � 
	 � �	� �� � �� �� � ��������
������� � 
� � �	� �� � �� �	 � ��������

����

Therefore, � is Clarke regular at �� if and only if ������ and ������ are closed
convex cones polar to each other. On the other hand,

������� � 
	 � �	� �� � �� �� � ���������
������� � 
� � �	� �� � �� �	 � ���������

����

so that ������� and ������� always form a pair of closed convex cones polar to
each other, regardless of Clarke regularity.

We can return now to quasi-variational inequalities. Let us observe that the
normal cone schemes generated in that setting by (11), which translates the
quasi-variational inequality condition (9) into the mapping formulation in (12),
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are perhaps not as varied as they might appear. They can really be seen as
coming from the choice of a mapping � that assigns to any point �� � � a cone
� ����. Specifically, given � let

� ���� � 
� � 
��� ��� � � � ������ 
 � ��� ����

The formula for ����� in (11) can then be rewritten equivalently as a polarity
relation:

����� � 
	 � �	� �� � �� �� � � ������ ��
�

Therefore, instead of speaking at all about a mapping � that assigns to each
� � � a set���� containing �, one could speak directly, from the start, about a
cone-valued mapping � . No generality is lost in this maneuver because, given
a choice of � , one can return to a� formulation by taking ���� � � ��� � �.
The putative normal cones ����� that underlie quasi-variational inequalities
can thus be interpreted as arising by duality from the introduction of putative
tangent cones � ����.

Two specializations are now immediate. The choice � ��� � ����� turns
the quasi-variational inequality into the case of (12) in which ���� � ������,
whereas the choice � ��� � ������ corresponds in (12) to ���� � ������.
When � is Clarke regular, these cases coincide and the quasi-variational in-
equality comes out as

�� ���� � ������� or � ���� ������� � �� ����

which exactly mirrors the variational inequality in (4), except that �� is no
longer merely the normal cone mapping of convex analysis. When � lacks
Clarke regularity, however, the problem of finding a solution �� to (24) does
not amount to a quasi-variational inequality, since ������ can fail then to be
convex, whereas any cone ����� coming from a quasi-variational inequality
must be convex by (23).

The condition in (24) in the case of a gradient mapping� � �� is recognized
now as the generally best expression of first-order optimality in minimizing �
over � , irrespective of Clarke regularity. Research has shown that �� enjoys
a more robust calculus than �� or �� , and in addition has deep ties to certain
Lipschitz-type properties in geometry and analysis (see Theorem 9.41 of [2],
for example). This argues strongly that (24) should perhaps serve broadly as
the fundamental model for constrained equilibrium of � relative to � . From
that perspective, many quasi-variational inequalities would, in practice, emerge
as examples of (24) associated especially with Clarke regular classes of sets � .

Other cones than ������ or ������� are sometimes encountered as choices of
� ���� in the paradigm of quasi-variational inequalities. For instance, when � is
expressed by a system of equations and inequalities, or even beyond that, one
can consider as � ���� the set of vectors � for which there is a smooth curve
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� � ��� � � � with ���� � �� and ����� � �. For most purposes, though,
this cone concept, familiar from the Kuhn-Tucker approach to Lagrange mul-
tipliers in nonlinear programming, is too feeble to provide much mathematical
traction unless some kind of “constraint qualification” is fulfilled. Constraint
qualifications typically guarantee, however, that � is Clarke regular at �� with
��� ���� � ������ � �������. This version of � ���� fits squarely then with
the tangent cones already discussed and does not offer anything significantly
different.

A weaker property than Clarke regularity in this context is the derivability
of � at ��. It is said to hold when the “lim sup” in definition (16) coincides
with the corresponding “lim inf” (with respect to 
), or in other words, when
the sets �� � �� �
 actually converge to something as 
��. The elements of
������ are then the vectors � such that one can choose ��
� � � , for 
 in an
interval ��� � , so as to have ���� � �� and ��

�
��� � �. Here ��

�
��� is the limit

of ���
� � ���� �
 as 
��; only the existence of that one-sided derivative
at 
 � � is required, and at other 
 � ��� � , the “curve” need not even be
continuous. This is distinctly less restrictive than the curve property of the
vectors � in the Kuhn-Tucker cone above. In comparison, definition (16) itself
only requires of a vector� � ������ that there be sequences 
��� and �� � ��
with ��� � �� �
� � �.

4. CALCULUS AND SOLUTION PERTURBATIONS

No general formulation of equilibrium for a mapping � relative to a set �
would help much unless there were ways of bringing the abstract condition
down to the particular structure of � . For equilibrium models in the form (4),
or (24), that we have been emphasizing, this means having a good calculus of
normal cone mappings �� .

Many results are available in this calculus and can be found in [2, Chapter
6], but here we will state only two of the most fundamental. The first result
concerns sets that are inverse images of other sets under smooth mappings:

� � ������ � 
� ����� � �� ����

where � � ��� � ��� is continuously differentiable and � � ��� is closed
and nonempty. We denote by ������ the�� � Jacobian matrix of � at �� and
by ������� its transpose. If a point �� � � satisfies the constraint qualification

� � ���������� �������� � � �� � � �� ����

then the (general) normal cone ������ at that point satisfies the inclusion

������ � 
�������� � � � ����������� ����

Moreover if � is Clarke regular at ����� (as for instance when � is convex),
then � is Clarke regular at �� and the inclusion holds as an equation.
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For illustration, suppose � is the cone ���
�

, which corresponds to � being
specified by a system of� smooth inequality constraints. The constraint qual-
ification is equivalent then to the standard one of Mangasarian and Fromovitz,
and the elements � � ���� � � � � ��� of ��������� give the Lagrange multi-
pliers associated with the constraints at ��. An equilibrium expressed by (24)
would therefore involve such multipliers. Equations or mixtures of equations
and inequalities can be handled similarly by other choices of � as a cone, but
the stated result covers more than just traditional constraint systems and indeed
supports an effective calculus of regularity.

Apart from the Clarke regularity case where all three types of normal cone
coincide anyway, there is no comparable result for regular normal cones. For
Clarke normal cones, the same calculus rule does stay valid; i.e., ������� and
���������� can validly replace������ and��������� in (26) and (27). But the

corresponding constraint qualification,

� � ����������� �������� � � �� � � �� ����

is much more restrictive than (26). Through polarity, (28) is equivalent to
requiring that the (convex) regular tangent cone ������� cannot be separated
from the range of the linear transformation � �� �������, which is a subspace
expressible as ���������, and this stipulation can be written in turn as

������� ���������� � ���� ����

When ������� � 
��, for instance, which is an all too frequent occurrence in
working with regular tangents in the absence of Clarke regularity, (29) insists
on ������ actually having full row rank �.

In contrast, the more versatile constraint qualification (26) is not equivalent to
a condition in terms of tangent vectors (apart from the case of Clarke regularity).
Tangency conditions are thus distinctly weaker and less far-reaching than nor-
mality conditions in variational geometry. This is counter to popular thinking
that tangent vectors ought to be “primary” and normal vectors “secondary.”

The second of the fundamental rules in the calculus of normal cone mappings
that we will look at here concerns images instead of inverse images. Suppose
that

� � ���� � 
���� � � � �� �
��

where � � ��� � ��� is continuously differentiable and � � ��� is closed
and nonempty. Under the assumption that �������� is bounded in ��� for
every bounded set � � ���, one has for any �� � � that

������� � 
	 � �� � ������� �� � �����	 � ��������
������ � 
	 � �� � ������� �� � �����	 � �������

�
��
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If � is affine and � is convex, so � is convex (hence Clarke regular), one has

������ � 
	 ������	 � ������ for any single � � ������� ��� �
��

The boundedness assumption is only needed for the second inclusion in (31);
it is superfluous for the validity of the first inclusion in (31) or for the convex
case in (32), provided that � is closed.

Note that this second rule provides no normal cone equation or criterion
for Clarke regularity in a nonconvex setting, and in that way it contrasts with
the first rule. Both rules have many consequences, obtained through special
choices of � and � .

Next we take up the topic of solution perturbations. We adopt for this purpose
the equilibrium model in (24), which we know covers variational inequalities
and a major class of quasi-variational inequalities, but we now consider � to be
parameterized by an element � belonging to an open set� � ���. The object
of study is the (generally set-valued) solution mapping

� � � �� �� 
� �� ��� �� ������ � ��� �

�

Our analysis centers on a fixed pair � ��� ��� in the graph of�, i.e., with �� � �� ���,
and the issue of what may happen to �� under perturbations of ��.

We suppose that � is continuously differentiable on� � ��� and denote its
Jacobians in the � and � arguments by�	� ��� �� and��� ��� ��. We make
the following assumption of ample parameterization:

�	� � ��� ��� has full rank �� �
��

This assumption is relatively unrestrictive, in the sense that the introduction of
additional “canonical” parameters can always force it to be satisfied. More on
this matter and the results quoted below can be found in the paper of Dontchev
and Rockafellar [5], in complement to the book of Rockafellar and Wets [2].

Ample parameterization guarantees in particular that � is graphically Lip-
schitzian of dimension � around � ��� ��� when �� is graphically Lipschitzian
of dimension � around ���� �	�, where �	 � �� � ��� ���. As we know from ear-
lier, �� meets that provision when � is convex, but it also does when � is a
nonconvex set expressible in the form (25) with � convex and the constraint
qualification (26) fulfilled at ��. Through various choices of � , that covers
cases where � is specified by smooth equations and inequalities under the
Mangasarian-Fromovitz constraint qualification.

We will be occupied by a concept of differentiation for set-valued mappings
that is based on the variational geometry of the graph of � in ��� � ���. The
graphical derivative of � at �� for �� is the mapping ��� ��� ��� � ��� �� ���

defined by

�� � ��� �� � ������� �� ���� ��� � ���� 
� ��� ���� �
��
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When �� is the only element of �� ���, the notation simplifies to ��� ��� and
���� ���. If � were actually differentiable at ��, these would be the linear
mappings associated with the Jacobian matrix and its transpose, but of course
we cannot count on that special case and have to proceed more generally.

The mapping � is called proto-differentiable at �� for ��when 
��� is deriv-
able at � ��� ���. This property is of particular interest when � is graphically
Lipschitzian, as we can commonly expect from of the observations above. If
� were single-valued and Lipschitz continuous on an neighborhood of �� (for
which criteria are available in some cases—see Dontchev and Rockafellar [5]
for an overview), proto-differentiability would reduce to semi-differentiability:
��� ��� would be a single-valued, positively homogeneous, Lipschitz continu-
ous mapping such that

���� � �� ��� ���� ����� � ��� � ������� �
��

This is the same as classical differentiability, except for ��� ��� not having
to be a linear mapping. An expansion like (36) is not characteristic of proto-
differentiability in general, but proto-differentiability nonetheless corresponds
to a strong kind of approximation when � is graphically Lipschitzian. In-
deed, with respect to a coordinate change as in the definition of the latter prop-
erty, which identifies 
��� locally—from a different angle—as the graph of a
single-valued Lipschitz continuous mapping, proto-differentiability of � turns
into semi-differentiability of that mapping. Conditions guaranteeing the proto-
differentiability of � therefore have some importance.

These concepts of graphical differentiation are applicable also to the mapping
�� , and this will be the key. The graphical derivatives of � are given by the
formula

��� �� � ������� � 
�� � � ���� ��� � ������ � �	����� �� where
 ���� ��� � �	� � ��� ����� ���� � ��� ������ �	 � �� � ��� ����

�
��

Through this, � is proto-differentiable at �� for �� if and only if �� is proto-
differentiable at �� for �	. Moreover, that is true for instance when � has a
general constraint representation as in (25) with� polyhedral convex and the
constraint qualification (26) satisfied at ��; in particular, it is true when � itself
is polyhedral convex.

The formula for������ � �	� in the general case of a constraint representation
of � as in (25) will not be presented; it is available in the book of Rockafellar
and Wets [2]. We concentrate rather on the case where � itself is polyhedral
convex. The formula then is appealingly simple:

������ � �	� � �� for the cone � � ������ � �	�� �
��
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where �	� denotes the subspace orthogonal to �	. The polyhedral cone � in (38)
is the critical cone to � at �� for �	 and can be expressed equivalently by

� � �	
���
����� ���	

��	� ��� � ������ for � � �	
���
���

��	� ��� �
��

It is revealed now by (37) that when � is polyhedral convex, the vectors
�� � ��� �� � �������, describing the differential perturbations of �� associated
with a differential perturbation �� of ��, are then the solutions to an auxiliary
variational inequality over the critical cone � :

��� �� � ������� � 
�� � � ���� ��� � �� ���� �� where
 ���� ��� � �	� � ��� ����� ���� � ��� ������

� � ������ � � � ��� ����

� ������ for � � �	
������ �� � ��� ���� ���

����

An alternative description of how the sensitivity analysis of a parameterized
variational inequality over a polyhedral set can be carried out has been presented
by Robinson [6]. It is likewise based in effect on (38) but in this case in terms
of “normal maps” that express the Minty parameterization of the graphs of��
and �� . For nonpolyhedral � , a framework of normal maps is less attractive,
but formulas for������ � �	� exist still in some major situations, as mentioned.

5. APPLICATION TO AN EQUILIBRIUM MODEL
WITH AGGREGATION

These calculus results, culminating for the polyhedral case in the perturbation
formula (40), have been elaborated by Patriksson and Rockafellar [4] in the
framework of aggregation, which underlies traffic equilibrium. Consider the
solution mapping� in (33) for the case of a parameterized variational inequality,
or equilibrium model, having

� � �� � � � � � �
 with each �� polyhedral convex. ����

Here � is the image ���� of the set � � �� � � � � � �
 under the linear
transformation � � ���� � � � � �
� �� �� � � � � � �
. The normal cone rule in
(32) applies and says that, for any �� � � and any choice of vectors ��� � ��
with �� � ��� � � � �� ��
, one has

������ � ���
����� � � � � ����

���
�� ����

The normal cones in this formula are polyhedral convex and have the corre-
sponding tangent cones as their polars, so by taking polars on both sides of (42)
one gets the dual formula

������ � �������� � � � �� ���
���
�� ��
�
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again with all cones polyhedral convex. The especially interesting thing now is
the form of the critical cone � , as described by (38), (39) or equivalently (40)
with �	 � �� � ��� ���:

� � �� � � � �� �
 with each �� polyhedral convex ����

for the cones

�� � ���
����� � � � ��� ����

� ���
����� for �� � �	
��������

�� � ��� ���� ����
����

The auxiliary variational inequality in (40) thus exhibits in this case an aggre-
gation structure mirroring that in the given variational inequality under (41).
We see further that the normal cone �� ���� in (40) has the expression

�� ���� � ���
����� � � � � ������

�

�

for any ��� � �� with �� � ��� � � � � � ��
�
����

Therefore, the differential perturbations �� of �� associated with a differential
perturbation �� of �� are the vectors of the form

�� � ��� � � � �� ��
 in which
��� minimizes � ���� ���� � � over ���

����

In our paper [4], we have worked out in detail the implications of this for
solution perturbations to network models of traffic equilibrium with origin-
destination pairs. Here we apply it to a simpler yet broader model of multi-
commodity flow.

Let � � �� ��� be a transportation network, where� and � are the sets of
nodes and arcs (directed links). For ! � �� � � � � ", let ���#� denote the quantity
of flow of commodity type ! in the arc # � �. Let $��%� be the given supply
of commodity type ! at node % � � , with negative supply corresponding to
demand and zero supply expressing a conservation requirement. The flows
�� � � � �� of type ! that we admit are the ones belonging to the polyhedral
convex set

�� �
�
��
��� ���#� � ���#� � # � ��
�

��	 &�%� #����#� � $��%� � % � �
�
�

����

where &�%� #� is the incidence of node %with arc # (this being �� if % is the initial
node of #, but �� if % is the terminal node of #, and � otherwise), and ���#� is a
nonempty, closed interval constraining the flow values allowed for commodity
! in arc #. (As a special case, one could have ���#� � ��� � in certain arcs
where commodity ! is not permitted.)
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Equilibrium in the multi-commodity setting revolves around minimizing the
travel costs for the individual commodities while coping with the fact that those
costs depend on the aggregate flow contributed by these commodities and thus
reflect an interdependence among the different kinds of traffic. The travel
cost in arc # is a function '���� of the aggregate flow � � �� � � � � � �
. An
equilibrium consists, by definition, of a collection of commodity flows ��� � ��
for ! � �� � � � � " such that

��� � �	
���
�����

�
��	

�'�#����#�� with �'�#� � '������ �� � ��� � � � �� ��
� ����

Traffic equilibrium, so defined, can be translated into a variational inequality
in two ways, “extensive” or “aggregate.” Let

' � ��� �� �� �� � � � '���� ��� � � ��

be the mapping that, for a given pair ��� ��, assigns to the arcs # � � the
corresponding travel costs '���� ��. The sum in (49) can be construed then
as �'���� ���� ���. In the extensive formulation of equilibrium, the focus is on
elements

���� � � � � �
� � ! � �� � � � � � �


and the mapping

" � ��� ��� � � � � �
� �� �'��� ��� � � � � '��� ��� (" copies).

Normal cones to ! are given by

�
����� � � � � ��
� � ���
������ � � � ����

���
��

so the condition in (49) comes out as

�"� ��� ���� � � � � ��
� � �
����� � � � � ��
�� ����

or in other words, the parameterized variational inequality over ! for ".
In the aggregate formulation of equilibrium, on the other hand, the condition

in (49) is rendered as

�'� ��� ��� � ������ for � � �� � � � �� �
� ����

It purely and simply refers to aggregate flows. The extensive and aggregate
formulations of equilibrium are equivalent on the basis of the normal cone
formula (42) that holds under (41). To pass from (51) to (50), an arbitrary
choice can be made of commodity flows ��� such that ��� � � � �� ��
 � ��. (Such
flows ��� can be determined computationally by solving a system of linear
equations and inequalities.) Obviously the aggregate version involves vastly
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fewer variables, but the aggregate polyhedron � does not come with a direct
specification in terms of linear constraints.

To see next what happens with perturbations of equilibrium in this traffic
situation, with emphasis on the aggregate model, suppose that the travel costs
depend on a parameter vector � � � � ���, so that we have '���� �� in arc
# and altogether a mapping ' � ��� �� �� '��� ��. Consider the associated
solution mapping

� � � �� 
� � � � � '��� �� � ������ with � � �� � � � �� �
 ����

along with a particular �� �� and a corresponding aggregate flow �� � �� ���.
Assume that the mapping ' is continuously differentiable and, as the � in (34),
satisfies our ample parameterization condition:

�	'� ��� ��� has full rank � � ���� ��
�

where ��� is the cardinality of �; in other words, for any choice of values '��#�
for # � �, there exists �� such that �	'�� ��� ����� � '��#� for all #.

We wish to specialize the perturbation formula (40) to this framework with
� � '. For this purpose we make an arbitrary choice of flows ��� � �� yielding
��� � � � � � ��
 � �� and let

� � �� � � � �� �
 with
�� � ���

����� for �� � �	
��������
�'� ��� ���� ����

����

noting that�� is again polyhedral. The aggregate cone � , likewise polyhedral,
is the critical cone on which the formula in (40) will operate, as we already
have established. The mapping  in this formula will be given by

 ���� ��� � �	'� ��� ����� ���'� ��� �����

with �� � ��� � � � �� ��
� �
�
� � ���

����

Therefore, in the network context the differential perturbations�� of ��associated
with a differential perturbation �� of �� are the vectors of the form

�� � ��� � � � �� ��
 in which ��� minimizes
��	'� ��� ����� ���'� ��� ������ � � over ���

����

The question, though, is how to understand through (54) the special nature
of the subcones �� in this network context. In particular, we wish to know
whether the calculation of perturbations by way of (56) comes down to solving
another traffic equilibrium problem of reduced type.

In investigating that, we can invoke the known optimality conditions for a
linear min cost network flow problem as applied to the subproblems in (56) that
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define the sets ��. It will be demonstrated now constructively in this way that
the cones �� in (54) have the form

�� �
�
���

��� ����#� � � ���#� � # � ��
�

��	 &�%� #����#� � � � % � �
�
�

����

where each ����#� is an interval of the type ��� � , �����, ���� � , or ������.
Since this form is just like that of the sets �� in (48), except that the intervals
� ���#� are much more special and the quantities $��#� have become �, it will
follow that the perturbation formula (56) does indeed amount to solving a special
traffic equilibrium subproblem.

Optimality conditions for the problem of minimizing the linear function
�'� ��� ���� � � over ��, with �� having the general form in (48), are available
in [7, Chapter 7]. They involve the notion of a potential � � � � �� and its
differential #� � � � ��, where

#��#� � �
�
��


��%�&�%� #� � ��final node of #�� ��initial node of #��

According to these results, a flow �� belongs to the argmin set �� in this
problem if and only if �� � �� and there is a potential �� such that

#���#� � '�� ��� ��� � �����	
����#�� for every arc # � �� ����

Moreover the potentials �� that fill this role for a particular �� � �� are
precisely the solutions to a certain dual problem (as explained in [7]. Therefore,
we can arbitrarily select one such ��� (obtained for instance as a by-product
of using algorithms such as in [7] to solve the cost minimization problem in
question), and the flows �� � �� will be characterized then as the ones for
which the values ���#� satisfy the condition in (58). But this is equivalent to
saying that in terms of the intervals

����#� �

��
�
���#� if #����#�� '�� ��� ��� � �,

 right endpoint of ���#�� if #����#�� '�� ��� ��� ( �,

 left endpoint of ���#�� if #����#�� '�� ��� ��� ) �,

����

one has

�� �
�
��
������#� � ����#� � # � ��
�

��	 &�%� #����#� � $��%� � % � �
�
�

����

In other words, �� is, like ��, a flow polyhedron, but with respect to certain
smaller intervals ����#� dictated by the optimality.



Variational Geometry and Equilibrium 19

Tangent cones to polyhedral convex sets specified by linear constraint sys-
tems are readily determined. We immediately get from (60) that, for any par-
ticular ��� � ��, we have

���
����� �

�
���

��� ����#� � ������	�����#�� � # � ��
�

��	 &�%� #��
�
��#� � � � % � �

�
�

����

It remains then only to set ����#� � ������	�����#�� for all # � �, so that

� ���#� �

����
���

��� � if ����#� is an interior point of ����#�,
����� if ����#� is the left endpoint (only) of ����#�,
���� � if ����#� is the right endpoint (only) of ����#�,
������ if ����#� is the one-point interval 
����#��.

����

In summary, perturbations in this network setting can be calculated by re-
solving the equilibrium condition (56) for a “differential” multi-commodity
flow problem having linear costs and constraints as in (57) and (62).

This equilibrium subproblem can itself be articulated further now in either
extensive or aggregate form and in that manner tackled as a variational inequal-
ity. In extensive form, there are many variables once more, in principle, but it
can be seen from the derivation of the intervals ����#� in (62) from the intervals
����#� in (59) that ����#� � ��� � whenever ����#� is a one-point interval. In fact,
that can be anticipated to most arcs #, in which case the flow variables ���#�
for those arcs can be suppressed by setting them equal to �. Thus, the number
of variables involved in the subproblem is likely really to be very much smaller
than in the original problem.

In aggregate form, there are other possibilities for the equilibrium subprob-
lem that calculates perturbations. It has the form

��	'� ��� ����� ���'� ��� ����� � �� ���� for � � �� � � � �� �
� ��
�

the cones �� being specified by the flow constraints in (57) and (62). The usual
difficulty in this picture would be that such constraints do not carry over to a
direct constraint representation of � , but because we are dealing with flows,
there are additional tools available. The flows in �� are “circulations” without
source or sink, and the intervals ����#� merely impose “sign restrictions” on
what can pass through the various arcs #; when ����#� reduces to �, the arc
can effectively be deleted in consideration of commodity !. The theory of
conformal realization of flows in [7, Chapter 4B] can be utilized to obtain—in
a constructive manner—a representation

�� �
����

���

��&��

���
�� � $��

�

in which each &�� is a so-called elementary flow (nonzero only on the arcs of
an elementary closed path) and each $�� is either the interval ����� or the
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interval ������. Having determined such representations for the cones ��,
one could combine them into one for � and in that way arrive through a change
of variables at a version of the aggregate variational inequality in terms of the
variables 
��, of which there might not be very many.

Finally, something should be said about the role of quasi-variational in-
equalities in traffic equilibrium. Our discussion has centered on variational
inequalities only, but research on quasi-variational inequality models has also
been carried out in this setting; see for example De Luca and Maugeri [8, 9, 10].
Such efforts have been directed toward more general models than ours that treat
elastic supplies and demands; they can be construed as models in which the val-
ues $��%� are not fixed but rather can respond to the costs achieved at optimality.
In passing to that kind of framework, would the quasi-variational inequalities
so obtained, once “truncated” in the manner we adopted in Section 3, fit with
pattern of generalized tangent and normal cones that we have suggested?

That could well be the case, but there might be a simpler alternative. Elastic
supplies and demands can also be handled in many cases by expanding the
network to allow for additional arcs which connect supply nodes and demand
nodes to the “outside world” and then introducing further traffic costs on those
arcs. In this way, a quasi-variational inequality of such type can, at least in
typical cases like those with simple origin-destination pairs, be reformulated
as an ordinary variational inequality in the expanded network. The fact that
our model allows general intervals ���#� may help in that respect, since an arc
introduced for only one of the commodities can be assigned the trivial interval
��� � for the other commodities.
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