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1 Introduction

An object of great interest in optimal control, calculus of variations, and the corresponding
Hamilton-Jacobi theory is the value function. For an initial cost function f : R" ~ IR and
a running cost L : IR"™ x R" — IR, also referred to as the Lagrangian, the value function
V 1 [0,4+00) x R" — IR is defined to be

V(r&) =int { f(a(0) + [ La(t),a0)de] o(r) = €} )

where the infimum is taken over all absolutely continuous arcs z : [0, 7] — IR",, subject to the
terminal constraint x(7) = £. Translation of results from this setting to the one often seen in
control theory, where an initial condition and a terminal cost function are considered, involves
a simple change of variables, and was addressed by Rockafellar and Wets [10]

The main issue addressed in this paper is whether the knowledge of the value function
V(7,-) at some time 7 > 0 determines the initial cost function f. To be more precise, suppose
that for a given Lagrangian, V; and V5, are two value functions corresponding to initial costs
f1 and fo. Can we say that

Vi(T,-) = Va(T,-) for some 7 >0 = f; = fo. (2)

Such a conclusion resembles a “cancelation rule” available for the operation of inf-convolution.
Recall that for any two functions f : R" — IR and ¢ : R" — IR, their inf-convolution, also
known as the epi-addition, is defined as

(f#9)(0) = inf {7(0)+9()} = inf {7) + (e —9)}. (3)

y+z=x
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When both f and g are proper functions — they do not take on the value —oco and they are
finite somewhere — the inf-convolution is well-defined. If fi(-), f2(:) and g(-) are also convex
and Isc, with g coercive, the following can be said:

Ji¥g=forg = f1=fo

We recall that a function g is said to be coercive if lim|;_, % = oo. A particular example
of such g is provided by a quadratic function %| - |2 for some A > 0. The inf-convolution of

f+ g is then the Moreau envelope of f with parameter \:
. 1 2
exf(a) = inf {f(y) +oxly — }

The cancelation rule amounts to say that if, for some A > 0, Moreau envelopes of fi(-) and
f2(+) are equal, then actually fi = fo.

A direct connection between the discussed cancelation rule and our results is seen by
considering Lagrangians independent of the state variable. Indeed, consider a Lagrangian
L(z,v) = g(v), where g is a proper, lsc, convex, and coercive function. In this special case, the
following formula, which can be traced back to Hopf [4] and Lax [5], holds:

. ! -1 1
V() = jnf {F(€)+79 (7 E-¢))} (4)
Thus, for any fixed 7 > 0, the value function is the inf-convolution f4 g,, where g,(v) =
7g(t~'v). Symmetrically, the inf-convolution of f(-) and g(-) can be viewed as the value
function at 7 = 1.

Coercivity of g(-) translates to that of g-(-) for all 7 > 0. Thus, if Vi(-,-) and Va(-,-) are
two value functions corresponding to initial costs fi(-) and f2(-) and the Lagrangian g(-), the
cancelation rule for inf-convolution implies that (2) holds.

We approach (2) in the general fully convex setting where the Lagrangian depends on both
z and v, and is jointly convex in these variables. Assumption of convexity is also in place
for the initial cost f. We rely on the Hamilton-Jacobi theory developed for such setting by
Rockafellar and Wolenski [10], [11], in particular on a lower envelope representation of the value
function involving a “dualizing kernel”. This representation allows us to view the initial cost
function f and the value function V(7,-) as functions conjugate to each other, in a framework
of “generalized conjugacy”, as described by Rockafellar and Wets [9]. We present the necessary
background in Section 2.

An affirmative answer to our main question is given in Section 3, subject to persistence of the
trajectories of a generalized Hamiltonian system associated with the control problem. Section 4
is devoted to the analysis of the mentioned Hamiltonian system, and direct characterization in
terms of the Lagrangian of cases where the trajectories persist. Partial results in these subjects
were obtained by Goebel [3].

Let us mentions that the lack of regularity assumptions on the Lagrangian allows our format
to express a wide range of optimal control problems, including those with control and mixed



constraints. Consider a control problem with linear dynamics #(t) = Az (t) + Bu(t), with the
control u(t) constrained to some nonempty, closed, and convex set U € IR*, and where the cost
expression is given by

ﬂﬂw+47mmmmﬁ (5)

for some proper Isc and convex functions f and [ : R" x IR¥ — IR. Again, we can consider the
value function, as the optimal value in the above control problem, parameterized by (7,¢) in
the terminal condition z(7) = £. Such value function can be expressed as (1) by defining

L(z,v) = 1}1615 {l(z,u) | v= Az + Bu}. (6)

Partial answer to the question of which control problems yield a Lagrangian satisfying our
assumptions will be given in Section 4, we also refer the reader to [11], [7] and [8].

2 Dualizing kernel and generalized conjugacy

The following assumptions on f and L are in place thorough this Section as well as Section 3.
Assumption 2.1 (basic assumptions).

(A0) The function f(-) is convez, proper and lsc on IR™.

(A1) The function L(-,-) is convez, proper and lsc on R"™ x R™.

(A2) The set F(x) = {v | L(z,v) < oo} is nonempty for all z, and there is a constant p such
that dist(0, F(z)) < p(1 + |z|) for all .

(A3) There are constants « and 3 and a coercive, proper, nondecreasing function 6(-) on [0, 00)
such that L(z,v) > 0(max{0, |v| — a|z|}) — B|z| for all z and v.

These were exactly the assumptions used by Rockafellar and Wolenski [10], [11] in developing
the Hamilton-Jacobi theory for convex problems of Bolza. Assumption 2.1 guarantees, among
other things, that the value function is a well-defined proper Isc and convex function. Results
of [11] which will be used in this paper are summarized in the next theorem.

Theorem 2.2 (envelope representation of the value function). The dualizing kernel K :
[0, +00) x R" x R" — IR defined as

Kwamzm%@mww+f¢um@mwuxmzs}

is an everywhere finite function, convez in & and concave in n. The value function (1) can be
represented as

V(r,§) ZS%p{K(T,&n) -}, (7)

where f* is the function conjugate to the initial cost f.



Note that for a fixed n, K(-,-,n) is the value function corresponding to an affine initial cost
function f(z) = (n,z). If a formula reciprocal to (7) was in place, that is if

f*(77)ZS%p{K(Taf,n)—V(T,ﬁ)}- (8)

then a recovery of the initial cost f from V(7,-) would indeed be possible.

Formulas (7) and (8) can be viewed as a generalized conjugacy relation between the value
function V(7,-) and the initial cost f*(-) with respect to the function K(7,-,-). Let us present
the basic framework of generalized conjugacy. Given any function ¢ : R"™ x R" — IR we define
the ¢-conjugate of f(-) as

F2y) = sup{g(w,y) = f(@)}, 9)

and the ¢-biconjugate of f(-) as

77(w) = sup {olw,9) = 1)} (10)

The standard notion of conjugacy between convex functions is obtained by considering ¢(x,y) =
(z,y). Directly from the definitions we can obtain that f > f¢. Indeed, (10) implies that for
all z and y, f%(y) > ¢(z,y) — f(z), which is equivalent to f(z) > ¢(z,y) — f®(y). Taking the
supremum with respect to y yields f(z) > f??(z). We now give a condition on subgradients
of ¢ sufficient for the last inequality to turn into an equality.

Lemma 2.3 Let ¢(z,y) be a finite function, concave in x. Assume that for every z and every
z there exists y such that z € Oyp(x,y). Then, for every proper, lsc and convex function f(-)

we have f9°(-) = f(-).

Proof. First, note that it is sufficient to show that for every affine function k(-), we have
E??(-) = k(-). Indeed, suppose that this is true. Pick any proper, Isc and convex function f(-).
Let k(-) be an affine function majorized by f(-). We have f(-) > k(-), and through duality
relationships (9), (10) we get f?(-) < k?(-) and f??(-) > k??(-). By our supposition, the last
inequality becomes f??(-) > k(-). This implies that f®® > f(-), since f(-), being a proper, Isc
and convex function, is the supremum of all affine functions it majorizes. But f(-) > f#?(-) is
always true, and therefore, f?(-) = f(-).

We now show that k??(-) = k(-) for any affine function k(-). Let k(z) = (z,z) + b. By (a),
for every z there exists y such that z € d,¢(z, ), which is equivalent to 0 € 9, (¢(x,y) — k(z)).
This is a necessary and sufficient condition for = to be the maximizer in the expression (9) for
E?(y). Thus, we have that for any x there exists y such that k(z) + k?(y) = ¢(z,y). Then

K(2) = sup {g(z,y) — K2 () | > k(a).
Y

Thus k%? = k(z). m|

It can now be expected that for (8) to hold, a condition similar to the one in Lemma 2.3
will be needed for the subgradients of K(7,-,-). These turn out to be closely related to the
trajectories of the Hamiltonian system associated with the given Lagrangian.



3 Cost recovery via Hamiltonian trajectories

With every Lagrangian — and every problem of calculus of variations — we can associate a
Hamiltonian function, defined as

H(w,y) = sup {{y,v) = L{z,v)}. (11)

That is, for every fixed z, the convex function H(z,-) is the function conjugate to L(z,-).
Under our assumptions, H(x,y) is always finite, concave in z, and, as mentioned, convex in y.
For a Lagrangian coming from a control problem (5), the corresponding Hamiltonian function
is
H{(z,y) = sup {{y, Az + Bu) — I(z,u)} = {y, Az) + h(z, B*y),
ue

where h(z,-) is the convex conjugate of [(x,-) 4+ 0y (-). Here, 0y is the indicator function of
the set U. The Hamiltonian plays an important role in the Hamilton-Jacobi theory, where it
characterizes the value function as the unique solution to the Hamilton-Jacobi equation, see
Galbraith [2].

By a Hamiltonian trajectory on interval [a,b] we will understand a pair of absolutely con-
tinuous arcs z,y : [a,b] — IR" such that

—y(t) € O H (x(t),y(1) . &(t) € O H (x(t),y(t)), (12)

for almost all ¢ € [a,b]. Above, 0,H(z,y) is the subdifferential of the convex function H(z,-)
while 9, H (z,y) is the subdifferential (in the concave sense) of the concave function H(-,y).
Hamiltonian trajectories are involved in optimality conditions and can be used to describe the
evolution of the subdifferential of the value function 0¢V(7,-) from the subdifferential of the
initial costs f(-) — we mention the corresponding result of Rockafellar and Wolenski [10] as
Theorem 3.4. The trajectories are also closely related to the subgradients of the dualizing
kernel K(,-,-), as it was shown in [11]:

Theorem 3.1 (subgradients of the dualizing kernel). The following are equivalent:

(a) ' € OcK(1,&,m) and & € 0,K(1,&,n).

(b) there is a Hamiltonian trajectory on [0,7] from (&',n) to (§,1').

Equipped with such a characterization of subgradients of K (7,-,-), we can apply Lemma 2.3 to
the setting of generalized conjugacy between the initial cost f and the value function V(7,-).

Theorem 3.2 (recovery of the initial cost). Assume that there are no Hamiltonian trajectories
escaping to infinity on [0,7]. Then formula (8) holds.



Proof. In light of the generalized conjugacy relations (9), (10), and Lemma 2.3, we need to
show that for any & and 7, there exists £ so that & € &,K(T,é’,n). The set-valued mapping
(z,y) = OyH(z,y) x —9,H (z,y) has nonempty, compact, and convex values and is outer-
semicontinuous. Thus Hamiltonian trajectories exist for every initial point, see Aubin and
Cellina [1]. This, and our assumption guarantee that for any point (£',7), there exists a
Hamiltonian trajectory originating at (£',7), with the endpoint at some (¢,7’). By Theorem
3.1, ¢ € 0,K(7,&,7m). This finishes the proof. m|

Theorem 3.3 shows that, under the assumption that no Hamiltonian trajectories escape to
infinity in finite time, the knowledge of the value function V(7,£) at one time 7 > 0 actually
describes the whole value function.

Corollary 3.3 Assume that there are no Hamiltonian trajectories escaping to infinity in finite
time. The following are equivalent:

(a) g1(x) = go(x) for all z € R"™.
(b) Vi(7,8) = Va(7,€) for all (1,£) € [0,+00) x IR".
(¢) There exists T > 0 such that Vi(T,&) = Va(T, &) for all £ € R".

We now present an example where the Hamiltonian trajectories do escape to infinity in
finite time, and where the conclusion of Theorem 3.3 fails. The argument will take advantage
of the following result of Rockafellar and Wolenski [10]:

Theorem 3.4 (Hamiltonian evolution of subgradients). A point (z;,y;) is in the graph of
0:V (t,-) if and only if for some (20, yo) € gph Of(-), there is a Hamiltonian trajectory (x(-),y(-))
on [0,t] with ((0),4(0)) = (zo,y0), ((t),y(t)) = (z¢, ).

Example 3.5 (Hamiltonian trajectories with finite escape time). Consider the Hamiltonian
H(z,y) = §(—z* + y*), which corresponds to the Lagrangian L(z,v) = gz* + %2%1)%. Hamil-
tonian trajectories are the solutions of the system:

. 1 . 1

g(t) = 521, () = 5p°()

The trajectory (x(-),y(-) originating at (1,1) is
(1), y(t) = (=172, (1-1)72).

This trajectory escapes to infinity in ¢ = 1. Without direct calculation, we can show that other
trajectory (z'(-),%'(-) originating at (z',y') with z > 1, y > 1 must also escape to infinity in
time ¢ < 1. A result of Rockafellar [6] states that the function

m(t) = (' () — z(t),y'(t) — y(t))



is nondecreasing. A slight modification of this result shows that in case of a strictly concave,
strictly convex Hamiltonian, m(¢) is actually increasing whenever (z(t),y(t)) # (2'(t),y'(¢)).
Thus, if (z/,y') # (1,1), we must have (z'(t) — z(t),y'(¢t) — y(¢)) > 0. Combining this with the
continuity of the trajectories in question, we obtain z'(t) > z(t), ¥'(t) > y(t) for t > 0. This
implies that (z'(+),3'(-0) escapes to infinity in time at most 1. By symmetry, any trajectory
originating at (z',y") with ' < —1, y < —1 must also escape to infinity in time ¢ < 1.

Now take any two different nonnegative convex functions f1(-) and f(-) such that f;(0) = 0,
1 € 0fi(1), =1 € 9fi(—1), for i = 1,2, and so that fi(z) = f2(z) holds for z € [—1,1].
An example of two such functions is fi(z) = 322, fo(z) = |z|. By the argument about
trajectories escaping to infinity, the graph of dV;(1,-) is the image of the graph 9f;(-) restricted
to [—1,1] x [—1, 1] under the Hamiltonian flow. Our assumptions on f; and fo guarantee that
gph 0f; and gphdf, agree on [—1,1] x [—1,1]. Therefore 0V;(1,-) = 9V5(1,-). To claim that
Vi(1,-) = Via(1,-) it suffices now to show that the two functions agree at some point. The
Lagrangian satisfies L > 0 and L(0,0) = 0. Thus both value functions are nonnegative, and
must equal 0 at = 0.

4 Persistence of Hamiltonian Trajectories

Duality theory can be employed to restate the assumptions on the Lagrangian in terms of the
Hamiltonian. Rockafellar and Wolenski showed that (A1), (A2) and (A3) from Assumption 2.1
are equivalent to the following:

Assumption 4.1 (Hamiltonian assumptions). The function H(x,y) is everywhere finite, con-
cave in x, convex in y, and such that

(H1) There are constants a and 3 and a finite, convex function ¢ such that
H(z,y) < oly) + (aly| + B)lx],
(H2) There are constants o' and ' and a finite, convezx function ' such that
H(z,y) > —¢'(z) — (|| + B)yl.

Any function which can be expressed as a sum of a finite concave function of z and a finite
convex function of y satisfies the above assumptions. In fact, any Hamiltonian of the form

H(z,y) = (y, Az) — f(z) + g(y) (13)

with f and g as described satisfies them. This covers the case of a finite Hamiltonian depending
on either just z or just y, and Hamiltonians coming from control problems with linear dynamics



and cost functionals (5), for which I(z,u) =
satisfies (H1), note that f(z) > f(0) + (v, )

H(z,y) = (y, Ax) — f(x) + g(B"y) < (| Allly| + [v]) [z + g(B*y) — f(0).

Thus H (z,y) satisfies (H1), with ¢(y) = g(B*y) — f(0). Argument for (H2) is symmetrical.

Another family for which Assumption 4.1 always holds is the family of finite, concave-
convex functions which are piecewise linear-quadratic. We recall that a function f is called
piecewise linear-quadratic if dom f = {z | f(z) < 400} can be be represented as a union of
finitely many polyhedral sets, relative to each of which f is given by a quadratic function. This
family includes Hamiltonians which arise in the setting of extended linear-quadratic control, as
introduced in Rockafellar [7].

We now show that any finite piecewise linear-quadratic concave-convex function H(zx,y)
satisfies Assumption 4.1. By definition, there exist polyhedral sets Si,So, ...Sy, with %, S; =
R" x IR" and such that, on each S; the function A(,-) is given by

f(z) + ¢*(u) for a coercive g*. To see that (13)
> f(0) — |v||z| for some chosen v € 9f(0) implies

1
h(z)zaz-Aiz—i-ai-zwLozi,

B C
Dil E:] , @i = (b, ¢;)* for

some matrices B;, C;, D; and E; and vectors b; and ¢;. Since H(+,-) is a concave-convex function,

where z = (z,y)*. We can write express each A; and a; as A; = [

we must have B; and E; positive semidefinite. Let M = sup {%y “Eyli=1,2,..m, |y| = 1} .

Then, for every i = 1,2,..m, h(z,y) — M|y|*> < %:1: (Ci+ DYy +bi-x+c-y+a <
|z|N'|y| + b|z| + ¢|y| + o where N is defined in similar fashion to M with the matrices C; + D,
b = sup; |bi|, ¢ = sup; |c;| and « = sup; |o;|. Taking ¢(y) = M|y|? + cly| + a we get that

hz,y) < ¢(y) + (Nly| + b)|z],
and this is exactly condition (H1). Symmetrical argument shows (H2).

Lemma 4.2 (linear growth of subdifferential). For a proper lsc convex function f : R" — IR",
the following are equivalent:

(a) supycaf(z) [v| < alz| + b for some constants a,b > 0.

(b) f(z) < clz|> +d for some constants c,d > 0.

Proof. Assume (a). As f is proper, there exists 7 with f(Z) finite. By the mean value
theorem, see for example Rockafellar and Wets [9], there exist 0 < A < 1 and v € 9f(z)) where
zx = (1 — A)z + A7, such that f(z) — f(Z) = (v,z — Z). Then f(z) < |f(Z)| + |v|(|z| + |Z])
Using the linear growth assumption and the fact that |z)| < |z| + |z] we get f(z) < |f(z)| +
[a(|z| + |Z]) + b] (|z| + |Z|). Elementary analysis shows that the expression on the right can be
bounded by c|z|? + d for some constants ¢, d > 0.



Now assume (b), and suppose that (a) fails. For every n, we can then find z,,, with |z,| > n,
so that for some v, € df(zy), |vn| > n|zy|. Such a conclusion follows from the fact that, under
(b), f is finite-valued and thus 0f is locally bounded. Fix some w € df(0). For any A > 0 we
get

f($n+>\1)n) > f($n) + <'Una$n+>\Un _$n> > f(O) + <wa$n> +>‘|Un|2 > f(O) - %|w||vn| +>‘|Un|2'

We can estimate the norm of z, + A\v,:
2 2 2, 12 _ L 2 Lo 20, |12 2 1)?
|0, + Avp|” < |zn|” 4+ 2X|zp||vn] + X2 |on|” < ﬁ|vn| +2)\E|Un| + Mo |” = Jop|* [ A+ ~) -
Combining the above estimates and the bound in (b), we obtain
2 1)? 1 2
clon|” | A+ - +d> f(0) - E|w||vn| + Alvn|%,
which, in the limit, yields cA? > \. Picking A < % yields a contradiction. O

Theorem 4.3 (persistence of trajectories). Any of the following conditions guarantee that no
Hamiltonian trajectories escape to infinity in finite time:

(a) H(z,y) = —f(x) for some finite convex function f, or H(z,y) = g(y) for some finite
convez function g.

(b) H(xz,y) = —f(x)+ g(y) for some finite convex functions f and g, where either rge df or
rge dg is bounded.

(c) H(z,y) = (y, Ax) — f(z) +g(y) for some matriz A, and some proper Isc convez functions
f and g, both of which are majorized by c|z|* + d, for some constants c,d > 0 (so in
particular f and g are finite).

(d) The Hamiltonian is piecewise linear-quadratic.

(e) The subdifferential of the Hamiltonian is of linear growth — for some constants a, b we
have

sup {(v,2) | v € 0, H(z,y),z € Oy H(w,y)} < al(z,y)| +b.

Proof. Note that (a) is a special case of (b), with either f or g equal trivially to 0. We show
(b), assuming that rge df is bounded. Suppose rgedf € KB, fix T' > 0 and a point (zg, yo)-
Hamiltonian system has the form

y(t) € 9f (=(2),  #(t) € Ig(y(?)).



Thus any Hamiltonian trajectory originating at (zg,yo) satisfies y(t) € yo + KT B for all
those t € [0,T] for which the trajectory exists. The function g is finite, and thus the local
boundedness of dg implies that #(tf) € Jg(yo + KT'B) is bounded. That shows that any
Hamiltonian trajectory originating at (x,yo) can not escape to infinity in any time less or
equal T'. By freedom of choice of T and (z,¥o), the proof is finished. The case of rge dg
bounded is symmetrical.

In (c), the subdifferential of the Hamiltonian is

0pH(z,y) = A*y — 0f (x),  0yH(x,y) = Az + dg(y).

By Lemma 4.2, right-hand sides of the above equations have linear growth, so this is a special
case of (e).

Similarly for (d): it can be shown that for such a Hamiltonian, the mapping (z,y) —
. H (z,y) x 0y H (x,y) is piecewise polyhedral (its graph is a union of finite number of polyhedral
sets). Combined with local boundedness of the mapping in question, this yields linear growth.
A different approach is as follows: Rockafellar and Wolenski [10] showed that

51;H(513,y) X OyH (z,y) = con{(w,v) | Hxn,yn) = (z,y) with VH(zp,yn) = (w,v)}.

By the structure of a piecewise linear-quadratic function, H (z,y) is differentiable almost ev-
erywhere, and relative to points of differentiability VH (z,y) is linearly bounded. Combining
this with the above formula yields the needed linear growth of 9, H (x,y) x OyH (z,y).
Hamiltonian systems in (c), (d) and (e) can be rewritten as 2(t) € F(z(t)), for some
outer semicontinuous, compact-valued mapping F' of linear growth. Thus z satisfies |2(t)| <
m|z(t)| + n for some constants m,n > 0, and it is well-known that no such z can escape to
infinity in finite time. O

The property used in (b) of Theorem 4.3 — rge df being bounded — can be equivalently
expressed in terms of the conjugate function. As df and Jf* are mappings inverse to each
other, rge 0f = dom df* where the latter set represents the points where Jdf* is nonempty.
Also, since the relative interior of dom f* is a subset of dom df, dom f* is bounded if and only
if dom @f* is. Thus, rge df is bounded if and only if dom f* is.

The property in (¢) — f being majorized by c|z|? + d — also has an equivalent version, in
terms of f*. A direct calculation yields f(z) < c[z|? + d if and only if f*(z) > & |z|> + d for
some constant d’.

Below, we combine the comments made in this section with the results of Theorem 4.3.
Recall that L(z,v) stands for the Lagrangian, while /(z,u) is the function involved in the
cost expression (5) for control problems. Conditions(a), (b) and (c) are direct translations
of corresponding ones in Theorem 4.3. Both (d) and (e) lead to piecewise linear-quadratic
Hamiltonians.

Corollary 4.4 Conclusions of Corollary 3.3 hold under any of the following conditions:

(a) L(z,v) = g(v) for some proper lsc convex and coercive function g.

10



(b) L(z,v) = f(z)+ g(v) for some proper lsc convex functions f and g, with dom g bounded.

(c) l(z,u) = f(z)+g(u) for some proper lsc convez functions f and g, with f(z) < c|z|?> +d,

g(uw) + 0y (u) > clul? +d for some constants ¢,d > 0.

(d) l(x,u) is any function fitting the format of extended linear-quadratic optimal control, as

described by Rockafellar [7].

(e) L(x,v) satisfies Al, A2, A3 and is piecewise linear-quadratic.

In particular, any of the above conditions guarantees that the Lagrangian satisfies A1, A2, A3
of Assumption 2.1. Recall that for (c) and (d) the Lagrangian is given by (6).
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