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1. Introduction

Saddle point expressions of optimality are a characteristic feature in convex optimization.
They pair the solution to a given primal problem with an auxiliary vector which solves a
dual problem. In the study of what happens when parameter values are perturbed, it is
important to consider the effects on both of these vectors. This paper is devoted to the
study of such effects by methods of variational analysis [1], especially through application
of results that have recently been obtained for variational inequalities [2].

In the primal-dual framework we adopt, there are convex sets X ⊂ IRn and Y ⊂ IRm

(nonempty) along with an open set W ⊂ IRd and a function L : W × IRn× IRm → IR such
that L(w, x, y) is concave with respect to y ∈ Y for each (w, x) ∈W ×X and convex with
respect to x ∈ X for each (w, y) ∈W ×Y . Regarding w ∈W as a parameter, we associate
with these data elements a primal problem of optimization

P(w) minimize f(w, x) over x ∈ X, where f(w, x) := supY L(w, x, ·),

a dual problem of optimization

D(w) maximize g(w, y) over y ∈ Y, where g(w, y) := infX L(w, ·, y),

and a primal-dual problem

PD(w) minimaximize L(w, x, y) over (x, y) ∈ X × Y,

a solution to this being by definition a pair (x, y) that is a saddle point of L with respect
to minimizing over X and maximizing over Y , i.e., satisfies

x ∈ argminX L(w, ·, y), y ∈ argmaxY L(w, x, ·). (1.1)

Note that f(w, x) is convex in x ∈ X in P(w), while g(w, y) is concave in y ∈ Y in D(w).

The general relationships in such a triad of problems are elementary and well known.
If a solution to PD(w) exists, the optimal values in P(w) and D(w) (the infimum and
supremum, respectively) must be equal. On other hand, as long as these values are equal,
a pair (x, y) solves PD(w) if and only if x solves P(w) and y solves D(w), in which case
both optimal values equal L(x, y). These facts are supplemented by criteria in minimax
theory and duality theory for the existence of a solution to PD(w) or the equality of the
optimal values in P(w) and D(w); cf. [1; Chap. 11] for a recent treatment.

Here, taking such facts as background, we go straight to the analysis of the (generally
set-valued) saddle point mapping

S : W →→ X × Y with S(w) :=
{

solutions (x, y) to PD(w)
}
. (1.2)

Our goal is to shed light on the behavior of S(w) with respect to changes in w, especially
questions of local single-valuedness, Lipschitz continuity and semi-differentiability.
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Example 1.1 (ordinary convex programming). Suppose X = IRn, Y = IRs
+×IR

m−s and,

with y = (y1, . . . , ym), that

L(w, x, y) = f0(w, x) + y1f1(w, x) + · · ·+ ymfm(w, x) (1.3)

for C2 functions fi on W × IRn such that, for each w ∈ W , fi(w, x) is convex in x for

i = 0, 1, . . . , s but affine in x for i = s+ 1, . . . ,m. Then problem P(w) takes the form

minimize f0(w, x) in x subject to fi(w, x)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

and the saddle point condition (1.1) corresponds to the Karush-Kuhn-Tucker conditions.

Example 1.2 (extended convex programming). Let X and Y be polyhedral sets and let

L(w, x, y) = f0(w, x) + y1f1(w, x) + · · ·+ ymfm(w, x)− k(w, y) (1.4)

for C2 functions fi on W × IRn and k on W × IRm with k(w, y) concave in y ∈ Y . Suppose

that for each y ∈ Y the expression f0(w, x) + y1f1(w, x) + · · · + ymfm(w, x) is convex in

x ∈ X. Then all assumptions are fulfilled, and problem P(w) comes out as

minimize f0(w, x) + θ
(
w, f1(w, x), . . . , fm(w, x)

)
over x ∈ X, where θ(w, u) := sup

y∈Y

{
〈u, y〉 − k(w, y)

}
.

This fits with the model of extended nonlinear programming proposed in [3] (see [4]
also), where the θ term can take on ∞ and thereby represent additional constraints beyond
x ∈ X. Ordinary nonlinear programming is obtained by taking X and Y as in Example 1.1
and setting k(w, y) ≡ 0. The motivation for this type of extension is explained at length in
[3] and will not be repeated here. A special case will be central to our endeavor, however.

Example 1.3 (extended linear-quadratic programming). Again letX and Y be polyhedral

sets, but take

L(w, x, y) = 〈c(w), x〉+ 1
2 〈C(w)x, x〉+ 〈b(w), y〉 − 1

2 〈B(w)y, y〉 − 〈A(w)x, y〉,

where the matrices C(w) and B(w) are symmetric and positive semidefinite (at least in

relation to X and Y ; see below). Then the primal problem P(w) is to

minimize 〈c(w), x〉+ 1
2 〈C(w)x, x〉+ θY,B(w)

(
b(w)−A(w)x

)
over x ∈ X, where θY,B(w)(u) := sup

y∈Y

{
〈u, y〉 − 1

2 〈B(w)y, y〉
}
,
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whereas the dual problem D(w), involving the transpose matrix A(w)T is to

maximize 〈b(w), y〉 − 1
2 〈B(w)y, y〉 − θX,C(w)

(
A(w)T y − c(w)

)
over y ∈ Y, where θX,C(w)(v) := sup

x∈X

{
〈v, x〉 − 1

2 〈C(w)x, x〉
}
.

Extended linear-quadratic programming goes back to [5] and [6] and has a role in
approximating other problems of optimization, as well as in furnishing a problem model
that is useful in itself. It will serve us below in formulas for the calculation of solution
perturbations for our general problems P(w), D(w), and PD(w).

Because everything only depends on the values of L on W ×X × Y , it is not really
essential, in the context of extended linear-quadratic programming problems of convex type
in Example 1.3, for the matrices C(w) and B(w) to be positive semidefinite in full. They
merely have to yield quadratic forms x 7→ 〈C(w)x, x〉 and y 7→ 〈C(w)y, y〉 that give convex
functions on X and Y , respectively, which is a slightly weaker requirement when X or Y
might have empty interior. This is what was meant in Example 1.3 by C(w) and B(w)
being positive semidefinite in relation to X and Y . (In the case of C(w) and X, the weaker
property is equivalent to the following: the matrix P giving the projection of IRn onto the
subspace parallel to the affine hull of X should make PTC(w)P positive semidefinite.)
This generalization will come into play in our perturbation formulas, where the convex
sets associated with certain derived subproblems might well have empty interior.

Special duality results are available for extended linear-quadratic programming prob-
lems of convex type. No constraint qualification is needed in relating primal and dual
solutions to saddle points; S(w) is always the product set consisting of the pairs (x, y)
such that x solves the primal problem and y solves the dual problem. Indeed, the infimum
in the primal problem equals the supremum in the dual problem unless the former is ∞
and the latter is −∞, i.e., neither problem has a feasible solution; see [5] and [1; 11.42,
11.43]. (The cited results are stated for positive semidefinite matrices but carry over to
positive semidefiniteness in relation to X and Y in the manner just explained.)

Our analysis of the saddle point mapping S rests on interpreting the saddle point
condition (1.1) as a special kind of variational inequality over X × Y in terms of the
normal cones NX(x) and NY (y) at points x ∈ X and y ∈ Y (in the sense of convex
analysis). To assist technically in this, we make the following restriction.

Assumption. It will be supposed throughout the paper that X and Y are polyhedral

and that L is a C2 function.

This will open the way for utilizing certain results from our paper [2] on smooth
variational inequalities over polyhedral sets.

3



Proposition 1.4 (variational inequality format). The saddle point mapping S, which is

convex-valued, has (x, y) ∈ S(w) if and only if

−∇xL(w, x, y) ∈ NX(x), ∇yL(w, x, y) ∈ NY (y). (1.5)

This corresponds to (x, y) solving a variational inequality over X × Y , namely

G(w, x, y) +NX×Y (x, y) 3 (0, 0), where

G(w, x, y) :=
(
∇xL(w, x, y), −∇yL(w, x, y)

)
.

(1.6)

Moreover, this variational inequality is one in which the set X × Y is polyhedral, the

mapping G is of class C1, and G(w, ·, ·) is monotone on X × Y :〈
G(w, x1, y1)−G(w, x0, y0), (x1, y1)− (x0, y0)

〉
≥ 0

for all (x0, y0) ∈ X × Y, (x1, y1) ∈ X × Y.
(1.7)

Proof. The convex-valuedness of S comes from S(w) being (if not empty) the product of
the optimal solution sets to P(w) and D(w). Those solution sets are convex because the
problems belong to the category of convex optimization.

The first condition in (1.1) is known always to imply the first condition in (1.5). The
converse implication would be immediate from standard convex analysis if L(w, x, y) had
been assumed convex over all x ∈ IRn instead of just relative to x ∈ X. The extension to
the slightly more general case is easy to make. The basic convexity inequality L(w, x′, y) ≥
L(w, x, y)+ 〈∇xL(w, x, y), x′−x〉 holds for any two points x and x′ in X, regardless of an
possible lack of convexity of L(w, ·, y) outside of X, because it comes out the convexity of
ϕ(t) = L(w, (1− t)x+ tx′, y) relative to t ∈ [0, 1] and the consequent monotonicity ϕ′(t) on
that interval. The normal cone NX(x) consists of the vectors v such that 〈v, x′−x〉 ≤ 0 for
all x′ ∈ X. Therefore, the relation −∇xL(w, x, y) ∈ NX(x) means that 〈∇xL(w, x, y), x′−
x〉 ≥ 0 for all x′ ∈ X. This inequality, in combination with the basic convexity inequality
above, yields L(w, x′, y) ≥ L(w, x, y) for all x′ ∈ X. Hence if −∇xL(w, x, y) ∈ NX(x) we
have x ∈ argminX L(w, ·, y).

Similar observations confirm the equivalence of the second conditions in (1.1) and
(1.5) as well as the monotonicity inequality in (1.7). The equivalence between (1.5) and
the variational inequality in (1.6) is immediate from NX×Y (x, y) = NX(x)×NY (y). The
Assumption above makes X × Y polyhedral and G of class C1.
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2. Graphical Derivatives and Their Calculation

The graph of the saddle point mapping S is the set gphS ⊂ IRd × IRn × IRm consisting
of all (w, x, y) such that w ∈ W and (x, y) ∈ S(w). The local properties of gphS around
one of its points (w∗, x∗, y∗) will be our central concern. Eventually we will identify the
circumstances in which S is single-valued on a neighborhood of w∗ with (x∗, y∗) as the
sole element of S(w∗), and then the analysis of S can have a familiar tone, although
differentiability must often be replaced by “semi-differentiability.” But much can be said
in the absence of such single-valuedness, and even about generalized derivatives, despite a
serious lack of continuity often in the behavior of S.

The key to this is a fundamental fact about the geometry of gphS around one of its
points (w∗, x∗, y∗), which holds under the following condition of ample parameterization:

rank
[
∇2

wxL(w∗, x∗, y∗)
∣∣∣∇2

wyL(w∗, x∗, y∗)
]

= n+m. (2.1)

This condition on the d × (n + m) matrix
[
∇2

wxL(w∗, x∗, y∗)
∣∣∇2

wyL(w∗, x∗, y∗)
]

is more
a normalization of the model than a serious assumption. The vector w could always be
augmented by vectors v ∈ IRn and u ∈ IRm in the pattern of the parameterized saddle
point problem

minimaximize L+(u, v, w, x, y) over (x, y) ∈ X × Y,

where L+(u, v, w, x, y) := L(w, x, y) + 〈v, x〉+ 〈u, y〉.
(2.2)

Such an augmented parameterization by w+ = (u, v, w) ∈ W+ = IRm × IRn ×W surely
satisfies (2.1). In working with (2.1), instead of explicitly with auxiliary vectors u and v

giving the so-called canonical primal and dual perturbations as would be the traditional
pattern, we are able to formulate our results more succinctly as well more generally.

The concept of ample parameterization was introduced in [2] in a broader framework
of variational inclusions. We employ it now in stating some basic but powerful facts about
the saddle point mapping S which specialize certain of our results in [2].

Theorem 2.1 (Lipschitzian graphical geometry). Let (x∗, y∗) ∈ S(w∗). If the ample pa-

rameterization condition (2.1) is satisfied at (w∗, x∗, y∗), then S is graphically Lipschitzian

of dimension d at w∗ for (x∗, y∗), in the sense that there is a change of coordinates around

(w∗, x∗, y∗) ∈ IRd+n+m under which gphS can be identified locally with the graph of a

single-valued Lipschitz continuous mapping from IRd to IRn+m.

Proof. We apply [2; Thm. 7.1] to the variational inequality format in Proposition 1.4.

In the graphical context of Theorem 2.1, there is a geometric kind of generalized
differentiation that can be used even though S may only be set-valued. One says that S
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is proto-differentiable at w∗ for (x∗, y∗) when (x∗, y∗) ∈ S(w∗) and the difference quotient
mappings

∆τS(w∗ |x∗, y∗) : w′ 7→ τ−1[S(w∗ + τw′)− (x∗, y∗)], where τ > 0,

converge graphically as τ ↘0; in other words, there is a mapping T : IRd →→ IRn× IRm such
that gph∆τS(w∗ |x∗, y∗) converges to gphT as τ ↘0. When this is true, gphT must be
the tangent cone to gphS at (w∗, x∗, y∗); the symbol for the mapping T with this tangent
cone as its graph is DS(w∗ |x∗, y∗). In fact, proto-differentiability of S at w∗ for (x∗, y∗)
is equivalent to gphS being geometrically derivable at (w∗, x∗, y∗) in the sense that the
outer set limit defining the tangent cone coincides with the inner set limit. For more about
the meaning proto-differentiability and its many features, see [1].

Another concept of importance to us now is that of a mapping D being piecewise
polyhedral , which means that gphD is the union of a finite collection of polyhedral (convex)
sets. Piecewise linear mappings are known to be the piecewise polyhedral mappings that
are single-valued [1; 2.48, 9.57].

Theorem 2.2 (saddle point proto-differentiability). Let (x∗, y∗) ∈ S(w∗). If the ample

parameterization condition (2.1) is satisfied at (w∗, x∗, y∗), then S is proto-differentiable

at w∗ for (x∗, y∗) and the proto-derivative mapping DS(w∗ |x∗, y∗) is piecewise polyhedral.

Proof. Again we simply apply [2; Theorem 7.1] to the variational inequality format in
Proposition 1.4.

The particular nature of the variational inequality in Proposition 1.4 as a representa-
tion of saddle points makes a difference now, as we specialize further from [2].

Theorem 2.3 (perturbation formula). In the framework of Theorem 2.2, the mapping

DS(w∗ |x∗, y∗) has the following description: (x′, y′) ∈ DS(w∗ |x∗, y∗)(w′) if and only if

(x′, y′) is a solution to the saddle point problem

PD∗(w′) minimaximize L∗(w′, x′, y′) over (x′, y′) ∈ X∗ × Y∗,

that corresponds to the data elements

L∗(w′, x′, y′) = 〈E∗w′, x′〉+ 〈D∗w
′, y′〉+ 1

2 〈C∗x′, x′〉 −
1
2 〈B∗y′, y′〉 − 〈A∗x′, y′〉,

X∗ = TX(x∗) ∩∇xL(w∗, x∗, y∗)⊥, Y∗ = TY (y∗) ∩∇yL(w∗, x∗, y∗)⊥,
(2.3)

where TX(x∗) and TY (y∗) are the tangent cones to X and Y at the points x∗ and y∗,

∇xL(w∗, x∗, y∗)⊥ and ∇yL(w∗, x∗, y∗)⊥ denote the subspaces orthogonal to the gradients
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in question, and the matrices in the expression of L∗ are specified by

E∗ = ∇2
xwL(w∗, x∗, y∗), D∗ = ∇2

ywL(w∗, x∗, y∗),

C∗ = ∇2
xxL(w∗, x∗, y∗), B∗ = −∇2

yyL(w∗, x∗, y∗), A∗ = −∇2
yxL(w∗, x∗, y∗).

(2.4)

Here X∗ and Y∗ are polyhedral (convex) cones, and L∗(w′, x′, y′) is convex in x′ ∈ X∗ for

each (w′, y′) ∈ IRd × Y∗, but concave in y′ ∈ Y∗ for each (w′, x′) ∈ IRd ×X∗.

Proof. Because X and Y are polyhedral, the tangent cones TX(x∗) and TY (y∗) are poly-
hedral and the cones X∗ and Y∗ are polyhedral. The convexity-concavity of L∗ on X∗×Y∗
is immediate from that of L on X × Y : the convexity of L(w, x, y) with respect to x ∈ X
implies the positive semidefiniteness of C∗ relative to the subspace parallel to the affine
hull of X, which of course includes X∗; likewise, B∗ is positive semidefinite relative to Y∗.

The derivative formula will comes out of [2; Theorem 7.1], but we need to work a bit
to obtain the details of the specialization. The general formula in the cited theorem, in
preliminary translation to the format of the variational inequality in Proposition 1.4, is

DS(w∗ |x∗, y∗)(w′) =
{
(x′, y′)

∣∣ g(w′, x′, y′) +NK∗
(x′, y′) 3 0

}
, where

g(w′, x′, y′) = ∇wG(w∗, x∗, y∗)w′ +∇xG(w∗, x∗, y∗)x′ +∇yG(w∗, x∗, y∗)y′,

K∗ = TX×Y (x∗, y∗) ∩G(w∗, x∗, y∗)⊥.
(2.5)

Since G(w, x, y) = (∇xL(w, x, y),−∇yL(w, x, y)) and TX×Y (x∗, y∗) = TX(x∗)×TY (y∗) we
evidently have K∗ = X∗ × Y∗ and, in the notation (2.4),

∇wG(w∗, x∗, y∗)w′ = (E∗w′,−D∗w
′),

∇xG(w∗, x∗, y∗)x′ = (C∗x′, A∗x′),

∇yG(w∗, x∗, y∗)y′ = (−AT
∗ y

′, B∗y
′).

According to (2.5), therefore, a pair (x′, y′) belongs to DS(w∗ |x∗, y∗)(w′) if and only if

−E∗w′ − C∗x
′ +AT

∗ y
′ ∈ NX∗

(x′), −D∗w
′ +A∗x

′ +B∗y
′ ∈ NY∗(y

′).

These conditions have the form

−∇x′L∗(w′, x′, y′) ∈ NX∗
(x′), ∇y′L∗(w′, x′, y′) ∈ NY∗(y

′).

In view of the convexity properties of L∗, X∗ and Y∗, this means by Proposition 1.4 (as
applied to these elements) that L∗(w′, ·, ·)) has a saddle point over X∗ × Y∗ at (x′, y′).

Note that the extended linear-quadratic programming problems referred to in Theorem
2.3 fit the pattern in Example 1.3 as extended to positive semidefiniteness only in relation
to the sets X and Y rather than all of IRn and IRm.
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Corollary 2.4 (auxiliary problems). In the framework of Theorem 2.2, the saddle point

problem PD∗(w′) corresponds to a primal-dual pair of extended linear-quadratic program-

ming problems of convex type. The elements of DS(w∗ |x∗, y∗)(w′) are the pairs (x′, y′)
such that x′ solves the primal problem

P∗(w′)
minimize 〈E∗w′, x′〉+ 1

2 〈C∗x′, x′〉+ θY∗,B∗

(
D∗w

′ −A∗x
′)

over x′ ∈ X∗, where θY∗,B∗
(u′) := sup

y′∈Y∗

{
〈u′, y′〉 − 1

2 〈B∗y′, y′〉
}

while y′ solves the corresponding dual problem

D∗(w′)
maximize 〈D∗w

′, y′〉 − 1
2 〈B∗y′, y′〉 − θX∗,C∗

(
AT
∗ y

′ − E∗w
′)

over y′ ∈ Y∗, where θX∗,C∗
(v′) := sup

x′∈X∗

{
〈v′, x′〉 − 1

2 〈C∗x′, x′〉
}
.

In particular, the set DS(w∗ |x∗, y∗)(w′) is always convex.

Proof. This is immediate from the convexity properties at the end of Theorem 2.3 and
the facts about duality in extended linear-quadratic programming that were reviewed after
Example 1.3.

Theorem 2.3 yields additional information also about the special geometric nature of
the graph of DS(w∗ |x∗, y∗).

Corollary 2.5 (proto-derivative geometry). In the framework of Theorem 2.2, the graph

of DS(w∗ |x∗, y∗) is a piecewise linear manifold of dimension d in the sense of being a

Lipschitzian manifold formed as the union of a finite collection of d-dimensional polyhedral

subsets of IRd × IRn × IRm.

Proof. Theorem 2.3 reveals that DS(w∗ |x∗, y∗) is a mapping of the kind to which Theo-
rem 2.1 is applicable. For that reason, gphDS(w∗ |x∗, y∗) is a d-dimensional Lipschitzian
manifold, in fact “globally” because this graph is a cone and therefore determined by its
properties around the origin. On the other hand, DS(w∗ |x∗, y∗) is piecewise polyhedral by
Theorem 2.2. That supplies the piecewise linearity; in expressing the graph as the union of
a finite collection of polyhedral sets, it can be arranged that none of these sets is included
in any of the others, and they must then all be of dimension d.
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3. Lipschitzian Single-Valuedness in Perturbations

Especially of interest in applications is the possibility of S being single-valued and Lipschitz
continuous around w∗. A definitive characterization of that case can be given, and it
furnishes a stronger property of differentiation. Here we denote by o(|z|) a term with the
property that o(|t|)/t→ 0 as t→ 0, t > 0.

Theorem 3.1 (single-valuedness and semi-differentiability). Let (x∗, y∗) ∈ S(w∗) and

suppose the ample parameterization condition (2.1) is satisfied at (w∗, x∗, y∗). Then the

following properties are equivalent:

(a) S is single-valued and Lipschitz continuous on some neighborhood of w∗,

(b) DS(w∗ |x∗, y∗) is single-valued everywhere.

Moreover, in this case the mapping S is semi-differentiable at w∗ for (x∗, y∗) in the sense

that

S(w∗ + w′) = S(w∗) +DS(w∗ |x∗, y∗)(w′) + o(|w′|), (3.1)

and the positively homogeneous mapping DS(w∗ |x∗, y∗) is not only Lipschitz continuous

but piecewise linear.

Proof. This is immediate from specializing [2; Thm. 7.4] to the variational inequality in
Proposition 1.4; that Proposition also provides the convex-valuedness required by the cited
theorem.

Note that for the single-valuedness ofDS(w∗ |x∗, y∗) to hold globally in (b) of Theorem
3.1 it would suffice to have it hold on a neighborhood of the origin. That follows from the
positive homogeneity of the mapping DS(w∗ |x∗, y∗).

It will now be demonstrated that the important properties in Theorems 3.1 hold if
and only if the matrices A∗, B∗ and C∗ in (2.4) exhibit a kind of nonsingularity relative
to certain linear subspaces of IRn and IRm which are naturally associated with the convex
cones X∗ and Y∗ in (2.3).

Theorem 3.2 (nonsingularity criterion). Let (x∗, y∗) ∈ S(w∗) and suppose that the ample

parameterization condition (2.1) is satisfied at (w∗, x∗, y∗). Then for S to be single-valued

and Lipschitz continuous on a neighborhood of w∗ it is necessary and sufficient that the

following conditions hold for the matrices in (2.4) in terms of the convex cones in (2.3):{
x′ ∈ X∗−X∗, C∗x

′ = 0, A∗x
′ ∈ [Y∗ ∩ −Y∗]⊥ =⇒ x′ = 0,

y′ ∈ Y∗ − Y∗, B∗y
′ = 0, AT

∗ y
′ ∈ [X∗ ∩ −X∗]⊥ =⇒ y′ = 0.

(3.2)

(Here X∗−X∗ and Y∗−Y∗ are the smallest subspaces that include X∗ and Y∗, respectively,

whereas X∗ ∩ −X∗ and Y∗ ∩ −Y∗ are the largest subspaces included within X∗ and Y∗.)
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Proof. In view of Theorem 3.1, we need only demonstrate that (3.2) is necessary and suf-
ficient for the single-valuedness of the mapping T = DS(w∗ |x∗, y∗) relative to its domain.
We know that T is piecewise polyhedral (Theorem 2.2) and convex-valued (Corollary 2.4).
For such T and a point (w′∗, x

′
∗, y

′
∗) ∈ gphT , saying that (x′∗, y

′
∗) is the unique element of

T (w′∗) is equivalent to saying that the tangent cone to gphT at (w′∗, x
′
∗, y

′
∗), contains no

vector of the form (0, x′′∗ , y
′′
∗ ), or in other words, in terms of graphical derivatives, that

DT (w′∗ |x
′
∗, y

′
∗)(0) = {(0, 0)}. (3.3)

Our task therefore is to demonstrate that (3.2) is necessary and sufficient for (3.3) to hold
for all choices of (w′∗, x

′
∗, y

′
∗) with (x′∗, y

′
∗) ∈ T (w′∗).

By Theorem 2.3, T is a mapping of the same saddle point form as S, except that L,
X and Y have been replaced by L∗, X∗ and Y∗. Hence we can apply Theorem 2.3 to T in
place of S and get the interpretation that the elements (x′′, y′′) of DT (w′∗ |x

′
∗, y

′
∗)(w

′′) are
the saddle points of a certain function L∗∗ on a product of polyhedral cones X∗∗ and Y∗∗,
namely

X∗∗ = TX∗
(x′∗) ∩∇x′L∗(w′∗, x

′
∗, y

′
∗)
⊥,

Y∗∗ = TY∗(y
′
∗) ∩∇y′L∗(w′∗, x

′
∗, y

′
∗)
⊥,

(3.4)

where the gradients are given by

∇x′L∗(w′∗, x
′
∗, y

′
∗) = E∗w

′
∗ + C∗x

′
∗ −AT

∗ y
′
∗,

∇y′L∗(w′∗, x
′
∗, y

′
∗) = D∗w

′
∗ −B∗y

′
∗ −A∗x

′
∗.

(3.5)

Although these cones depend on (w′∗, x
′
∗, y

′
∗), the function L∗∗ does not; we simply have

L∗∗ = L∗, inasmuch as L∗ is quadratic. The saddle point condition therefore translates, by
way of Corollary 2.4, to an assertion about solutions to a pair of extended linear-quadratic
programming problems in which X∗∗ and Y∗∗ substitute for X∗ and Y∗. Specifically, in
the case of w′′ = 0 that is our focus, we have (x′′, y′′) ∈ DT (w′∗ |x

′
∗, y

′
∗)(0) if and only if

x′′ solves the primal problem

P∗∗
minimize 1

2 〈C∗x′′, x′′〉+ θY∗∗,B∗
(−A∗x′′) over x′′ ∈ X∗∗,

where θY∗∗,B∗
(u′′) := sup

y′′∈Y∗∗

{
〈u′′, y′′〉 − 1

2 〈B∗y′′, y′′〉
}
,

while y′′ solves the corresponding dual problem

D∗∗
maximize − 1

2 〈B∗y′′, y′′〉 − θX∗∗,C∗
(AT

∗ y
′′) over y′′ ∈ Y∗∗,

where θX∗∗,C∗
(v′′) := sup

x′′∈X∗∗

{
〈v′′, x′′〉 − 1

2 〈C∗x′′, x′′〉
}
.
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The problems P∗∗ and D∗∗, like the cones X∗∗ and Y∗∗, depend on (w′∗, x
′
∗, y

′
∗) through

(3.4). We have to show that the case in which these problems have only the solutions
x′′ = 0 and y′′ = 0, no matter how (w′∗, x

′
∗, y

′
∗) is chosen from gphT , is the case where

(3.2) holds.

Let X+
∗ = X∗ −X∗ and Y +

∗ = Y∗ − Y∗, and on the other hand X−
∗ = X∗ ∩ −X∗ and

Y −
∗ = Y∗ ∩ −Y∗. These subspaces not only satisfy X−

∗ ⊂ X∗ ⊂ X+
∗ and Y −

∗ ⊂ Y∗ ⊂ Y +
∗ ,

but on the basis of the definitions in (3.4) also

X−
∗ ⊂ X∗∗ ⊂ X+

∗ , Y −
∗ ⊂ Y∗∗ ⊂ Y +

∗ , (3.6)

and accordingly they furnish the function bounds

θY −
∗ ,B∗

≤ θY∗∗,B∗
≤ θY +

∗ ,B∗
, θX−

∗ ,C∗
≤ θX∗∗,C∗

≤ θX+
∗ ,C∗

. (3.7)

Note also that X+
∗ is the affine hull of X∗, whereas Y +

∗ is the affine hull of Y∗.

Consider now in this setting the special problem

minimize 1
2 〈C∗x′′, x′′〉+ θY −

∗ ,B∗
(−A∗x′′) over x′′ ∈ X+

∗ , (3.8)

and alongside of it (but not dual to it) the special problem

maximize − 1
2 〈B∗y′′, y′′〉 − θX−

∗ ,C∗
(AT

∗ y
′′) over y′′ ∈ Y +

∗ . (3.9)

These problems are independent of the choice of (w′∗, x
′
∗, y

′
∗) in gphT . Clearly, it they

have only the solutions x′′ = 0 and y′′ = 0, then the same must be true for all instances
of P∗∗ and D∗∗. We claim, however, that the converse holds as well, so that our solution
analysis in fact can be reduced to just these two problems.

To establish the converse, it suffices to show that a choice of (w′∗, x
′
∗, y

′
∗) can actually

be made for which P∗∗ comes out as the problem in (3.8), and on the other hand a choice
can be made for which D∗∗ comes out as the problem in (3.9). For the case of P∗∗, we
take x′∗ to belong to the relative interior of X∗, so that TX∗(x

′
∗) = X+

∗ . Take y′∗ = 0. Then
TY∗(y

′
∗) = Y∗. Let z be any vector in the relative interior of the cone polar to Y∗, so that

Y∗ ∩ z⊥ = Y −
∗ . The condition (2.1) of ample parameterization that we have assumed, in

which the matrices ∇2
wxL(w∗, x∗, y∗) and ∇2

wyL(w∗, x∗, y∗) are the transposes of E∗ and
D∗, says that the linear transformation w′ 7→ (E∗w′, D∗w

′) maps IRd onto IRn×IRm. This
ensures the existence of a vector w′∗ such that

E∗w
′
∗ = −C∗x′∗ +AT

∗ y
′
∗, D∗w

′
∗ = z +B∗y

′
∗ +A∗x

′
∗,

11



or in other words by (3.6), ∇x′L∗(w′∗, x
′
∗, y

′
∗) = 0 and ∇y′L∗(w′∗, x

′
∗, y

′
∗) = z. We then have

in (3.4) that X∗∗ = X+
∗ ∩ 0⊥ = X+

∗ while Y∗∗ = Y∗ ∩ z⊥ = Y −
∗ , as desired, so that P∗∗ is

(3.8). The case of D∗∗ is analogous, and indeed we can appeal to symmetry.

The final stage of the proof has been reached: we demonstrate now that the first line
of (3.2) is necessary and sufficient for problem (3.8) to have only x′′ = 0 as a solution (the
notations x′′ and x′ are here interchangeable), whereas the second line of (3.2) is necessary
and sufficient for problem (3.9) to have only y′′ = 0 as a solution.

Problem (3.8) is the primal problem associated with the Lagrangian triple L∗(0, ·, ·),
X+
∗ , Y −

∗ . Hence, x′′ is optimal if and only if x′′ ∈ X+
∗ and there exists y′′ ∈ Y −

∗ such that

−∇x′L∗(0, x′′, y′′) ∈ NX+
∗

(x′′), ∇y′L∗(0, x′′, y′′) ∈ NY −
∗

(x′′).

Here ∇x′L∗(0, x′′, y′′) = C∗x
′′ − AT

∗ y
′′ and ∇y′L∗(0, x′′, y′′) = −B∗y′′ − A∗x

′′, whereas
(because X+

∗ and Y −
∗ are subspaces) we have NX+

∗
(x′′) = (X+

∗ )⊥ and NY −
∗

(y′′) = (Y −
∗ )⊥.

Thus, to say that (3.9) has only 0 as a solution is to say that the first implication in (3.2)
is correct.

Likewise, problem (3.9) is the dual problem associated with the Lagrangian triple
L∗(0, ·, ·), X−

∗ , Y +
∗ . By a parallel argument characterizing its solutions by the corresponding

saddle points, one sees that for (3.9) to have only 0 as a solution it is necessary and sufficient
for the second implication in (3.2) to be correct.

The subspaces in Theorem 3.2 are especially easy to describe in the case where X and
Y are boxes, as we explain next.

Proposition 3.3 (box case). Suppose that X and Y are boxes with nonempty interior:

X = Πn
j=1Xj and Y = Πm

i=1Yi for closed intervals Xj and Yi that are not singletons (but

need not be bounded). Let (x∗, y∗) ∈ S(w∗) and define the index sets

J1 =
{
j ∈ {1, . . . , n}

∣∣ (∂L/∂xj)(w∗, x∗, y∗) = 0
}
,

J2 =
{
j ∈ {1, . . . , n}

∣∣x∗j ∈ intXj

}
,

I1 =
{
i ∈ {1, . . . ,m}

∣∣ (∂L/∂yi)(w∗, x∗, y∗) = 0
}
,

I2 =
{
i ∈ {1, . . . ,m}

∣∣ y∗i ∈ intYi

}
.

(3.10)

Then J1 ⊃ J2 and I1 ⊃ I2, and the subspaces in condition (3.2) of Theorem 3.2 have the

following descriptions:

x′ ∈ X∗ −X∗ ⇐⇒ for all j /∈ J1, the jth coordinate of x′ is 0,

y′ ∈ Y∗ − Y∗ ⇐⇒ for all i /∈ I1, the ith coordinate of y′ is 0,

v′ ∈ [X∗ ∩ −X∗]⊥ ⇐⇒ for all j ∈ J2, the jth coordinate of v′ is 0,

u′ ∈ [Y∗ ∩ −Y∗]⊥ ⇐⇒ for all i ∈ I2, the ith coordinate of u′ is 0.

(3.11)
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Proof. By its definition in (2.3), the critical cone X∗ consists of all x′ ∈ TX(x∗) such
that x′ ⊥ ∇xL(w∗, x∗, y∗). In this situation, where (x∗, y∗) ∈ S(w∗), ∇xL(w∗, x∗, y∗) is
already known from Proposition 1.4 to belong to the normal cone NX(x∗), which is polar
to TX(x∗). Therefore,

X∗ = Πn
j=1X∗j , where X∗j =

{
TXj

(x∗j) if (∂L/∂xj)(w∗, x∗, y∗) = 0,
{0} if (∂L/∂xj)(w∗, x∗, y∗) 6= 0, (3.12)

where moreover

TXj
(x∗j) =


(−∞,∞) if x∗j ∈ intXj ,
[0,∞) if Xj has x∗j as left endpoint,
(−∞, 0] if Xj has x∗j as right endpoint.

(3.13)

Note that necessarily (∂L/∂xj)(w∗, x∗, y∗) = 0 when xj∗ ∈ intXj , so J1 ⊃ J2, as claimed.

Because X∗ − X∗ is the smallest subspace ⊃ X∗, whereas X∗ ∩ −X∗ is the largest
subspace ⊂ X∗, the product form of X∗ gives us

X∗ −X∗ = Πn
j=1[Xj∗ −Xj∗],

X∗ ∩ −X∗ = Πn
j=1[Xj∗ ∩ −Xj∗],

[X∗ ∩ −X∗]⊥ = Πn
j=1[Xj∗ ∩ −Xj∗]⊥.

(3.14)

According to (3.13) we have TXj
(x∗j)−TXj

(x∗j) = (−∞,∞) in all cases, whereas we have
TXj

(x∗j) ∩ −TXj
(x∗j) = (−∞,∞) when x∗j ∈ intXj , but TXj

(x∗j) ∩ −TXj
(x∗j) = {0}

otherwise. Therefore through (3.12) we have

Xj∗ −Xj∗ =
{

(−∞,∞) when j ∈ J1,
{0} when j /∈ J1,

Xj∗ ∩ −Xj∗ =
{

(−∞,∞) when j ∈ J2,
{0} when j /∈ J2,

[Xj∗ ∩ −Xj∗]⊥ =
{
{0} when j ∈ J2,
(−∞,∞) when j /∈ J2.

In applying these expressions in (3.14), we obtain the descriptions claimed for X∗ − X∗

and [X∗ ∩ −X∗]⊥. The argument for Y∗ − Y∗ and [Y∗ ∩ −Y∗]⊥ is completely parallel.

Example 3.4 (extended convex programming). In the context of Example 1.2 with the

sets X and Y taken to be boxes, the definition of index sets J1, J2, I1, I2 in Proposition

3.3 is realized in terms of

∂L

∂xj
(w∗, x∗, y∗) =

∂f0
∂xj

(w∗, x∗) +
∑m

i=1
y∗i

∂fi

∂xj
(w∗, x∗),

∂L

∂yi
(w∗, x∗, y∗) = fi(w∗, x∗)−

∂k

∂yi
(w∗, y∗).
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The criterion in (3.2) of Theorem 3.2 comes out then as follows:

x′j = 0 for j /∈ J1

x′ ⊥ ∇xfi(w∗, x∗) for i ∈ I2

∇2
xxL(w∗, x∗, y∗)x′ = 0

 =⇒ x′ = 0,

y′i = 0 for i /∈ I1∑
i∈I1

y′i
∂fi

∂xj
(w∗, x∗) = 0 for j ∈ J2

∇2
yyk(w∗, y∗)y

′ = 0

 =⇒ y′ = 0.

(3.15)

In other words, ∇2
xxL(w∗, x∗, y∗) must be positive definite relative to the subspace{

x′ ∈ IRn
∣∣∣x′j = 0 for j /∈ J1 and x′ ⊥ ∇xfi(w∗, x∗) for i ∈ I2

}
, (3.16)

whereas ∇2
yyk(w∗, y∗) must be positive definite relative to the subspace{

y′ ∈ IRm
∣∣∣ y′i = 0 for i /∈ I1 and

∑
i∈I1

y′i
∂fi

∂xj
(w∗, x∗) = 0 for j ∈ J2

}
. (3.17)

Detail. In these circumstances we have

−A∗ =
[
∂fi

∂xj
(w∗, x∗)

]m, n

i=1, j=1

B∗ = ∇2
yyk(w∗, y∗)

C∗ = ∇2
xxL(w∗, x∗, y∗) = ∇2

xxf0(w∗, x∗) +
∑m

i=1
y∗i∇2

xxfi(w∗, x∗),

(3.19)

and the claims are then immediate from the subspace descriptions in Proposition 3.3. The
matrix ∇2

xxL(w∗, x∗, y∗) is known to be positive semidefinite, and therefore the condition
∇2

xxL(w∗, x∗, y∗)x′ = 0 is equivalent to 〈x′,∇2
xxL(w∗, x∗, y∗)x′〉 = 0. The first implication

in (3.15) is thus identical to the positive definiteness of this matrix relative to the subspace
in (3.16). Likewise, because the matrix ∇2

yyk(w∗, y∗) is positive semidefinite, the condition
∇2

yyk(w∗, y∗)y
′ = 0 is equivalent to 〈y′,∇2

yyk(w∗, y∗)y
′〉 = 0, and the second implication in

(3.15) means the positive definiteness of this matrix relative to the subspace in (3.17).

Example 3.5 (ordinary convex programming). In the context of Example 1.1, where

X = IRn and Y = IRs
+ × IRm−s, the index sets J1, J2, I1, I2 of Proposition 3.3 reduce to

J1 = J2 = {1, . . . , n},

I1 = {1, . . . ,m} \
{
i ∈ [1, s]

∣∣ fi(w∗, x∗) < 0
}
,

I2 = I1 \
{
i ∈ [1, s]

∣∣ fi(w∗, x∗) = 0, y∗i = 0
}
.
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The criterion in (3.2) of Theorem 3.2 comes out then as the linear independence of the

gradients
{
∇xfi(w∗, x∗)

∣∣ i ∈ I1} plus the positive definiteness of ∇2
xxL(w∗, x∗, y∗) relative

to the subspace
{
∇xfi(w∗, x∗)

∣∣ i ∈ I2}⊥.

Detail. This specializes Example 3.4 to k ≡ 0 and the X and Y in question.

The case of Theorem 3.2 obtained in Example 3.5 is the one that is known not only
in convex programming but nonlinear programming more generally. See the discussion
around Theorem 6 of [11].

4. Calmness in Perturbations

To conclude, we look at a more primitive form of Lipschitz-type behavior under perturba-
tions and characterize it too by way of the proto-derivative descriptions in Theorem 2.3
and Corollary 2.4. There result will provide additional perspective on the nonsingularity
condition in Theorem 3.2.

The saddle point mapping S is said to be calm at w∗ for isolated (x∗, y∗) if there is a
neighborhood O of (x∗, y∗) along with a constant κ such that

(x, y) ∈ S(w) ∩O =⇒ |(x, y)− (x∗, y∗)| ≤ κ|w − w∗| for w near w∗ . (4.1)

This condition entails (x∗, y∗) being an isolated point of S(w∗). A broader definition of
calmness covers situations where (x∗, y∗) need not be isolated, cf. [1], but we will not be
concerned with that more general concept here.

Theorem 4.1 (calmness). Let (x∗, y∗) ∈ S(w∗) and suppose that the ample parameteri-

zation condition (2.1) is satisfied at (w∗, x∗, y∗). Then S is calm at w∗ for isolated (x∗, y∗)
if and only if {

x′ ∈ X∗, C∗x
′ = 0, −A∗x′ ∈ Y ∗

∗ =⇒ x′ = 0,

y′ ∈ Y∗, B∗y′ = 0, AT
∗ y

′ ∈ X∗
∗ =⇒ y′ = 0,

(4.2)

where X∗
∗ and Y ∗

∗ are the polyhedral convex cones polar to X∗ and Y∗.

Proof. On the basis of the calmness criterion furnished in [7; Thm. 4.1], the desired
property of S holds if and only if DS(w∗ |x∗, y∗)(0) = {0, 0)}. By invoking the description
of DS(w∗ |x∗, y∗) in Corollary 2.4 we see that this corresponds to the problems P∗(w′) and
D∗(w′) for w′ = 0 having x′ = 0 and y′ = 0 as their only solutions. The objective in P∗(0)
has the value 0 at x′ = 0, and likewise the objective in D∗(0) has the value 0 at 0. Hence
minP∗(0) ≤ 0 ≤ maxD∗(0). It follows that minP∗(0) = 0 = maxD∗(0) and therefore
that the uniqueness of x′ = 0 and y′ = 0 as optimal solutions can be expressed as

1
2 〈C∗x′, x′〉+ θY∗,B∗

(−A∗x′) > 0 for all nonzero x′ ∈ X∗,

1
2 〈B∗y′, y′〉 + θX∗,C∗

(AT
∗ y

′) > 0 for all nonzero y′ ∈ Y∗.
(4.3)
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Here we naturally have 〈C∗x′, x′〉 ≥ 0 for all x′ ∈ X∗, with strict inequality holding
unless C∗x′ = 0. On the other hand, the function θY∗,B∗

in Corollary 2.4 is by its definition
the convex function conjugate to

ψY∗,B∗
(y′) =

{
1
2 〈B∗y′, y′〉 if y ∈ Y∗,
∞ if y /∈ Y∗.

Therefore, by the rule of convex analysis, its minimizing set is given

argmin θY∗,B∗
= ∂ψY∗,B∗

(0) = NY∗
(0) = Y ∗

∗ .

Since 0 ∈ Y ∗
∗ we have min θY∗,B∗

= θY∗,B∗
(0) = 0. It follows that θY∗,B∗

(−A∗x′) ≥ 0 for
all x′, with strict inequality holding unless −A∗x′ ∈ Y ∗

∗ .

Thus, the first condition in (4.3) reduces to the first condition in (4.2). By virtually
the same argument, with only changes of notation, the second condition in (4.3) reduces
to the second condition in (4.2).

Comparison of the condition in (4.2) with the one in (3.2) reveals the essential differ-
ence in what it takes to get single-valued Lipschitzian behavior under perturbations instead
of mere calmness. The calmness criterion (4.2) could of course likewise be elaborated along
the lines of Proposition 3.3 and Examples 3.4 and 3.5. For recent studies of calmness in
nonlinear programming, see Klatte [12] and Levy [13].
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