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Abstract. Much effort in recent years has gone into generalizing the classical Hamiltonian

and Euler-Lagrange equations of the calculus of variations so as to encompass problems in optimal
control and a greater variety of integrands and constraints. These generalizations, in which non-

smoothness abounds and gradients are systematically replaced by subgradients, have succeeded in

furnishing necessary conditions for optimality which reduce to the classical ones in the classical set-
ting, but important issues have remained unsettled, especially concerning the exact relationship of

the subgradient versions of the Hamiltonian equations versus those of the Euler-Lagrange equations.

Here it is shown that new, tighter subgradient versions of these equations are actually equivalent to
each other. The theory of epi-convergence of convex functions provides the technical basis for this

development.
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1. Introduction.
In the classical theory of minimization problems involving an integral functional∫ t1

t0
L

(
t, x(t), ẋ(t)

)
dt with Lagrangian expression L(t, x, v) on [t0, t1] × IRn × IRn, a

key role in analyzing the optimality of an arc x(·) : [t0, t1] → IRn is played by the
Euler-Lagrange equation,

ṗ(t) = ∇xL
(
t, x(t), ẋ(t)

)
for p(t) = ∇vL

(
t, x(t), ẋ(t)

)
. (1.1)

When L(t, x, v) is twice differentiable and the Hessian matrix in v is positive defi-
nite, the Legendre transform can be applied in the v argument to get a Hamiltonian
H(t, x, p) in terms of which the Euler-Lagrange equation can be expressed equivalently
as the Hamiltonian system

ẋ(t) = ∇pH
(
t, x(t), p(t)

)
, −ṗ(t) = ∇xH

(
t, x(t), p(t)

)
. (1.2)

The differentiability assumptions in this scheme have long posed difficulties, however.
Many problems of interest fail to meet all the criteria for utilizing the Legendre

transform, and in such cases (1.2) may only be a consequence of (1.1), not equivalent
to it. Then the arcs x(·) and p(·) can have “corners” where their derivatives are
discontinuous. Tonelli’s theory for the existence of optimal arcs demands an even
broader setting: problems must be studied with x(·) merely assumed to be absolutely
continuous, so that (1.1) and (1.2), to the degree that they are valid, have to be
interpreted in an almost everywhere sense.

Questions of existence have also challenged the suitability of classical assumptions
in other ways. Tonelli showed that the convexity of L(t, x, v) in v is a crucial property.
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2 r. t. rockafellar

If this is lacking, a convexification process can be introduced to achieve it as a justifi-
able sort of regularization (or relaxation) of a given problem, but convexification can
disrupt differentiability. Thus, Lagrangians L need to be admitted for which certain
derivatives may be absent. The theory of optimal control has pushed this direction of
generalization much further through the recognition that a vast range of applications
can be covered “neoclassically” in terms of Lagrangians that aren’t even continuous
everywhere and can take on the value ∞, as a device for representing constraints on
x(t) and ẋ(t) through infinite penalization when they are violated.

As far as possible in the face of this far-reaching extension of the classical frame-
work, one would nonetheless like to make sense of the Euler-Lagrange and Hamiltonian
equations as necessary conditions for optimality. The Hamiltonian can always be de-
fined by appealing to the Legendre-Fenchel transform of convex analysis [1] instead of
the Legendre transform:

H(t, x, p) = sup
v∈IRn

{
〈p, v〉 − L(t, x, v)

}
, (1.3)

where 〈p, v〉 denotes the inner product of two vectors p and v in IRn. Provided that
L(t, x, v) as a function of v is convex and lower semicontinuous, one has

L(t, x, v) = sup
p∈IRn

{
〈p, v〉 −H(t, x, p)

}
, (1.4)

so that a one-to-one correspondence is set up between Lagrangians and Hamiltonians
without calling for their differentiability. In the possible absence of gradients of L and
H, the idea is to try to rewrite (1.1) and (1.2) in terms of some kind of “subgradients.”

This program was first carried out in the fully convex case, where L(t, x, v) is
convex as a function of (x, v) (rather than just v), which corresponds to H(t, x, p)
being concave in x and convex in p. Subgradients of convex analysis were used by
Rockafellar [2], [3], [4], to establish an Euler-Lagrange condition(

ṗ(t), p(t)
)
∈ ∂L

(
t, x(t), ẋ(t)

)
a.e. t (1.5)

and a Hamiltonian condition(
− ṗ(t), ẋ(t)

)
∈ ∂H

(
t, x(t), p(t)

)
a.e. t, (1.6)

where in (1.5) the subgradients are those of L(t, ·, ·) as a convex function, while in
(1.6) they are those of H(t, ·, ·) in the special sense employed for concave-convex func-
tions. The equivalence of these Euler-Lagrange and Hamiltonian conditions was shown
through the dualization rules for subgradient relations in convex analysis.

In a major advance, Clarke [5], [6], developed a robust concept of subgradient
which could serve for nonconvex functions and be used in pushing the Euler-Lagrange
and Hamiltonian conditions further. This concept has evolved considerably since its
introduction, both in the pattern of definition and the role of the convex hull operation.
The subgradients in question can now be described in several ways, but for purposes
here it is easiest to start with proximal subgradients and then take limits.

Consider a function f : IRd → IR (where IR denotes the extended reals). A vector
z is a proximal subgradient of f at ȳ if f(ȳ) is finite and for some ρ ≥ 0 and δ > 0 one
has

f(y) ≥ f(ȳ) + 〈z, y − ȳ〉 − 1
2ρ|y − ȳ|2 when |y − ȳ| ≤ δ.
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It is a subgradient in the general sense, expressed by z ∈ ∂f(ȳ), if there are sequences
yν → ȳ and zν → z such that zν is a proximal subgradient of f at yν and f(yν) → f(ȳ).
It is a subgradient in the horizon sense, expressed by z ∈ ∂∞f(ȳ), if this condition holds
with the modification that, instead of zν → z, one has λνzν → z for some sequence
of scalars λν ↘0. (In these expressions and below, we use superscript ν as the generic
index for sequences.)

When f is continuously differentiable, ∂f(ȳ) consists of just the gradient ∇f(ȳ),
while ∂∞f(ȳ) has just the zero vector. When f is convex, ∂f(ȳ) is a closed, convex
set, the same as the subgradient set of convex analysis, which if nonempty has ∂∞f(ȳ)
as its recession cone. In general, however, ∂f(ȳ) and ∂∞f(ȳ) aren’t convex, although
they are always closed. Seeking a subgradient set that always would be both closed
and convex, Clarke, although his notation was different and his definition followed an
alternate route, ended up with the set

∂̄f(ȳ) = cl con
[
∂f(ȳ) + ∂∞f(ȳ)

]
,

where “cl” stands for closure and “con” for convex hull. He especially emphasized the
case where f is Lipschitz continuous around ȳ; then ∂f(ȳ) is a nonempty compact set,
whereas ∂∞f(ȳ) = {0}, so the formula simplifies to ∂̄f(ȳ) = con ∂f(ȳ). See Loewen
[7] for a recent exposition furnishing the details.

Nowadays the convexification in this definition is no longer seen as essential for
most applications, thanks to improvements in subgradient calculus achieved by Mor-
dukhovich, Ioffe and others. In the treatment of the class of problems under discussion
here, which was Clarke’s chief concern, it has a natural genesis in taking weak limits,
however, and the question of the extent to which it is needed has been harder to
answer.

With full recourse to such convexification, Clarke was able to demonstrate in
some situations where L(t, ·, ·) is locally Lipschitz continuous [8] the necessity of the
Euler-Lagrange condition in the form(

ṗ(t), p(t)
)
∈ ∂̄L

(
t, x(t), ẋ(t)

)
a.e. t, (1.7)

where the subgradient set ∂̄L
(
t, x(t), ẋ(t)

)
refers to the function L(t, ·, ·) at

(
x(t), ẋ(t)

)
and because of the Lipschitz continuity equals con ∂L

(
t, x(t), ẋ(t)

)
. On the other

hand, he established in some other situations [9] where H(t, ·, ·) is locally Lipschitz
continuous the necessity of the Hamiltonian condition in the form(

− ṗ(t), ẋ(t)
)
∈ ∂̄H

(
t, x(t), p(t)

)
a.e. t, (1.8)

where the subgradient set ∂̄H
(
t, x(t), ẋ(t)

)
is that of H(t, ·, ·) at

(
x(t), p(t)

)
and, again

because of the Lipschitz continuity, is the same as con ∂H
(
t, x(t), p(t)

)
. (See the books

[6], [10], for an overview of this development.)
Although Clarke’s conditions (1.7) and (1.8) reduce to (1.1) and (1.2) in the

classical case and to (1.5) and (1.6) in the convex case, and then are equivalent, neither
necessarily implies the other in general, even when both L(t, ·, ·) and H(t, ·, ·) are
locally Lipschitz continuous. Their precise relationship has therefore been a mystery.

Loewen and Rockafellar [11] showed, in building on Clarke’s results, that for a
major class of problems the Euler-Lagrange condition (1.7) and Hamiltonian condition
(1.8) do at least have to hold simultaneously for some arc p(·) when x(·) is optimal.
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Rockafellar proved in [12, Theorem 5.1] that when H(t, ·, ·) is locally Lipschitz con-
tinuous the Hamiltonian condition implies(

ṗ(t), ẋ(t)
)
∈ con

{
(−w, v)

∣∣ (
w, p(t)

)
∈ ∂L(t, x(t), v), p(t) ∈ ∂vL(t, x(t), v)

}
, (1.9)

which is a form of the Euler-Lagrange condition suggested by Mordukhovich [13],
[14], [15]. For Hamiltonians arising from bounded differential inclusions, Ioffe [16] has
established that this implication is an equivalence. Also identified in Rockafellar [12,
Thm. 3.4] is a broadly applicable case, beyond the known classical and convex ones,
where (1.7) and (1.8) are equivalent even with ∂̄L replaced by ∂L.

More recent work of Loewen and Rockafellar in [17] has raised the possibility of
establishing the Euler-Lagrange condition in the form

ṗ(t) ∈ con
{
w

∣∣ (
w, p(t)

)
∈ ∂L

(
t, x(t), ẋ(t)

)}
a.e. t (1.10)

with the companion property that

p(t) ∈ ∂vL
(
t, x(t), ẋ(t)

)
a.e. t. (1.11)

They were able to do this in a case where L is the indicator of a possibly unbounded
differential inclusion, which should allow extension to other Lagrangians L through
consideration of epigraphical mappings. This case also covers, for instance, the one
where L is the indicator of a Lipschitz continuous differential inclusion of the kind
underlying Clarke’s Hamiltonian results. Such an Euler-Lagrange condition has also
been obtained now by Mordukhovich [18] for a class of nonconvex differential inclu-
sions, and by Ioffe and Rockafellar [19] for certain finite functions L. In the special
case where L(t, x, v) is essentially strictly convex in v, which corresponds in the theory
of the Legendre-Fenchel transform to H(t, x, p) being smooth in p, a case used as a
technical stepping stone in [17], (1.9) comes out as saying the same thing as (1.10)
and (1.11). In general, though, the combination of (1.10) with (1.11) is distinctly
sharper than the versions of Euler-Lagrange in (1.7) and (1.9), because the process of
convexification is much more limited.

Here we sidestep the exploration of the full range of situations in which the Euler-
Lagrange condition in form (1.10) might be necessary for the optimality of an arc x(·).
Instead we focus on the relationship between (1.10) and a corresponding version of
the Hamiltonian condition, namely

ṗ(t) ∈ con
{
w

∣∣ (
− w, ẋ(t)

)
∈ ∂H

(
t, x(t), p(t)

)}
a.e. t (1.12)

along with
ẋ(t) ∈ ∂pH

(
t, x(t), p(t)

)
a.e. t. (1.13)

This is sharper than the Hamiltonian condition (1.8) and has not previously been
considered. We’ll show it’s in fact equivalent to (1.10) in the kinds of circumstances
that are typically present in derivations of necessary conditions for the optimality of
an arc x(·). Efforts aimed enlarging the range of cases in which the Euler-Lagrange
condition holds in version (1.10) can thus count on the side benefit of improving
Clarke’s Hamiltonian condition in a hitherto unsuspected way.

The following theorem is our main result. Through [17] it brings to light, among
other things, that (1.8) can be strengthened to (1.12) in Clarke’s context [9].
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In stating this theorem, we say that the Lagrangian L has the epi-continuity
property along x(·) if, for almost every t, there is an open set O(t) containing x(t)
such that

(a) L(t, ·, ·) is lower semicontinuous on O(t)× IRn,
(b) for every point (x̄, v̄) ∈ O(t) × IRn with L(t, x̄, v̄) < ∞, and every sequence

xν → x̄, there is a sequence vν → v̄ with L(t, xν , vν) → L(t, x̄, v̄).
Clearly (a) and (b) are satisfied in particular when L(t, ·, ·) is continuous on O(t)×IRn.

Theorem 1.1. Let L(t, x, v) be convex in v (possibly with the value ∞), and let
H(t, x, p) be defined by (1.3). Let x(·) be an arc along which L has the epi-continuity
property. Suppose for almost every t that

(w, 0) ∈ ∂∞L
(
t, x(t), ẋ(t)

)
=⇒ w = 0, (1.14)

this being true in particular if L(t, ·, ·) is Lipschitz continuous around
(
x(t), ẋ(t)

)
.

Then version (1.10) of the Euler-Lagrange condition is equivalent to version (1.12)
of the Hamiltonian condition and automatically entails (1.11) and (1.13). The same
holds when (1.14) is replaced by

(w, 0) ∈ ∂∞H
(
t, x(t), p(t)

)
=⇒ w = 0, (1.15)

this being true in particular if H(t, ·, ·) is Lipschitz continuous around
(
x(t), p(t)

)
.

The epi-continuity property invoked in Theorem 1.1 concerns the continuity of the
set-valued mapping that associates with each x the epigraph of the function L(t, x, ·),
as will become clearer in the next section. Assumption (1.14) concerns a kind of local-
ized Lipschitz continuity of this mapping. Such properties of epigraphical mappings
have long been implicit in most developments of the subject, in consequence for in-
stance of Lipschitz assumptions placed on L or H, or on some underlying differential
inclusion mapping, but their effects on subgradients haven’t been explored directly.
Here they emerge finally in the foreground. Also coming on stage for the first time in
such a setting, through the technique we’ll use to prove Theorem 1.1, will be a number
of tools of convex analysis. These include Fenchel’s duality theorem in convex opti-
mization, Moreau’s theory of proximal regularizations of convex functions, Wijsman’s
epi-continuity theorem for the Legendre-Fenchel transform, and Attouch’s theorem on
convergence of subgradients.

2. Dualization framework and epi-continuity.
For the task to be accomplished, the t argument doesn’t matter; all questions

revolve around properties that hold for a fixed t. We therefore suppress t. We consider
an open subset O of IRm and take L(x, v) to be an expression defined for (x, v) ∈
O × IRn such that, for each x ∈ O, L(x, ·) is a convex, lsc (lower semicontinuous)
function on IRn which is proper, i.e., although possibly extended-real-valued does not
take on −∞ and is not identically ∞. In the targeted applications to Euler-Lagrange
and Hamiltonian conditions we’ll have m = n, but for the sake of other potential uses
of the results to be obtained, we allow the dimensions m and n to differ. We define
H(x, p) for (x, p) ∈ O × IRn by

H(x, p) = sup
v∈IRn

{
〈p, v〉 − L(x, v)

}
. (2.1)

The Legendre-Fenchel transformation, on which this formula is based, has the property
that for each x ∈ O, H(x, ·) is, like L(x, ·), a proper, convex, lsc function on IRn,
moreover with

L(x, v) = sup
p∈IRn

{
〈p, v〉 −H(x, p)

}
. (2.2)
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This symmetric relationship between L and H will enable us to apply any result
proved for either function to the other function as well. We can later interpret O as a
neighborhood of some particular point of IRm that happens to be under scrutiny.

The lower semicontinuity of L(x, v) in v, and of H(x, p) in p, has already been
incorporated into our framework, but nothing has been said yet about continuity
properties relative to x. At the very least we’ll need L(x, v) to be lsc in (x, v) ∈ O×IRn,
and similarly for H(x, p) in (x, p), but we’re going to go further, clarifying on the
way the property that provides the simplest dualization scheme and best supports
our subsequent analysis. We’ll be working with the concept of epi-continuity in the
dependence of the functions L(x, ·) and H(x, ·) on x.

Recall that the epigraph of a function f : IRn → IR is the set

epi f =
{
(y, α) ∈ IRn × IR

∣∣α ≥ f(y)
}
.

In general, a sequence of functions fν : IRn → IR is said to epi-converge to a function
f : IRn → IR if the corresponding epigraphs converge:

epi f = lim sup
ν→∞

epi fν = lim inf
ν→∞

epi fν

in the Painlevé-Kuratowski sense as subsets of IRn × IR. This is true if and only if{
lim infν f

ν(vν) ≥ f(v) for every sequence vν → v,
lim supν f

ν(vν) ≤ f(v) for some sequence vν → v. (2.3)

Epi-convergence was introduced for proper, lsc, convex functions by Wijsman [20],
who proved that the Legendre-Fenchel transformation was continuous with respect to
it. For more background on this topic, see Wets [21], Salinetti and Wets [22].

Proposition 2.1. The following six properties are equivalent and imply in par-
ticular that L and H are lsc in both arguments jointly, as functions on O × IRn:

(a) The set epi L(x, ·) in IRn × IR depends continuously on x ∈ O.
(b) Whenever xν → x̄ in O, the function L(xν , ·) epi-converges to L(x̄, ·).
(c) For any (x̄, v̄) ∈ O × IRn and sequence xν → x̄, one has{

lim inf ν L(xν , vν) ≥ L(x̄, v̄) for every sequence vν → v̄,
lim supν L(xν , vν) ≤ L(x̄, v̄) for some sequence vν → v̄.

(d) The set epiH(x, ·) in IRn × IR depends continuously on x ∈ O.
(e) Whenever xν → x̄ in O, the function H(xν , ·) epi-converges to H(x̄, ·).
(f) For any (x̄, p̄) ∈ O × IRn and sequence xν → x̄, one has{

lim inf ν H(xν , pν) ≥ H(x̄, p̄) for every sequence pν → p̄,
lim supν H(xν , pν) ≤ H(x̄, p̄) for some sequence pν → p̄.

Proof. Conditions (a) and (b) mean the same, by the definition of epi-convergence,
and (c) characterizes this property in accordance with the facts just cited. This pattern
holds for (d), (e) and (f) as well. But because L(xν , ·) and H(xν , ·) are proper convex
functions conjugate to each other under the Legendre-Fenchel transformation, which
preserves epi-convergence according to Wijsman’s theorem, (b) is equivalent to (e).
Hence, all the conditions are equivalent to each other.

For short, we’ll say that the epi-continuity assumption is satisfied when the six
equivalent properties in Proposition 2.1 are present. Obviously this is true in particular
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when L is continuous on O × IRn (through (c)), or when H is continuous on O × IRn

(through (f)). In typical applications the epi-continuity assumption merely means
(through property (c)) that, in addition to taking L(x, v) to be lsc in (x, v), rather
than just in x, we suppose that whenever (x̄, v̄) is a point of O× IRn where L is finite,
and {xν} is a sequence in O converging to x̄, there must be a sequence {vν} converging
to v̄ for which L(xν , vν) converges to L(x̄, v̄).

Note that the epi-continuity condition used in the hypothesis of Theorem 1.1
merely requires for almost every t that this should hold relative to some neighborhood
O(t) of x(t). Proposition 2.1 shows that the condition in question could be expressed
in terms of the Hamiltonian just as well as the Lagrangian. It’s actually symmetric
between the two functions (as long as the Lagrangian is lsc and convex with respect
to v).

The study of subgradients of L and H with respect to both of their arguments in
O×IRn requires working with the definition in Section 1 in terms of limits of proximal
subgradients. But subgradients of L in the v argument, and of H in the p argument,
enjoy the benefits of convexity. Convex analysis informs us that

p ∈ ∂vL(x, v) ⇐⇒ v ∈ ∂pH(x, p) ⇐⇒ L(x, v) +H(x, p) = 〈p, v〉, (2.3)

cf. [1, Thm. 23.5], where from (2.1) and (2.2) we know that L(x, v) +H(x, p) ≥ 〈v, p〉
for all choices of (x, v, p) ∈ O × IRn × IRn.

Proposition 2.2. Under the epi-continuity assumption,

(w, p) ∈ ∂L(x, v) =⇒ p ∈ ∂vL(x, v),
(w, v) ∈ ∂H(x, p) =⇒ v ∈ ∂pH(x, p).

(2.4)

Proof. Due to symmetry, it suffices to deal with the first of these implications.
Suppose (w̄, p̄) ∈ ∂L(x̄, v̄). By definition there exist (xν , vν) → (x̄, v̄) and (wν , pν) →
(w̄, p̄) such that (wν , pν) is a proximal subgradient of L at (xν , vν), and L(xν , vν) →
L(x̄, v̄). The proximal subgradient condition refers to the existence of ρν ≥ 0 and
δν > 0 such that

L(x, v) ≥ L(xν , vν) +
〈
(wν , pν), (x, v)− (xν , vν)

〉
− 1

2ρ
ν
(
|x− xν |2 + |v − vν |2

)
when

∣∣(x− xν , v − vν)
∣∣ ≤ δν . In taking x = xν we see that the convex function

fν(v) := L(xν , v)−
〈
pν , v − vν

〉
+ 1

2ρ
ν |v − vν |2

must have a local minimum at vν . This implies that 0 ∈ ∂fν(vν) = ∂vL(xν , vν)− pν ,
or in other words, pν ∈ ∂vL(xν , vν), a subgradient condition which, because of the
convexity of L(x, v) in v, can be written as the inequality

L(xν , v) ≥ L(xν , vν) +
〈
pν , v − vν

〉
for all v ∈ IRn.

Consider now an arbitrary v ∈ IRn for which L(x̄, v) < ∞. Our epi-continuity as-
sumption ensures the existence of a sequence v̂ν → v with L(xν , v̂ν) → L(xν , v). For
each index ν we have

L(xν , v̂ν) ≥ L(xν , vν) +
〈
pν , v̂ν − vν

〉
.
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In passing to the limit as ν → ∞ and using the fact that L(xν , vν) → L(x̄, v) in
particular, we obtain

L(x̄, v) ≥ L(x̄, v̄) +
〈
p̄, v − v̄

〉
.

We have shown this inequality to hold for any v with L(x̄, v) finite, but it holds trivially
when L(x̄, v) = ∞. Hence it holds for all v ∈ IRn, confirming that p̄ ∈ ∂vL(x̄, v̄).

Proposition 2.2 suggests approaching the subgradients of L and H in general by
looking at the set

M :=
{
(x, v, p) ∈ O × IRn × IRn

∣∣ properties (2.3) hold
}

(2.5)

and the set-valued mappings

SL : (x, v, p) 7→
{
w

∣∣ (w, p) ∈ ∂L(x, v)
}
,

SH : (x, v, p) 7→
{
w

∣∣ (w, v) ∈ ∂H(x, p)
}
.

(2.6)

The graph of SL, consisting by definition of all (x, v, p, w) such that w ∈ SL(x, v, p),
is the same then as the graph of ∂L, except for a permutation of arguments; likewise
for the graph of SH in comparison with the graph of ∂H.

Proposition 2.3. Under the epi-continuity assumption, M is closed in O ×
IRn × IRn and the functions (x, v, p) 7→ L(x, v) and (x, v, p) 7→ H(x, p) are finite and
continuous on M . Moreover, the effective domains of the set-valued mappings SL and
SH on O× IRn × IRn (the effective domains being the sets on which the mappings are
nonempty-valued) lie in M , and the graphs of these mappings are closed as subsets of
O × IRn × IRn × IRn.

Proof. We can view M as the graph of the mapping G that associates with each
x ∈ O the set of all (v, p) ∈ IRn×IRn such that p is a subgradient of the convex function
L(x, ·) at v. According to Attouch’s theorem on subgradient convergence (see [23]),
the epi-convergence of L(xν , ·) to L(x, ·) implies the set convergence of G(xν) to G(x).
In particular this entails the closedness of the graph of G in O × IRn × IRn.

As functions of (x, v, p), both L(x, v) and H(x, p) are lower semicontinuous by
Proposition 2.1 and never take on −∞. But on M they are related by H(x, p) =
〈v, p〉−L(x, v) and L(x, v) = 〈v, p〉−H(x, p), so they can’t take on ∞ either and must
be upper semicontinuous as well. Hence they are finite and continuous on M .

The assertion about the effective domains of SL and SH just restates Proposition
2.2. Verifying the closedness of the graphs of SL and SH comes down to verifying the
closedness of the graphs of ∂L and ∂H. The graph of ∂L consists by definition of the
closure, in a special way relative to O × IRn × IRn × IRn, of the set of all (x, v, w, p)
such that (w, p) is a proximal subgradient of L at (x, v). The closure consists of all
limits of sequences (xν , vν , wν , pν) that not only converge themselves but have the
additional property that the values L(xν , vν) converge. But whenever (wν , pν) is a
proximal subgradient of L at (xν , vν) we have in particular that pν is a proximal
subgradient of the convex function L(xν , ·) at vν . This implies pν ∈ ∂vL(xν , vν),
hence (xν , vν , pν) ∈ M . The convergence of the values L(xν , vν) is then automatic
because L is continuous as a function on M . Thus, the special feature of the closure
process falls away, and the graph of ∂L is seen to be a closed set in the ordinary sense
relative to O × IRn × IRn × IRn. For ∂H the argument is parallel.

Our strategy for proving Theorem 1.1 is now perhaps becoming clear. Under
the epi-continuity assumption, we need only come up with additional conditions on a
point (x̄, v̄, p̄) ∈M which guarantee that the sets SL(x̄, v̄, p̄) and −SH(x̄, v̄, p̄) have the
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same convex hull. The fact that these sets don’t necessarily agree in advance of taking
convex hulls is evident from simple examples. For instance, if L(x, v) = c(x)+ l(v) for
a finite, continuous function c on IRm and a proper, lsc, convex function l on IRn, we
have H(x, p) = −c(x) + h(p) with h the proper, lsc, convex function on IRn conjugate
to l. Then M is the product of IRm with the graph of ∂l, and for (x̄, v̄, p̄) ∈M we see
that

SL(x̄, v̄, p̄) = ∂c(x̄), SH(x̄, v̄, p̄) = −∂(−c)(x̄).

While ∂c(x̄) is the set of subgradients of c at x̄ as defined in the manner explained,
from limits of proximal subgradients introduced “from below,” −∂(−c)(x̄) has the
analogous interpretation with proximal subgradients introduced instead “from above.”
These two sets are known often to differ for a nonsmooth function c, although they
have the same convex hull when c is Lipschitz continuous on a neighborhood of x̄.

The key to further progress will be the following regularized functions associated
with L and H:

RL(x, u) := inf
v∈IRn

{
L(x, v) + 1

2 |v − u|2
}
,

RH(x, u) := inf
p∈IRn

{
H(x, p) + 1

2 |p− u|2
}
,

(2.7)

where | · | is the Euclidean norm. Also important will be the corresponding proximal
mappings:

PL(x, u) := argmin
v∈IRn

{
L(x, v) + 1

2 |v − u|2
}
,

PH(x, u) := argmin
p∈IRn

{
H(x, p) + 1

2 |p− u|2
}
.

(2.8)

In dealing with these regularized functions and proximal mappings for a fixed u,
we draw heavily on the theory of Moreau [24]; for reference see also Rockafellar [1,
Thm. 31.5]. For any fixed x ∈ O, the functions u 7→ RL(x, u) and u 7→ RH(x, u) are
finite, convex and continuously differentiable on IRn. They satisfy the identity

RL(x, u) +RH(x, u) = 1
2 |u|2. (2.9)

The mappings u 7→ PL(x, u) and u 7→ PH(x, u) are single-valued from IRn into IRn and
nonexpansive—globally Lipschitz continuous with constant 1—and they are related by

PL(x, u) + PH(x, u) = u, (2.10)

PL(x, u) = ∇uRH(x, u), PH(x, u) = ∇uRL(x, u). (2.11)

The proximal mappings PL and PH are especially of interest in providing a con-
venient parameterization of M in terms of (x, u).

Proposition 2.4. Under the epi-continuity assumption, RL(x, u) and RH(x, u)
are not just continuous in u, but with respect to (x, u) ∈ O × IRn. This holds also for
PL(x, u) and PH(x, u). The one-to-one correspondence between points (x, v, p) ∈ M
and points (x, u) ∈ O × IRn that is set up by the relations

u = v + p, (v, p) =
(
PL(x, u), PH(x, u)

)
,

is then a homeomorphism.
Proof. From the theory of epi-convergence [21], [23], the convex functions L(xν , ·)

epi-converge to L(x, ·) if and only if the regularized functions RL(xν , ·) converge point-
wise on IRn to RL(x, ·). These regularized functions being not only convex but finite,
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their pointwise convergence implies uniform convergence on all bounded subsets of
IRn, cf. [1, Thm. 10.8], and then their gradient mappings ∇RL(xν , ·) converge in such
a manner to ∇RH(x, ·) as well [1, Thm. 24.5]. The assertions about RL and PL, and
similarly those about RH and PH , thus follow from the meaning of the epi-continuity
assumption as designating the six conditions in Proposition 2.1. (The indicated cor-
respondence is one-to-one because the elements v = PL(x, u) and p = PH(x, u)
satisfy (2.10) and are characterized by the relations 0 ∈ ∂vL(x, v) + (v − u) and
0 ∈ ∂pH(x, p) + (v − p).)

The gradients of RL(x, u) and RH(x, u) with respect to u are pinpointed by (2.11),
but we can also determine, or at least estimate, subgradients with respect to (x, u).

Proposition 2.5. Under the epi-continuity assumption, consider any (x̄, ū) ∈
O × IRn and let v̄ = PL(x̄, ū) and p̄ = PH(x̄, ū). Then

∂RL(x̄, ū) ⊂
{
(w, p)

∣∣ p = p̄, (w, p̄) ∈ ∂L(x̄, v̄)
}
,

∂∞RL(x̄, ū) ⊂
{
(w, p)

∣∣ p = 0, (w, 0) ∈ ∂∞L(x̄, v̄)
}
,

∂RH(x̄, ū) ⊂
{
(w, v)

∣∣ v = v̄, (w, v̄) ∈ ∂H(x̄, p̄)
}
,

∂∞RH(x̄, ū) ⊂
{
(w, v)

∣∣ v = 0, (w, 0) ∈ ∂∞H(x̄, p̄)
}
.

Proof. Let f(x, v, u) = L(x, v)+ 1
2 |v−u|2, so that RL(x, u) = minv f(x, v, u). For

(x̄, ū) the minimum is attained uniquely at v̄. A general calculus rule in [25, Thm. 3.1]
gives us

∂RL(x̄, ū) ⊂
{
(w, p)

∣∣ (w, 0, p) ∈ ∂f(x̄, v̄, ū)
}
,

∂∞RL(x̄, ū) ⊂
{
(w, p)

∣∣ (w, 0, p) ∈ ∂∞f(x̄, v̄, ū)
}
,

but also in terms of the smooth function f0(x, v, u) := 1
2 |v − u|2 we have (cf. [7,

Lem. 5A.1]) that

∂f(x̄, v̄, ū) =
[
∂L(x̄, v̄)× {0}

]
+∇f0(x̄, v̄, ū),

∂∞f(x̄, v̄, ū) =
[
∂∞L(x̄, v̄)× {0}

]
,

where ∇f0(x̄, v̄, ū) = (0, v̄ − ū, ū− v̄). The combination of these two sets of relations
yields the inclusions claimed in the proposition for ∂RL(x̄, ū) and ∂∞RL(x̄, ū). The
ones for ∂RH(x̄, ū) and ∂∞RH(x̄, ū) follow by symmetry.

Lipschitz continuity of the regularized functions with respect to x will be critical
to us at a certain stage. This property is the subject of the next proposition.

Proposition 2.6. Under the epi-continuity assumption, the following four prop-
erties are equivalent to each other at a point (x̄, ū) ∈ O × IRn:

(a) RL is Lipschitz continuous around (x̄, ū).
(b) RL(x, ū) is Lipschitz continuous in x around x̄.
(c) RH is Lipschitz continuous around (x̄, ū).
(d) RH(x, ū) is Lipschitz continuous in x around x̄.

These properties are present in particular when the unique vectors v̄ and p̄ satisfying
ū = v̄ + p̄ and (x̄, v̄, p̄) ∈M are such that

(w, 0) ∈ ∂∞L(x̄, v̄) =⇒ w = 0, (2.12)

or such that
(w, 0) ∈ ∂∞H(x̄, p̄) =⇒ w = 0. (2.13)
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As a special case, the first of these two conditions is implied by L being Lipschitz con-
tinuous around (x̄, v̄), whereas the second is implied by H being Lipschitz continuous
around (x̄, p̄).

Proof. The equivalence is apparent from the identity in (2.9) and the fact that
RL(x, u) and RH(x, u) are finite, convex functions of u, hence locally Lipschitz con-
tinuous in u. (As a matter of fact, they are globally Lipschitz continuous in u with
constant 1.)

By a result of Rockafellar [26], the function RL, because of its lower semicontinuity
on O × IRn (Proposition 2.1), is Lipschitz continuous around (x̄, ū) if and only if the
set ∂∞RL(x̄, ū) contains only (0, 0). This is true under (2.12) by virtue of the second
inclusion in Proposition 2.5. In the same way, (2.13) suffices for Lipschitz continuity
of RH .

If L is Lipschitz continuous around (x̄, v̄), so that ∂∞L(x̄, v̄) = {(0, 0)} by the
result cited, we have (2.12) trivially. Likewise, if H is Lipschitz continuous around
(x̄, p̄), so that ∂∞H(x̄, p̄) = {(0, 0)}, we have (2.13) trivially.

For the record, conditions (2.12) and (2.13) aren’t equivalent to each other, and
they therefore can’t actually be equivalent to the Lipschitz continuity property in
Proposition 2.6, but merely sufficient for it. This is seen through the example of
L(x, v) = x4/3v2 on IR1 × IR1, which is convex in v and continuously differentiable
in (x, v). Since ∇L(0, 0) = (0, 0), the point (x̄, v̄, p̄) = (0, 0, 0) belongs to M . We
have ∂∞L(0, 0) = {(0, 0)} because L is Lipschitz continuous around (0, 0); thus (2.12)
is satisfied. But (2.13) isn’t satisfied, which is seen as follows. Our choice of L
corresponds to

H(x, p) =

 p2/4x4/3 when x 6= 0,
0 when x = 0 and p = 0,
∞ when x = 0 and p 6= 0.

Away from x = 0, H is twice continuously differentiable, so its gradients ∇H(x, p) =(
− p2/3x7/3, p/2x4/3

)
are proximal subgradients. We aim at constructing a nonzero

vector (w̄, 0) in ∂∞H(0, 0) in accordance with the definition of that set in terms of
limits of proximal subgradients. Consider any sequence tν ↘0 and let xν = (tν)6,
pν = (tν)5. Then (xν , pν) → (x̄, p̄) = (0, 0) and H(xν , pν) = (tν)2/4 → 0. Let
(wν , vν) = ∇H(xν , pν) =

(
− (tν)−4, (tν)−3/2

)
. Then for λν = (tν)4 we have λν ↘0

and λν(wν , vν) = (−1, tν/2) → (−1, 0). This limit vector belongs to ∂∞H(0, 0) and
demonstrates that (2.13) fails.

3. The main arguments.
With this foundation in place, we can turn to the subgradient arguments that

lead to the equivalence relation in Theorem 1.1.
Lemma 3.1. Under the epi-continuity assumption, suppose that (w̄, p̄) is a prox-

imal subgradient to L at a point (x̄, v̄) ∈ O× IRn; in other words, L(x̄, v̄) is finite and
there exist ρ > 0 and δ > 0 such that

L(x, v) ≥ L(x̄, v̄) + 〈w̄, x− x̄〉+ 〈p̄, v − v̄〉 − 1
2ρ|x− x̄|2 − 1

2ρ|v − v̄|2

when x ∈ O, |x− x̄| ≤ δ, |v − v̄| ≤ δ.
(3.1)

Then there exists ε ∈ (0, δ) such that

L(x, v) ≥ L(x̄, v̄) + 〈w̄, x− x̄〉+ 〈p̄, v − v̄〉 − 1
2ρ|x− x̄|2 − 1

2ρ|v − v̄|2

for all v ∈ IRn when x ∈ O, |x− x̄| ≤ ε.
(3.2)
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Proof. We can write (3.1) equivalently as

ρ−1L(x̄, v̄) + 〈ρ−1w̄, x− x̄〉 − 1
2 |x− x̄|2 ≤ f(x) when x ∈ O, |x− x̄| ≤ δ, (3.3)

where
f(x) : = inf

|v−v̄|≤δ

{
ρ−1L(x, v) + 1

2 |v − v̄|2 − 〈ρ−1p̄, v − v̄〉
}

= inf
|v−v̄|≤δ

{
ρ−1L(x, v) + 1

2

∣∣v − (v̄ + ρ−1p̄)
∣∣2}− 1

2 |ρ−1p̄|2.

The question is whether (3.3) will continue to hold when the constraint |v − v̄| ≤ δ is
dropped in the definition of f , at least if δ is replaced by some smaller value in (3.3).

We can answer this by applying the facts about proximal regularization to the
function

L̂(x, v) :=
{
ρ−1L(x, v) when |v − v̄| ≤ δ,
∞ when |v − v̄| > δ,

in terms of which we have f(x) = R
L̂
(x, ū) for ū = v̄+ρ−1p̄. Here L̂(x, ·) is the sum of

two convex functions, namely ρ−1L(x, ·) and the indicator of
{
v

∣∣ |v− v̄| ≤ δ
}
. For x =

x̄, the effective domain of the first function meets the interior of the effective domain
of the second, and this is enough to guarantee through the convergence theorem of
McLinden and Bergstrom [27] that whenever xν → x̄ and L(xν , ·) epi-converges to
L(x̄, ·), the sum L̂(xν , ·) epi-converges to L̂(x̄, ·). It follows then from our epi-continuity
assumption that, for x in some open neighborhood O′ of x̄ within O, L̂(x, ·) depends
epi-continuously on x.

Through Proposition 2.4 we conclude that the associated proximal mapping P
L̂
,

which gives the unique minimizing v in the formula for f , is continuous on O′ ×
IRn. Moreover, the minimum defining f(x̄) is attained at v̄, because of the proximal
subgradient inequality; thus, P

L̂
(x̄, ū) = v̄. There must, then, exist an ε ∈ (0, δ)

such that when x ∈ O′ and |x − x̄| ≤ ε we have
∣∣P

L̂
(x, ū) − v̄

∣∣ < δ. For such x the
constraint |v− v̄| ≤ δ in the formula for f(x) is inactive. Since the function of v being
minimized in this formula is convex, the constraint can in this case be suppressed
without affecting the minimum value that is attained.

Lemma 3.2. Under the epi-continuity assumption, suppose (w̄, p̄) is a proximal
subgradient of L at a point (x̄, v̄) ∈ O × IRn, and let ū = v̄ + p̄. If RH is Lipschitz
continuous around (x̄, ū), then (−w̄, v̄) ∈ ∂̄RH(x̄, ū) = con ∂RH(x̄, ū).

Proof. We start by noting that in particular (w̄, p̄) ∈ ∂L(x̄, v̄), hence p̄ ∈ ∂vL(x̄, v̄)
by Proposition 2.2. Thus (x̄, v̄, p̄) ∈M . We have

v̄ = ∇uRH(x̄, ū) (3.4)

by (2.11); this will be needed later.
Through Lemma 3.1 the proximal subgradient condition can be identified with the

existence of ρ > 0 and ε > 0 such that (3.2) holds. Replacing the second occurrence
of ρ in (3.2) by ρ+ 1, which certainly maintains the inequality, we get

F (x̄) + 〈v̄, x− x̄〉 − 1
2ρ|x− x̄|2 ≤ F (x) when |x− x̄| ≤ ε (3.5)

for the function

F (x) := inf
v∈IRn

{
L(x, v)− 〈p̄, v − v̄〉+ 1

2 (ρ+ 1)|v − v̄|2
}
,
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which has F (x̄) = L(x̄, v̄). As a consequence of (3.5) we certainly have w̄ ∈ ∂F (x̄).
To carry the analysis of w̄ further, we’ll make use of Fenchel’s duality theorem [1,

Thm. 31.1] to represent F in a different way. For any fixed x the definition of F (x)
can be interpreted as saying that

F (x) = inf
v∈IRn

{
ϕ(v)− ψ(v)

}
for the convex function ϕ(v) := L(x, v) + 1

2 |v − v̄|2 and the concave function ψ(v) :=
〈p̄, v − v̄〉 − 1

2ρ|v − v̄|2. Because ψ is finite everywhere, the effective domains of these
functions overlap in the manner required by the duality theorem in question, and we
are able to conclude from it that

−F (x) = inf
p∈IRn

{
ϕ∗(p)− ψ∗(p)

}
for the functions ϕ∗ and ψ∗ conjugate to ϕ and ψ. From the definition of the convex
conjugate ϕ∗ we calculate that

ϕ∗(p) = sup
v∈IRn

{
〈p, v〉 − L(x, v)− 1

2 |v − v̄|2
}

= − inf
v∈IRn

{
L(x, v) + 1

2 |v|2 − 〈v̄ + p, v〉+ 1
2 |v̄ + p|2 − 1

2 |v̄ + p|2 + 1
2 |v̄|2

}
= 1

2 |v̄ + p|2 − 1
2 |v̄|2 −RL(x, v̄ + p) = RH(x, v̄ + p)− 1

2 |v̄|2,

where the final steps use definition (2.7) and the identity (2.9). The definition of the
concave conjugate ψ∗ yields

ψ∗(p) = inf
v∈IRn

{
〈p, v〉 − 〈p̄, v − v̄〉+ 1

2ρ|v − v̄|2
}

= 〈p, v̄〉 − 1
2ρ
−1|p− p̄|2.

Out of these calculations we get

−F (x) = inf
p∈IRn

{
RH(x, v̄ + p)− 1

2 |v̄|2 − 〈p, v̄〉+ 1
2ρ
−1|p− p̄|2

}
,

which can be transformed to

−ρF (x) = inf
p∈IRn

{
ρRH(x, v̄ + p) + 1

2

∣∣p− (ρv̄ + p̄)
∣∣2}− 1

2ρ(ρ+ 1)|v̄|2. (3.6)

In terms of H̃(x, p) := ρRH(x, v̄ + p) this has the interpretation that

ρF (x) = −R
H̃

(x, ũ) + 1
2ρ(ρ+ 1)|v̄|2 for ũ = ρv̄ + p̄. (3.7)

Proposition 2.4 assures us that H̃(x, p) is finite and continuous in (x, p) ∈ O × IRn.
It’s convex in p besides. We can therefore apply our proximal regularization results to
this function in place of H. By assumption, H̃ is Lipschitz continuous around (x̄, p̄).
We have ρv̄ ∈ ∂pH̃(x̄, p̄) by (3.4), hence also p̄ = P

H̃
(x̄, ũ) and ρv̄ = ∇uRH̃

(x̄, ũ).
By means of Proposition 2.6 we see that R

H̃
is Lipschitz continuous around (x̄, ũ).

The fact that w̄ ∈ ∂F (x̄) gives us in (3.7) that ρw̄ ∈ ∂x(−R
H̃

)(x̄, ũ). But by the
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Lipschitz continuity of R
H̃

(·, ũ) at x̄ the Clarke subgradient relation ∂̄x(−R
H̃

)(x̄, ũ) =
−∂̄xRH̃

(x̄, ũ) holds, i.e., con ∂x(−R
H̃

)(x̄, ũ) = − con ∂xRH̃
(x̄, ũ), cf. [5], [7]. Therefore

−ρw̄ ∈ con ∂xRH̃
(x̄, ũ). (3.8)

Next we analyze the set ∂xRH̃
(x̄, ũ). Because of the Lipschitz continuity of R

H̃
around (x̄, ũ), the rule holds that

∂xRH̃
(x̄, ũ) ⊂

{
w

∣∣ ∃ v with (w, v) ∈ ∂R
H̃

(x̄, ũ)
}
,

see [7, Lem. 5A.3]. Now Proposition 2.5, as applied with H̃ in place of H (using the
fact that ũ = ρv̄ + p̄ with ρv̄ ∈ ∂pRH̃

(x̄, ũ)), says that

∂R
H̃

(x̄, ũ) ⊂
{
(w, v)

∣∣ v = ρv̄, (w, ρv̄) ∈ ∂H̃(x̄, p̄)
}
,

where from the choice of H̃ we have ∂H̃(x̄, p̄) = ρ∂RH(x̄, ū). In combination with
(3.8), this gives us (−w̄, v̄) ∈ con ∂RH(x̄, ū), as claimed.

Theorem 3.3. Under the epi-continuity assumption, consider the mappings SL

and SH of (2.6) at a point (x̄, v̄, p̄) such that either SL(x̄, v̄, p̄) or SH(x̄, v̄, p̄) is
nonempty, or merely (x̄, v̄, p̄) ∈ M . Suppose for ū = v̄ + p̄ that RL(·, ū) is Lipschitz
continuous around x̄, or equivalently, that RH(·, ū) is Lipschitz continuous around x̄.
Then both SL(x̄, v̄, p̄) and SH(x̄, v̄, p̄) are nonempty and compact, and

conSL(x̄, v̄, p̄) = − conSH(x̄, v̄, p̄).

Proof. In all cases we have (x̄, v̄, p̄) ∈ M , since otherwise both SL(x̄, v̄, p̄) and
SH(x̄, v̄, p̄) are empty by Proposition 2.3. The equivalence of the Lipschitz continuity
assumptions is shown by Proposition 2.6, which also reveals they imply that RL and
RH are Lipschitz continuous around (x̄, ū).

It will be demonstrated there is a compact set W such that whenever w̄ ∈
SL(x̄, v̄, p̄) we have w̄ ∈ W and −w̄ ∈ conSH(x̄, v̄, p̄). The full conclusion of the
theorem will follow then by symmetry.

By the definition of subgradients in general, the relation w̄ ∈ SL(x̄, v̄, p̄) im-
plies the existence of proximal subgradients (wν , pν) to L at points (xν , vν) → (x̄, v̄)
such that (wν , pν) → (w̄, p̄). The points uν = vν + pν then converge to ū, so that
eventually (xν , uν) lies in the neighborhood of (x̄, ū) in which RH is Lipschitz con-
tinuous. Once this is true, we can apply Lemma 3.2 at (xν , uν) to ascertain that
(−wν , vν) ∈ ∂̄RH(xν , uν). In the limit this yields (−w̄, v̄) ∈ ∂̄RH(x̄, ū). In particular
w̄ belongs to the image W of ∂̄RH(x̄, ū) under the projection (w, v) 7→ −w. This im-
age set W is compact because ∂̄RH(x̄, ū) is compact (in consequence of the Lipschitz
continuity of RH). Since ∂̄RH(xν , uν) = con ∂RH(xν , uν), the inclusion for ∂RH(x̄, ū)
in Proposition 2.5 gives us

(−w̄, v̄) ∈ con
{
(−w, v)

∣∣ v = v̄, (−w, v̄) ∈ ∂H(x̄, p̄)
}
.

This implies that −w̄ ∈ conSH(x̄, v̄, p̄) as required.
The proof of Theorem 3.3 discloses an additional property of the mappings SL

and SH which is worth noting. Recall that a set-valued mapping is locally bounded
at a given point if some neighborhood of that point has bounded image under the
mapping.
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Proposition 3.4. Under the hypothesis of Theorem 3.3, the mappings SL and
SH are locally bounded at (x̄, v̄, p̄). The same is true also of the mappings (x, v, p) 7→
conSL(x, v, p) and (x, v, p) 7→ conSH(x, v, p), which in this case must, like SL and
SH , have closed graph relative to some neighborhood of (x̄, v̄, p̄).

Thus, whenever (xν , vν , pν) → (x̄, v̄, p̄) and wν ∈ conSL(xν , vν , pν), the sequence
{wν} must be bounded, and all of its cluster points must belong to conSL(x̄, v̄, p̄);
likewise with SL replaced by SH .

Proof. This comes from the observation in the proof of Theorem 3.3 that when
(x, v+p) belongs to the neighborhood of (x̄, v̄+p̄) on whichRH is Lipschitz continuous,
we have SL(x, v, p) ⊂

{
w

∣∣ (−w, v) ∈ ∂̄RL(x, v)
}
. The mapping ∂̄RL is known to be

locally bounded on such a neighborhood. The local boundedness of SL along with the
closedness of its graph (Proposition 2.3) ensures the same properties of the mapping
conSL. The case of SH follows by symmetry.

In conclusion we summarize how the results we have obtained fit together to
produce the main result stated in Section 1.

Proof of Theorem 1.1. Let Lt = L(t, ·, ·) and Ht = H(t, ·, ·). The assumption
that L has the epi-continuity property along the arc x(·) puts us for almost every t in
the picture of Lt and Ht satisfying the epi-continuity assumption of Section 2 relative
to some open set O(t) containing x(t). Then by Proposition 2.2, if either

(
w, p(t)

)
∈

∂Lt

(
x(t), ẋ(t)

)
or

(
− w, ẋ(t)

)
∈ ∂Ht

(
x(t), p(t)

)
we have p(t) ∈ ∂vLt

(
x(t), ẋ(t)

)
and

ẋ(t) ∈ ∂pHt

(
x(t), p(t)

)
. Thus, the Euler-Lagrange condition (1.10) and the Hamilto-

nian condition (1.12) automatically give (1.11) and (1.13). The equivalence of (1.10)
and (1.12) follows from Theorem 3.3 whenever the regularized function RLt happens
to be Lipschitz continuous around

(
x(t), ẋ(t)

)
for almost every t, or equivalently, the

function RHt is Lipschitz continuous around
(
x(t), p(t)

)
for almost every t. Proposi-

tion 2.6 shows that such cases occur under the additional assumptions furnished in
Theorem 1.1.
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