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1. INTRODUCTION

Among the many important applications of variational inequalities is the expression of
equilibrium conditions for flows in networks, in particular equilibrium involving differ-
ent kinds of traffic. Variational inequalities are a relative newcomer to the theory of
networks, however. Other approaches to equilibrium have grown out of the classical
study of electrical networks and their generalization to hydraulic networks as well as
the framework of transportation problems in operations research. A very useful idea
has been the duality between flows and potentials as expressed by systems of possibly
nonlinear or even multivalued relations imposed in the different elements of a network.

The aim of this article is to illuminate the connections between variational inequal-
ities and these other approaches, with special attention paid to the extent to which
equilibrium may correspond to some sort of optimization. It is hoped that the range
of modeling possibilities thereby revealed will aid further in the formulation of traffic
problems and also in their solution by a wider class of computational techniques.

Variational inequalities generalize conditions for optimality such as may be associ-
ated with a variational principle, so we begin by reviewing how this comes about. The
need and desirability of working with multivalued mappings receives motivation in this
way, and a remarkable degree of flexibility in the application of numerical methods is
achieved. For simplicity the context here will be finite-dimensional.

Next we develop a general formulation of network equilibrium for vector-valued flows
and potentials, paralleling the well known one for scalar-valued flows. We establish
the circumstances in which this kind of equilibrium can be expressed by a variational
inequality. We show that, even when this is not the case, an expression is available
in which the many numerical approaches to calculating a zero of a possibly set-valued
mapping can be applied. In addition we study situations where network equilibrium
corresponds to solving a primal optimization problem for flows, a dual optimization
problem for potentials, or a saddle point problems for flows and potentials together.

2. VARIATIONAL INEQUALITIES AND OPTIMIZATION

The variational inequality problem with respect to a nonempty, closed, convex set
Z ⊂ IRN and a continuous, single-valued mapping F : Z → IRN is usually stated in the
form:

(VI) find z̄ ∈ Z such that 〈F (z̄), z − z̄〉 ≥ 0 for all z ∈ Z.

An alternative form, which is preferable for many reasons and will be especially fruitful
in what follows, is obtained by utilizing the notion of the normal cone NZ(z̄) to Z at
z̄, which in convex analysis consists of all vectors w such that 〈w, z − z̄〉 ≤ 0 for all
z ∈ Z, cf. [1]. The problem is then:

(VI′) find z̄ ∈ Z such that − F (z̄) ∈ NZ(z̄).
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In either form the inspiration comes from the case where F is the gradient mapping
∇f associated with a continuously differentiable function f defined on a neighborhood
of Z. The variational inequality then expresses the first-order necessary condition for
optimality in the minimization of f over Z, this being not just necessary but sufficient
when f happens to be convex.

Variational inequalities in which F = ∇f are usually called symmetric, whereas all
others are asymmetric. Really, this terminology is appropriate only under the additional
assumption that F is continuously differentiable, since that allows the existence of a
function f with F = ∇f to be identified with the property of F that the Jacobian matrix
∇F (z) is symmetric everywhere. It is possible, of course, to have F = ∇f without F
being differentiable at all, so that the Jacobian does not even exist. On the other
hand, in circumstances where F is differentiable but not continuously differentiable
the Jacobian might exist but not be symmetric, as indicated by classical examples of
twice differentiable functions f for which the matrix of second partial derivatives is not
symmetric.

The distinction between the symmetric and asymmetric cases is sometimes inter-
preted as marking the division between the variational inequality problems directly
reducible to optimization and the ones not so reducible. But this view is inaccurate
and potentially misleading. Variational inequalities can correspond to optimization
despite asymmetry, and whenever that is true they can be solved by optimization tech-
niques just as well as if they were symmetric, and without resorting to the introduction
of an artificial “gap” function.

For example, the Kuhn-Tucker conditions for a minimization problem with func-
tional constraints express first-order optimality in terms of an asymmetric variational
inequality in the primal and dual variables jointly. Suppose the problem consists of
minimizing f0(x) over all x ∈ X satisfying (f1(x), . . . , fm(x)) ∈ K, where K is a
closed, convex cone in IRm, X is a nonempty, closed, convex set in IRn, and the func-
tions fi are continuously differentiable. Let l(x, y) stand for the Lagrangian expression
f0(x)+

∑m
i=1 yifi(x). The generalized Kuhn-Tucker conditions that apply to this setting,

as established in [2] (Thms. 4.2, 10.6) under a basic constraint qualification, say that
for x̄ ∈ X to give a local minimum there must be a vector ȳ ∈ Y , where Y is the cone
polar to K, such that

−∇xl(x̄, ȳ) ∈ NX(x̄), ∇yl(x̄, ȳ) ∈ NY (ȳ). (2.1)

The search for a pair (x̄, ȳ) satisfying this double relation is the variational inequality
problem (VI ′) in the case of

z = (x, y), Z = X × Y, F (z) = (∇xl(x, y),−∇yl(x, y)). (2.2)

The variational inequality is asymmetric because F is not actually the gradient mapping
of any function. Indeed, when F is continuously differentiable (through the functions
fi being twice continuously differentiable) its Jacobian matrix has an obvious lack of
symmetry:

∇F (z) =
[ ∇2

xxl(x, y) ∇2
xyl(x, y)

−∇2
yxl(x, y) −∇2

yyl(x, y)

]
.
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Beyond Kuhn-Tucker conditions, a similar pattern of asymmetry holds in the char-
acterization of optimality for broader problem models of composite type, cf. [2], Sec. 10.
These likewise concern dual vectors y along with primal vectors x as in (2.1) and (2.2),
but Y not necessarily a cone, and l(x, y) not necessarily the classical Lagrangian. Also
in this class are general problems of finding a saddle point (x̄, ȳ) of a differentiable func-
tion l(x, y) relative to closed, convex sets X and Y , since (2.1) is necessary for l(x, ȳ)
to have its minimum over x ∈ X at x̄ while l(x̄, y) has its maximum over y ∈ Y at ȳ.

In all these examples an asymmetric variational inequality is seen to be reducible
directly to optimization and therefore open to solution by methods of numerical op-
timization. Such methods, whether they are posed in a primal, dual, or primal-dual
context, inevitably aim at producing not only a primal vector x̄ but an associated dual
vector ȳ such that (2.1) holds.

The concept of monotonicity plays the key role in the theory of variational inequal-
ities that convexity plays in optimization. A variational inequality is monotone if its
mapping F : Z → IRN is monotone in the sense that

〈F (z′)− F (z), z′ − z〉 ≥ 0 for all z, z′ ∈ Z. (2.3)

(We denote by 〈·, ·〉 the canonical inner product.) When F is continuously differentiable
this property is equivalent to the positive semidefiniteness of the (possibly asymmetric)
Jacobian matrix ∇F (z) at every point z ∈ Z. In the symmetric case with F = ∇f it
corresponds to f being convex. The variational inequality then describes the solution(s)
to a problem of minimizing a convex function over a convex set.

An important asymmetric example of monotonicity is encountered when F has the
form (2.2) relative to a product of convex sets X and Y , and the function l(x, y) is
convex in x ∈ X and concave in y ∈ Y . Such a variational inequality corresponds to
convex optimization as well. It characterizes solutions x̄ to a certain primal problem of
minimization by means of a saddle point (x̄, ȳ), where ȳ solves a certain dual problem
of maximization.

As valuable as the notion of a variational inequality has turned out to be, it has
definite limitations which need to be appreciated if connections with optimization are
fully to be understood. One limitation, which fortunately is easy to get around, is the
single-valuedness of the mapping F . On the surface, this excludes applications to areas
like nonsmooth optimization. A more serious limitation, however, is the requirement
that the set Z be convex. When a variational inequality problem is stated in the form
(VI), the convexity of Z is essential for it to make good sense, but in form (VI ′) the
way is open to assigning to the normal cone NZ(z̄) a definition appropriate not only for
convex sets Z but nonconvex sets as well. For instance, NZ(z̄) can be taken to be the
Clarke normal cone or the smaller cone that has received special emphasis in the work
of Mordukhovich; cf. [2], Sec. 10.

The point is that although variational inequalities in which Z is convex do cover
some problems of nonconvex optimization through extended Kuhn-Tucker conditions,
as already discussed, there is something rather strained about the formulation. The
case where Z is convex and F is monotone is natural in providing a platform for a
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theory of variational inequalities that mirrors convex optimization. The case where Z
is potentially not convex and F not monotone is well motivated too, if interpreted in the
manner just described. But the hybrid case where Z is convex, yet F is not monotone,
draws boundaries rather artificially.

Still another way of stating the basic variational inequality problem, which will serve
as a guide in our discussion of network equilibrium, is:

(VI ′′) find z̄ ∈ Z such that 0 ∈ T (z̄),

where T (z) =
{

F (z) + NZ(z) if z ∈ Z,
∅ if z /∈ Z.

At first this format may seem unappealing because it requires working with a set-valued
mapping T . As support for an alternative point of view, however, it is rich in theoretical
implications.

A general mapping T that assigns to each z ∈ IRN a subset T (z) ⊂ IRN can be
regarded as an ordinary single-valued mapping from IRN to the space 2IRN

. For most
purposes, though, there is much more to be gained by identifying T with the set

gph T := {(z, w) ∈ IRN × IRN | w ∈ T (z) } (2.4)

as its “graph” and thinking of it thus as expressing a relation between vectors z and w.
The “effective domain” dom T and “effective range” rge T of T are defined then by

dom T := {z | T (z) 6= ∅}, rge T := {w | ∃ z, w ∈ T (z)}. (2.5)

In this framework, which we signal this framework by writing T : IRN →→ IRN in place
of T : IRN → IRN , T is regarded as single-valued, empty-valued or multivalued at z
according to whether T (z) is a singleton, the empty set, or a set with more than one
element. The “inverse” of T is the mapping T−1 : IRN →→ IRN defined by

T−1(w) = {z | w ∈ T (z) }. (2.6)

Clearly dom T−1 = rge T and rge T−1 = dom T .
The monotonicity property introduced in (2.3) for a mapping F : Z → IRN has the

following generalization. A mapping T : IRN →→ IRN is called monotone if

〈z′ − z, w′ − w〉 ≥ 0 whenever w ∈ T (z), w′ ∈ T (z). (2.7)

It is maximal monotone if it is monotone but its graph cannot be enlarged without
losing monotonicity, i.e., if for every choice of vectors ẑ and ŵ with ŵ /∈ T (ẑ), there
exist z̃ and w̃ with w̃ ∈ T (z̃) such that 〈ẑ − z̃, ŵ − w̃〉 < 0.

Theorem 1 (Rockafellar [3], Thm. 3)
For the variational inequality problem that corresponds to a nonempty, closed, convex

set Z ⊂ IRN and a continuous mapping F : Z → IRN as expressed in (VI ′′), if F is
monotone, then the associated mapping T : IRN →→ IRN is maximal monotone.
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This result, which characterizes monotone variational inequality problems as prob-
lems of solving 0 ∈ T (z̄) for certain kinds of maximal monotone mappings T , will enable
us to identify different ways in which conditions for network equilibrium can be cast in
terms of a variational inequality as long as monotonicity is present. In appealing to it
we will essentially be limiting our attention to problems with overtones of convexity, as
already explained. An extension beyond monotonicity would no doubt be possible, but
we will not undertake it in this article.

3. NETWORK EQUILIBRIUM

For purposes here, a network consists of a finite set of nodes indexed by i ∈ I =
{1, . . . ,m} and a finite set of arcs indexed by j ∈ J = {1, . . . , n}. Each arc j has an
initial node and a terminal node, which are different. The information about these
nodes is embodied in the m× n incidence matrix E = (eij) for the network, where

eij =


1 if node i is the initial node of arc j,

−1 if node i is the terminal node of arc j,
0 otherwise.

(3.1)

Classical network theory is concerned with scalar-valued flows, but here we will
be occupied with vector-valued flows. A d-dimensional flow x is a “supervector”
(x1, . . . , xn) where each component xj is a vector (xj1, . . . , xjd) ∈ IRd. In applica-
tions, xjk will represent the amount of scalar flow of type k in arc j. Constraints on
the magnitude and direction of such flow amounts may be imposed later, but for now
we note merely that a quantity xjk > 0 is to be interpreted as flowing from the initial
node of arc j to its terminal node, whereas a quantity xjk < 0 refers to physical flow in
the opposite direction.

The divergence of the flow x at node i is the vector yi = (yi1, . . . , yid) ∈ IRd in which
yik gives the net amount of flow type k that originates at node i. This is expressed by

yi =
∑
j∈J

eijxj for each i ∈ I, or in summary, y = Ex, (3.2)

where y is the supervector (y1, . . . , ym). Node i is a source for flow type k under x if
yik > 0 and a sink if yik < 0. Flow type k is conserved at node i if yki = 0.

Dual to the concept of flow is that of potential. A d-dimensional potential u is a su-
pervector (u1, . . . , um), each component of which designates a vector ui = (ui1, . . . , uid).
The quantity uik refers to the potential of type k at node i, and abstract quantity which
in economic applications may have a price interpretation. Relative to such a vector-
valued potential u, the tension vj in arc j is the difference ui′ −ui, where i is the initial
node of arc j and i′ is the terminal node. In terms of the incidence matrix E this comes
out as

vj = −
∑
i∈I

uieij for each j ∈ J, or in summary, v = −ET u, (3.3)

where v = (v1, . . . , vn). Each tension vector vj = (vj1, . . . , vjd) ∈ IRd has components
vjk giving the difference in potential type k in arc j.
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Equilibrium problems in this context can usefully be set up on several levels. To
begin with, we consider the case of fixed supplies and demands. By a supply b =
(b1, . . . , bm) in the network we will mean the assignment to each node i of a vector
bi = (bi1, . . . , bid), where bik designates the supply of flow type k at node i, this being
the value that the divergence yki will be required to have. Negative supply values bik

correspond of course to demand. A value bik = 0 indicates that flow type k is required
to be conserved at node i.

By a flow-tension relation in arc j we will mean a subset of IRd× IRd specifying the
flow-tension pairs (xj, vj) permitted to coexist in arc j. We interpret this subset as the
graph gph Rj of a mapping Rj : IRd →→ IRd; thus, xj and vj are related in the required
manner if and only if vj ∈ Rj(xj), or equivalently xj ∈ R−1

j (vj).
The classical analogy for scalar-valued flows in an electrical network lies with resis-

tance and conductance. In such a network each arc j represents an electrical component
with a certain “characteristic curve” which describes how the flow (electrical current)
through j corresponds to the tension (voltage difference) across j. This characteristic
curve is the graph of Rj, and the Rj is “resistance mapping” for the arc j; the inverse
R−1

j is the “conductance mapping” for the arc.
If arc j represents an ideal resistor, behaving in accordance with Ohm’s Law with

resistance value rj > 0, its characteristic curve is a line in IR × IR with slope rj. Then
both Rj and R−1

j are single-valued and linear. Nonlinear resistors correspond to more
complicated curves in IR×IR. Sometimes Rj or R−1

j , or both, can fail to be single-valued
in such a context. For instance, in the case of an ideal diode, the graph of Rj is the
subset of IR × IR formed by the union of the nonnegative xj-axis and the nonpositive
vj-axis.

Equilibrium Problem 1 Given for each arc j a mapping Rj : IRd →→ IRd and for
each node i a supply vector bi ∈ IRd, find a flow x and a potential u for which the
corresponding divergence y and tension v satisfy{

vj ∈ Rj(xj) for all j ∈ J ,
yi = bi for all i ∈ I.

A more general formulation of equilibrium dispenses with fixed supplies and de-
mands and instead allows a divergence-potential relation to be assigned to each node.
Again, we think of such a relation in terms of a subset of IRd× IRd viewed as the graph
G(Si) of a mapping Si : IRd →→ IRd. The divergence yi and potential ui at node i
are related in the required manner when ui ∈ Si(yi), or equivalently, yi ∈ S−1

i (ui). In
Equilibrium Problem 1, the graph of Si is the set {bi} × IRd for every node i; in other
words, we have

S−1
i : ui 7→ bi (constant mapping). (3.4)

But instead now, S−1
i might for instance be a nonconstant, single-valued mapping. An

economic interpretation in some models where the kinds of flow represent different kinds
of commodities is that ui is a vector of prices at i for these commodities, and S−1

i (ui)
gives the amounts supplied (produced), or with negative signs, demanded (consumed)
at i in response to these prices.
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Equilibrium Problem 2 Given for each arc j a mapping Rj : IRd →→ IRd and for
each node i a mapping Si : IRd →→ IRd, find a flow x and a potential u for which the
corresponding divergence y and tension v satisfy{

vj ∈ Rj(xj) for all j ∈ J ,
ui ∈ Si(yi) for all i ∈ I.

By the maximal monotone version of Equilibrium Problem 1, we will mean the
version where every mapping Rj is maximal monotone. Likewise, by the maximal
monotone version of Equilibrium Problem 2, we will mean the version where every
mapping Rj and every mapping Si is maximal monotone. (Note that Si is maximal
monotone in particular when S−1

i is a constant mapping, as seen when Equilibrium
Problem 1 is imbedded within Equilibrium Problem 2.) For scalar-valued flows and
potentials (d = 1), the role of maximal monotonicity was first explored by Minty [4],
who concentrated on Equilibrium Problem 1 with bi = 0 for all i. The theory of this
case is fully presented in the book [5].

One of the many nice features of maximal monotonicity with d = 1 is that the
graphs of the relations are indeed “curves,” i.e., sets nicely parameterized by a real
variable. For d > 1 there is the following generalization.

Theorem 2 (Minty [6])
The graph gph T of any maximal monotone mapping T : IRd →→ IRd is homeomor-

phic to IRd. Moreover, the homeomorphism can be set up to be Lipschitz continuous in
both directions.

In applications to traffic equilibrium, the following model is basic. For each node i
consider a supply vector bi = (bi1, . . . , bid). For each arc j let Xj = [0, ξj1]×· · ·× [0, ξjd],
where ξjk is the upper bound for flow of type k in the arc in question, ξjk ≥ 0. (When
ξjk = 0, flow of type k is forbidden in this arc.) For xj ∈ Xj let

Fj(xj) = cj(wj1xj1 + · · ·+ wjdxjd)

for a continuous, nondecreasing function cj : [0,∞) → [0,∞) and fixed weights wjk ≥
0. The conditions for traffic equilibrium are taken then to be those of Equilibrium
Problem 1 with

vj ∈ Rj(xj) ⇐⇒ xj ∈ Xj, vj − Fj(xj) ∈ NXj
(xj).

In models of this kind it is common to have only one source and one sink for each
type of traffic. Then for each k there is exactly one node i with bik > 0 and exactly
one other node i′ with bi′k < 0. Often the models are set up in terms of flows along
particular paths instead of just flow amounts in each arc. Such models are much more
complicated to work with, yet they seem not to offer any serious advantages, because
the flow of traffic of type k can readily be represented, at any stage of computation
or analysis where desired, as a sum of flows along paths from source to sink. See
Rockafellar [5], Secs. 4A and 4B, for the elementary algorithm that is involved.
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Generalized traffic models in the format of Equilibrium Problem 2 instead of Equi-
librium Problem 1 might arise from situations in which the supply and demand for the
different kinds of flow could be affected by the state of congestion. Models attempting
to treat the difficulties of passing through various nodes would not necessarily require
passage to Equilibrium Problem 2. Instead one might use the device of introducing “in-
ternal arcs” in such nodes; the needed equilibrium conditions could then be centered on
such arcs, see [5], Sec. 3L. In either approach, dynamical networks could be formulated
in a space-time framework to handle traffic equilibrium in the sense of a day-to-day
cycle; see [5], Secs. 1H and 3L.

4. EQUILIBRIUM AS A VARIATIONAL INEQUALITY

To what extent are the equilibrium conditions in Equilibrium Problems 1 and 2 ex-
pressible in terms of a variational inequality? In general they go beyond the limited
format served by variational inequalities, but there are important cases where they fit
with it. It is instructive to see that this can occur in several different ways.

Let us say that a flow-tension relation for arc j is of primal VI-type if its mapping
Rj : IRd →→ IRd has the form

Rj(xj) =

{
Fj(xj) + NXj

(xj) if xj ∈ Xj,
∅ if xj /∈ Xj,

(4.1)

where Xj is a nonempty, closed, convex subset of IRd and Fj : Xj → IRd is continuous
(then Xj = dom Rj). On the other hand, let us say that this relation is of dual VI-type
if the inverse mapping R−1

j has such form:

R−1
j (vj) =

{
Φj(vj) + NVj

(vj) if vj ∈ Vj,
∅ if vj /∈ Vj,

(4.2)

where Vj is a nonempty, closed, convex subset of IRd and Φj : Vj → IRd is continuous
(then Vj = rge Rj). In a similar vein, let us say that a divergence-potential relation for
node i is of primal VI-type if its mapping Si : IRd → IRd has the form

Si(yi) =
{

Gj(yj) + NYj
(yj) if yi ∈ Yi,

∅ if yi /∈ Yi,
(4.3)

where Yi is a nonempty, closed, convex subset of IRd and Gi : Yi → IRd is continuous
(then Yi = dom Si), while it is of dual VI-type if the inverse mapping S−1

i has the form

S−1
i (ui) =

{
Ψj(uj) + NUj

(uj) if ui ∈ Ui,
∅ if ui /∈ Ui,

(4.4)

where Ui is a nonempty, closed, convex subset of IRd and Ψi : Ui → IRd is continuous
(then Ui = rge Si).

The divergence-potential relations in the special case (3.4) used in imbedding Equi-
librium Problem 1 within Equilibrium Problem 2 are obviously of dual VI-type with
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Ui = IRd and Ψ(ui) ≡ bi, but they are also of primal VI-type with Yi = {bi} and
Gi(yi) = 0.

Our results will utilize the theory of relative interiors. Recall that the relative
interior ri C of a convex set C is the interior of C relative to its affine hull (see [1],
Sec. 6). An affine set is its own relative interior; in particular, if C = {a} (a singleton
set) then ri C = {a}. Recall further the C is polyhedral when it is representable as
the intersection of a finite collection of closed half-spaces, or equivalently as the set of
solutions to a system of finitely many (weak) linear inequalities.

Theorem 3 (Rockafellar [1], Cor. 23.8.1)
Suppose that C = C1∩· · ·∩Cr, where each Cl is a convex subset of IRN , and suppose

there exists z̃ ∈ C such that actually z̃ ∈ ri Cl for each l such that Cl is not polyhedral.
Then at all points z ∈ C one has NC(z) = NC1(z) + · · ·+ NCr(z).

Because Equilibrium Problem 1 is covered by Equilibrium Problem 2, we develop
results in terms of Equilibrium Problem 2 and then specialize.

Theorem 4 (Variational Inequalities from Equilibrium Problem 2).
(a) (primal case). In Equilibrium Problem 2, suppose all the flow-tension relations

and divergence-potential relations are of primal VI-type: (4.1) and (4.3) hold. Assume
there is at least one flow x̃ which, with its divergence ỹ, satisfies x̃j ∈ ri Xj for all j ∈ J
and ỹi ∈ ri Yi for all i ∈ I; in this assumption, “ ri ” can be omitted for any Xj or Yi

that is polyhedral. The problem is equivalent then to solving the variational inequality
for

Z = {z = (x1, . . . , xn, y1, . . . , ym) | xj ∈ Xj, yi ∈ Yi, y = Ex},
F (z) = (F1(x1), . . . , Fn(xn), G1(y1), . . . , Gm(ym)).

This variational inequality is monotone when every Fj and Gi is monotone; then one
has a maximal monotone version of Equilibrium Problem 2.

(b) (dual case). In Equilibrium Problem 2, suppose all the flow-tension relations and
divergence-potential relations are of dual VI-type: (4.2) and (4.4) hold. Assume there
is at least one potential ũ which, with its tension ṽ, satisfies ṽj ∈ ri Vj for all j ∈ J and
ũi ∈ ri Ui for all i ∈ I; in this assumption, “ ri ” can be omitted for any Vj or Ui that is
polyhedral. The problem is equivalent then to solving the variational inequality for

Z = {z = (v1, . . . , vn, u1, . . . , um) | vj ∈ Vj, ui ∈ Ui, v = −ET u},
F (z) = (Φ1(v1), . . . , Φn(vn), Ψ1(u1), . . . , Ψm(um)).

This variational inequality is monotone when every Φj and Ψi is monotone; then one
has a maximal monotone version of Equilibrium Problem 2.

(c) (primal-dual case). In Equilibrium Problem 2, suppose all the flow-tension rela-
tions are of primal VI-type and all the divergence-potential relations are of dual VI-type:
(4.1) and (4.4) hold. The problem is equivalent then to solving the variational inequality
for

Z = {z = (x1, . . . , xn, u1, . . . , um) | xj ∈ Xj, ui ∈ Ui},
F (z) = (F1(x1), . . . , Fn(xn), Ψ1(u1), . . . , Ψm(um)) + (ET u,−Ex).
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This variational inequality is monotone when every Fj and Ψi is monotone; then one
has a maximal monotone version of Equilibrium Problem 2.

Proof. The analysis of the normal cone NZ(z) at points z ∈ Z is crucial in each
case. In (a) and (b) the main tool for this purpose will be Theorem 3.

In (a) we have Z = L ∩ Z0 for the subspace L = {z = (x, y) | y = Ex} and
the product set Z0 = X1 × · · · × Xn × · · · × Y1 × · · · × Ym. We can also express Z0

as the intersection X ′
1 ∩ · · · ∩ X ′

n ∩ Y ′
1 ∩ · · · ∩ Y ′

m by taking X ′
j to be the subset of

(IRd)n+m having the same formula as Z0 but with all factors except Xj replaced by
IRd, and likewise for Y ′

i . Then ri X ′
j and ri Y ′

i have this form as well, with ri Xj and
ri Yi replacing the factors Xj and Yi. Also, X ′

j and Y ′
i are polyhedral when Xj and

Yi are polyhedral. Since ri L = L we see that the assumption in (a) about a certain
flow x̃ corresponds to the hypothesis of Theorem 3 when applied to the intersection
Z = L ∩X ′

1 ∩ · · · ∩X ′
n ∩ Y ′

1 ∩ · · · ∩ Y ′
m. We deduce thereby that

NZ(z) = NL(z) + NX′
1
(z) + · · ·+ NX′

n
(z) + NY ′

1
(z) + · · ·+ NY ′

m
(z).

Here NL(z) = L⊥ = {(v, u) | v = −ET u}, whereas

NX′
1
(z) + · · ·+ NX′

n
(z) + NY ′

1
(z) + · · ·+ NY ′

m
(z)

= NX1(x1)× · · · ×NXn(xn)×NY1(y1)× · · · ×NYn(yn) = NZ0(z).

Thus, NZ(z) = L⊥ + NZ0(z).
The variational inequality for Z and F , expressed in form (VI′), refers therefore to

the existence of z̄ ∈ L ∩ Z0 such that there exists w̄ ∈ L⊥ with w̄ − F (z̄) ∈ NZ0(z̄). To
say that z̄ ∈ L ∩ Z0 is to say that z̄ = (x̄, ȳ) with ȳ = Ex̄, x̄j ∈ Xj and ȳ ∈ Yi. To
say that w̄ ∈ L⊥ with w̄ − F (z̄) ∈ NZ0(z̄) is to say that w̄ = (v̄, ū) with v̄ = −ET ū,
v̄j − Fj(x̄j) ∈ NXj

(x̄j) and ūi −Gi(ȳi) ∈ NYi
(ȳi) for all arcs j and nodes i. From (4.1)

and (4.3) we conclude that the variational inequality comes down to the equilibrium
conditions in Equilibrium Problem 2.

When all the mappings Fj and Gi in (a) are monotone, F is obviously monotone as
well. Then too, every relation Rj and Si is maximal monotone by Theorem 1, so we
have a maximal monotone version of Equilibrium Problem 2.

In case (b) the argument is closely parallel. We have Z = L ∩ Z0 for the subspace
L = { (v, u) | v = −ET u} and set Z0 = V1 × · · · × Vn × U1 × · · · × Um. Again through
Theorem 3, the assumption about a potential ũ guarantees that NZ(z) = NL(z)+NZ0(z)
with NL(z) = L⊥ = {(x, y) | y = Ex} and NZ0(z) = NV1(v1) × · · · × NVn(vn) ×
NU1(u1) × · · · × NUm(um). The specified variational inequality in form (VI′) reduces
then to the existence of z̄ = (v̄, ū) ∈ L and w̄ = (x̄, ȳ) ∈ L⊥ such that v̄j ∈ Vj and
x̄j − Φj(v̄j) ∈ NVj

(v̄j) for all arcs j, while ūi ∈ Ui and ȳi − Ψi(ūi) ∈ NUi
(ūi) for all

nodes i. Because of (4.2) and (4.4), these conditions are identical to x̄j ∈ R−1
j (v̄j) and

ȳi ∈ S−1
i (ūi), which are just another way of writing the ones in Equilibrium Problem 2.

When all the mappings Φj and Ψi in (b) are monotone, F is monotone too, and
through Theorem 1 the relations R−1

j and S−1
i are maximal monotone. Then Rj and
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Si are maximal monotone and we have a maximal monotone version of Equilibrium
Problem 2.

Case (c) is simpler and does not require Theorem 3. Without having to invoke any
constraint qualification we know that

NZ(z) = NX1(x1)× · · · ×NXn(xn)×NU1(u1)× · · · ×NUm(um).

Consider z̄ = (x̄, ū) and let ȳ = Ex̄ and v̄ = −ET ū. To say that z̄ ∈ Z is to say that
x̄j ∈ Xj for all j and ūi ∈ Ui for all i. The condition −F (z̄) ∈ NZ(z̄) takes the form
then that −Fj(x̄j) + v̄j ∈ NXj

(x̄j) and −Ψi(ūi) + ȳi ∈ NUi
(ūi) for all i and j. By (4.1)

and (4.4) these properties are equivalent to having v̄j ∈ Rj(x̄j) and ȳi ∈ S−1(ūi), which
are the same as the equilibrium conditions in Equilibrium Problem 2.

When Fj and Ψi are monotone, the mapping

(x, u) 7→ (F1(x1), . . . , Fn(xn), Ψ1(u1), . . . , Ψm(um))

in (c) is monotone. The linear mapping (x, u) 7→ (ET u,−Ex) is always monotone
(because its matrix is antisymmetric). Then F , as the sum of two monotone mappings,
is itself monotone. In this case the variational inequality in (c) is monotone. At the
same time the mappings Rj in (4.1) and S−1

i in (4.4) are maximal monotone by virtue
of Theorem 1, so we have a maximal monotone version of Equilibrium Problem 2. 2

Theorem 5 (Variational Inequalities from Equilibrium Problem 1)
(a) (primal case). In Equilibrium Problem 1, suppose all the flow-tension relations

are of primal VI-type: (4.1) holds. Assume there is at least one flow x̃ with Ex̃ = b
such that x̃j ∈ ri Xj for all j; in this assumption, “ ri ” can be omitted for any Xj that
is polyhedral. The problem is equivalent then to solving the variational inequality for

Z = { z = (x1, . . . , xn) | xj ∈ Xj, Ex = b },
F (z) = (F1(x1), . . . , Fn(xn)).

This variational inequality is monotone when every Fj is monotone; then one has a
maximal monotone version of Equilibrium Problem 1.

(b) (dual case). In Equilibrium Problem 1, suppose all the flow-tension relations are
of dual VI-type: (4.2) holds. Suppose there is at least one potential ũ whose tension ṽ
satisfies ṽj ∈ ri Vj for all j; in this assumption, “ ri ” can be omitted for any Vj that is
polyhedral. The problem is equivalent then to solving the variational inequality for

Z = {z = (v1, . . . , vn, u1, . . . , um) | vj ∈ Vj, ui ∈ IRd, v = −ET u},
F (z) = (Φ1(v1), . . . , Φn(vn), b1, . . . , bm).

This variational inequality is monotone when every Φj is monotone; then one has a
maximal monotone version of Equilibrium Problem 1.
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(c) (primal-dual case). In Equilibrium Problem 1, suppose all the flow-tension rela-
tions are of primal VI-type: (4.1) holds. The problem is equivalent then to solving the
variational inequality for

Z = {z = (x1, . . . , xn, u1, . . . , um) | xj ∈ Xj, ui ∈ IRd},
F (z) = (F1(x1), . . . , Fn(xn), b1, . . . , bm) + (ET u,−Ex).

This variational inequality is monotone when every Fj is monotone; then one has a
maximal monotone version of Equilibrium Problem 1.

Proof. Here we take the divergence-potential relations in Theorem 4 all to have
form (3.4). As observed, these relations are simultaneously of primal VI-type and of
dual VI-type, and they are maximal monotone. In (a) the form is so special that the
yi arguments trivialize. 2

The standard traffic equilibrium model described at the end of Section 3 fits case
(a) of Theorem 5. Because cj is nondecreasing in this example, Fj is monotone and we
have a monotone variational inequality corresponding to a maximal monotone version
of Equilibrium Problem 1.

5. OPTIMAL FLOWS AND POTENTIALS

The network equilibrium problems in Section 3 correspond to in some important cases to
problems of optimization of flows and potentials, and vice versa. This correspondence is
more general than that associated with the variational inequality format in its multiple
modes in Section 4. We concentrate here on optimization of convex type and describe
the connections in terms of subgradients of convex functions. The results obtained
generalize the ones presented for scalar-valued flows and potentials in Rockafellar [5],
Sec. 8H.

Let IR denote the extended real line IR∪{±∞}. Recall that a function f : IRN → IR
is called convex if its “epigraph” epi f := {(z, α) ∈ IRN×IR | α ≥ f(z)} is a convex set.
The “effective domain” dom f := {z | f(z) < ∞} of such a function is then a convex
set in particular.

A convex function f on IRN is proper if f(z) > −∞ for all z, and f(z) < ∞ for at
least one z. It is lower semicontinuous (lsc) if the set epi f is closed in IRN × IR. The
function f ∗ conjugate to f is defined by

f ∗(w) = sup
z∈IRN

{〈w, z〉 − f(z)}.

When f is convex, proper and lsc, the conjugate function f ∗ likewise is convex, proper
and lsc, and the function f ∗∗ conjugate to f ∗ is in turn f :

f(z) = sup
w∈IRN

{〈w, z〉 − f ∗(w)}.

These matters are developed in detail in [1].
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For a convex, proper, lsc function f on IRN , the subgradients of f at a point z̄ are
the vectors w̄ (if any) such that

f(z) ≥ f(z̄) + 〈w̄, z − z̄〉 for all z.

The set of these is denoted by ∂f(z̄). Thus ∂f denotes a mapping IRN →→ IR
N

in the
general sense adopted in Section 2. Furthermore, the inverse mapping (∂f)−1 is the
subgradient mapping associated with the conjugate function f ∗:

w̄ ∈ ∂f(z̄) ⇐⇒ z̄ ∈ ∂f ∗(w̄). (5.1)

Theorem 6 (Moreau [6], Rockafellar [1], Cor. 31.5.2)
When f : IRN → IR is convex, proper and lsc, the mapping T = ∂f : IRN →→ IRN is

maximal monotone.

When N > 1, not every maximal monotone mapping T : IRN →→ IRN is of the
form ∂f . The ones that are have the property of maximal cyclic monotonicity ; see [1],
Thm. 24.9. Maximal cyclic monotonicity is the same as maximal monotonicity in the
one-dimensional case, however.

As with network equilibrium problems, it will be useful to consider network opti-
mization problems on two levels.

Primal Problem 1 Given for each arc j a convex, proper, lsc function fj on IRd

and for each node i a supply vector bi ∈ IRd, minimize
∑

j∈J fj(xj) over all flows x with
divergence y satisfying yi = bi for all i ∈ I.

Primal Problem 2 Given for each arc j a convex, proper, lsc function fj on IRd

and for each node i a convex, proper, lsc function gi on IRd, minimize
∑

j∈J fj(xj) +∑
i∈I gi(yi) over all flows x, where y is the divergence of x.

It should be kept in mind that these problems have implicit constraints represented
through ∞. In Primal Problem 1, a flow x with divergence y = b is not regarded as
feasible unless fj(xj) < ∞ for all j, i.e., xj belongs to the convex set dom fj ⊂ IRd for
all j. In Primal Problem 2, there is the further requirement that yi should belong to
the convex set dom gi for all i. Primal Problem 2 reduces to Primal Problem 1 when

gi(yi) =
{

0 if yi = bi,
∞ if yi 6= bi.

(5.2)

With these primal problems we associate the following dual problems in terms of
the conjugate convex functions.

Dual Problem 1 Given for each arc j a convex, proper, lsc function fj on IRd and
for each node i a supply vector bi ∈ IRd, maximize −∑

j∈J f ∗j (vj) −
∑

i∈I −〈bi, ui〉 over
all potentials u and their tensions v.
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Dual Problem 2 Given for each arc j a convex, proper, lsc function fj on IRd

and for each node i a convex, proper, lsc function gi on IRd, maximize −∑
j∈J f ∗j (vj)−∑

i∈I g∗i (ui) over all potentials u and their tensions v.

In Dual Problem 1, the constraint vj ∈ dom f ∗j is implicit. In Dual Problem 2, one
also needs ui ∈ dom g∗i , since otherwise the expression being maximized has the value
−∞. Note that Dual Problem 2 reduces to Dual Problem 1 under the choice (5.2) for
gi, because the conjugate convex function is then

g∗i (ui) ≡ 〈bi, ui〉. (5.3)

By the optimal values in these primal and dual problems we will mean the values
(in IR) giving the infimum or supremum in each case. The optimal solutions are the
elements (flows or potentials) for which these values are achieved, if any.

Finally, we formulate saddle point problems of Lagrangian type corresponding to
the optimization problems on both levels.

Saddle Problem 1 Given for each arc j a convex, proper, lsc function fj on IRd

and for each node i a supply vector bi ∈ IRd, find a saddle point of the Lagrangian
function

L(x, u) =
∑
j∈J

fj(xj)−
∑
i∈I

〈bi, ui〉+
∑

j∈J, i∈I

eij〈ui, xj〉

with respect to minimizing over flows x but maximizing over potentials u.

Saddle Problem 2 Given for each arc j a convex, proper, lsc function fj on IRd

and for each node i a convex, proper, lsc function gi on IRd, find a saddle point of the
Lagrangian function

L(x, u) =
∑
j∈J

fj(xj)−
∑
i∈I

g∗i (ui) +
∑

j∈J, i∈I

eij〈ui, xj〉

with respect to minimizing over flows x but maximizing over potentials u.

In Saddle Problem 2, the expression L(x, u) is interpreted as −∞ unless ui ∈ dom g∗i
for every i ∈ I. A pair (x̄, ū) furnishes a saddle point relative to all flows and potentials
if and only if it furnishes a saddle point relative to X × U , where X is the product of
the sets dom fj, and U is the product of the sets dom g∗i ; see [1], Sec. 36.

Theorem 7 In Equilibrium Problem 2, suppose the flow-tension and divergence-
potential relations have the form Rj = ∂fj for all j ∈ J and Si = ∂gi for all i ∈ I,
where fj and gi are convex, proper, lsc functions on IRd. Then one has a maximal
monotone version of the problem in which the following conditions on a flow x̄ with
divergence ȳ and a potential ū with tension v̄ are equivalent to each other:

(a) x̄ and ū solve Equilibrium Problem 2.
(b) x̄ and ū solve Saddle Problem 2.
(c) x̄ is an optimal solution to Primal Problem 2, ū is an optimal solution to Dual

Problem 2, and the optimal values in these two problems are equal.
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Proof. The condition for (x̄, ū) to be a saddle point in (b) is that the expres-
sion L(x, ū) should achieve its minimum over all flows x at x̄, whereas L(x̄, u) should
achieve its maximum over all potentials u at ū. The minimization part is equivalent
to having fj(xj) − 〈v̄j, xj〉 achieve its minimum over xj ∈ IRd at x̄j for each j ∈ J ,
where v̄j = −∑

i∈I eijūi. This means that v̄j ∈ ∂fj(x̄j) for all j. The maximization
part is equivalent to having 〈ȳi, ui〉 − g∗i (ui) achieve its maximum over ui ∈ IRd at
ūi for each i ∈ I, where ȳi =

∑
j∈J eijx̄j. This means that ȳi ∈ ∂g∗i (ūi) for all i, or

since ∂g∗i = (∂gi)
−1, that ūi ∈ ∂gi(ȳi). These subgradient conditions are the same as

v̄j ∈ Rj(x̄j) and ūi ∈ Si(ȳi) under our hypothesis. Thus, (a) and (b) are equivalent.
To establish the equivalence of (b) with (c), let r(x) = supu L(x, u) and s(u) =

infx L(x, u). It is elementary and well known in general minimax theory (cf. [1], Sec. 36)
that (x̄, ū) furnishes a saddle point of L if and only if x̄ minimizes r(x), ū maximizes
s(u), and the minimum value r(x̄) agrees with the maximum value s(ū). We merely need
to observe now that r(x) =

∑
j∈J fj(xj) +

∑
i∈I gi(yi) (with yi standing for

∑
j∈J eijxj),

whereas s(u) = −∑
j∈J f ∗j (vj)−

∑
i∈I g∗i (ui) (with vj standing for −∑

i∈I eijui). 2

Theorem 8 In Equilibrium Problem 1, suppose that the flow-tension relations are
of the form Rj = ∂fj for all j ∈ J , where each fj is a convex, proper, lsc function on
IRd. Then one has a maximal monotone version of the problem in which the following
conditions on a flow x̄ with divergence ȳ and a potential ū with tension v̄ are equivalent
to each other:

(a) x̄ and ū solve Equilibrium Problem 1.
(b) x̄ and ū solve Saddle Problem 1.
(c) x̄ is an optimal solution to Primal Problem 1, ū is an optimal solution to Dual

Problem 1, and the optimal values in these two problems are equal.

Proof. This specializes Theorem 7 to the case of (5.1)–(5.2). 2

To give these results their full force, supplementary conditions need to be provided
under which the optimal values in the primal and dual problems are equal. Then the
pairs (x̄, ū) satisfying the equilibrium problem in question are precisely those such that
x̄ solves the primal problem and ū solves the dual problem. In other words, equilibrium
is fully reducible to optimization.

Theorem 9 Either one of the following assumptions suffices to guarantee that the
optimal values in Primal Problem 2 and Dual Problem 2 are equal:

(a) There is a flow x̃ with divergence ỹ such that x̃j ∈ ri ( dom fj) for all arcs j ∈ J ,
and ỹi ∈ ri ( dom gi) for all nodes i ∈ I.

(b) There is a potential ũ with tension ṽ such that ṽj ∈ ri ( dom f ∗j ) for all arcs
j ∈ J , and ũi ∈ ri ( dom g∗i ) for all nodes i ∈ I.

Proof. This follows from the Fenchel duality theorem in convex optimization, specif-
ically as a case of [1], Cor. 31.2.1. 2
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Theorem 10 Either one of the following assumptions suffices to guarantee that the
optimal values in Primal Problem 1 and Dual Problem 1 are equal:

(a) There is a flow x̃ with divergence ỹ such that x̃j ∈ ri ( dom fj) for all arcs j ∈ J ,
and ỹi = bi for all nodes i ∈ I.

(b) There is a potential ũ with tension ṽ such that ṽj ∈ ri ( dom f ∗j ) for all arcs
j ∈ J .

Proof. Again we merely choose gi as in (5.1), so that g∗i is given by (5.2). 2

The constraint qualifications in Theorem 9 could be refined along the lines of the
one in Theorem 3. Recall that a convex function is polyhedral when its epigraph is a
polyhedral set; then the conjugate function is polyhedral as well; see [1], Secs. 19 and
20. Theorem 10 remains valid if in (a) the condition x̄j ∈ ri ( dom fj) is weakened to
x̄j ∈ dom fj when fj is polyhedral, while the condition ȳi ∈ ri ( dom gi) is weakened to
ȳi ∈ dom gi when gi is polyhedral; similarly in (b) and Theorem 10. This refinement
can be verified on the basis of the polyhedral results in [1], Theorem 31.1, by splitting
up the polyhedral and nonpolyhedral parts of the problem in a suitable way.

For scalar-valued flows and potentials, “ ri ” can be dropped entirely from Theorems
9 and 10—see [5], Sec. 8H.

An example of particular importance is the one where the functions fj have the
form

fj(xj) =

{
φj(xj) if xj ∈ Xj,
∞ if xj /∈ Xj,

(5.4)

with Xj a nonempty, closed, convex subset of IRd and φj a differentiable convex function
defined on a open set containing Xj. Then

∂fj(xj) =

{
∇φj(xj) + NXj

(xj) if xj ∈ Xj,
∅ if xj /∈ Xj.

(5.5)

In other words, the relation Rj = ∂fj is of primal VI-type (4.1) with Fj = ∇φj (this
mapping being continuous, because any differentiable convex function is continuously
differentiable). Then Primal Problem 1 corresponds to minimizing

∑
j∈J φj(xj) subject

to xj ∈ Xj and yi = bi.
Other cases, where Rj is of dual VI-type, or where Si is of primal or dual VI-

type, can be identified in like manner. This reveals the extent to which the variational
inequalities developed for Equilibrium Problems 1 and 2 in Theorems 4 and 5 can
be viewed as coming from optimization with convexity. It should be noted that the
primal-dual variational inequalities correspond to the saddle point problems.

6. EQUILIBRIUM AS FINDING A ZERO OF A MAPPING

It was seen in formulation (VI′′) of the standard variational inequality problem that
such a problem in IRN can be stated as the “zero problem”

(ZP) find z̄ satisfying 0 ∈ T (z̄)
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for a certain mapping T : IRN →→ IRn. If the variational inequality is monotone,
this mapping T is maximal monotone by Theorem 1. When Equilibrium Problems
1 and 2 reduce to variational inequalities in the manner of Theorems 4 and 5, they
fit this pattern in particular. We will demonstrate now, though, that these problems
always have an expression as (ZP), even when they lie beyond the scope of variational
inequalities, and that in their maximal monotone versions the associated mappings T
are maximal monotone—under mild assumptions.

Our motivation for this effort, beyond the nicety of tying several ideas together, is
that many computational methods have been developed for solving (ZP), even with T
not single-valued. The results open the way to applying those methods to Equilibrium
Problems 1 and 2.

As background we will need the following fact about the effective domain and range
of a maximal monotone mapping.

Theorem 11 (Minty [7])
The effective domain dom T and effective range rge T of any maximal monotone

mapping T : IRn →→ IRN are almost convex, in the sense that the sets C = cl ( dom T )
and D = cl ( rge T ) are convex and such that dom T ⊃ ri C and rge T ⊃ ri D.

Because of this property of dom T and rge T we can speak of the relative interiors
ri ( dom T ) and ri ( rge T ), these being the same as the relative interiors of the convex
sets C and D in Theorem 11. When T = ∂f for a convex, proper, lsc function f : IRN →
IR (cf. Theorem 6), one has ri ( dom T ) = ri ( dom f) and ri ( rge T ) = ri ( dom f ∗), see
[1], Thm. 23.4.

Theorem 12 (Rockafellar [3], Thm. 2)
If T1 : IRN →→ IRN and T2 : IRN →→ IRN are maximal monotone and such that

ri ( dom T1) ∪ ri ( dom T2) 6= ∅, then the mapping T = T1 + T2 likewise is maximal
monotone.

This result holds not only for the sum of two mappings, but any number. A proof
by induction is immediate from the fact that for convex sets C1, . . . , Cr one has

ri (C1 ∩ · · · ∩ Cr) = ri C1 ∩ · · · ∩ ri Cr when ri C1 ∩ · · · ∩ ri Cr 6= ∅,

cf. [1], Thm. 6.5.

Theorem 13 (Equilibrium Problem 2 as a Zero Problem)
(a) (primal case). Equilibrium Problem 2 can be identified with (ZP) in the case of

z = (x, y) and the mapping

T (z) =

{
(R1(x1), . . . , Rn(xn), S1(y1), . . . , Sm(ym)) + L⊥ if z ∈ L,
∅ if z /∈ L,

where L = {(x, y) | y = Ex }, so that L⊥ = {(v, u) | v = −ET u }. In the maximal
monotone version of Equilibrium Problem 2, T is maximal monotone as long as there
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exists a flow x̃ with divergence ỹ such that x̃j ∈ ri ( dom Rj) for all j ∈ J and ỹi ∈
ri ( dom Si) for all i ∈ I.

(b) (dual case). Equilibrium Problem 2 can be identified with (ZP) in the case of
z = (v, u) and the mapping

T (z) =

{
(R−1

1 (v1), . . . , R
−1
n (vn), S−1

1 (u1), . . . , S
−1
m (um)) + L⊥ if z ∈ L,

∅ if z /∈ L,

where L = {(v, u) | v = −ET u }, so that L⊥ = {(x, y) | y = Ex }. In the maximal
monotone version of Equilibrium Problem 2, T is maximal monotone as long as there
exists a potential ũ with tension ṽ such that ṽj ∈ ri ( rge Rj) for all j ∈ J and ũi ∈
ri ( rge Si) for all i ∈ I.

(c) (primal-dual case). Equilibrium Problem 2 can be identified with (ZP) in the
case of z = (x, u) and the mapping

T (z) = (R1(x1), . . . , Rn(xn), S−1
1 (u1), . . . , S

−1
m (um)) + (ET u,−Ex).

In the maximal monotone version of Equilibrium Problem 2, T is maximal monotone.

Proof. In all cases the equivalence of (ZP) with Equilibrium Problem 2 is elementary.
What we have to verify are the maximal monotonicity assertions. For these we will rely
on Theorem 12. In (a), let

T1(z) = (R1(x1), . . . , Rn(xn), S1(y1), . . . , Sm(ym)),

T2(z) =
{

L⊥ if z ∈ L,
∅ if z /∈ L.

Clearly T = T1+T2. The maximal monotonicity of T1 follows at once from that of every
Rj and Si. That of T2 is seen from Theorem 1 with F (z) ≡ 0 through the fact that
T2(z) = NL(z). Alternatively, T2 is maximal monotone by Theorem 6 because T2 = ∂δL

for the indicator function δL (which has the value 0 on L but ∞ everywhere else). We
have dom T2 = L, a set which is its own relative interior, whereas dom T1 is the product
of the sets dom Rj and dom Si. The assumption in (a) about x̃ is equivalent therefore
to the assumption that ri ( dom T1) ∩ ri ( dom T2) 6= ∅, and Theorem 12 then gives us
the maximal monotonicity of T .

Similarly in (b), let

T1(z) = (R−1
1 (x1), . . . , R

−1
n (xn), S−1

1 (y1), . . . , S
−1
m (ym)),

T2(z) =
{

L⊥ if z ∈ L,
∅ if z /∈ L.

Again, T = T1 +T2. The maximal monotonicity of T1 is implied by that of every Rj and
Si. The maximal monotonicity of T2 is justified by the same arguments used in case
(a). We have dom T2 = L = ri dom T2, while dom T1 is the product of the sets rge Rj

and rge Si. The assumption in (b) about ũ means that ri ( dom T1) ∩ ri ( dom T2) 6= ∅,
and it thus guarantees through Theorem 12 the maximal monotonicity of T .
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In case (c) we get T = T1 + T2 by taking

T1(z) = (R1(x1), . . . , Rn(xn), S−1
1 (u1), . . . , S

−1
m (um)),

T2(z) = (ET u,−Ex).

Here T1 is maximal monotone when Rj and Si are maximal monotone for all j and i. On
the other hand, T2 is maximal monotone by Theorem 1 as invoked for the linear mapping
F (z) = (ET u,−Ex) with Z taken to be the whole space (so that NZ(z) = {0} for all z).
Then dom T2 is the whole space, so that the condition ri ( dom T1)∩ ri ( dom T2) 6= ∅ is
satisfied trivially. Hence T is maximal monotone by Theorem 12. 2

Theorem 14 (Equilibrium Problem 1 as a Zero Problem)
(a) (primal case). Equilibrium Problem 1 can be identified with (ZP) in the case of

z = x and the mapping

T (z) =

{
(R1(x1), . . . , Rn(xn)) + {v | ∃u, v = −ET u} if Ex = b,
∅ if Ex 6= b.

In the maximal monotone version of Equilibrium Problem 1, T is maximal monotone
as long as there exists a flow x̃ with Ex̃ = b and x̃j ∈ ri ( dom Rj) for all j ∈ J .

(b) (dual case). Equilibrium Problem 1 can be identified with (ZP) in the case of
z = (v, u) and the mapping

T (z) =

{
(R−1

1 (v1), . . . , R
−1
n (vn), b1, . . . , bm) + L⊥ if z ∈ L,

∅ if z /∈ L,

where L = {(v, u) | v = −ET u }, so that L⊥ = {(x, y) | y = Ex }. In the maximal
monotone version of Equilibrium Problem 1, T is maximal monotone as long as there
exists a potential ũ with tension ṽ such that ṽj ∈ ri ( rge Rj) for all j ∈ J .

(c) (primal-dual case). Equilibrium Problem 1 can be identified with (ZP) in the
case of z = (x, u) and the mapping

T (z) = (R1(x1), . . . , Rn(xn), b1, . . . , bm) + (ET u,−Ex).

In the maximal monotone version of Equilibrium Problem 1, T is maximal monotone.

Proof. We specialize Theorem 13 here to (3.4). 2
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