
Mathematical Programming: State of the Art 1994 (J.R. Birge and K.G. Murty, editors),
University of Michigan Press, Ann Arbor, 1994, pp. 248–258.

NONSMOOTH OPTIMIZATION

Terry Rockafellar, University of Washington

A function is smooth if it is differentiable and the derivatives are continuous. More
specifically, this is first-order smoothness. Second-order smoothness means that second-
derivatives exist and are continuous, and so forth, while infinite smoothness refers to
continuous derivatives of all orders. From this perspective a nonsmooth function only
has a negative description—it lacks some degree of properties traditionally relied upon
in analysis. One could get the impression that “nonsmooth optimization” is a subject
dedicated to overcoming handicaps which have to be faced in miscellaneous circumstances
where mathematical structure might be poorer than what one would like. But this is far
from right.

Instead, nonsmooth optimization typically deals with highly structured problems, but
problems which arise differently, or are modeled or cast differently, from ones for which
many of the mainline numerical methods, involving gradient vectors and Hessian matri-
ces, have been designed. The nonsmoothness can be primary, in the sense of resulting
from something deep in the nature of the application at hand, or secondary through the
introduction of penalty expressions or various technical subproblems. Anyway, a strong
argument can be made for the notion that nonsmoothness in optimization is very often a
question of modeling, and due to the prevalence of inequality constraints, is present any-
way in almost all problems of importance, at least in the background. The issue from that
angle is simply how to make use of available structure in the best possible way. Nonsmooth
optimization gives the message that many effective approaches are possible, and one need
not be confined to a classical view of how functions are to be approximated and evaluated.

Because nonsmoothness has different manifestations and treatments, one shouldn’t
imagine that numerical techniques in nonsmooth optimization can act as “black boxes.”
Techniques are developed for the particular structures that compensate for the absence of
differentiability. It’s important therefore to understand the source of any nonsmoothness,
before deciding how it might be handled. Providing an overview of this issue is one of
the main goals in these notes, along with painting a broad picture of the applications and
computational ideas characteristic of nonsmooth optimization.
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The central fact is that when functions are defined in terms of operations of maximiza-
tion or minimization, in contrast to long-familiar operations of calculus like composition,
addition and integration, they may well fail to inherit the smoothness enjoyed by the func-
tions or mappings serving as “ingredients” in the definition. The theory of nonsmooth
optimization is largely concerned therefore with extensions of calculus to cover such func-
tions, for instance in terms of generalized directional derivatives and subgradients, and
approximation methodology that can be substituted for nonexistent Taylor expansions of
first or second order.

Functions with an envelope representation. One of the most common situations is
that of minimizing a function f having a representation of the form

f(x) = max
s∈S

φs(x) for x ∈ Rn, (1)

where S is some index set, finite or infinite—perhaps a subset of Rd as a parameter space—
and φs(x) is smooth with respect to x. The likely nonsmoothness of f in such circumstances
can be addressed in more than one way.

When S is finite, the minimization of f over a subset C of Rn can be approached
in principle by reformulating the given problem in a higher dimensional space. From
x = (x1, . . . , xn) ∈ Rn and an additional variable x0 ∈ R, one can put together vectors
x̃ = (x0, x1, . . . , xn) ∈ Rn+1 and look instead to minimizing f0(x̃) = x0 over all x̃ ∈ C̃ =
R× C that satisfy the constraints

fs(x̃) ≤ 0 for each s ∈ S, where fs(x̃) = −x0 + φs(x1, . . . , xn). (2)

Here f0 and the constraint functions fs are smooth, so the problem has been placed in a
standard setting. Additional constraints, only in the variables x1, . . . , xn, may of course
express the set C.

Although this is possible for any finite index set S, the question is whether it is the best
way to proceed, and the answer hinges on the size of S as well as the viability of techniques
for minimizing f directly. Clearly, when S is very large the proposed reformulation is no
panacea. A huge number of constraints, especially nonlinear constraints, isn’t easy to
cope with. The idea becomes attractive of working instead with subproblems in which a
convenient local approximation to f , generated somehow from the envelope representation
(1), is minimized over C.

When S is infinite, of course, the reformulation leads to an infinite constraint system
and a problem of the kind known as semi-infinite programming. Indeed, semi-infinite
programming could well be classified as the branch of nonsmooth optimization in which
this tactic is applied to an objective function, or possibly an inequality constraint function,
having an envelope representation.

The drawback to converting a problem with infinite or very large S to semi-infinite
programming, or almost semi-infinite programming, is not only that dual dimensionality is
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increased, but that the focus is shifted away from properties of f that might otherwise be
put to very good use. This is where ideas for generating approximations to f get interesting.
For an introduction to direct numerical methods in this subject (about which we’ll have
more to say later), the books of Kiwiel [1], Shor [2], and Hiriart-Urruty/Lemarechal [3] are
suggested together with the paper of Zowe [4].

Eigenvalue functions. Consider an m×m symmetric matrix A(x) with entries depend-
ing smoothly on x = (x1, . . . , xn) as parameter vector, and let λ1(x) ≥ λ2(x) ≥ · · · ≥ λm(x)
be the associated eigenvalues (where multiple eigenvalues are repeated). Many applications
of optimization involve minimizing a function

f(x) = g
(
λ1(x), · · · , λm(x)

)
, (2)

where g is smooth on Rm, or handling a constraint f(x) ≤ 0 for such a function. A
particularly important case is f(x) = λ1(x), where g(u1, . . . , um) = u1.

Good insights into this situation are provided through the fact that the functions

Λk(x) = λ1(x) + · · ·+ λk(x) for k = 1, . . . ,m

have the envelope representation

Λk(x) = max
P∈Pk

tr
(
PA(x)P

)
, (3)

where Pk is the set of all symmetric m × m matrices P with rank k such that P 2 = P

(i.e., all matrices corresponding to projection mappings onto linear subspaces of Rm of
dimension k), and “tr” denotes the trace of a matrix (the sum of its diagonal entries).
This fits the pattern of (1) with Pk as the space S, the “indices” s being matrices P , and
φP (x) = tr(PA(x)P ). Obviously one has

λ1(x) = Λ1(x), λk(x) = Λk(x)− Λk−1(x) for k = 2, . . . ,m,

so f can just as easily be expressed in the form h
(
Λ1(x), . . . ,Λm(x)

)
for h(v1, . . . , vm) =

g(v1, v2 − v1, . . . , vm − vm−1).
Especially to be noted is the case where the entries aij(x) of A(x) depend affinely on

x, since then tr(PA(x)P ) is affine in x, and it follows that Λk(x) is convex in x. This
implies λ1(x) is convex in x, while λ2(x), . . . , λm−1(x) are difference-convex (the difference
of two convex functions); λm(x) is actually affine.

In envelope representations of type (3) the index set is a certain compact continuum
within a finite-dimensional vector space. Simple discretization would be ill advised, since
it would effectively remove the problem from the realm of eigenvalues, where the algebraic
foundations are very rich.
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Eigenvalue problems also arise for nonsymmetric matrices A(x) and in this case are
tougher, because envelope representations aren’t at hand. A deeper foray into nonsmooth
analysis is required then in identifying the right properties to work with.

For a start on understanding recent work in this branch of nonsmooth optimization,
papers of Overton [5] and Overton/Womersely [6] are helpful.

Lagrangian relaxation and decomposition. A major area leading to nonsmooth op-
timization is that of decomposition schemes for problems of convex type through Lagrange
multipliers. These are closely related to Lagrangian relaxation schemes for getting lower
bounds to the minimum in problems of nonconvex or combinatorial type.

Starting from a primal problem in which f0(x) is to be minimized over a subset
X ⊂ Rn subject to constraints fi(x) ≤ 0 for i = 1, . . . ,m, we suppose that X is compact
and that the functions fi are all smooth. (We stick to inequality constraints for simplicity,
and suppose that a feasible solution exists.) The ordinary Lagrangian function associated
with this problem is

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x) for y = (y1, . . . , ym) ∈ Rm
+ ,

and the ordinary Lagrangian dual problem takes the form

maximize g(y) over y ∈ Rm
+ , where g(y) = min

x∈X
L(x, y).

In general, the optimal value in the primal problem (which is finite under the given as-
sumptions) is bounded below by g(y) for any y ∈ Rm

+ ; the supremum over all such lower
bounds is the optimal value in the dual problem. In some circumstances, notably the case
where X and the functions f0, f1, . . . , fm are all convex, the primal optimal value is known
to equal the dual optimal value—the greatest lower bound is then exact. When that holds,
and ȳ is an optimal solution to the dual, the solutions to the primal are precisely the
vectors x̄ among those that minimize L(x, ȳ) over x ∈ X that happen to satisfy the other
primal constraints as well.

Whether the primal problem exhibits convexity or not, there’s incentive for possibly
trying to solve the dual problem as a means of approaching the primal problem, or at least
gaining information about it. This is especially true in situations where for some reason
the primal problem is difficult to tackle directly because of the constraints fi(x) ≤ 0.

Subproblems in which L(x, y) is minimized over x ∈ X for some choice of y are called
relaxed problems because, in comparison with the primal problem, they don’t deal with the
constraints fi(x) ≤ 0 but instead try to reflect them in a modified objective function. The
optimal value in such a subproblem is, of course, the dual objective value g(y). Solving a
relaxed problem thus produces a lower bound to the primal objective value, which might be
very useful. This is important for instance in combinatorial optimization problems where
X is a discrete set.
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To go from a lower bound g(y) to a better lower bound g(y′), one obviously has
to employ techniques for making an “ascent” on g. The important thing here is that g
may be well be nonsmooth. On the other hand, the definition of g furnishes an envelope
representation (of minimum instead of maximum type) in which the “indices” are the
vectors x ∈ X and the functions φx(y) = L(x, y) are affine in y. Thus, g is always
concave in this situation, and the strategies that can be utilized toward maximizing g over
Rm

+ are those of convex programming as adapted to handling functions with an envelope
representation.

Decomposition methodology puts an additional twist on this. The best-known case of
decomposition uses Lagrange multipliers to take advantage of separability. Suppose in the
primal problem that the vector x ∈ Rn has a natural partition into a number of vector or
scalar components: let’s write x = (x1, . . . , xr), where the components xk belong to spaces
Rnk (with n1 + · · ·+ nr = n). Suppose further that

fi(x) = fi1(x1) + · · ·+ fir(xr) for i = 0, 1, . . . ,m,

X = X1 × · · · ×Xr with Xk ⊂ Rnk .

The sets Xk could have constraint representations as well, but for now that kind of detail
is unnecessary. The Lagrangian then enjoys the special structure

L(x, y) =L1(x1, y) + · · ·+ Lr(xr, y)

with Lk(xk, y) = f0k(xk) + y1f1k(xk) + · · ·+ ymfmk(xk),

and in the dual problem one has

g(y) = g1(y) + · · ·+ gr(y) with gk(y) = min
xk∈Xk

Lk(xk, y).

Solving the dual problem amounts therefore to maximizing g1(y)+ · · ·+gr(y) over y ∈ Rm
+

in a context where every function gk has its own envelope representation with parameter
index xk ∈ Xk.

Penalty expressions and composite optimization. Penalty terms have most often
been viewed as a technical device for dealing with constraints in certain situations, such as
within a numerical method. But in applications where caution must carefully be exercised
when admitting hard constraints, such as stochastic programming, they have modeling
advantages as well, cf. [7], [8].

In proceeding from a problem of minimizing f0(x) over all x ∈ X ⊂ Rn such that
fi(x) ≤ 0 for i = 1, . . . ,m, one can contemplate solving instead a problem of the form

minimize f(x) = f0(x) + ρ1

(
f1(x)

)
+ · · ·+ ρm

(
fm(x)

)
over all x ∈ X, (4)

where each ρi is a convex function on R with ρi(0) = 0. It’s helpful in this to allow ρi to
take on the value ∞, with the understanding that (4) carries the implicit side condition
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that fi(x) should belong to the interval in R where ρi <∞. The original problem can be
identified with having ρi(ui) = 0 when ui ≤ 0 but ρi(ui) = ∞ when ui > 0. The extreme
discontinuity of ρi in this case underscores the fragility of modeling with hard constraints
unless this is strictly necessary.

As alternatives to hard constraints there are rich possibilities. The first that come to
mind are classical linear or quadratic penalty terms like ri max{0, fi(x)} or rifi(x)2 with
ri > 0 as penalty parameter. But ordinary Lagrangian terms yifi(x) fit the picture too,
as do augmented Lagrangian terms, which combine multiplier expressions with ultimately
quadratic expressions in a piecewise linear-quadratic function ρi with yi and ri both as
parameters. Still other possibilities for ρi are barrier expressions or piecewise linear expres-
sions in fi like ρi

(
fi(x)

)
= y+

i fi(x) when fi(x) ≥ 0, ρi

(
fi(x)

)
= y−i fi(x) when fi(x) ≤ 0,

in which the parameter values y+
i and y−i (with y+

i ≥ y−i ) specify upper and lower bounds
to the range of “shadow prices” to be allowed. Again, such a form of expression might be
amalgamated with others.

In general, one can think of the usefulness of convex functions ρi that are finite on a
certain interval, which is partitioned perhaps into subintervals on which ρi has different
formulas. Although ρi is continuous over the entire interval, its first or second derivatives
may not be. Then ρi exhibits nonsmoothness, and so too does the function f in (4) that
needs to be minimized over X. (Constraints not softened by ρ expressions can be imagined
here as incorporated into the specification of X.)

Beyond problems of type (4) there are formats involving composition in a broader
manner:

minimize f(x) = f0(x) + ρ
(
f1(x), . . . , fm(x)

)
over x ∈ X, (5)

where ρ is a convex but generally nonsmooth function on Rm. All such problem models
belong to composite optimization, an important branch of nonsmooth optimization.

A nonsmooth function f of the kind in (4), in which the fi’s themselves are smooth
and ρi’s are relatively simple, has many nice properties which can easily be derived and
put to use in minimization, for instance in mimicking something like steepest descent. But
that’s not the only way to go. Techniques of composite optimization focus instead on
generating approximations to f in (4) or (5) by preserving ρ while making approximations
to each fi.

Subgradients and subderivatives. Numerical techniques in nonsmooth optimization
can be divided roughly into two categories. In direct methods, local properties of the
function to be minimized or maximized are developed through variational analysis, in-
cluding convex analysis, and are utilized in a scheme that emulates well known primal
approaches to optimization such as steepest descent, conjugate gradients, and so forth. In
indirect methods, modes of approximation arising from Lagrangian functions of one sort
or another dominate the scene.

Direct methods depend on the fact that most nonsmooth functions in applications
aren’t just “bad” functions but have firm handles like envelope representations. We’ll
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sketch briefly what such a representation in the notation (1) provides. We assume in this
that S is a compact space and φs(x) has first-order derivatives in x with these derivatives
depending continuously on x and s together. These conditions are trivially satisfied when
S is a finite set (in the “discrete topology”) and φs(x) is continuously differentiable in s.

First of all, the assumptions guarantee the existence of one-sided directional derivatives
that are especially well behaved. At each point x̄ and for each vector w̄ the limit

df(x̄)(w) = lim
t↘ 0, w→w̄

f(x̄+ tw)− f(x̄)
t

(6)

exists finitely and depends upper semicontinuously on (x̄, w̄), in fact continuously on w̄.
Moreover df(x̄), as a function on Rn—called the subderivative function for f at x̄)—is
sublinear, hence convex:

df(x̄)(w1 + w2) ≤ df(x̄)(w1) + df(x̄)(w2), df(x̄)(λw) = λdf(x̄)(w) when λ > 0.

The envelope representation furnishes moreover the formula

df(x̄)(w̄) = max
s∈Sx̄

∇φs(x̄)·w̄ where Sx̄ = argmaxs∈S φs(x̄). (7)

(In other words, Sx̄ is the set of s ∈ S at which the maximum in the envelope formula (1)
for f(x̄) is attained.) Secondly, the closed convex set

∂f(x̄) =
{
v ∈ Rn

∣∣v ·w ≤ df(x̄)(w) for all w ∈ Rn
}
, (8)

which is called the subgradient set for f at x̄, is nonempty and compact, and it and
depends upper semicontinuously on x̄, in the sense that the graph of the set-valued mapping
x 7→ ∂f(x) is closed in Rn × Rn. Furthermore, from the envelope representation one has
(with “con” standing for convex hull)

∂f(x̄) = con
{
∇φs(x̄)

∣∣x ∈ Sx̄

}
. (9)

From these formulas it’s evident that to calculate a subgradient of f at x̄, all one has
to do is determine a single element s̄ ∈ Sx̄; then v = ∇φs̄(x̄). This requires carrying out
the maximization of φx(x̄) with respect to s ∈ S, a process which yields the function value
f(x̄) simultaneously. This which may be easy or hard, depending on the circumstances. In
the case of decomposition with Lagrange multipliers, for instance, where y is the variable
and x is the “index” and max is replaced by min, it corresponds to solving a family of
separate problems in which Lk(x, ȳ) is minimized with respect to xk ∈ Xk for k = 1, . . . , r.

To calculate directional derivatives of f at x̄ is harder. If (7) is to be utilized, all the
elements s ∈ Sx̄ may be needed in principle, not just one of them. It’s no wonder, then, that
direct methods of minimizing a nonsmooth function in terms of an envelope representation
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have concentrated on strategies that only require calculating a single subgradient at a
time, regarding this as an “expensive” operation, although hardly more expensive than
function evaluation. This is the pattern followed in [1]–[4]. Of course, in situations where
formulas other than (7) are available for directional derivatives, such as many problem
models in composite optimization, where function evaluation may be relatively easy as
well, the picture is different and another range of techniques can be brought into play.

Background on the mathematics of subderivatives and subgradients can be found in
[7] and the books of Clarke [10] and Rockafellar/Wets [11].

Approximations through generalized Lagrangians. In contrast to direct methods
in which a function f is minimized through its subderivatives or subgradients, it’s possible
often to follow a different path leading to the replacement of the given problem by a
sequence of easier problems generated through Lagrangian expressions. The chief domain
for this kind of approach is composite optimization, in particular the treatment of penalty
expressions.

Consider again a problem expressed in the form (4), where the modeling functions ρi

on R with values in (−∞,∞] are convex, and ρi is continuous relative to the closure of the
(nonempty) interval Di where ρi < ∞. An interesting fact of convex analysis is that for
such a function ρi there’s a dual object, a uniquely determined function ψi on R having
these same properties, and such that

ρi(ui) = sup
yi

{
yiui − ki(yi)

}
, ki(yi) = sup

ui

{
yiui − ρi(ui)

}
. (10)

In terms of Yi being the interval of R where ki <∞, the generalized Lagrangian function
associated with problem (4) is

L(x, y) =f0(x) + y1f1(x) + · · ·+ ymfm(x)− k1(y1)− · · · − km(ym)

for (x, y) ∈ X × Y, where Y = (Y1 × · · · × Ym).
(11)

This isn’t some abstraction; the specific form for ki is well known for the common forms of
ρi, and in the main cases ki is smooth on Yi, in fact typically just quadratic (with ki ≡ 0 as
a common special case, the specification of the interval Yi then being primary). Extension
to composite problems in the broader format (5) is easy, but we won’t go into that here.
An introduction to generalized Lagrangian functions is provided in Rockafellar [9].

The generalized Lagrangian in (11) has, through the first expression in (10), the
property that

f(x) = sup
y∈Y

L(x, y) for each x.

This could be viewed as furnishing another kind of envelope representation for f to which
optimization techniques already mentioned could be applied, and indeed it does if Y is
compact. A valuable insight, however, is that the generalized Lagrangian L well captures
all the smoothness that might be used in working with f . Although f may be a very
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complicated function, with its domain divided into numerous regions associated different
formulas for f(x), the function L is simple.

To understand what can be made of this, consider more closely the case where the
functions fi are twice continuously differentiable, the functions ki are at most quadratic,
and the set X is a box (perhaps all of Rn); this already covers a vast array of applications.
Then L(x, y) is twice continuously differentiable in x and y, in particular concave quadratic
or affine in y, and the set X × Y is a box in Rn ×Rm. First and second-order conditions
for the optimality of x̄ in the problem of minimizing f(x) over x ∈ X can be expressed
in terms of first and second derivatives of L at (x̄, ȳ), where ȳ is a generalized Lagrange
multiplier vector.

Analogs of sequential quadratic programming, for instance, can then be envisioned in
which, in rawest form, the idea is to generate a sequence of primal-dual pairs (xν , yν) for
ν = 0, 1, . . . by taking Lν(x, y) to be the second-order expansion of L at (xν , yν), defining
fν to be the approximation to f corresponding to this expansion, namely

fν(x) = sup
y∈Y

Lν(x, y) for each x,

and then obtaining (xν+1, yν+1) as satisfying the optimality conditions for the subproblem
minimizing fν(x) over X. (It would also be possible here to pursue notions of “trust
region” in replacing X × Y iteratively by smaller boxes Xν × Y ν .) In this kind of scheme
Lν is linear-quadratic, and the problem of fν(x) over X is said to be one of extended
linear-quadratic programming . Actually, one gets (for the same functions ρi) that

fν(x) = fν
0 (x) + ρ1

(
fν
1 (x)

)
+ · · ·+ ρm

(
fν

m(x)
)

where fν
0 is the second-order expansion of L(x, yν) in x at xν and, for i = 1, . . . ,m, fν

i is
the first-order expansion of fi at xν .

Although problems of extended linear-quadratic programming may still display ram-
pant nonsmoothness in the primal objective function fν , they have their own characteris-
tics which facilitate computation in other ways. When convexity is present, for example,
they can be approached in terms of calculating a saddle point of L(x, y) with respect to
(x, y) ∈ X × Y . This is a subject in which many new computational ideas have recently
been developed. See for instance [12] and its references.

Parametric optimization.

Yet another important source of nonsmoothness in optimization is found in decompo-
sition schemes where a problem’s variables are divided into “easy” and “hard.” Suppose
that the ultimate goal is to

minimize f0(w, x) over all (w, x) ∈W ×X

with fi(w, x) ≤ 0 for i = 1, . . . ,m,
(12)
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where W ⊂ Rd and X ⊂ Rn. (Broader problem models on the order of (4) or (5) could be
regarded in the same light.) Imagine that w stands for the “easy” variables, in the sense
that for any fixed x ∈ X it’s relatively easy to compute

f(x) = minimum of f0(w, x) in w ∈W
subject to fi(w, x) ≤ 0, i = 1, . . . ,m.

(13)

Then there is the residual problem of minimizing f(x) over x ∈ X. If an optimal solution
x̄ can somehow be found for that, an optimal solution to the underlying problem (12) will
be given by (w̄, x̄) for any w̄ solving (13) for x = x̄.

The main obstacle in this situation is, of course, the nonsmoothness of f . The hope
is that information pertinent to minimizing f over X can be gleaned from calculations in
the subproblems (13) for various choices of x. When W , X, and all the functions fi are
convex, f is at least convex, and special techniques can be used. It may be possible to
proceed by dualizing (13) to obtain an envelope representation for f , which for instance
is the approach of Benders decomposition. In general, though, an envelope representation
may not be obtainable. This kind of nonsmoothness is then the most difficult to handle,
because f doesn’t have nice subderivatives and subgradients as described above in terms
of such a representation. In certain cases such as those reviewed by Gauvin [13], Lagrange
multipliers provide relatively accessible knowledge about directional derivatives. More
generally the concepts of subderivative and subgradient have robust extensions to such a
context (see [10] and [11]), but their utilization in effective methods of computation has
hardly yet been explored.

Nonsmoothness of other orders. The discussion has revolved around nonsmoothness
in a function f that one wishes to minimize, but other forms of nonsmoothness arise in
areas of optimization where optimality conditions from one problem are introduced as
constraints in another problem, or simply when attempts are made to solve first-order
optimality conditions as if they resembled a system of nonlinear equations. This is the
subject of generalized equations.

As a key example, a problem of the broad type (4), which covers traditional optimiza-
tion problems as the case where ρi is 0 on (−∞, 0] or [0, 0] but ∞ elsewhere, has first-order
optimality expressible in terms of the generalized Lagrangian (11) by

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇xL(x̄, ȳ) ∈ NY (ȳ), (14)

where NX(x̄) is the normal cone to X at x̄ and NY (ȳ) is the normal cone to Y at ȳ. When
X and Y are boxes, for instance, these normal cone conditions reduce to sign conditions
on the components of x̄ and ȳ and the partial derivatives of L. The pairs (x̄, ȳ) are the
generalized Kuhn-Tucker points associated with the problem.

Consider in this vein the sets
G =

{
(x, y, u, v) ∈ Rn ×Rn ×Rn ×Rn

∣∣
−∇xL(x̄, ȳ) + v ∈ NX(x̄), ∇xL(x̄, ȳ)− u ∈ NY (ȳ)

}
,

M =
{
(x, y, u, v) ∈ Rn ×Rn ×Rn ×Rn

∣∣u = 0, v = 0
}
.
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Trying to determine (x̄, ȳ) can be viewed as trying to find an element (x̄, ȳ, ū, v̄) ∈ G∩M .
The idea comes up then of devising algorithms patterned after ones that might work if
G were a smooth manifold given by nice, nondegenerate equations. For instance, one
can imagine creating a sequence of local first-order approximations Gν to G at points
(xν , yν , uν , vν), where in basic concept (xν+1, yν+1, uν+1, vν+1) is determined as a point of
Gν ∩M in a Newton-like scheme.

The challenge here is that G isn’t just a smooth manifold, and doesn’t have first-
order approximations in the sense of classical linearizations. It’s a nonsmooth manifold,
moreover of a kind requiring an advanced form of nonsmooth analysis. But actually the
properties of G are convenient and attractive nevertheless. Natural and simple first-order
approximations do exist. In particular, these can be obtained through linearizing ∇L, i.e.,
working in effect with quadratic approximations to L as already discussed.

An introduction to the methodology being developed for solving nonsmooth equations
is furnished in Pang/Qi [14].

References

1. K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes
in Math. 1133, Springer-Verlag, Berlin, 1985.

2. N. Z. Shor, Minimization Methods for Non-Differentiable Functions, Springer-Verlag,
Berlin, 1985.
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