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Abstract. These lecture notes review the basic properties of Lagrange multipliers and
constraints in problems of optimization from the perspective of how they influence the
setting up of a mathematical model and the solution technique that may be chosen. Con-
ventional problem formulations with equality and inequality constraints are discussed first,
and Lagrangian optimality conditions are presented in a general form which accommodates
range constraints on the variables without the need for introducing constraint functions
for such constraints. Particular attention is paid to the distinction between convex and
nonconvex problems and how convexity can be recognized and taken advantage of.

Extended problem statements are then developed in which penalty expressions can be
utilized as an alternative to black-and-white constraints. Lagrangian characterizations of
optimality for such problems closely resemble the ones for conventional problems and in
the presence of convexity take a saddle point form which offers additional computational
potential. Extended linear-quadratic programming is explained as a special case.



1. FORMULATION OF OPTIMIZATION PROBLEMS

Everywhere in applied mathematics the question of how to choose an appropriate mathe-
matical model has to be answered by art as much as by science. The model must be rich
enough to provide useful qualitative insights as well as numerical answers that don’t mis-
lead. But it can’t be too complicated or it will become intractable for analysis or demand
data inputs that can’t be supplied. In short, the model has to reflect the right balance
between the practical issues to be addressed and the mathematical approaches that might
be followed.

This means, of course, that to do a good job of formulating a problem a modeler
needs to be aware of the pros and cons of various problem statements that might serve
as templates, such as standard linear programming, quadratic programming, and the like.
Knowledge of which features are advantageous, versus which are potentially troublesome,
is essential. In optimization the difficulties can be all the greater because the key ideas are
often different from the ones central to rest of applied mathematics. For instance, in many
subjects the crucial division is between linear and nonlinear models, but in optimization it
is between convex and nonconvex. Yet convexity is not a topic much treated in a general
mathematical education.

Problems of optimization always focus on the maximization or minimization of some
function over some set, but the way the function and set are specified can have a great
impact. One distinction is whether the decision variables involved are “discrete” or “con-
tinuous.” Discrete variables with integer values, in particular logical variables which can
only have the values 0 or 1, are appropriate in circumstances where a decision has to be
made whether to build a new facility, or to start up a process with fixed initial costs.
But the introduction of such variables in a model is a very serious step; the problem may
become much harder to solve or even to analyze. Here we’ll concentrate on continuous
variables.

The conventional way to think about an optimization problem in finitely many contin-
uous variables is that a function f0(x) is to be minimized over all the points x = (x1, . . . , xn)
in some subset C of the finite-dimensional real vector space lRn. (Maximization is equiva-
lent to minimization through multiplication by −1.) The set C is considered to be specified
by a number of side conditions on x which are called constraints, the most common form
being equality constraints fi(x) = 0 and inequality constraints fi(x) ≤ 0. As a catch-all
for anything else, there may be an “abstract constraint” x ∈ X for some subset X ⊂ lRn.
For instance, X can be thought of as indicating nonnegativity conditions, or upper and
lower bounds, on some of the variables xj appearing as components of x. Such conditions
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could be translated one by one into the form fi(x) ≤ 0 for additional functions fi, but this
may not be convenient.

The conventional statement of a general problem of optimization from this point of
view is

(P)
minimize f0(x) over all x ∈ X

such that fi(x)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s + 1, . . . ,m.

The points x satisfying the constraints in (P) are called the feasible solutions (i.e., candi-
dates for solutions) to the problem. They form a certain set C ⊂ lRn, and it is over this
that the function f0 is to be minimized. A point x̄ ∈ C is a (globally) optimal solution to
(P) if f0(x̄) ≤ f0(x) for all x ∈ C. It is a locally optimal solution if there is a neighborhood
V of x̄ such that f0(x̄) ≤ f0(x) for all x ∈ C∩V . The optimal value in (P) is the minimum
value of the objective function f0 over C, as distinguished from the point or points where
it’s attained, if any.

In dealing with a problem in the format of (P), people usually take for granted that
the functions f0, f1, . . . , fm are second-order smooth (i.e., have continuous second par-
tial derivatives). We’ll do that too, but there are important modeling issues here that
shouldn’t be swept under the rug. We’ll return to them in Section 3 in discussing how
penalty expressions may in some situations be a preferable substitute for “exact” equality
or inequality constraints of the sort in (P).

Concerning the set X, we’ll assume here for simplicity that it’s polyhedral , or in other
words, definable in terms of a finite system of linear constraints, these being conditions that
could , if we so wished, be written in the form fi(x) ≤ 0 or fi(x) = 0 for additional functions
fi that are affine (linear-plus-constant). The main example we have in mind is the case
where X is a box , X = X1 × · · · × Xn with Xj a closed (nonempty but not necessarily
bounded) interval in lR. Then, of course, the condition x ∈ X reduces to xj ∈ Xj for
j = 1, . . . , n. If Xj = [0,∞) the condition xj ∈ Xj requires xj to be nonnegative. If
Xj = [aj , bj ], it requires xj to lie between the bounds aj and bj . If Xj = (−∞,∞) it
places no restriction on xj . The latter case is a reminder that even the general condition
x ∈ X in (P) doesn’t necessarily restrict x, because we can always take X to be all of
lRn when we want to deal in effect with constraints of type fi(x) ≤ 0 or fi(x) = 0 only.
The whole space lRn is considered to be a polyhedral subset of lRn, as is the empty set ∅;
singleton sets (consisting of exactly one point) are polyhedral as well.

A technical point that shouldn’t be overlooked in setting up a model is the existence
of a solution. If that isn’t guaranteed by the formulation, something’s wrong; note that
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the issue isn’t whether the “application” has a solution in some sense (e.g. the existence
in principle of a best mode of operating a given system), but whether the mathematical
description of the problem is adequate. Under the assumptions we have given for (P)
a simple condition guaranteeing the existence of at least one optimal solution, provided
there is at least one feasible solution, is the boundedness of the set X. (Boundedness of
X means that for each coordinate xj of x, there is an upper bound to xj as x ranges over
X and also a lower bound.) A more flexible criterion would be the boundedness, for each
µ > 0, of the set of all x ∈ X satisfying fi(x) ≤ µ for i = 0, 1, . . . , s and |fi(x)| ≤ µ for
i = s + 1, . . . ,m.

Convexity has already been mentioned as a critical property in optimization which
needs to be recognized and taken advantage of as far as possible when it is present. A set
C ⊂ lRn is said to be convex if it contains along with any two different points the line
segment joining those points:

x ∈ C, x′ ∈ C, 0 < t < 1 =⇒ (1− t)x + tx′ ∈ C. (1.1)

(In particular, the empty set is convex, as are sets consisting of a single point.) A real-
valued function f on lRn is called convex if it satisfies the inequality

f
(
(1− t)x + tx′

)
≤ (1− t)f(x) + tf(x′) for any x and x′ when 0 < t < 1. (1.2)

It’s concave if the opposite inequality always holds, and affine under equality; the affine
functions f : lRn → lR have the form f(x) = v·x + const. Finally, f is strictly convex if
“≤” can be replaced by “<” in (1.2); it’s strictly concave in the case of “>.”

Convexity is a large subject which can barely be touched on here; a book with many
details is [1]. The importance of convexity in optimization comes from the following crucial
properties.

Theorem 1.1.

(a) In minimizing a convex function f0 over a convex set C, every locally optimal

solution x̄ (if there is one) is globally optimal.

(b) In minimizing a strictly convex function f0 over a convex set C, there can be no

more than one optimal solution.

In contrast to these properties of “convex optimization,” two major difficulties with
“nonconvex optimization” stand out. First, there is virtually no way to arrive for sure at
a globally optimal solution. There are some global optimization techniques, more or less
amounting in practice to forms of random search, but even with these one generally has

3



to be content merely with a statistical prospect of probably locating the true minimum
eventually through persistence. In practice when applying an optimization package, for
instance, one should be skeptical about any claims an optimal solution has been found, in
the absence of convexity. Just because a sequence of points generated by a method seems
to settle down and converge to something, that doesn’t necessarily mean that an optimal
solution is being approximated. This is a central issue in the analysis of algorithms. At
best, with well designed methods that are soundly based on theoretical principles, one can
hope that a locally optimal solution has been located, but that would still leave open the
possibility that some other locally optimal solution—a better one—exists nearby.

Second, there is virtually no way to know that a problem has a unique optimal so-
lution, apart from the strict convexity criterion just offered. This is even true in convex
optimization. It’s not wise therefore to speak of “the” solution to a problem of general
type. Of course, a problem may well turn out to have a unique solution; the trouble is
that we can’t know that in advance, nor in the nonconvex case can we even hope to check
whether an optimal solution already found (if that were possible) is unique.

These observations about what can go wrong without convexity might be regarded
as raising false issues, in a sense. For some practitioners, it may be enough just to use
optimization methodology to achieve improvements. Achieving the “ultimate” doesn’t
really matter. That’s true to a degree, but only in the background of a method that
provides a sequence of feasible points that get better and better. Most computational
methods for problems with nonlinear constraints only approach feasibility in the limit, and
that can open the door to various dangers. Another thing to remember is that optimization
methods often entail the repeated solution of certain subproblems, such as in determining
a good direction in which to search for improvement. One has to be careful that if such
subproblems aren’t solved to full optimality the method is still valid.

How do the properties in Theorem 1.1 connect with problem (P)? We’ll refer to the
convex case of (P) when the objective and inequality constraint functions f0, f1, . . . , fs are
convex and the equality constraint functions fs+1, . . . , fm are affine.

Theorem 1.2. In the convex case of (P) the feasible set C is convex, so the property in

Theorem 1.1(a) holds. If f0 is not just convex but strictly convex, the property in Theorem

1.1(b) holds also.

The next results review some criteria for a function to be convex. We denote by
∇f(x) the gradient of f at x, which is the vector of first partial derivatives. Similarly, we
let ∇2f(x) stand for the square matrix of second partial derivatives, called the Hessian
matrix of f at x. Recall that a matrix H ∈ lRn×n is positive semidefinite when w·Hw ≥ 0
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or all w ∈ lRn. It is positive definite when w·Hw > 0 for all w ∈ lRn, except w = 0.

Proposition 1.3. Let f be a function on lRn with continuous second derivatives.

(a) If f is convex, then ∇2f(x) is positive semidefinite for all x.

(b) If ∇2f(x) is positive semidefinite for all x, then f is convex.

(c) If ∇2f(x) is positive definite for all x, then f is strictly convex.

Proposition 1.4.

(a) If f1 and f2 are convex, then f1 + f2 is convex. If in addition either f1 or f2 is

strictly convex, then f1 + f2 is strictly convex.

(b) If f is convex and λ ≥ 0, then λf is convex. If f is strictly convex and λ > 0, then

λf is strictly convex.

(c) If f(x) = φ(g(x)) with g convex on lRn and φ is convex and nondecreasing on lR,

then g is convex on lRn. If in addition g is strictly convex and φ is increasing, then g is

strictly convex.

(d) If f(x) = g(Ax+ b) for a convex function g on lRm and an matrix A ∈ lRm× n and

a vector b ∈ lRn, then f is convex on lRn. If g is strictly convex and A has rank n, then f

is strictly convex.

(e) If f(x) = sups∈S gs(x) for a finite or infinite collection {gs}s∈S of convex functions

on lRn, then f is convex on lRn.

Later we will use these criteria in verifying the convexity of expressions defined with
penalty terms that aren’t differentiable.
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2. OPTIMALITY CONDITIONS

First-order optimality conditions for problem (P) will now be stated in terms of Lagrange
multipliers. In order to get a simple form of expression that will later be extendible to
problems with penalty functions, we use the concept and notation of normal vectors. A
more general exposition of the material in this section, complete with proofs, is available
in the expository article [2].

Definition 2.1. The (outward) normal vectors to the polyhedral set X at a point x̄ ∈ X

are the vectors v such that

v·(x− x̄) ≤ 0 for all x ∈ X.

The set of all these vectors is called the normal cone to X at and is denoted by NX(x̄).

The term “cone” refers to the fact that for any v ∈ NX(x̄) and λ ≥ 0, then λv ∈
NX(x̄). In other words, NX(x̄) is a bundle of rays emanating from the origin—unless x̄ is
an interior point of X, in which case NX(x̄) consists of the zero vector alone. In the case
where X is a box, the normal cone condition is especially easy to understand: in terms of
v = (v1, . . . , vn) ∈ lRn we have{

if x̄ ∈ X = X1 × · · · ×Xn, x̄ = (x̄1, . . . , x̄n), then

v ∈ NX(x̄) ⇐⇒ vj ∈ NXj
(x̄j) for j = 1, . . . , n.

(2.1)

When Xj is closed interval with lower bound aj and upper bound bj (these bounds possibly
being infinite), we get that

vj ∈ NXj
(x̄j) means


vj ≥ 0 if aj < x̄j = bj ,
vj ≤ 0 if ai = x̄j < bi,
vj = 0 if ai < x̄j < bi,
vj unrestricted if ai = x̄j = bi.

(2.2)

In order to state the main result about first-order optimality conditions in problem
(P), we’ll need a condition on the constraints. This condition will involve normal vectors
to the set

D =
{

u = (u1, . . . , um)
∣∣ ui ≤ 0 for i ∈ [1, s], ui = 0 for i ∈ [s + 1,m]

}
. (2.3)

The constraints in (P) can be written as

x ∈ X, F (x) ∈ D, where F (x) =
(
f1(x), . . . , fm(x)

)
. (2.4)
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Note that D is another polyhedral set, actually a box:

D = D1 × · · · ×Dm with Di =
{

(−∞, 0] for i ∈ [1, s],
[0, 0] for i ∈ [s + 1,m]. (2.5)

Definition 2.2. The basic constraint qualification at a feasible solution x̄ to problem (P)
is the condition:

(Q)

{
there is no vector ȳ = (ȳ1, . . . , ȳm) other than ȳ = 0 such that

ȳ ∈ ND

(
F (x̄)

)
, −

[
ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)

]
∈ NX(x̄).

This condition is needed to rule out situations where the constraints fail to give a
robust representation of the feasible set C around x̄. From the product form of D in (2.5),
it’s clear that

ȳ ∈ ND

(
F (x̄)

)
⇐⇒

 ȳi = 0 for i ∈ [1, s] with fi(x̄) < 0,
ȳi ≥ 0 for i ∈ [1, s] with fi(x̄) = 0,
ȳi unrestricted for i ∈ [s + 1,m].

(2.6)

Writing these sign conditions as ȳ ∈ ND

(
F (x̄)

)
is not only convenient but leads the way to

a statement of optimality conditions that can be extended later to problems incorporating
penalty expressions. Observe that if x̄ belongs to the interior of X (as is certainly true when
X = lRn), the gradient condition in (Q) reduces to

∑m
i=1 ȳi∇fi(x̄) = 0. Then (Q) becomes

the John constraint qualification [3], which is the dual form of the Mangasarian-Fromovitz
constraint qualification [4].

Optimality conditions for (P) involve the Lagrangian function

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x) for x ∈ X and y ∈ Y, (2.7)

where
Y = lRs

+ × lRm−s =
{

y = (y1, . . . , ym)
∣∣ yi ≥ 0 for i ∈ [1, s]

}
. (2.8)

Observe that Y too is a box, and

ȳ ∈ ND

(
F (x̄)

)
⇐⇒ F (x̄) ∈ NY

(
ȳ
)
. (2.9)

This equivalence is clear from (2.6) and the fact that

u ∈ NY

(
ȳ
)

⇐⇒

 ui ≥ 0 for i ∈ [1, s] with ȳi = 0,
ui = 0 for i ∈ [1, s] with ȳi > 0,

and for i ∈ [s + 1,m].
(2.10)
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Theorem 2.3. If x̄ ∈ X is a locally optimal solution to (P) at which the basic constraint

qualification (Q) is satisfied, there must exist a vector ȳ ∈ Y such that

(L) −∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

Condition (L) is the Lagrange multiplier rule in general form. Since∇yL(x̄, ȳ) = F (x̄),
the second part of (L) is simply another statement of the sign conditions in (2.6) on the
multipliers ȳi, but again one which will lead to extensions. The first part of (L) becomes
the equation ∇f0(x̄) +

∑m
i=1 ȳi∇fi(x̄) = 0 when x̄ is an interior point of X.

Although the normal cone notation here is a recent development, and the incorporation
of the abstract constraint x ∈ X a novel feature, the first-order optimality conditions in
Theorem 2.3 are basically the ones found in every textbook on optimization. They are
commonly called the Kuhn-Tucker conditions because of the 1951 paper of Kuhn and
Tucker [4], but it’s now known that the same conditions were derived in the 1939 master’s
thesis of Karush [5], which however was never published. For this reason they are also
referred to as the Karush-Kuhn-Tucker conditions.

In many applications linear constraints are very important, and then the following
variant of Theorem 2.3 is useful.

Theorem 2.4. The assertion of Theorem 2.3 remains valid when the basic constraint

qualification (Q) at x̄ is replaced by

(Q′)


the nonzero vectors ȳ ∈ Y satisfying

ȳ ∈ ND

(
F (x̄)

)
, −

[
ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)

]
∈ NX(x̄),

if any, have ȳi = 0 for each index i such that fi is not affine.

On the basis of this theorem, for instance, the multiplier rule (L) is always necessary
for optimality in problems having only linear constraints.

What dangers are there in applying Lagrangian optimization methodology in the
absence of being able to verify, when nonlinear constraints are present, that the constraint
qualification (Q) or (Q′) is definitely satisfied at an optimal solution? This depends on
the solution technique involved, but the main difficulty is that if a technique can at best
identify points singled out as candidates by the Lagrange multiplier rule, but the desired
solution is not such a point, then the technique has no hope of finding it. The technique in
combination with some kind of global search could seem indicate a particular point as the
best, but only because it is blind to the real solution. Another possibility is that numerical
instabilities may be experienced. However, there is good theoretical support for the notion
that the Lagrange multiplier rule “usually” is necessary for optimality.
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Lagrange multipliers have special properties under convexity which lead to another
level of practical usage.

Theorem 2.5. In the convex case of problem (P), the Lagrangian L(x, y) is convex in x

and concave (actually affine) in y. The multiplier rule (L) in Theorem 2.3 is equivalent

then to the condition that{
the minimum of L(x, ȳ) in x ∈ X is attained at x̄,

the maximum of L(x̄, y) in y ∈ Y is attained at ȳ.
(2.11)

This theorem supports—up to a certain degree–a popular approach called Lagrangian
relaxation, which is especially attractive in connection with ideas of decomposing a large-
scale problem by introducing appropriate “prices” to achieve a decentralization of the
decision process. Under this approach, a vector ŷ is selected, and then a vector x̂ is
obtained by minimizing L(x, ŷ) subject to x ∈ X. It is hoped that through a good choice
of ŷ a nearly optimal solution x̂ to (P) itself will generated. But is this hope justified?

According to Theorem 2.5, if an optimal solution x̄ exists and satisfies the Lagrange
multiplier rule (L) along with some vector ȳ (the latter being true when (Q) or (Q′) holds
at x̄), and if one is dealing with a convex case of (P), then x̄ will be among the vectors x̂

obtainable under the Lagrangian relaxation approach if, through luck or design, ŷ can be
chosen equal to ȳ. With strict convexity of the objective function f0, x̂ will have to be x̄,
the unique optimal solution to (P), in these circumstances. But without strict convexity
of f0, even with everything else holding, x̂ might not even satisfy the constraints of (P).

In the nonconvex case of (P), unfortunately, just about everything can go wrong in
Lagrangian relaxation. A vector x̂ obtained in this manner, even from some “ideal” choice
of ŷ, need have no relation to optimality. All that can be said then is that the minimizing
value of L(x, ŷ) as x ranges over X will be a lower bound for the optimal value (number)
associated with (P)—provided that this minimizing value is global , which as noted earlier
is very hard to guarantee without convexity. The vector x̂ offers nothing.

Incidentally, it’s interesting to note that this negative conclusion from theory doesn’t
stop economists, especially in today’s political climate, from flirting with the idea that
if only the right markets and prices could be introduced, decisions could effectively be
decentralized and society could function more efficiently. Theory provides no backing for
this concept in situations where convexity is absent, such as characterize much of the
real world. (It’s known that in the case of a very large number of small agents, such in
classical free markets, a kind of convexification is approached, but this is far from the
actual economies of developed countries.)
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Lagrangian relaxation can be understood further in connection with saddle points and
dual problems. A pair of elements x̄ and ȳ is said to give a saddle point of L on X × Y

when (2.11) holds; this can also be written as

L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y) for all x ∈ X, y ∈ Y (where x̄ ∈ X, ȳ ∈ Y ). (2.12)

This relation has a life of its own as an equilibrium condition for certain “games,” and
it leads to further properties of Lagrange multipliers which are of prime importance for
many applications. In particular it gives rise to the notion of duality in optimization. To
appreciate the meaning of duality, let’s first note that problem (P) can be viewed as the
problem of minimizing over all x ∈ X the function f defined by

f(x) =
{

f0(x) if x ∈ C,
∞ if x /∈ C,

(2.13)

where C is the set of feasible solutions to (P), and that f has the Lagrangian representation

f(x) = sup
y∈Y

L(x, y) = sup
y∈Y

{
f0(x) + y1f1(x) + . . . + ymfm(x)

}
for x ∈ X, (2.14)

where the restriction of y to Y in taking the “sup” means that the coefficients yi can be
chosen arbitrarily for the terms indexed by i = s + 1, . . . ,m, but must be nonnegative for
i = 1, . . . , s. By analogy in reversing the roles of x and y, we can state the problem:

(D) maximize g(y) = inf
x∈X

{
f0(x) + y1f1(x) + . . . + ymfm(x)

}
over y ∈ Y.

This is the optimization problem dual to problem (P) in the Lagrangian sense.

Observe that for each vector ŷ the subproblem solved to get the value g(ŷ) of the
essential objective function g in (D) is precisely the one indicated in the Lagrangian re-
laxation approach. In general g might, like f in (2.13), be extended-real-valued. To learn
more about the nature of the dual problem (D) in a given case, with particular structure
assigned to X and the fi’s, we would have to identify the set of points y where g(y) > −∞
and regard that as the feasible set in (D). Examples will be considered below, but we first
record the main facts relating problems (P) and (D).

Theorem 2.6. In the convex case of (P), the existence for x̄ of a multiplier vector ȳ

satisfying the Lagrange multiplier rule (L) is sufficient for x̄ to be a globally optimal

solution to (P). The vectors ȳ that appear in this condition along with x̄ are then precisely

the optimal solutions to the dual problem (D), and the optimal values in the two problems

agree: one has

min (P) = max (D).
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The final equation in Theorem 2.6 confirms that, for any ŷ, the value g(ŷ) is a lower
bound for the optimal value min (P), and under the right circumstances of convexity,
this lower bound can be elevated to the degree that it actually equals the desired optimal
value. Furthermore, Theorem 2.6 give the theoretical prescription to be used in designing
an algorithm to product a multiplier vector ȳ for which the equality holds. Once again,
though, without the convexity the equation between min (P) and max (D) could very well
become a strict inequality >. Then no amount of fiddling with the values of Lagrange
multipliers could be expected to produce approximate optimal solutions fo (P) through
Lagrangian relaxation.

The best known and most highly successful example of duality in optimization occurs
in linear programming , which is the case of problem (P) where the objective function is
linear, all the constraints are linear, and

X = lRr
+ × lRn−r =

{
x = (x1, . . . , xn)

∣∣ xj ≥ 0 for j ∈ [1, r]
}
. (2.15)

Adopting the notation

f0(x) = c1x1 + · · ·+ cnxn,

fi(x) = bi − ai1x1 − · · · − ainxn for i = 1, . . . m,

we can express the problem in this special case as

(P lin)
minimize c1x1 + · · ·+ cnxn subject to xj ≥ 0 for j = 1, . . . , r,

ai1x1 + · · ·+ ainxn

{
≥ bi for i = 1, . . . s,
= bi for i = s + 1, . . . ,m.

The Lagrangian function is

L(x, y) =
∑n

j=1
cjxj +

∑m

i=1
yibi −

∑m,n

i=1,j=1
yiaijxj , (2.16)

which exhibits the same kind of symmetry between the x and y arguments as appears in the
choice of X and Y . To obtain the problem dual to this, we must determine the function
g defined in (D) for this Lagrangian and see where it is finite or infinite. Elementary
calculations show that g(y) =

∑m
i=1 yibi if cj −

∑m
i=1 yiaij ≥ 0 for j = 1, . . . , r and

cj −
∑m

i=1 yiaij = 0 for j = r + 1, . . . , n, whereas g(y) = −∞ if y does not satisfy these
constraints. The dual problem therefore comes out as

(D lin)
maximize y1b1 + · · ·+ ymbm subject to yi ≥ 0 for i = 1, . . . , s,

y1a1j + · · ·+ ymamj

{
≤ cj for j = 1, . . . r,
= cj for j = r + 1, . . . , n.
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From all this symmetry it emerges that not only do the Lagrange multiplier vectors asso-
ciated with an optimal solution to (P lin) have an interpretation as optimal solutions ȳ to
(D lin), but by the same token, the Lagrange multiplier vectors associated with an optimal
solution to (D lin) have an interpretation as optimal solutions x̄ to (P lin). Each of these
problems furnishes the multipliers for the other.

Corollary 2.7 (Gale-Kuhn-Tucker Theorem [6]). If either of the linear programming

problems (P lin) or (D lin) has an optimal solution, then so does the other, and

min (P lin) = max (D lin).

The pairs (x̄, ȳ) such that x̄ solves (P lin) and ȳ solves (D lin) are precisely the ones that, for

the choice of L, X and Y corresponding to these problems, satisfy the Lagrange multiplier

rule (L), or equivalently, give a saddle point of L on X × Y .

Even for the nonconvex case of (P), the dual problem (D) has significance.

Proposition 2.8. Regardless of whether (P) is of convex type or not, the function g being

maximized over the polyhedral set Y in (D) is concave. For each y ∈ Y the value g(y) is a

lower bound to the value min (P). The greatest of such lower bounds obtainable this way

is max (D).

In other words, by selecting any y ∈ Y and then minimizing L(x, y) over x ∈ X, one
obtains a number denoted by g(y) with the property that g(y) ≤ f0(x) for every feasible
solution x to problem (P). This number may be useful in estimating how far a particular
point x̂ already calculated in (P), and satisfying the constraints of (P), may be from
optimality. One will have

0 ≤ f0(x̂)−min (P) ≤ f0(x̂)− g(y), (2.17)

so that if f0(x̂) − g(y) is less than some threshold value ε, the decision can be made
that x̂ is good enough, and further computations aren’t worth the effort. By applying an
optimization technique to (D), it may be possible to get better estimates of such sort. The
best would be a dual optimal solution ȳ, for which g(ȳ) = max (D); then the estimate
would take the form

0 ≤ f0(x̂)−min (P) ≤ f0(x̂)−max (D). (2.18)

But in nonconvex problems where min (P) > max (D), the bound on the right can’t be
brought to 0 no matter how much effort is expended. The technique is therefore limited
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in its ability to estimate optimality of x̂. Another pitfall is that the estimates only make
sense if the exact value of g(y) can be computed for a given y ∈ Y , or at least a lower
estimate c for g(y) (then one gets f0(x̂)− c as an upper bound to substitute for the right
side in (2.17)). But in the nonconvex case of (P) the expression L(x, y) being minimized
over x ∈ X to calculate the value g(y) may be nonconvex in x, yet the minimization must
be global . Then, as already explained in Section 1, it may be difficult or impossible to
know when the global minimum has been attained.

For more on duality in convex optimization, see [1], [7], [8]. For the theory of the
augmented Lagrangian function for (P), which makes saddle point characterizations of
optimality possible even without convexity, see [2]. Second-order optimality conditions are
discussed in [2] also.

3. EXTENDED PROBLEM MODELS

The conventional problem statement (P) doesn’t fully convey the range of possibilities
available in setting up a mathematical model in optimization. First, it gives the im-
pression that as modelers we won’t have trouble distinguishing between objectives and
constraints. We’re supposed to know what should be minimized and be able to express it
by a smooth function. All other features of the situation being addressed must be formu-
lated as “black-and-white” constraints—side conditions that have to be satisfied exactly,
or we’ll be infinitely unhappy. No gray areas are allowed.

The real modeling context is often very different. There may well be some conditions
that the variables must satisfy exactly, because otherwise the model doesn’t make sense.
For instance, a nonnegativity condition xj ≥ 0 may fall in this category: we wouldn’t
know how to interpret a negative value of xj physically and aren’t in the least interested
in relaxing the constraint xj ≥ 0 to xj ≥ −ε, say. Other examples of such black-and-white
constraints are defining relationships between variables. A condition like x3 − x1 − x2

2 = 1
could simply indicate the definition of x3 in terms of x1 and x2, and we wouldn’t want to
consider relaxing it. But many of the constraints may have a “soft” character. We might
write 4.3x1 + 2.7x2 + x3 ≤ 5.6 as a constraint because we desire the expression on the left
not to exceed 5.6, but a sort of guesswork is involved. We could be quite content when
the expression on the left had the value 5.9 if that resulted in substantial benefits in other
respects. Another source of fuzziness might be that coefficients like 4.3 are just estimates,
or worse. Then it seems foolish to insist on the inequality being satisfied without error.

In fact, a fair description of the difficulty often faced in reality may be that there
are several expressions f0(x), f1(x), . . . , fm(x) of interest to the modeler, who is seeking
a sort of “ideal combination” subject to the trade-offs that may be involved. Somewhat
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arbitrarily, one of these expressions is selected as the one to optimize while the others are
held in fixed ranges, but after the optimization has been carried out, there may be second
thoughts inspired by knowledge generated during the optimization process, and a modified
optimization formulation may then be tested out. Besides choosing one of the functions
as the objective and putting constraint bounds on the others, it’s possible of course to
form some combination. Examples to consider might be the minimization, subject to the
underlying hard constraints on x, of a weighted sum f(x) = f0(x)+c1f1(x)+· · ·+cmfm(x)
or a weighted max

f(x) = f0(x) + max
{
c1f1(x), . . . , cmfm(x)

}
. (3.1)

Or, taking as reference the minimization of “cost,” with f0(x) expressing certain costs
directly, we could consider for each other function fi a nonlinear rescaling function ρi that
converts the value fi(x) into an associated cost ρi

(
fi(x)

)
. Then we would want to minimize

f(x) = f0(x) + ρ1

(
f1(x)

)
+ · · ·+ ρm

(
fm(x)

)
. (3.2)

Although the given functions f0, f1, . . . , fm may be smooth, the function f obtained in
such a manner may be nonsmooth. Problems of minimizing such a function aren’t well
covered by the standard theory for (P).

To get around this difficulty and enhance the possibilities for optimization model-
ing, we direct our attention to the following extended problem formulation, which was
introduced in [2]:

(P) minimize f(x) = f0(x) + ρ
(
F (x)

)
over x ∈ X, where F (x) =

(
f1(x), . . . , fm(x)

)
.

In this the functions f0, f1, . . . , fm will still be assumed to be smooth, and the set X to be
closed, but the function ρ need not be smooth and can even take on the value ∞.

For a sense of what (P) covers, let’s consider first the cases where ρ is separable, i.e.,

ρ(u) = ρ(u1, . . . , um) = ρ1(u1) + · · ·+ ρm(um), (3.3)

so that (P) takes the form of minimizing an expression of the form (3.2) over X. Right
away we can observe that (P) contains (P) as corresponding to the choice:

for i = 1, . . . , s : ρi(ui) =
{

0 if ui ≤ 0,
∞ if ui > 0,

for i = s + 1, . . . ,m : ρi(ui) =
{

0 if ui = 0,
∞ if ui 6= 0.

(3.4)
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This gives for f(x) in (3.2) the value f0(x) when the point x ∈ X is feasible in (P), but
the value ∞ if x is not feasible. As we saw earlier, the minimization of this “essential
objective” function f over X is equivalent to the minimization of f0(x) subject to x being
feasible. This example may create some discomfort with its use of ∞, but it also serves
as a reminder of the true nature of the modeling represented by the conventional problem
(P). There is an infinite penalty if the stated x conditions are violated, but no gray area
allowing for “approximate” satisfaction.

Obviously, the function f in this infinite penalty case of (P) corresponding to (P)
is far from smooth and even is discontinuous, but even a finite penalty approach may be
incompatible with constructing a smooth function to minimize. For example, in the pure
linear penalty case of (P) the choice is

for i = 1, . . . , s : ρi(ui) =
{

0 if ui ≤ 0,
diui if ui > 0,

for i = s + 1, . . . ,m : ρi(ui) =
{

0 if ui = 0,
di|ui| if ui 6= 0,

(3.5)

with positive constants di. These functions have “kinks” at the origin which prevent f

from being smooth. The pure quadratic penalty case of (P) instead takes

for i = 1, . . . , s : ρi(ui) =
{

0 if ui ≤ 0,
1
2diu

2
i if ui > 0,

for i = s + 1, . . . ,m : ρi(ui) =
{

0 if ui = 0,
1
2diu

2
i if ui 6= 0,

(3.6)

with coefficients di > 0. Penalty functions of this type are first-order smooth, yet discon-
tinuous in their second derivatives.

To illustrate the modeling considerations, consider a situation where the demand for
a certain commodity is d > 0, and this is to be met by producing amounts xj ≥ 0 at plants
j = 1, . . . , n, the costs being φj(xj). One formulation as a problem of optimization would
be to minimize f0(x) = φ1(x1) + · · · + φn(xn) over all vectors x ∈ X = lRn

+ satisfying
d − x1 − · · · − xn = 0. But this could be a fragile approach, since it takes the target to
be exact and makes no provision for not meeting it precisely. A better model could be to
minimize f0(x) + ρ

(
d− x1 − · · · − xn), where ρ(u) = ru when u ≥ 0 and ρ(u) = q|u| when

u < 0, where the parameter values r and q are positive. This would correspond to a penalty
rate of r per unit of overproduction, but a penalty rate of q per unit of underproduction.
The function ρ in this case is finite but has a kink at the origin. An alternative might
be a formula for ρ that maintains the positive slope r for significantly positive u and the
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negative slope −q for significantly negative u, but introduces a quadratic rounding between
the two linear segments of the graph in order to do away with the kink.

A wide and flexible class of functions ρi, which aren’t necessarily just penalty functions
in the traditional sense, has been proposed by Rockafellar and Wets [10], [11], for modeling
purposes in dynamic and stochastic programming. These are functions describable with
four parameters βi, ŷi, ŷ+

i , ŷ−i , where

0 ≤ βi < ∞, −∞ < ŷi < ∞, −∞ ≤ ŷ−i ≤ ŷi ≤ ŷ+
i ≤ ∞.

The formula falls into three pieces and is best described by first introducing the auxiliary
function ρ̂i(ui) = ŷiui + (1/2βi)u2

i , this being the unique quadratic function with the
property that ρ̂i(0) = 0, ρ̂′i(0) = ŷi, and ρ̂′′i (0) = 1/βi. Let û+

i be the unique value such
that ρ̂′i(û

+
i ) = ŷ+

i , and similarly let û−i be the unique value such that ρ̂′i(û
−
i ) = ŷ−i . Then

ρi(ui) =

 ρ̂i(û+
i ) + ŷ+

i (ui − û+
i ) when ui ≥ û+

i ,
ρ̂i(ui) when û−i ≤ ui ≤ û+

i ,
ρ̂i(û−i ) + ŷ−i (ui − û−i ) when ui ≤ û−i .

(3.7)

In other words, ρi agrees with the quadratic function ρ̂i, except that it extrapolates linearly
to the right from the point where the slope of ρ̂i is the specified value ŷ+

i , and linearly
to the left from the point where the slope is ŷ−i . If ŷi+ = ∞, this is taken to mean that
the quadratic graph is followed forever to the right without switching over to a linear
expression; the interpretation for ŷ−i = −∞ is analogous. The case of βi = 0 is taken to
mean that there is no quadratic middle piece at all: the function is given by ŷ+ui when
ui > 0 and by ŷ−ui when ui < 0.

The functions in (3.5) and (3.6), and even (3.4), can be interpreted as special cases
of (3.7). So too can the ρ function in the small modeling illustration. (The initial version
of rho in the illustration would correspond to ŷ+ = r, ŷ+ = −q, ŷ = 0, and β = 0; the
rounded version would differ only in having β = ε > 0.) This form also covers expressions
that arise in augmented Lagrangian theory [2]. An example not of this kind, and not
having the separable structure in (3.3), is

ρ(u) = ρ(u1, . . . , um) = max{u1, . . . , um}. (3.8)

This corresponds in (P) to the minimization of the expression f(x) in (3.1).

Of course, a problem can also be formulated with a mixture of expressions like these.
For each fi one can decide whether to incorporate it into the model with an exact equality
or inequality constraint, in effect by choosing the corresponding ρi as in (3.4), or one can
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associate it with a ρi conforming to the prescription in (3.5), (3.6), or more generally (3.7).
Certain functions can be lumped together by a “max” expression as in (3.7), and so forth.

It may seem that the level of generality being suggested is too complicated to be usable
in practice. But things are simpler than might first be imagined. All these examples a
show an underlying pattern which we capture by the following condition.

Definition 3.1. The function ρ on lRm will be said to have an elementary dual represen-
tation if it can be expressed alternatively by

ρ(u) = sup
y∈Y

{
y·u− k(y)

}
, (3.9)

where Y is some nonempty polyhedral set in lRm and k is some linear-quadratic convex

function on lRm. (Possibly Y = lRm, or k ≡ 0. “Linear-quadratic” refers to a polynomial

expression with no terms of degree higher than 2.) In the separable case (3.3) this comes

down to whether each function ρi on lR can be expressed alternatively by

ρi(ui) = sup
yi∈Yi

{
yiui − ki(yi)

}
, (3.10)

where Yi is some nonempty closed interval in lR and k is some linear-quadratic convex

function on lR.

Let’s verify that the examples given do fit this. The case where (P) reduces to (P)
corresponds to Y = lRs

+× lRm−s and k ≡ 0; in other words, the functions ρi in (3.4) achieve
the representation (3.10) through

for i = 1, . . . , s : ki(yi) ≡ 0, Yi = [0,∞),

for i = s + 1, . . . ,m : ki(yi) ≡ 0, Yi = (−∞,∞).
(3.11)

The pure linear penalty case (3.5) corresponds instead to

for i = 1, . . . , s : ki(yi) ≡ 0, Yi = [0, di],

for i = s + 1, . . . ,m : ki(yi) ≡ 0, Yi = [−di, di].
(3.12)

The pure quadratic penalty case (3.6) is represented by

for i = 1, . . . , s : ki(yi) = (1/2di)y2
i , Yi = [0,∞),

for i = s + 1, . . . ,m : ki(yi) = (1/2di)y2
i , Yi = (−∞,∞).

(3.13)

The more general kind of ρi function in (3.6) corresponds to

ki(yi) = (βi/2)|yi − ŷi|2, Yi = [ŷ−i , ŷ+
i ]. (3.14)
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Finally, the max function case in (3.1) and (3.8)—which is not separable—arises from

k(y) ≡ 0, Y =
{

y
∣∣ yi ≥ 0, y1 + · · ·+ ym = 1

}
. (3.15)

Definition 3.2. By the extended Lagrangian function corresponding to the extended prob-

lem (P) in the case where ρ has an elementary dual representation in the sense of Definition

3.1 for a set Y and function k, we shall mean the function

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x)− k(y) on X × Y.

Optimality conditions generalizing the ones for (P) will be stated for (P) in terms of
X, Y , and L. For this we need to develop the correct analog of the constraint qualification
(Q) that was used for (P).

Proposition 3.3. When the function ρ has an elementary dual representation as in Def-

inition 3.1, the set

D =
{

u = (u1, . . . , um)
∣∣ ρ(u) < ∞

}
is nonempty and polyhedral in lRm. On D, ρ is a finite convex function, in fact ρ is

continuous and piecewise linear-quadratic on D. The feasible set in (P), defined to be the

set of point x ∈ X where f(x) < ∞, is given by

C =
{

x ∈ X
∣∣ F (x) ∈ D

}
.

These properties are easy to see except for the polyhedral nature of D and the piece-
wise linear-quadratic nature of ρ on D, which are proved in [12].

This view of feasibility in problem (P) makes it possible to state the constraint qual-
ification for the extended problem in the same manner as for the original problem.

Definition 3.4. The basic constraint qualification at a feasible solution x̄ to problem (P),
when ρ has an elementary dual representation, is the condition:

(Q)

{
there is no vector ȳ = (ȳ1, . . . , ȳm) other than ȳ = 0 such that

ȳ ∈ ND

(
F (x̄)

)
, −

[
ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)

]
∈ NX(x̄),

where D is the polyhedral set in Proposition 3.3.

The main result about first-order optimality conditions in problem (P) can now be
given. For details, see Rockafellar [2].
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Theorem 3.5. Suppose in (P) that ρ has an elementary dual representation in the sense

of Definition 3.1 for a certain set Y and function k. If x̄ ∈ X is a locally optimal solution

to (P) at which the basic constraint qualification (Q) is satisfied, there must exist a vector

ȳ ∈ Y such that

(L) −∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

Convexity is important in (P) just as it was in (P). We’ll speak of the convex case
of (P) when the extended Lagrangian L(x, y) is convex with respect to x ∈ X for each
y ∈ Y . (It’s always concave in y ∈ Y for each x ∈ X by its definition.)

Theorem 3.6. In the convex case of problem (P), the multiplier rule (L) in Theorem 3.5

is equivalent then to the saddle point condition{
the minimum of L(x, ȳ) in x ∈ X is attained at x̄,

the maximum of L(x̄, y) in y ∈ Y is attained at ȳ.
(3.16)

This saddle point condition leads to a dual problem. The extended Lagrangian has
been introduced in just such a way that the function f being minimized over X in (P) has
the representation

f(x) = sup
y∈Y

L(x, y) = sup
y∈Y

{
f0(x) + y1f1(x) + . . . + ymfm(x)− k(y)

}
for x ∈ X. (3.17)

We therefore introduce as the extended dual problem associated with (P) (when ρ has an
elementary dual representation) the problem

(D)
maximize g(y) over y ∈ Y, where

g(y) = inf
x∈X

L(x, y) = inf
x∈X

{
f0(x) + y1f1(x) + . . . + ymfm(x)− k(y)

}
.

The results for (P) and (D) carry over to this more general pair of primal and dual
problems.

Theorem 3.7. In the convex case of (P), the existence for x̄ of a multiplier vector ȳ

satisfying the extended Lagrange multiplier rule (L) is sufficient for x̄ to be a globally

optimal solution to (P). The vectors ȳ that appear in this condition along with x̄ are then

precisely the optimal solutions to the dual problem (D), and the optimal values in the two

problems agree: one has

min (P) = max (D).
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As a special case of this duality, of course, we have the earlier duality between (P)
and (D), which corresponds to taking the function ρ to be given by the exact penalty
expressions in (3.4). But the example we want to emphasize now is extended linear-
quadratic programming , which will generalize the linear programming duality in Section 2.
We take this term as referring to the case where the extended Lagrangian has the form

L(x, y) = c·x + 1
2x·Cx + b·y − 1

2y·By − y·Ax (3.18)

where the matrices C ∈ lRn×n and B ∈ lRm×m are symmetric and positive semi -definite
(possibly 0). To give a general expression to the two problems in this case, we use the
notation

ρY B(u) = sup
y∈Y

{
y·u− 1

2y·By
}

, ρXC(v) = sup
x∈X

{
v·x− 1

2x·Cx
}

. (3.19)

These functions can be made more specific according to the particular choices made of
the polyhedral sets X and Y along with the matrices C and B, in accordance with the
examples we have been discussing. Especially to be noted is the case where X and Y

are boxes and C and B are diagonal , because then the expressions in (3.19) break down
component by component.

The primal and dual problems of extended linear-quadratic programming come out
in this notation as:

(P elq) minimize c·x + 1
2x·Cx + ρY B

(
b−Ax

)
over x ∈ X,

(D elq) maximize b·y − 1
2y·By − ρXC

(
A∗y − c

)
over y ∈ Y,

where A∗ denotes the transpose of the matrix A. The linear programming problems (P lin)
and (D lin) correspond to

X = lRr
+ × lRn−r, Y = lRs

+ × lRm−s, C = 0, B = 0.

Theorem 3.8. If either of the extended linear-quadratic programming problems (P elq)
or (D elq) has an optimal solution, then so does the other, and

min (P elq) = max (D elq).

The pairs (x̄, ȳ) such that x̄ solves (P elq) and ȳ solves (D elq) are precisely the ones that, for

the choice of L, X and Y corresponding to these problems, satisfy the extended Lagrange

multiplier rule (L), or equivalently, give a saddle point of L on X × Y .

This theorem was proved in [10]. The subject is elaborated and applied to dynamic
modeling in [12]. Extended linear-quadratic programming models in multistage stochastic
programming are described in [13].

20



Numerical approaches to extended linear-quadratic programming have been developed
in Rockafellar and Wets [10], Rockafellar [14], Zhu and Rockafellar [15], Zhu [16], [17], and
Chen and Rockafellar [16] for various purposes. No doubt much more could be done, so
the brief review of this work that follows should be seen as merely suggestive of some of
the possibilities.

Paper [10] explains how, as a fallback option, any problem of extended linear-quadratic
programming can be reformulated as one of ordinary quadratic programming—through
the introduction of many extra variables. That technique, while offering reassurance that
exotic new codes are not necessarily needed to get numerical answers, suffers however
from two drawbacks. It greatly increases the dimension of the problem to be solved and
at the same time may disrupt special structure in the objective and constraints. Ideally,
such structure should instead be put to use in computation, at least if the aim is to cope
with the huge optimization models that can arise from dynamics and stochastics. But for
problems of modest size the reduction technique may be adequate.

Closely related is the technique of rewriting the optimality condition (L) as a linear
“variational inequality” as described in [14]. This can in turn be translated into a comple-
mentarity relation to which algorithms for linear complementarity problems can be applied.
The symmetry between the primal and dual problems is thereby preserved, although di-
mensionality is again increased. No write-ups are yet available on this, but numerical
experiments conducted by S. J. Wright at Argonne National Laboratories near Chicago on
solving extended linear-quadratic programming problems through interior-point methods
for linear complementarity problems appear very promising.

Most of the algorithmic development has been undertaken in the strictly quadratic
case, i.e., with the assumption that both of the matrices B and C in (P elq) are positive
definite. While this assumption apparently excludes linear programming and even the
standard form of quadratic programming, it’s not as severe as it first may seem. A number
of approaches to solving large-scale problems introduce “proximal terms” in the objective.
These are regularizing terms in the form of a strictly quadratic (although possibly small)
penalty for deviation from a current estimate of the solution. They are moved and updated
as computations proceed. Each subproblem with such a term does have, in effect, a positive
definite matrix B. It turns out that proximal terms can be added iteratively in the dual
variables of the Lagrangian as well as the primal variables, and in that way a sequence of
regularized subproblems is generated in which the associated C is positive definite too. By
solving the subproblems, one obtains sequences of primal and dual vectors which, in the
limit, solve (P elq) and (D elq).
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From this perspective, the solution of strictly quadratic problems is the key to the
solution of more general problems. Such an approach with proximal terms has, for instance,
been explored in some detail in the context of two-stage stochastic programming in [10].

In [14], a novel class of algorithms for solving strictly quadratic problems (P elq) and
(D elq) has been developed in terms of “envelope representations” of the essential objective
functions f and g. The partial approximation of f and g by an “envelope representation”
is somewhat kin to using a pointwise maximum of affine functions to represent a convex
function from below (which can be seen as a cutting-plane idea), but the approximations are
piecewise linear-quadratic rather than just piecewise affine. The envelope representations
are generated by iterative application of steps in which the Lagrangian L(x, y) is minimized
in x ∈ X for fixed y, or maximized in y ∈ Y for fixed x. For many large-scale problems
arising in applications, such steps are easy to carry out, because the models can be set up
in such a way that L(x, y) is separable in x and y—separately, cf. [13].

Results of numerical experiments using envelope methods to solve extended linear-
quadratic programming problems are reported in [15]. In particular, that paper develops
special methods called primal-dual projected gradient algorithms. These methods are
characterized by having two procedures go on at once—one in the primal problem and one
in the dual problem—with a kind of information feedback between them. The feedback is
the source of dramatic improvements in the rate of convergence. Besides being effective for
moderately sized problems, the algorithms have successfully been used to solve problems
in as many as 100,000 primal and 100,000 dual variables in a stable manner. This line of
research has been carried further in [15] and [16].

While envelope methods take advantage of possible decomposability of large-scale
problem structure through separate separability of the Lagrangian in the primal and dual
variables, another form of decomposition is exploited by the Lagrangian “splitting meth-
ods” introduced in [16]. These are aimed at problems in which the Lagrangian is a kind of
sum of independent sub-Lagrangians coming from prospective subproblems and a bilinear
linking expression. Examples are furnished in [13], but they also arise in finite-element
models for partial differential equations and associated variational inequalities. Iterations
proceed with an alternation between “backward steps” which can be calculated by assign-
ing each subproblem to a separate processor, and “forward steps” which are analogous to
integrating dynamics, or calculating conditional expectations.
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