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1. INTRODUCTION

Debt instruments are financial contracts that an issuer sells to a holder for some price, thereby

obligating the issuer to pay a nonnegative, future cash stream to the holder. The holder can

subsequently transfer ownership to a different holder through sale or exchange.

Issuers and holders can be many kinds of entities, and even if they do not pay taxes them-

selves, they may be influenced by the effects of taxes in financial markets. It is vital therefore

to understand the taxation of debt instruments from a general mathematical perspective, as

well as for the sake of calculating what taxes must be paid in a given case. This is a formidable

challenge, however, because of the many rules and exceptions that have evolved, and because the

legal language in which the rules are stated is far from an expression by mathematical formulas.

In addition, the fundamentals of how to attribute a yield rate to a debt instrument relative to

the price paid for its cash stream are not well understood by many practitioners or approached

consistently in law. This has clouded not only the procedures for determining taxes but the

ability of issuers, holders, and governmental authorities to anticipate the potential consequences

of code provisions and regulations, especially in the case of new types of securities that might

be written.

A central aim of this study is to provide—for U.S. federal taxation—a relatively compact

mathematical description1 which covers the specially patterned instruments that are typically

seen. Such a description can serve many uses in finance and accounting. It should assist in

building mathematical models of bond trading and portfolio adjustment that attempt to bring

in the effects of taxes and open the door to much higher modes of computerization than now

prevail. Our intention is to furnish, at the least, the means of dealing mathematically with

the tax implications of holding long and short positions in debt instruments of the kinds that

now dominate financial markets, and of assessing the tax advantages and disadvantages of new

instruments that might be introduced in such markets or set up as contracts between two parties.

At the same time this study is dedicated to elucidating the principles behind tax law as it has

emerged in this area, and to forging the sharp tools needed to expose conflicts and uncertainties

in statement or intent. It is obviously in the interest of issuers, holders, and governmental

authorities alike to have a firmer understanding of what their decisions might lead to. Everyone

can benefit from dispelling vagueness such as may enter regulations either through inherent

difficulties in interpreting the will of congress or in hopes of combating unforeseen abuses.

1 No more than basic algebra is required in order to understand our formulas and their
derivation. Calculus enters the proofs of two of the theorems concerned with facts about the
formulas, but again, the mathematical expressions of these facts can be appreciated from the
algebraic standpoint alone.
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Our theoretical focus thus brings us beyond formulas to matters of policy. We arrive in par-

ticular at recommending a policy of mathematical consistency in tax code and regulations, such

as can only be secured through precise mathematical formulation and analysis of all provisions

and unsparing attention to their logical coordination.

Because the study is designed in part as a bridge between different communities of profes-

sionals, care is taken to develop a consistent terminology. Explanations are sometimes furnished

for notions that to one group may be totally familiar, but to another group potentially confusing.

The theoretical foundations for the calculation of interest income over time are laid out in detail,

since this seems to be a topic suffering from certain mathematical misconceptions which result

in ambiguity and unnecessary trouble. Some of these misconceptions have even been enshrined

in official rules for determining taxes.

In the United States, the holding of debt instruments can produce taxable income in two

ways, through interest or capital gains.2 For the issuer of a debt instrument, interest income

is replaced by interest expenditure, likewise with tax consequences, and of course instead of a

capital gain there can always be a capital loss. The chief difficulty lies in determining just how

much interest should be deemed to have been received or paid at any time, or how much capital

gained or lost. This is far from simple for a number of reasons, both mathematical and legal.

For many years the two types of income were taxed as they had been characterized by the

parties. The U.S. Internal Revenue Service (IRS) eventually attempted through litigation to

develop two departures from this treatment, both of them motivated by the fact that capital

gains were at the time being taxed at only half the rate for interest income, which was having

an effect on the way debt instruments were being written. First, the IRS successfully argued

that any excess of the face value of a bond, over its issue price, was not entitled to capital

gains treatment because there had been no sale or exchange of the bond.3 Second, the IRS

argued that any such excess amount should be taxed as interest on receipt. Congress dealt

with the matter in the Internal Revenue Code of 1954. Under that code the holder of a bond

issued with discount was required to treat the discount as additional interest income.4 In 1969,

2 The treatment of gains and losses on capital assets is specified in Internal Revenue Code
SS1221, 1222, and 1223. Interest income is covered in S61(a), and the deduction of interest
expense in S163(a). The timing of tax liabilities and deductions is set forth in S451(a) and
S461(a).

3 Congress reversed this by enacting the predecessor of Internal Revenue Code S1271(a),
which generally dictates that all amounts received on maturity be treated as received in exchange
for the bond. A reason perhaps was the arbitrariness of distinguishing a return paid by the issuer
from a return received on a sale to a third party immediately before maturity.

4 Only from that point did the IRS begin to enjoy success in litigation on its second point, a
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Congress revised the rules to require all holders of corporate bonds issued with discount to treat

the discount amount as additional interest received ratably (in mathematics: at a linear rate)

over the time the bond was outstanding. This was a critical departure, because it initiated

the taxation of income before it had literally been received. In each case where holders had to

declare constructed receipt of more interest, an equivalent amount could be deducted by issuers

as an interest expense against income. Thus, an issuer was allowed to deduct expenses before

they had actually been paid, even decades in advance in some common situations. For bonds

issued by taxed entities but held by untaxed entities, this amounted to affording substantial tax

relief to issuers without a revenue balance from holders.

In 1982, Congress further revised the rules to require that the interest in question, not

only corporate bonds but on governmental bonds and most others, be handled as if earned at

a constant yield rate on an ever increasing amount of principal over the life of the bond. The

taxation of payments that were only implicit—had not actually changed hands—was retained

but refined. Since then, Congress and the U.S. Treasury, through its regulations, have tinkered

further in an effort to improve the rules and reduce the circumstances in which taxpayers might

gain undue advantage from the way interest income and expenditure are identified. The ad hoc

nature of these efforts, without a solid mathematical platform for systematically assessing the

effects of adopted rules, continues to cast a shadow over the outcome, however, especially with

respect to potential implications for taxed versus untaxed issuers and holders.

In each stage of the legal developments, instruments issued in an earlier era retained the

tax treatment they already had. Such instruments are still around and actively traded, with the

result that various forms of old rules in addition to recent ones are still required in determining

current taxes. For this reason we must, in our endeavor to set up mathematical formulas

for taxation, cope with multiple layers of regulations instead of just the latest. Anyway, the

mathematical attention we give to past provisions helps in appreciating present ones.

Classification of debt instruments according to date of issue is very important for this

reason, but other divisions make a substantial difference too in the way taxes are computed,

as has already come up. Debt instruments are long-term when they have more than one year

from issuance to maturity, but short-term when they have one year or less. An instrument is

governmental if issued by the federal government, the government of any of the states (or U.S.

possessions, or the District of Columbia) or any of their political subdivisions. It is corporate if

issued by a corporation. All other nongovernmental obligations are noncorporate, for instance if

issued by a partnership, trust, or individual. An instrument is tax-exempt if the interest income

associated with it is exempt from federal taxation for all holders. A capital gain or loss on such

landmark case being United States v. Midland Ross Corp. 381 U.S. 54 (1965).
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an instrument nevertheless does have tax consequences.

Beyond the complications arising from this staggering list of distinctions, there are ambigu-

ities, at least from the mathematical perspective, in the fact that tax rules often evolve through

precedent rather than general principle. Rules may be couched rather narrowly in terms of the

particular instruments occupying attention at the time of writing, such as standard bonds in

the case the actions of Congress described above, and their application to some other kind of

instrument may not be immediately clear. It is up to the Treasury to clarify any details of how

tax law should be implemented, and this is supposed to be done through regulations that are

proposed, then adjusted after hearings and public comment, and finally approved and adopted.

Unfortunately, this process suffers delays which are a further source of problems.

Congress passes tax laws, which make up the Code, and the IRS is authorized by Congress

to issue regulations to implement the Code. The Code is collected in CCH Tax Law Staff

(1992a)(1992b), while the Proposed Regulations and (final) Regulations are collected in CCH

Tax Law Staff (1993). See Robinson (1986), Staff of the Joint Committee (1984), and Tax

Law Staff (1993) for explanations of the Code. Garlock (1993) and Bittker and Lokken (1993)

explain the Code and Regulations, while Pratt, Burns, and Kulsrud (1991) gives brief overviews.

Each change in the Regulations appears in the IRS Cumulative Bulletin, which we refer to as

Commissioner of the IRS (1993).

The voluminous Proposed Regulations of 1986, although long relied upon in practice, did

not reach the final stage of approval (by the U.S. Treasury) before being rescinded late in 1992

in favor of a different set of Proposed Regulations. When, or whether, the latest version will

eventually be approved is uncertain. However, the IRS has said it will continue to take the

1986 version as authoritative for instruments issued before 22 December 22 1992, when the

revised regulations were distributed for comment. Meanwhile, the revised regulations will be

considered as “guidelines” for instruments issued since. This means yet another divergence in

tax treatment, but one in a state of limbo as of this writing.5

In general, all debt instruments issued prior to 1955, and some issued since, are taxed in a

straightforward manner in which the holder’s interest income and the issuer’s interest expense,

and their capital gain or loss, are determined from the instrument’s nominal specification of what

portion of the payments that it explicitly provides are interest, and what portion are repayment

of principal, as long as this is consistent. Many instruments issued in 1955 or later, however, are

taxed relative to a revised specification which is associated with the “original issue discount,”

5 Since the situation is in flux, we shall concentrate in this study on rules given in the IRS
Proposed Regulations of 1986 but indicate in footnotes various changes embodied in the pending
IRS Proposed Regulations of 1992.



8

or OID amount, that may be present. The crucial feature in this case, already alluded to, is

that additional interest is regarded as paid implicitly to the holder as taxable income during the

life of the instrument, but automatically reinvested and therefore not explicitly made available

to the holder until later. The issuer can generally deduct such implicit payments as a current

expense.

Implicit interest income or expenditure is similarly associated not only with “original issue

discount” but with features known as “market discount,” “acquisition premium,” and “amor-

tizable premium,” all of which will be explained in due course. Purchase or sale at some time

between issue and maturity usually requires a recharacterization of the debt, relative to the

price involved in the transaction. This leads to a particularized specification of the instrument’s

content. “Stripping” and “shorting” are ways that essentially new instruments are frequently

created out of existing ones, and they too raise challenges in the determination of interest income

or expenditure.

These aspects of taxation have their various histories and disparate treatments. A key

concept in every case now, though, is that of imputed interest based on a constant yield rate

over the relevant life of an instrument. It is well understood that real rates of interest go up

and down, so that the imputation of a theoretical constant yield rate to a given instrument,

relative only to the market circumstances in which it was acquired, is bound to have an artificial

quality. The concept is nevertheless relied upon, because it is thought to be the only reasonably

simple approach to a difficult problem. Its mathematical underpinnings are therefore crucial to

our project from all sides.

Taxation in terms of a constant yield rate is only one of many conceivable approaches to

obtaining governmental revenue from debt instruments, and we do not take the position here

that it is necessarily better or worse than some other approach, or claim that it can be made

entirely problem-free. We do argue strongly, however, that if this approach is going to be

followed in tax code and regulations, it must be taken consistently. Indeed, we offer a number

of examples, involving novel forms of securities, which reveal serious and unanticipated results

of inconsistency. These examples may help also in efforts to break away from habits of thinking

about taxes chiefly in terms of standard debt instruments as they now exist. In these ways we

hope to contribute to a better grounding of tax policy.

The prescriptions for calculating implicit interest income or expenditure through constant

yield to maturity affect the calculation of the holder’s basis in the instrument—the amount of

investment considered to be outstanding on any given date. In this way they also affect the

capital gain (or loss) at the time of sale or redemption.

In this study we begin in Section 2 by exploring the mathematics of simple and compound
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interest, not only for the sake of later being able to express taxes by formulas, but also in

the hopes of building a better framework for understanding the approach adopted by Congress

and some of the imperfections that have entered in implementing that approach. Keeping to

the core of the subject, we ignore instruments involving variable interest rates (in contrast to

possibly variable interest payment amounts). But we account for the possibility of accrual

periods of different lengths over which a constant yield rate generates simple interest between

compounding dates. Instruments with irregular accrual period lengths arise for a number of

reasons, in particular with short periods at the beginning or end, and their tax treatment has

persistently been troublesome.

Section 3 describes the three specifications of a debt instrument’s content—nominal, re-

vised, and particularized—that may be needed in general to pin down its tax consequences. In

setting up these three specifications and carefully distinguishing them from each other, although

not all come into play in every instance, we offer a new approach to ascertaining precisely which

interpretation of interest or principal may be involved in a given tax rule. This scheme helps

accommodate later to the fact that tax computations usually proceed through a series of ad-

justments to a basic tax amount, where the adjustments stem from possible differences between

the three specifications. In cases where two of the specifications turn out to coincide, the cor-

responding adjustment simply comes out as zero and falls away, and it is not necessary to pass

to some alternative mathematical formula in order to arrive at the correct taxes.

Section 4 examines the concepts of discount and premium along with terms like “stated

redemption price at maturity” and “qualified periodic interest payments” which figure promi-

nently in regulations. These terms are misnomers referring to artificial quantities inconsistent

with the principle of constant yield to maturity or the true amount of discount or premium at

original issue, except in special cases like standard bonds.

Section 5 addresses a number of technical questions that have arisen in connection with

irregular accrual periods or accounting shifts to different lengths for such periods. It tries to

clear up misconceptions about the “accuracy” of different approaches to figuring yield relative

to constant yield to maturity. The method of fractional exponents, often described as exact and

presented in this light in regulations, is shown to be only approximate, whereas the method held

to be only approximate is actually exact.

Section 6 continues with the mathematics of basis and capital gain. The tax rules for long-

term instruments are presented in Section 7 and those for short-term instruments in Section 8.

Finally, the taxation of stripped instruments and short positions is taken up in Section 9.

The debt instruments we discuss are assumed not to have been issued in exchange for

property . Such instruments have still other complications. We omit the rules applicable to special
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instruments that were part of a corporate reorganization. Also, we exclude instruments where

there was an original (although perhaps unstated) intention to call before the date of maturity ,

or where the principal is subject to acceleration or the payments depend on contingencies, so

that the future cash stream is not completely fixed in advance. Accordingly we always suppose

that the date of maturity is known.

The discussion is phrased mainly in terms of the taxes paid by a holder, who may or not be

an “original” holder of the debt instrument.6 With only minor exceptions the tax implications

for an issuer, such as deduction of interest expense, are a mirror image of the implications for an

original holder who holds to maturity.7 Of course the tax treatment of the income effects could

nonetheless end up being quite different between issuer and holder, since for instance only one

might be a taxed entity. An investor who “strips” an existing instrument or assumes a short

position is in effect the issuer of a new instrument.

2. MATHEMATICS OF CONSTANT YIELD

What must be specified in a debt instrument, directly or indirectly, in order for the payments

it provides to be unambiguous mathematically and clear in their interpretation as interest or

repayment of principal, and at the same time consistent with the principle of constant yield

to maturity? We pose this question now on the theoretical level, reserving until later the

consideration of whether a given specification passes additional tests under current tax law of

acceptability as an adequate description of an instrument’s economic content relative to the

market in which it was acquired.

The bonds traded on Wall Street typically provide “coupon” payments of equal size every

six months, but other financial instruments, such as self-amortizing obligations8 and certain

certificates of deposit,9exhibit other patterns of payments. In most cases the dates crucial to

6 The term original holder has a technical meaning in tax literature (and in this study) which
is narrower than might be thought, at least in the case of debt instruments publicly issued in
multiple copies. It refers in that case to a holder (other than a dealer or broker) who purchased
the debt instrument on the date of issue at the first price at which effective sales took place. For
an instrument not issued in multiple copies (and not issued in exchange for property) it refers
to the first holder.

7 For each copy of the instrument the interest expense regarded as incurred by the issuer
equals the interest regarded as earned by an original holder, and so forth.

8 This is the technical term for instruments having the form widely seen in mortgages.
9 The name usually refers to arrangements where one of the parties is a bank, but similar

contracts can be made between other parties as well. The characteristic we have in mind is
the payment of an initial sum on which interest is earned over a period of years with regular
compounding at a fixed rate, but the interest is automatically added to the principal, so that
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the calculation of interest income are equally spaced, but short periods in the tax life of an

instrument can appear at the beginning or the end, for instance as a result of purchase, sale

or “stripping” on a date after original issue, or a delay in the original issue after the payment

dates were set. Also, tax rules sometimes require that an instrument be recharacterized in a

manner that may give rise to irregular spacing. It is important therefore that we start with a

broad view of how interest income may be specified in a financial contract.

Our goal in this section is to develop the mathematics of compound interest from first prin-

ciples, so as to have a framework for treating in a unified manner a wide variety of instruments,

whether existing or contemplated. We aim at demonstrating along the way that there is no

difficulty in accommodating irregular spacing of dates, and that efforts to get around such a cir-

cumstance by changing the spacing inevitably produce a different “yield” than the one inherently

present along with a different view of the size or pacing of interest income or expenditure.

Interest and Principal. The notion of the annual yield of an instrument is central. It

refers to the rate of interest paid on a yearly basis (prorated for other periods), expressed as

a percentage of the remaining principal , i.e., of the amount of debt outstanding and therefore

earning interest. The realization of this notion is made complicated by the different approaches

to adjusting the amount of principal as time goes on, not to speak yet of different interpretations

as to how much principal was invested in the first place.

In general, for any instrument, there are periods in which the principal is regarded as

constant and simple interest is earned. These are separated by dates on which an explicit or

implicit payment occurs. Then the principal may jump to a different level (higher or lower,

depending on the circumstances), in which case compound interest enters the picture, because

simple interest over the next period grows from this different level.

The traditional distinction in finance between simple and compound interest is basic to

our mathematical approach. We do not imagine that simple interest is “inaccurate” and should

therefore somehow always be reconstructed as accruing nonratably (nonlinearly) in the mode of

compound interest computed relative to shorter intervals, for instance daily. That would imply

wholesale rejection of the way financial contracts have long been formulated—virtually nothing

could be accepted any more as valid in its customary statement. Moreover it would lead to

unacceptable ambiguity in knowing how much income an instrument was supposed to provide,

because of nonuniqueness in the possibilities for reconstruction. We keep to the position that

if a change in the degree of compounding is desired, this should be handled by passing to a

different specification of the instrument in which the insertion of additional compounding dates

the holder receives no explicit payment until the end.
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is acknowledged outright.

The annual yield associated with an instrument will be denoted by y. The simple interest

earned at rate y by a principal amount V > 0 over a time period whose length in years is θ is

I = θyV. (2.1)

Here θ could be a whole number, or it could be a fraction such as 1/2, 1/4, 1/12, or 1/365. In a

period over which this interest is earned, and at the end of which the holder of the instrument

is paid C dollars (with C ≥ 0), the quantity R = C − I is viewed as (partial) repayment of the

principal. The new value of the principal, to be used in computing simple interest over the next

period, if any, is therefore V −R.

If C = I, then R = 0, and the new value of the principal is the same as before; no

compounding takes place. If C > I, then R > 0, and the new value of the principal is lower,

so that simple interest will accumulate slower in the next period than in the current period.

It is also possible, however, to have C < I, so that R < 0. In this event some of the simple

interest that was earned has been added to the principal—a negative repayment of principal has

occurred. Then the new value of the principal is higher, so that simple interest will accumulate

faster in the next period. The difference I−C, when positive, is an implicit payment of interest

supplementary to the explicit payment C.

Definition 2.1 (full specification of a debt instrument). By a full specification of a

debt instrument (with constant annual yield), we shall mean a mathematically unam-

biguous indication of the following data:

(a) a value y ≥ 0, the annual yield rate;

(b) a finite sequence of calendar dates i0 < · · · < ik < . . . < im, which will in general

be termed compounding dates, with i0 the date of issue, im the date of maturity, and

the intervals [ik−1, ik] the accrual periods;

(c) for each date ik beyond i0 the amount Ck ≥ 0, the explicit payment to the

holder for the period ending on that date, with Cm > 0.

(d) an initial value V0 > 0, the principal on date i0, with V0 ≤ C1 + · · ·+ Cm.

Such a specification will be called consistent if these elements have the property

that when simple interest at the rate y is applied over each accrual period to the

principal outstanding at the beginning of the period and then added to that principal,

after which the explicit payment Ck on the date ik ending the period is subtracted

off (with the resulting net amount then taken to be the principal at the beginning of

the next period, if any), the principal outstanding at the close of the maturity date im

(ending the final period) will be 0.
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The consistency requirement is all important in what follows. To express it precisely in

mathematics, we introduce the parameters

θk = length of the kth accrual period [ik−1, ik] (measured in years), (2.2)

as derived from the given dates,10 along with the symbols

Vk = principal outstanding on date ik after adjustment for any payment. (2.3)

The simple interest earned in the kth accrual period is

Ik = θkyVk−1 for k = 1, . . . ,m, (2.4)

and the amount of principal repaid on date ik is therefore

Rk = Ck − Ik = Ck − θkyVk−1 for k = 1, . . . ,m. (2.5)

Principal then evolves according to the law

Vk = Vk−1 −Rk = Vk−1 + Ik − Ck, (2.6)

which can be written as

Vk =
(
1 + θky

)
Vk−1 − Ck for k = 1, . . . ,m. (2.7)

Consistency means that when this mathematical law is applied, starting with the given amount

V0, it will be true that Vm = 0.

If Ik = Ck, then Vk = Vk−1, while if Ik < Ck, there is a positive repayment of principal,

so that Vk < Vk−1. But if Ik > Ck, there is a negative repayment of principal, so that Vk >

Vk−1. The amount of increase in principal in this case, which is the reinvested interest amount

Ik − Ck > 0, is an implicit payment to the holder for the accrual period in question beyond

the explicit payment Ck, which instead represents money that truly changes hands. Such an

implicit payment of reinvested interest can occur in particular for periods in which Ck = 0.

10 Calendar realities often necessitate compromise in how the accrual period lengths θk are to
be interpreted, especially when the dates ik are meant to be “equally spaced.” For example, if
i0, . . . , im all fall on the same day of the month in successive months, one may take θk = 1/12
for all k even though some months are shorter than others. Similarly, the common case of
semiannual compounding is described by θk = 1/2 for all k despite the fact that the number of
days in a year is not divisible by 2 except in a leap year. February 29, if it appears among the
dates, is identified with February 28 in years without such a day when the issue comes up in an
attempt to set up equal spacing.
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It is useful to think of the dates ik in Definition 2.1 as placed within a full sequence of dates

in time, numbered by i = 0, 1, . . . (no days skipped). Here i = 0 refers to a fixed but arbitrary

starting date in the past, at least as early as any other date that might come under consideration.

This scheme has systematic advantages in keeping track of a portfolio of instruments, but its chief

attraction here arises from the need to be exact about events which are crucial to the taxation of

a debt instrument and, in the case of acquisition and disposal, can occur at intermediate dates

within an accrual period.

The dates ik need not be equally spaced (although this is commonly the case), nor do the

amounts Ck necessarily have to be regarded as earned by the holder as single-sum payments on

those dates in order to satisfy Definition 2.1.11 But Ck must be the total explicitly paid over the

accrual period [ik−1, ik] and yet not be regarded as potentially affecting the principal in the debt

until date ik. It is possible that nothing is explicitly paid out in certain periods, and for this

reason Ck is mathematically allowed to be 0 sometimes. In theory the amounts C1, . . . , Cm do

not have to follow any special pattern in their magnitudes, as long as the consistency requirement

in Definition 2.1 is met.

Of course as a special case there could just be two dates i0 and im with no other com-

pounding dates ik intervening. Tax laws usually require, however, that the dates not be too far

apart.12

Although Definition 2.1 speaks of i0 as the date of issue, there is no change in the nature

of the mathematics when i0 is taken instead to be the date of acquisition of the instrument and

V0 the price of acquisition. This will be explained in Section 3, but it is mentioned now because

acquisition can occur on any date, and that is one of the main reasons why instruments with

unequal spacing between compounding dates inevitably have to come into consideration in any

discussion of the meaning of constant annual yield.

11 For accrual-basis taxpayers, interest is regarded as earned evenly over the accrual period in
question, as will be explained in full in Section 6. Regulations demand that certain instruments
be treated relative to a date sequence different from the given one, in which case the payments
corresponding to the given periods must be reassigned to the new periods and thus might not
truly arrive on the dates that are used in that different sequence. Such “forced respecification”
will be explained in Section 5. In the pending IRS Proposed Regulations of 1992, all of Ck
must be received on date ik, and the circumstances that could trigger forced respecification are
relaxed. But dates still should not be more than one year apart.

12 It will be seen in Section 7 that in most cases (in particular for all bonds issued after 1982)
accrual periods are not allowed to exceed one year, and for certain kinds of instruments they
must be six months. To meet such conditions it is possible to introduce extra compounding dates
in the sequence, taking the explicit payments with respect to those dates to be 0. However, a
recomputation of the yield y will then be necessary (unless y = 0) in order to maintain the
properties in Definition 2.1, as explained in Section 4.
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The formulas after Definition 2.1 for the evolution of principal underscore the fact that the

concept of constant annual yield works straightforwardly regardless of whether accrual periods

are regular—all of the same length—or irregular . The general case is not well treated by

textbooks in finance, so we develop its fundamental properties here with care. The central

result will be the yield-to-maturity equation in Theorem 2.2.

The fact that Definition 2.1 requires an up-front listing of the dates ik as part of the very

meaning of consistency cannot be overemphasized. In our scheme it makes no sense to speak

of first determining the yield of an instrument and only then deciding what accrual periods to

use in accounting for its interest stream.13 The two go hand in hand. While some of the data

elements in Definition 2.1 can be inferred unambiguously from the others (under the assumption

that a consistent, full specification—with constant yield—is intended), the dates ik and their

spacing generally cannot be so inferred, being instead a matter of opinion.

Often instruments are written not directly in terms of a yield y and overall payments Ck

but rather in terms of certain amounts designated as “interest” and “repayment of principal”

(the latter including a redemption amount at maturity), which are to be paid on stated dates.

Whether or not this information uniquely determines a consistent, full specification in the sense

of Definition 2.1 is then a subject for analysis. The stated dates can be taken as the dates ik,

and the payment amounts on those dates interpreted as Ik and Rk (these sometimes possibly

zero), with Ck identified as the sum Ik + Rk. Then, as long as a value for V0 is indicated, it

will be possible through the yield-to-maturity equation in Theorem 2.2 to infer a value for y

and test whether the stated Ik and Rk amounts agree with the ones generated from y, V0, and

the payments Ck by (2.4)–(2.5). If so, a consistent, full specification is at hand. If not, it may

nonetheless be possible to achieve such a specification by supplementing the given data in one

way or another, for example by enriching the sequence of dates. But in this case the resulting

consistent, full specification is not uniquely determined, since it depends on this input, which

could be provided in more than one way.14 If even this does not work, the instrument falls

outside the category addressed in this study.15

13 This pattern appears for example in the IRS Proposed Regulations of 1986, S1.1272–1(b),
where it seems though that the principle of constant yield to maturity is not strictly adhered
to; see the discussion of the “method of fractional exponents” below and in Section 5.

14 A strength of the scheme offered here is this clarification of the extent to which an instrument
is well specified to begin with, and the degree of arbitrariness in filling in missing details in order
to arrive at consistent interpretation, if possible.

15 This is not to say that such an instrument is necessarily improper in any way, but merely
that its treatment may involve other features, like variable interest rates. Such features could be
the subject of further mathematical developments, but we have chosen not to undertake them
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We move ahead now with the main facts about instruments with constant yield. In devel-

oping these facts, the mathematical concept of “net return” must be pinned down beyond the

possibility of conflicting interpretations.

Definition 2.2 (net return on a debt instrument). By the net return on a debt instru-

ment, as associated with a consistent, full specification in the sense of Definition 2.1,

we shall mean the amount

C1 + · · ·+ Cm − V0. (2.8)

The instrument will be said to have positive net return when this amount is positive.

Stipulation (d) in Definition 2.1 says that the net return, as defined in this way, cannot be

negative. The case of zero net return does arise in practice with so-called zero-coupon bonds,

as will be seen in Example 3.3. Note that net return refers to a quantity dependent on an

instrument’s specification not only through the explicit payment amounts Ck but also through

the stated amount of initial principal. When one value of V0 is replaced by another, as will

usually be the case for tax purposes through the supplementary specifications to be described

in Section 3, the net return changes as well. Note further that no discounting of future income

is involved in this concept, nor does it include any possible effects of capital gain or loss from

a subsequent sale. The analysis for now is based on holding an instrument to maturity. The

framework for analyzing capital gains will be set up in Section 6.

The theorem stated next confirms that any consistent, full specification of a debt instrument

will bring with it the kinds of mathematical consequences that must be demanded for the concept

to be acceptable. By attending to the criteria provided by Definition 2.1, we can be sure of not

having to face, perhaps in special circumstances not yet thought of, any case where interest

payments might not be positive, or where the amount of principal said to be outstanding might

dip below zero.

Theorem 2.1 (positivity of principal and interest). Relative to a consistent, full

specification of a debt instrument in the sense of Definition 2.1, the principal values Vk

satisfy

Vk > 0 for k = 0, 1, . . . ,m− 1 (but Vm = 0). (2.9)

Thus, Ik > 0 for k = 1, . . . ,m, unless y = 0 (in which case Ik = 0 for all k), the latter

being true if and only if the instrument fails to have positive net return. In general,

Vk = Rk+1 + · · ·+ Rm

=
(
Ck+1 + · · ·+ Cm

)
−

(
Ik+1 + · · ·+ Im

)
for k = 0, 1, . . . ,m− 1

(2.10)

here.
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with Rm > 0, and in particular

C1 + · · ·+ Cm − V0 = I1 + · · ·+ Im. (2.11)

Proof. As already noted, Vm = 0 by the consistency requirement in Definition 2.1. From (2.7)

for k = m we therefore have

Vm−1 =
(
1 + θmy

)−1
Cm > 0, (2.12)

because Cm > 0 in part (c) of Definition 2.1. Since Rm = Vm−1 − Vm by definition, we get

Rm > 0 also. Working backwards from (2.12) using (2.7) in the form of the relation

Vk−1 =
(
1 + θky

)−1[
Ck + Vk

]
, (2.13)

we see that whenever Vk > 0 we also have Vk−1 > 0, since Ck ≥ 0. Thus, all the principal

values Vk before date im must be positive. Equation (2.10) follows from the fact that first

0 = Vm = Vm−1 − Rm, then Vm−1 = Vm−2 − Rm−1, and so forth, using (2.5). Equation (2.11)

is obtained from (2.10) by taking k = 0.

(Note: the square symbol at the end of the preceding line is used to mark the end of a

mathematical proof. This way a signal is given that the text is about to resume in ordinary

mode. Some readers may wish to skip over the details of the mathematical arguments in the

formal proofs, at least at first pass.)

As explained, Theorem 2.1 assures us that no mathematical surprises lurk in Definition 2.1.

The sign conditions on the payments Ck and the stipulation that Vm = 0 (i.e., consistency) are

enough in themselves to exclude weird situations such as negative principal due to overpayment

to the holder. The conditions guarantee that the amounts of interest earned and the amounts

of principal repaid add up as they should. Equation (2.11) asserts that the net return in Defi-

nition 2.2 is the same as the total of all the interest payments associated with the specification.

This helps to legitimize the terminology, since otherwise the total of all interest payments might

come up as a competing notion of “net return.” Uncertainty might then enter over whether that

would have to be treated separately, and thus over whether words were being used appropriately

in the theory.

Theorem 2.1 says in this way that, by the end, the holder gets back the entire amount V0 of

initial principal, and that everything else explicitly received is properly accounted for as interest,

whether fully made available when earned or only later. This mathematical conclusion is worth

paying careful attention to, because a number of provisions in tax regulations will later emerge as

based perhaps on misapprehensions about whether an instrument properly represents the income
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it provides a holder in its face value description. According to Theorem 2.1, there is no cause

for worry if the description constitutes (directly or indirectly, but unambiguously) a consistent,

full specification in the sense of Definition 2.1. This result provides important justification for

the concept of such a specification and points to a better way of addressing concerns than the

problem-laden regulatory approach that must now be coped with in determining interest income,

which we will get to in Section 4.

The centerpiece of the theory of constant yield is the following statement.

Theorem 2.2 (general yield-to-maturity equation). For any sequence of dates ik,

payment amounts Ck, and initial value V0 satisfying conditions (b), (c), and (d) of

Definition 2.1 there exists a unique annual yield rate y for (a) such that a consistent

full specification of the debt instrument is achieved. This value y, which is positive

if and only if the instrument has positive net return in the sense of Definition 2.2

(otherwise both y and the net return are zero), is the unique solution to the equation

V0 =
C1

(1 + θ1y)
+

C2

(1 + θ1y)(1 + θ2y)
+ · · ·+ Cm

(1 + θ1y)(1 + θ2y) · · · (1 + θmy)
. (2.14)

Proof. The fact that equation (2.14) follows from the conditions in Definition 2.1 is obtained

by applying the relation in (2.13) repeatedly, starting from (2.12). (First, substitute the right

side of (2.12) for Vm−1 in the form of (2.13) with k − 1 = m − 2. Second, substitute the right

side of that into the form of (2.13) with k − 1 = m − 3. Continuing this way for m − 3 more

steps, arrive at (2.14).)

Now, assuming only the data and conditions in (b)(c)(d) of Definition 2.1, consider the right

side of (2.14) as defining a function f(y) of a variable y in the infinite interval [0,∞) of conceivable

yield rates. This function f is continuous, because it is a sum of rational functions in which the

denominators are positive over the interval in question. The function f is decreasing in the sense

that if 0 ≤ y′ < y′′, then f(y′) > f(y′′). (The latter holds because (1+θky′) < (1+θky′′) for all k,

and the values Ck are nonnegative with Cm actually positive.) Furthermore f(0) = C1+· · ·+Cm,

while limy→∞ f(y) = 0. These facts imply through the standard inverse function theorem in

elementary calculus that for any value V0 in the interval
(
0, C1 + · · ·+Cm

]
there exists a unique

y in the interval [0,∞) such that f(y) = V0. Equation (2.14) thus has a unique solution y, as

claimed, and this solution is y = 0 if and only if V0 = C1 + · · · + Cm, i.e., the instrument has

zero net return. The yield value y provides a sequence of principal values V1, . . . , Vm that are

generated from V0. From (2.7) we have

V1 = (1 + θ1y)V0 − C1, V2 = (1 + θ2y)V1 − C2, . . . Vm = (1 + θm−1y)Vm−1 − Cm.
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Substituting the right side of (2.14) for V0 in the first of these relations, we get

V1 =
C2

(1 + θ2y)
+

C3

(1 + θ2y)(1 + θ3y)
+ · · ·+ Cm

(1 + θ2y)(1 + θ3y) · · · (1 + θmy)
.

Next, substituting this expression for V1 in the relation V2 = (1 + θ2y)V1, we get

V2 =
C3

(1 + θ3y)
+

C4

(1 + θ3y)(1 + θ4y)
+ · · ·+ Cm

(1 + θ3y)(1 + θ4y) · · · (1 + θmy)
.

Continuing inductively in this manner we deduce that

Vk =
Ck+1

(1 + θk+1y)
+

Ck+2

(1 + θk+1y)(1 + θk+2y)
+ · · ·+ Cm

(1 + θk+1y)(1 + θk+2y) · · · (1 + θmy)
for each k ≤ m− 1,

(2.15)

and in particular, as the case where k = m − 1, that Vm−1 = (1 + θmy)−1Cm. When this

expression for Vm−1 is substituted into the evolution equation Vm = (1 + θmy)Vm−1 − Cm,

which is the case of (2.7) with k = m, we obtain Vm = 0. We conclude that when the unique

value y obtained from the data in (b)(c)(d) of Definition 2.1 is taken as the value in (a) so as to

have a full specification of a debt instrument, this specification meets the test of consistency.

Theorem 2.2 provides mathematical support that is absolutely essential for a sound treat-

ment of interest and principal in terms of constant annual yield. Among the features most to

be noted are the theorem’s generality. In order to be sure of the existence of an annual yield

rate with all the properties that notion should entail, only the tests in Definition 2.1 have to

be passed. The focus in discussing any particular instrument with a possibly loose description

merely has to be narrowed, by inferring or supplying additional details if necessary, to the stage

where a single specification in the sense of that definition has been identified. Aside from this,

there are no requirements. All imaginable debt instruments are covered, no matter how strange

their pattern of payments in comparison with today’s familiar instruments, as long as they fit

with Definition 2.1.

On the other hand, once Theorem 2.2 has been applied and the existence of a constant

annual yield rate has thereby been ascertained, we know it is the only rate value fitting the

common sense prescriptions. Any other value must be out of harmony with financial truth,

maybe even to the extent of carrying hidden absurdities (as some examples in Sections 4 and

5 later will illustrate). This is important because it furnishes a standard that any method

proposed for determining annual yield must measure up to. If the number the method comes

up with as the yield is always the same as the one in Theorem 2.2, fine. Otherwise, the method

cannot be correct.
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The existence of a unique solution y to the general yield-to-maturity equation (2.14) should,

of course, be seen separately from the issue of how the solution may actually be calculated from

given values of V0 and Ck and the period lengths θk. Apart from some elementary situations,

the solution will not be expressible by any direct algebraic formula and will have to be computed

by numerical methods. This is as true when the accrual periods are regular as well as when

they are irregular; no extra difficulty has been created by the moving to the level of generality

in Theorem 2.2. The numerical procedures needed for the computation are mathematically

available, but the financial calculators now in use have only been programmed for special cases.

Of course, this could easily be remedied.

The yield-to-maturity equation (2.14) is the mathematical core of the methodology in this

study. In its general form it appears relatively unknown in the financial community, but the case

of equally spaced dates is widely familiar and acknowledged as the basis for current approaches

to the taxation of interest income and expense.

Equally Spaced Dates. For regular instruments, where the compounding dates ik are equally

spaced,16 the accrual period lengths all have the same size: θk = θ for k = 1, . . . ,m. The yield-

to-maturity equation (2.14) then takes the special form

V0 =
C1

(1 + θy)
+

C2

(1 + θy)2
+ · · ·+ Cm

(1 + θy)m
. (2.16)

Annual compounding corresponds to θ = 1, semiannual to θ = 1/2, quarterly to θ = 1/4, and

daily to θ = 1/365. The residual equation (2.15) specializes similarly to

Vk =
Ck+1

(1 + θy)
+

Ck+2

(1 + θy)2
+ · · ·+ Cm

(1 + θy)m−k
. (2.17)

Other Approaches to Characterizing Yield. In place of the yield-to-maturity equation in

Theorem 2.2 a different equation, involving fractional exponents, is often seen in tax literature

and regulations. This equation, which will be discussed in Section 5, is not a correct yield-to-

maturity equation relative to the data given, but it can be regarded as one relative to some

altered specification with additional compounding dates.17 As mentioned already, our position

is that if the insertion of more compounding dates is deemed desirable, this should be carried

out explicitly. Otherwise, doubts enter about the magnitude of various quantities, such as the

16 See Footnote 10.
17 Although such an interpretation is possible, the different yield rate so obtained is not

actually employed as it correctly would be in that context, because the inserted dates are
suppressed; see Section 5.
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yield rate, and the soundness of the mathematical theory is compromised. Indeed, the use of

the method of fractional exponents typically designates a higher value than y as the yield rate

(Theorem 4.2). In some situations this value is not unique, because it is influenced by how many

extra dates are involved, which is left up to party doing the calculation.

Deferred Interest. An important question is whether an amount Ik − Ck > 0 of implicit

interest should be regarded as “really” paid by the issuer to the holder on date ik. Tax regulations

are inconsistent in their view of this, as will be seen in Section 4 (in particular Example 4.1),

but ultimately they do generally categorize such implicit interest amounts as current taxable

income to the holder and current deductible expense to the issuer. An alternative in theory

would be to handle these amounts as deferred payments of interest—having tax consequences

only at a later date when money actually changes hands.

Mathematically rigorous formulas, building an extra layer on the formulas already laid out

in this section, can easily be set down for determining exactly when the deferred payments are

finally made and in what sizes. In this extension of the theory the principal amount Vk that is

outstanding at the end of date ik is furnished with an additional representation as

Vk = Wk + Dk, (2.18)

where Wk is the amount of the original principal that is outstanding, while Dk is the amount of

deferred interest yet to be paid; initially W0 = V0 and D0 = 0, and thereafter always Wk ≤ V0

and Dk ≥ 0. In accordance with this representation each explicit payment Ck has an expression

Ck = Jk + Sk, (2.19)

where Jk is the amount of interest explicitly paid on date ik, and Sk is the amount of original

principal repaid on date ik and is never negative—in contrast to Rk, which is negative whenever

interest is being reinvested. Some of Jk may be interest earned in the current period, but other

portions of Jk may be interest finally being handed over that was earned in one or more earlier
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periods. The formulas governing Jk, Sk, Wk, and Dk, are

Jk =
{

Ck if Dk−1 + Ik ≥ Ck,
Dk−1 + Ik if Dk−1 + Ik < Ck,

Sk =
{

0 if Dk−1 + Ik ≥ Ck,
Ck − Jk ≤ 0 if Dk−1 + Ik < Ck,

Wk = Wk−1 − Sk ≤ Wk−1,

Dk =
{

Dk−1 + Ik − Ck if Dk−1 + Ik ≥ Ck,
0 if Dk−1 + Ik < Ck.

(2.20)

These recursive formulas are uniquely dictated by the principle of assigning as much as possible

of each explicit payment Ck to payment of current interest and then, if some of Ck is still left

over, to payment of deferred interest. Only if a fraction of Ck remains after all current and all

deferred interest has been explicitly been paid out is that remainder characterized as repayment

of original principal. One always has

Wk = V0 − [all original principal repaid through period k]. (2.21)

3. SPECIFICATIONS UNDERLYING TAXATION

In general, the tax-determining formulas to be presented in Section 7 require knowledge of up

to three potentially different specifications in the sense of Definition 2.1 for the same debt in-

strument. These specifications, which we refer to as the nominal, revised, and particularized

specifications, will be explained here with examples. Roughly, the “nominal” specification refers

to the original, stated description of the instrument, the “revised” to its actual economic con-

tent at time of issue, and the “particularized” to its economic content relative to the market

circumstances of its acquisition by a particular investor at a subsequent date.

Nominal Specification. From now on, each debt instrument under discussion will be as-

sumed to have a face value description which is a consistent, full specification in the sense of

Definition 2.1.18 This will be called its nominal specification, and the term “nominal” will also

18 Only the data in (b)(c)(d) of Definition 2.1 need be given; the unique corresponding yield
y is then automatically supplied through the equation in Theorem 2.2 and can be computed
by numerical methods. On the other hand, if only the data in (a)(b)(c) are furnished the
corresponding value of V0 can be obtained from the same equation.
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be attached to all the quantities like yield, interest payments and principal repayments that are

associated with it. Such quantities will continue to be denoted by the symbols used in Section 2.

(Asterisks and double asterisks will mark the symbols used for the revised and particularized

specifications introduced below.)

Example 3.1 (self-amortizing obligation, nominal specification). Suppose the accrual periods

all have the same length θ and the payments C1, . . . , Cm are all equal to the same amount

C > 0. Any two of the three numbers C, V0 and y determines the third through the specialized

yield-to-maturity equation (2.16) (under the stipulation that 0 < V0 ≤ mC and y ≥ 0). From

equation (2.17) with

x = (1 + θy)−1 (3.1)

we have Vk = C(x + · · ·+ xm−k) but on the other hand Vk−1 = C(x + · · ·+ xm−k + xm−k+1),

so that

Vk−1 − Vk = Cxm−k+1.

Here 0 < xm−k+1 ≤ 1 because 0 < x ≤ 1. Since Ik = Ck − Rk in (2.5) (now with Ck = C),

whereas Rk = Vk−1 − Vk from (2.6), the expression just obtained for Vk−1 − Vk gives us

Ik = (1− xm−k+1)C ≥ 0 and Rk = xm−k+1C > 0 for k = 1, . . . ,m. (3.2)

The amounts Vk and Ik decrease with k, while the amounts Rk increase with k.

Example 3.2 (standard bond, nominal specification). Suppose the accrual periods all have

the same length θ and the payments C1, . . . , Cm−1 are all equal to the same number C ≥ 0, but

Cm = V0 + C. In the notation (3.1) the yield-to-maturity equation (2.16) then takes the form

V0 = C(x + · · ·+ xm) + V0x
m,

so that C/V0 = (1−xm)/(x+ · · ·+xm). Because the numerator in this ratio can be factored as

1− xm = (1− x)(1 + x + · · ·+ xm−1) while the denominator can be factored as x + · · ·+ xm =

x(1 + x + · · ·+ xm−1), the ratio can be reduced to C/V0 = (1− x)/x = θy. Thus,

y =
C

θV0
. (3.3)

In (2.7) we therefore have Vk =
[
1 + (C/V0)

]
Vk−1 − C for k = 1, . . . ,m − 1. This equation

implies V1 = V0, and then recursively that Vk = V0 for k = 1, . . . ,m − 1, although Vm = 0. It

follows next through (2.4) and (2.6) that

Ik = C for all k, whereas Rk = 0 for k = 1, . . . ,m− 1 but Rm = V0. (3.4)

The value C is called the coupon amount in the bond.
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Example 3.3 (zero-coupon bond, nominal specification). A zero-coupon bond is a standard

bond in the sense of Example 3.2 for which the coupon amount is C = 0. Regardless of the

sequence of dates ik that might be indicated (perhaps the only dates are i0 and im), the annual

yield is y = 0. The only positive explicit payment is at the end, when the amount V0 is paid

back. One has
Ik = 0 for k = 1, . . . ,m,

Rk = 0 for k = 1, . . . ,m− 1, with Rm = V0.
(3.5)

On the face of things, there is no interest income generated at all; the net return in the sense of

Definition 2.2 is zero.

To the uninitiated, a zero-coupon bond may look like a worthless investment because,

relative to its nominal specification, it is said to provide no income. But there is more to it than

that. The explanation will proceed when we come to the “revised specification.”

Example 3.4 (CD-like instrument, nominal specification). Suppose that the accrual periods

all have the same length θ, and that the payments C1, . . . , Cm−1 are all 0, but that the final

payment is Cm = V0 + N for some amount N > 0.19The amount N is the net return in the

sense of Definition 2.2. The yield-to-maturity equation in form (2.16) is

V0 =
V0 + N

(1 + θy)m
.

It can be solved algebraically for the yield rate y:

y =
1
θ

[(
1 +

N

V0

)1/m

− 1
]
.

From (2.5) we have negative repayments of principal in every period except the last,

Rk = −Ik = −θyVk−1 for k = 1, . . . ,m− 1.

In other words, the interest received by the holder is always reinvested automatically. A positive

repayment of principal does occur for the final period, however. All of the final payment Cm

except for the amount

Im = Cm − Vm−1 = V0 + N − (1 + θy)m−1V0 = N −
[
(1 + θy)m−1 − 1

]
V0

is repayment of principal (although some of it may be beyond the original principal, because of

representing new principal added from interest that was paid out along the way.)

19 This is the pattern for a common form of CD (certificate of deposit) issued by banks, but
it could also be followed by bonds issued by other entities.
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The contrast between Examples 3.3 and 3.4 is that in Example 3.4 the yield is positive,

not zero. The initial principal V0 in Example 3.4 is less than the final payment Cm, whereas in

Example 3.3 it is the same. We shall see that for tax purposes, however, that a zero-coupon bond

typically ends up being recharacterized as a CD-like instrument through replacing the nominal

value V0 in Example 3.3 by a revised value which is lower. CD-like instruments thus exhibit the

kind of pattern of implicit interest payments that tax rules now hold up as representing receipt

of taxable income by the holder. For further comparison, see Example 4.1.

Revised Specification. The nominal initial value V0 of a debt instrument may not reflect

its true economic content at time of issue. A better indicator of this content is the amount paid

by an original holder of the instrument.20 We denote this amount by V ∗
0 and call it the revised

initial value, or the issue value.21 It represents what the instrument was worth in the market

prevailing at time of issue.

It might expected that V ∗
0 ought to appear in the face description of the instrument in

place of V0, but custom dictates that V0 is a standard amount (like $100,000), whereas V ∗
0

is an odd amount determined only at the time of initial sale, often by auction. Anyway, a

simple substitution of V ∗
0 for V0 is not possible without other shifts in the specification of the

instrument. This is because of the interrelationships between initial principal, explicit payments,

compounding dates, and annual yield that must be satisfied in order for the specification to meet

the test of consistency laid down in Section 2.

The way the difficulty is handled is to view the specification of the instrument as revised

in the following manner which respects the conditions in Definition 2.1 and therefore provides

another consistent , full specification with constant yield to maturity. The explicit payment

amounts Ck are retained along with the given compounding dates ik
22 But V0 is replaced by

V ∗
0 in tandem with replacing y by the new yield value y∗ obtained as the unique solution to the

shifted yield-to-maturity equation

V ∗
0 =

C1

(1 + θ1y∗)
+

C2

(1 + θ1y∗)(1 + θ2y∗)
+ · · ·+ Cm

(1 + θ1y∗)(1 + θ2y∗) · · · (1 + θmy∗)
, (3.6)

or in the case of equally spaced dates with θk = θ,

V ∗
0 =

C1

(1 + θy∗)
+

C2

(1 + θy∗)2
+ · · ·+ Cm

(1 + θy∗)m
. (3.7)

20 For the definition of an original holder, see Footnote 6.
21 In tax regulations this is generally called the issue price.
22 As long as these are frequent enough and regular enough not to trigger forced respecification

as described in Section 5. The circumstances under which this would happen will be dealt with
in Section 7.
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This value y∗ is the revised yield for the instrument. It generates the sequence of revised

principal values

V ∗
k = (1 + θky∗)V ∗

k−1 − Ck for k = 1, . . . ,m, (3.8)

and a correspondingly different decomposition of the explicit payments Ck into revised interest

amounts

I∗k = θky∗V ∗
k for k = 1, . . . ,m, (3.9)

and revised principal repayment amounts

R∗
k = Ck − I∗k = V ∗

k−1 − V ∗
k . for k = 1, . . . ,m. (3.10)

These quantities satisfy all the relationships developed earlier, except for the change in no-

tation from plain symbols to symbols adorned with asterisks. As an application of Theorem 2.1,

the values V ∗
k for k < m are all positive (but V ∗

m = 0), and

V ∗
k = R∗

k+1 + · · ·+ R∗
m

=
(
Ck+1 + · · ·Cm

)
−

(
I∗k+1 + · · ·+ I∗m

)
for k = 0, 1, . . . ,m− 1,

(3.11)

with R∗
m > 0. In particular

C1 + · · ·+ Cm − V ∗
0 = I∗1 + · · ·+ I∗m, (3.12)

this quantity being the revised net return on the instrument. The most important thing to bear

in mind is that when V ∗
0 6= V0 there may be implicit payments of interest under the revised

specification where none were called for under the nominal specification. This stems from the

observation that in cases where Ik ≤ Ck one could nevertheless have I∗k > Ck if I∗k > Ik.

The theorem stated next describes the exact relationship between the interest payments

under the nominal and revised specifications of a given instrument. It shows how the associated

differences in annual yield create corresponding differences in cumulative payment of interest,

although not necessarily between individual payments.

Theorem 3.1 (implicit interest under the revised specification). Under the revised

specification, in comparison with the nominal specification, one has

V0 − V ∗
0 = (I∗1 − I1) + (I∗2 − I2) + · · ·+ (I∗m − Im)

= (R1 −R∗
1) + (R2 −R∗

2) + · · ·+ (Rm −R∗
m).

(3.13)

If V ∗
0 < V0, one has y∗ > y, and the interest paid over the remaining future is always

higher:

I∗k + · · ·+ I∗m > Ik + · · ·+ Im for k = 1, . . . ,m, (3.14)

If V ∗
0 > V0, one instead has y∗ < y, and

I∗k + · · ·+ I∗m < Ik + · · ·+ Im for k = 1, . . . ,m, (3.15)
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Proof. Equation (3.13) is immediate from equations (2.11) and (3.12), along with (2.5) and its

counterpart (3.10). The strict monotonicity of the function f underlying the yield-to-maturity

equation in the proof of Theorem 2.2 implies that if everything is kept fixed in an instrument’s

specification except that the initial value is replaced by a lower value, then the yield goes up.

This establishes the relationships claimed between y and y∗. More generally, we may compare

the formula

Vk−1 =
Ck

(1 + θky)
+

Ck+1

(1 + θky)(1 + θk+1y)

+ · · ·+ Cm

(1 + θky)(1 + θk+1y) · · · (1 + θmy)
,

(3.16)

obtained from (2.15) with the corresponding formula with respect to the revised specification,

which is
V ∗

k−1 =
Ck

(1 + θky∗)
+

Ck+1

(1 + θky∗)(1 + θk+1y∗)

+ · · ·+ Cm

(1 + θky∗)(1 + θk+1y∗) · · · (1 + θmy∗)
,

(3.17)

to see that when y∗ > y we have V ∗
k−1 < Vk−1 for k = 1, . . . ,m, but when y∗ < y the opposite

holds. Since Ik + · · · + Im = Ck + · · · + Cm − Vk−1 by Theorem 2.1, and by the same token

I∗k + · · ·+ I∗m = Ck + · · ·+ Cm− V ∗
k−1, the relations in (3.14) and (3.15) (according to whether

y∗ is higher or lower than y) are correct.

Example 3.5 (self-amortizing obligation, revised specification). The case of V0 − V ∗
0 > 0 for

a self-amortizing obligation23 in Example 3.1 has the effect of shifting the interpretation of the

constant payment amounts C for each period more towards interest and away from repayment

of principal. The case of V ∗
0 − V0 > 0 has the opposite effect. To verify this mathematically,

first combine the formula Ik = θyVk−1 with the formula for Vk−1 in (3.16), specialized to the

case where θk = θ and Ck = C for all k, to obtain

Ik

θy
=

C

(1 + θy)
+

C

(1 + θy)2
+ · · ·+ C

(1 + θy)m−k+1
.

In terms of x = 1/(1 + θy), for which θy = (1− x)/x, we get from this the equation

Ik

C
=

[
1− x

x

](
x + x2 + · · ·+ xm−k+1

)
=

(
1− x

)(
1 + x + · · ·+ xm−k

)
= 1− xm−k+1,

23 This situation typically arises when the holder of the obligation requires additional “points”
from the party that assumes the obligation.
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so that

Ik = C

[
1− 1

(1 + θy)m−k+1

]
.

By a parallel route we arrive at

I∗k = C

[
1− 1

(1 + θy∗)m−k+1

]
.

From a comparison of these results it is clear that I∗k > Ik for all k when y∗ > y, but the opposite

holds when y∗ < y.

Example 3.6 (standard bond, revised specification). For a typical bond, as in Example 3.2,

the yield-to-maturity equation to be solved for the revised yield y∗ has the special form

V ∗
0 = C

[
1

(1 + θy∗)
+

1
(1 + θy∗)2

+ · · ·+ 1
(1 + θy∗)m

]
+ V0

[
1

(1 + θy∗)m

]
. (3.18)

When V ∗
0 is different from V0, the solution y∗ to this equation cannot be expressed by an

algebraic formula in terms of V ∗
0 , V0 and C; there is no analog for y∗ of the simple relation

y = C/θV0. Nonetheless y∗ can be determined by numerical methods. Furthermore

I∗k − Ik = I∗k − C > 0 for all k when V ∗
0 < V0, (3.19)

and these implicit interest amounts add up then to the difference between the nominal initial

value and the revised initial value,

[I∗1 − C] + · · ·+ [I∗m − C] = V0 − V ∗
0 . (3.20)

Equation (3.20) specializes (3.13) to the fact that Ik = C in this case (see Example 3.2), while

the proof of (3.19) goes as follows. We begin with the version of (3.17) that corresponds to the

data under consideration, namely

V ∗
k−1 = C

[
1

(1 + θy∗)
+

1
(1 + θy∗)2

+ · · ·+ 1
(1 + θy∗)m−k+1

]
+ V0

[
1

(1 + θy∗)m−k+1

]
. (3.21)

Letting u stand for 1/(1 + θy∗) so that θy∗ = (1− u)/u, and noting the algebraic relation[
(1− u)/u

](
u + u2 + · · ·+ um−k+1

)
= 1− um−k+1, we can write (3.21) as

θy∗V ∗
k−1 = C

(
1− um−k+1

)
+ θy∗V0u

m−k+1,

where θy∗V ∗
k−1 = I∗k and V0 = C/θy. Thus,

I∗k
C

= 1− um−k+1 +
y∗

y
um−k+1 = 1 +

[y∗

y
− 1

]
um−k+1.
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Since u > 0 the right side of this equation is larger than 1 when y∗ > y (as is true by Theorem 3.1

when V ∗
0 < V0), so I∗k/C > 1 in that case. This establishes (3.19). The counterpart to this

result if instead V ∗
0 > V0 is the inequality

Ik − I∗k = C − I∗k > 0 for all k when V ∗
0 > V0, (3.22)

which is proved by the same argument. In this case the coupon amounts C would no longer

be entirely interest but would include some repayment of principal. The sum of such implicit

repayment amounts would equal the premium amount V ∗
0 − V0 > 0.

Example 3.7 (zero-coupon bond, revised specification). Under the revised specification of a

zero-coupon bond, the case of Example 3.6 where C = 0, implicit interest appears when V ∗
0 < V0

despite the fact that in the nominal specification there was no interest income indicated at all.

On each date ik beyond i0 one will have I∗k > 0, whereas Ik = C = 0. The implicit interest

payments will add up to the difference between the nominal initial value and the revised initial

value:

I∗1 + · · ·+ I∗m = V0 − V ∗
0 , (3.23)

as seen from (3.12).

In effect, a zero-coupon bond is converted under the revised specification into a debt in-

strument like a certificate of deposit under its nominal specification as in Example 3.4.

Example 3.8 (CD-like instrument, revised specification). If a certificate of deposit, or like

instrument as described in Example 3.4, where all interest is automatically reinvested, were

somehow acquired by an original holder for an amount V ∗
0 6= V0, the only effect would be to

replace V0 by V ∗
0 in the same yield formula in order to get the revised yield y∗. The character

of the instrument would otherwise be unchanged; the interest received in each period would

automatically be reinvested in the next, until the final period, when the final increment of

interest is returned with all the accumulated principal, some old and some new.

Particularized Specification. The revised specification addresses the fact that the nominal

specification of an instrument may have little to do with its real workings as a producer of

interest income, since the issue value V ∗
0 may differ significantly from the nominal initial value

V0. But this degree of analysis only covers an original holder, or the issuer. The economic

evaluation of an instrument acquired subsequently by some other holder at a price higher or

lower than V ∗
0 , needs to be pursued from a different angle. This is what we do next.
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Consider a holder who obtains the instrument on a date

a = date of acquisition, i0 ≤ a < im, (3.23)

which may or may not be one of the compounding dates ik, for a certain price

Pa = cost of acquisition to the holder, Pa > 0. (3.24)

Let ik denote the next compounding date after a, so that

ik−1 ≤ a < ik. (3.25)

As far as this holder is concerned, the economic content of the instrument resides in the fact that

the investment Pa on date a produces payments Ck, . . . , Cm on the remaining dates ik, . . . , im in

the life of the instrument. The particularized yield for this particular holder is therefore defined

to be the unique value y∗∗ obtained from Theorem 2.2 for this pattern of payments. In other

words, y∗∗ is the unique solution to the equation

Pa =
Ck

(1 + θay∗∗)
+

Ck+1

(1 + θay∗∗)(1 + θk+1y
∗∗)

+ · · ·

+
Cm

(1 + θay∗∗)(1 + θk+1y
∗∗) · · · (1 + θmy∗∗)

,

(3.26)

where

θa = length of the period from date [a, ik]. (3.27)

By such means we have a uniquely determined particularized specification of the debt instru-

ment relative to acquisition by the holder in question. Observe that the power of Theorem 2.2

in being able to handle unequally spaced compounding dates is put to use even if the original

dates ik for the instrument are equally spaced, because the first accrual period from a to ik

will be shorter than the other periods unless the acquisition took place precisely on date ik−1.

This particularized specification is achieved without resorting to the “method of fractional expo-

nents,” which will be explained in Section 5. (That method would tend to distort the economic

content, as will be demonstrated in Theorem 5.1.)

To facilitate comparison between the consequences of the particularized specification and

the nominal and revised specifications—all three of which may ultimately be needed in deter-

mining taxes on a given instrument—it will be convenient not to renumber the compounding

dates in the particularized specification but to keep them as they are. We therefore symbol-

ize the particularized principal value on the remaining dates ik by V ∗∗
k and the corresponding

particularized interest payment by I∗∗k and the particularized principal repayment by I∗∗k . Thus,

V ∗∗
k

=
(
1 + θay∗∗

)
Pa,

V ∗∗
k =

(
1 + θky∗∗

)
V ∗∗

k−1 − Ck for k = k + 1, . . . ,m,
(3.28)
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where V ∗∗
m = 0. Accordingly

I∗∗
k

= θay∗∗Pa,

I∗∗k = θky∗∗V ∗∗
k−1 for k = k + 1, . . . ,m,

(3.29)

while

R∗∗
k = Ck − I∗∗k for k = k, . . . ,m. (3.30)

Once more, these quantities satisfy all the relationships developed earlier; only the double as-

terisks notation is different. Theorem 2.1 tells us that the values V ∗∗
k for k ≤ k < m are all

positive (but V ∗∗
m = 0), and

V ∗∗
k = R∗∗

k+1 + · · ·+ R∗∗
m

=
(
Ck+1 + · · ·Cm

)
−

(
I∗∗k+1 + · · ·+ I∗∗m

)
for k = k . . . ,m− 1,

(3.31)

with R∗∗
m > 0. We have

C1 + · · ·+ Cm − V ∗∗
0 = I∗∗

k+1
+ · · ·+ I∗∗m , (3.32)

and this quantity is the particularized net return on the instrument.

Example 3.9 (standard bond, particularized specification). In the case of a standard bond as

in Example 3.2 with accrual periods of length θ the particularized yield-to-maturity equation

(3.26) becomes

Pa =
C

(1 + θay∗∗)
+

C

(1 + θay∗∗)(1 + θy∗∗)

+
C

(1 + θay∗∗)(1 + θy∗∗)2
+ · · ·+ C + V0

(1 + θay∗∗)(1 + θy∗∗)m−k
.

(3.33)

This equation uniquely determines the particularized yield y∗∗. The particularized principal

value on the next compounding date ik is then

V ∗∗
k

=
(
1 + θay∗∗

)
Pa − Ck, (3.34)

while the corresponding interest and principal payments are

I∗∗
k

= θay∗∗Pa, R∗∗
k

= C − I∗∗
k

. (3.35)

Thereafter one has

V ∗∗
k =

(
1 + θy∗∗

)
V ∗∗

k−1 − C for k = k + 1, . . . ,m− 1,

I∗∗k = θy∗∗V ∗∗
k−1 for k = k + 1, . . . ,m,

R∗∗
k = C − I∗∗k for k = k + 1, . . . ,m− 1,

(3.36)

and finally V ∗∗
m = 0 and R∗∗

m = V0 + C − I∗∗m .
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Deferred Interest Under Different Specifications. The notion of deferred interest, which

was developed mathematically at the end of Section 2, can be applied not only to the nominal

specification of an instrument but also to the revised specification or any particularized specifica-

tion. The formulas are valid with the addition of one or two asterisks on the symbols, whichever

is appropriate.

4. DISCOUNT AND PREMIUM

In ordinary parlance, something is purchased at discount if the amount paid for it is less than

its nominally listed price. It is purchased at premium if the amount paid for it is greater. The

discount or premium that is involved is the price difference in either case. Discount and premium

are concepts crucial in taxation, and they underlie both the revised and the particularized

specifications of a debt instrument.

An instrument has been issued with discount if V ∗
0 < V0, or in other words if an original

holder paid less for it than its nominal initial value. It has been issued with premium if instead

V ∗
0 > V0. These circumstances are covered by the facts in Theorem 3.1, from which we extract

the following for emphasis.

Theorem 4.1 (discount and premium in relation to yield).

(a) An instrument has a higher yield under its revised specification than under its

nominal specification if and only if it has been issued with discount. The extra income

to an original holder over its life comes out then as the discount amount V0 − V ∗
0 > 0.

(b) An instrument has a lower yield under its revised specification than under its

nominal specification if and only if it has been issued with premium. The lost income

to an original holder over its life comes out then as the premium amount V ∗
0 −V0 > 0.

This is totally in harmony with the idea that V ∗
0 , instead of V0, constitutes the amount

of principal initially invested by an original holder of the instrument, i.e., the starting “basis”

for such a holder. Similar effects involving the particularized specification appear when an

instrument is acquired by another holder at a later date, but for now we focus only on the

revised specification.

A natural policy of taxation would be to require the additional interest quantity V0−V ∗
0 > 0

in the discount case of Theorem 4.1(a) to be declared as taxable income, but to allow the lost

interest V ∗
0 − V0 > 0 quantity in the premium case of Theorem 4.1(b) to be deducted—in some

appropriate pattern of amounts and timing. This is more or less what turns out to be the case

under the tax rules now in effect, but the regulations are weighed down by complications which

obscure the philosophy and create inconsistencies.
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These inconsistencies are so serious that it seems unlikely the features creating them could,

or would, be upheld, if challenged. The rest of this section is aimed primarily at demonstrating

this unfortunate state of regulatory affairs. In the end, we will take the position that the hard

facts in Theorem 4.1 must govern all interpretations of discount and premium. The reader

interested mainly in the results could skip ahead now to the next section.

Qualified Interest Payments and OID. An essential quantity in current taxation is that

which is called original issue discount , or OID. This is defined by24

OID = SRPM − V ∗
0 when this difference is positive, (4.1)

where SRPM is an amount called the “stated redemption price at maturity” of the instrument,

whose exact meaning will need to be examined at length. Of course if SRPM = V0, then OID

= V0 − V ∗
0 , which is the true amount of discount at original issue. The trouble is that the

regulations on this matter, if taken for what they now say,25 assign to SRPM an artificial value

which could well be higher or lower than V0 in many cases, as will come to light shortly.26

A notion which needs to be examined in parallel, although the attention paid to it in the

literature on taxation has been far less, is that of original issue premium, or OIP, with the

definition

OIP = V ∗
0 − SRPM when this difference is positive. (4.2)

Again, if SRPM = V0 we have OIP = V ∗
0 − V0, and all is natural. The problem to be faced,

though, is that such a natural outcome is not ensured by the Tax Code on “amortizable bond

premium.”27

The term “stated redemption price at maturity” does not really appear in the Tax Code

in connection with premium; there the statutory wording instead is the “amount payable at

maturity.” Whether this is supposed to mean the same thing has not been clarified in regulations,

but if not, an instrument could have both “original issue discount” and “original issue premium”

24 There is a tendency to use the initials “OID” to refer besides to various portions of the
quantity in (4.1) as it is accounted for, or to the general idea behind it, or even to interest not
necessarily having anything to do with any discount. Mathematics cannot operate under such
loose language, so we restrict our usage to the single sense of this definition.

25 S1.1273-1(b), implementing Code S1273(a)(2).
26 For purposes of this discussion, we try therefore to draw a fine line between “original issue

discount” and “OID” on the one hand, meaning the quantity in (4.1), and the true “discount
associated with original issue,” meaning V0 − V ∗

0 when that is positive.
27 S171(b)(1).
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at the same time, and provisions for treating it would be at loggerheads. To avoid such an

absurdity, we interpret that it does mean the same thing.28 This interpretation lies behind the

appearance of SRPM in (4.2) as well as in (4.1).

Of course, such a patch-up between OID and OIP only goes so far. To the extent that

SRPM may differ from V0, conflicts are still bound to rear up from Theorem 4.1. For instance,

in cases where V0 < V ∗
0 < SRPM an instrument would have “original issue discount” in the

official sense, even though it was really issued with premium in the economic sense, and its yield,

as determined through the principle of constant yield to maturity relative to its issue price, is

actually lower than its nominal yield; cf. Theorem 4.1(b). Likewise, in cases where SRPM

< V ∗
0 < V0 an instrument would have “original issue premium” despite having been issued at

discount and having a yield that is higher.

The formula that defines SRPM, toward which we are proceeding, depends heavily on

another notion, that of

Qk = the qualified interest payment on date ik

to a holder under an instrument’s nominal specification. “Qualified” seems to suggest some

higher standard of legitimacy in payment, in contrast presumably to forms or amounts that

might be thought of as more likely to facilitate tax avoidance. The words of Congress on which

the concept rests speak of “any interest based on a fixed rate, and payable unconditionally at

fixed periodic intervals of one year or less during the entire term of the debt instrument.”29 In

legal language, saying that something is payable “unconditionally” merely excludes situations

where the times or amounts of the payments might be uncertain in advance and subject to

contingencies; code and regulations make this clear in other contexts as well as the one under

discussion. Therefore, it is difficult to see why the interest amounts Ik in the nominal specifi-

cation (this being a full, consistent specification in the sense of Definition 2.1, as far as we are

concerned here) might not themselves be interpreted as paid in such a sense,30 at least if the

date spacing is regular and the accrual periods do not exceed one year.

As a matter of fact, before the cited statutory wording took effect in 1985 the role of Qk in

the formulas below was taken by Ik in treatments of discount and premium. There was no trouble

28 Such a view with respect to the IRS Proposed Regulations of 1986 has been taken also by
Garlock [1, p. 399]. It appears outright in S1.1273-1(c) of the pending IRS Proposed Regulations
of 22 December 1992.

29 Internal Revenue Code S1273(a)(2), effective for debt instruments issued after 1984.
30 Or if not those amounts Ik, parts of which may be implicit payments, then the explicitly

paid amounts Jk defined at the end of Section 2, although that would mathematically be a lot
more complicated.
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over whether the interest payments associated with an instrument’s nominal specification might

somehow be unqualified, if they made sense in the traditional framework of finance. Implicit

payments were as good as explicit ones.

That could still be the situation today, and many of the problems soon to be described would

have been avoided, if it were not for certain elaborations which have since entered the regulations.

In particular, the IRS Proposed Regulations of 1986 substitute for “payable unconditionally”

the words “actually and unconditionally payable.”31 With this, the IRS seems possibly to have

taken the position that implicit payments, such as occur when earned interest is automatically

reinvested, are not “actual” payments.32 But why insist on some subtle difference among shades

of actuality of payment, when the real question is simply how much taxable income should be

regarded as received in total by a holder of an instrument in each accrual period? If implicit

payments are going to be regarded in the end as taxable payments, which will be the result

in motivating cases like the zero-coupon bond in Example 4.1 below, what is the point? The

entire trend of tax law connected with discount bonds has been in the direction of making

implicit income includable as current income, so efforts to distinguish between “qualified” and

“unqualified” reveal a philosophical contradiction as well. Ironically, the departure of “qualified”

interest from the economic accrual (as embodied in the revised specification in the amounts I∗k)

creates and legitimizes opportunities for the very tax avoidance it was intended to suppress, as

several examples will soon illustrate.

Anyway, whatever the intention behind “qualified” interest, the definition provided in reg-

ulations, as far as it can be understood mathematically,33 is flawed to the point of not meeting

an identifiable goal. As we shall see, interest explicitly received with impeccable credentials can

fail to be qualified in this way, while repayments of principal can wind up being characterized

as payments of qualified interest. Only a return to identifying Qk with Ik will be able to clear

the problem up.

The official definition of the amounts Qk starts from the quantities furnished by the nominal

31 In S1.1273(b)(ii). These regulations came out only on 2 April 1986 but effective for debt
instruments issued after 1984.

32 Such a supposition is reinforced by the pending IRS Proposed Regulations of 1992, which
in turn offer the substitute wording “unconditionally payable in cash or in property (other than
debt instruments of the issuer) at least annually at a single fixed rate.” This is in S1.272-3(c).
Interest that reappears as new principal after having being declared as income might be thought
of as giving rise to new debt instruments of the issuer. Insistence of that viewpoint, however,
would require treating many single instruments as bundles of smaller instruments, which would
be a terrible nuisance without visible benefits.

33 Nowhere is the mathematical prescription fully spelled out. Our presentation of it has been
gleaned from examples in the regulations and conversations with tax authorities.
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specification of the instrument, in particular the yield y and initial principal V0, and with them

the complete sequence of principal values Vk derived from the corresponding representation

Ck = Ik + Rk of each explicit payment. (These quantities are thus evidently taken as “correct”

as far as they go.) From the sequence of principal values V0, V1, . . . , Vm−1, which we know from

Theorem 2.1 to be positive, a sequence of what might be called “potential yield rates”

yk =
Ck

θkVk−1
for k = 1, . . . ,m, (4.3)

is calculated,34 and then an “operative yield rate” is defined by

ŷ = smallest of y1, . . . , ym. (4.4)

Finally, the qualified interest payments Qk are taken to be given by35

Qk = θkŷVk−1 for k = 1, . . . ,m (4.5)

By virtue of (4.3) and (4.4) it is clear that36

Qk ≤ Ck for k = 1, . . . ,m. (4.6)

With the qualified interest payments Qk defined, we can pass at once to the official definition

provided for the “stated redemption price at maturity,” which is

SRPM = [C1 −Q1] + · · ·+ [Cm −Qm]. (4.7)

This can straightaway be contrasted with the expression

V0 = [C1 − I1] + · · ·+ [Cm − Im], (4.8)

34 For some instruments it may be necessary, before proceeding, to respecify in such a way as
to achieve equal spacing of dates; for more on this see Section 5 and the compendium of rules in
Section 7. The IRS Proposed Regulations of 1992, in S1.1273-1(c)(1), relax the requirement of
equal spacing of compounding dates in determining SRPM. That does not mean that instruments
issued before they came out escape the problem, however.

35 The 1986 Proposed Regulations use the full term qualified periodic interest payments, and
these have become known as QPIP’s. In the pending IRS Proposed Regulations of 1992, S1.1273–
1(c), the term qualified stated interest payments is used instead, but the meaning appears to be
slightly different: the use of the word “stated” seems to dictate that the nominal yield rate y
should be included among the yk’s in calculating ŷ in (4.4). This would guarantee that ŷ ≤ y.
With such a modification in the way of determining ŷ, the values of the Qk’s shift in some
situations as well.

36 The seemingly altered definition for Qk in the IRS Proposed Regulations of 1992 would
ensure also at least that Qk ≤ Ik; see the preceding footnote.
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which derives from Theorem 2.1, see (2.10). The conclusion is that

SRPM = V0 when Qk = Ik for k = 1, . . . ,m,

(or equivalently, when ŷ = y).
(4.9)

It is worth repeating that if the interest payments Ik associated with a consistent, full specifica-

tion were to be regarded as “qualified,” regardless of the extent to which they might be explicit

or implicit (but are treated as made by the issuer to the holder for the periods ending on the

dates ik), as they were until the 1986 Proposed Regulations (applying to debt instruments is-

sued after 1984), most of the inconsistencies that will be displayed would fade away. To the

extent that a discrepancy between SRPM and V0 is able to develop out of the currently adopted

definition, it must of course be visible through noncancellation of certain differences Ik −Qk in

the equation

SRPM = V0 + [I1 −Q1] + · · ·+ [Im −Qm], (4.10)

which like (4.9) comes from comparison of (4.7) with (4.8).

For a reference point let it be observed right away that

SRPM = V0 for a standard bond, (4.11)

since standard bonds come under the sway of the criterion in (4.9) (see Example 3.1). No doubt

this important case gives the model from which the words “stated redemption price at maturity”

originated. For other kinds of instruments, though, the amount SRPM as defined in (4.7) need

not have been “stated” or have any interpretation as a “price,” nor is it likely to have any

connection with “redemption at maturity.” It may fail to have any good meaning at all.

There are many peculiarities to be noticed here. The “operative yield rate” ŷ involved in

defining the “qualified” payments has no standing as a proper yield rate for the instrument in

question along the lines of constant yield to maturity. It does not satisfy a yield-to-maturity

equation relative to the given data (unless it happens to agree with y), nor is it regarded as

affecting the evolution of principal. Why then should it be thought to provide a better standard

for determining interest received “at a fixed rate,” by its use in the formula Qk = θkŷVk−1,

than the solidly justified yield y in the formula Ik = θkyVk−1? The rationale for assigning any

significance to the ratios yk in (4.3) in the imputation of interest is unclear, especially when the

procedure apparently acknowledges from the outset that Ck may correctly consist in part of a

principal repayment Rk (in particular when k = m).

The crux of the matter is that the “operative” yield ŷ is not based on recognized financial

principles, nor can it even be computed on its own, since it depends, at least tacitly, on first

accepting a background level of correctness in the yield rate y. Questions do have to be faced by
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the IRS about how to handle instruments that may be only partially or inconsistently described,

but the answers ought to grow out of a carefully worked out approach first of all to instruments

for which the specification is full and consistent, as we limit attention to here. The constant yield

rate y associated with an instrument and its nominal specification under the firm mathematics

of Definition 2.1 should take precedence over the rate ŷ with its shaky derivation.

If that were followed, it would be true that SRPM = V0 and OID = V ∗
0 − V0 as needed for

agreement with economic realities; this is apparent from (4.9). If not, as now is the case, there

are endless discomforting repercussions.

Example 4.1 (zero-coupon bonds versus CD-like instruments). On the one hand, consider a

zero-coupon bond that pays M dollars at the end of ten years and is purchased by an original

holder for a price of P dollars, where P < M . On the other hand, consider a ten-year CD-like

instrument as in Example 3.4 that is acquired without discount by an original holder for P

dollars and has a yield rate r such that the final pay-back is M . The sequence of dates ik is to

be the same in both cases.

For the zero-coupon bond we have V0 = M and y = 0, but V ∗
0 = P and y∗ = r. On

each intermediate date ik the explicit payment is Ck = 0 with Ik = 0, but I∗k > 0. Under the

nominal specification nothing happens, but under the revised specification there are implicit

interest payments I∗k which are automatically reinvested; these happen to be of the magnitude

θr(1 + θr)k−1P for k = 1, . . . ,m. (4.12)

We have SRPM = V0 = M in line with (4.10), so that OID = M − P = V0 − V ∗
0 through

definition (4.1). The quantity designated as OID therefore conforms with the true discount at

original issue. In taxation, as will be seen in Section 7, the holder is obliged to declare the

amount in (4.12) as taxable income for the period ending on date ik.

In the CD-like instrument these same features are displayed openly. This time V0 = P and

y = r, so that the nominal interest amounts Ik themselves have the magnitudes in (4.12). Again

these are paid implicitly and automatically reinvested, but already the nominal specification

stipulates that they are income to the holder. Since the instrument is acquired at its nominal

value, there is no discount at original issue: V ∗
0 = V0. The revised specification coincides with

the nominal specification, and I∗k = Ik, so that the adjustments I∗k − Ik to account for discount

at original issue are all 0.

It would seem that the taxation of the two instruments should come out the same. In the

end it will turn out basically that it does, but in the meantime an oddity arises. The CD-like

instrument has ŷ = 0, because Ck = 0 when 1 ≤ k < m, and it therefore has Qk = 0 on all dates
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ik; on the other hand, Cm = M . Through (4.7) then, SRPM = M . It follows in (4.1) that OID

= M − P > 0. This bond thus is deemed to have “original issue discount” although there was

no actual discount in price at original issue.

Since the taxation of the two instruments in Example 4.1 will eventually come out the same

despite the difference in treatment, the inconsistency in this particular illustration mainly has

the quality of a glitch in terminology. Nonetheless it does fuel confusion about the meaning of

things. The holder, instead of being encouraged for straightforwardness, comes under a kind of

suspicion and is forced to recast the facts in a way that does not fit with economic truth.37

The situation gets definitely odder when the possibility is contemplated that the CD-like

instrument in Example 4.1 might for some reason be acquired at a price P ′ higher than P ,

although still less than M ,

P < P ′ < M.

Then V ∗
0 = P ′, so that V ∗

0 > V0 and there is premium at original issue in the amount of

P ′−P > 0. The yield rate y∗ based on constant yield to maturity, relative to the issue price P ′

and the explicit payments provided, is necessarily lower than y in this case; see Theorem 4.1(b).

Nonetheless, the instrument is officially said to exhibit “original issue discount,” because OID

= M − P ′ > 0 in this case.

Example 4.2 (principal repayments misconstrued as qualified interest). Consider an instru-

ment of novel form that, with an initial investment V0 and yield y, compounds interest semian-

nually for ten years, but in each compounding date ik before maturity explicitly pays out not

only the full amount of interest earned over the period ending on that date, but also an equal

amount as repayment of principal. One has

Ck = 2Ik = 2(θy)Vk−1 for k = 1, . . . ,m− 1 with θ = 1
2 , (4.13)

and consequently

Vk = (1 + 1
2y)Vk−1 − Ck = (1− 1

2y)Vk−1 for k = 1, . . . ,m− 1, (4.14)

but Cm = (1 + 1
2y)Vm−1, so that Vm = 0. (It is assumed that y < .5, so that principal stays

positive until the end.) We find from (4.3) and formula (4.13) that

yk =
2( 1

2y)Vk−1
1
2Vk−1

= 2y for k = 1, . . . ,m− 1,

37 Also, in filing taxes the holder of the CD-like instrument must include the interest in the
category of “original issue discount” with its special forms, instead of just ordinary interest
income.



40

whereas

ym =
(1 + 1

2y)Vm−1
1
2Vm−1

= 2 + y > 2y,

and this provides through definitions (4.4) and (4.5) that

ŷ = 2y, so Qk = 2Ik = Ck = Ik + Rk for k = 1, . . . ,m. (4.13)

Half of each so-called qualified interest payment Qk is therefore really return of principal.38

Furthermore, from (4.10) and (4.13) we have for this instrument that

SRPM = V0 − I1 − · · · − Im < V0, in fact SRPM = (1− 1
2y)mV0. (4.14)

Thus, there is “original issue premium” in the amount of

OIP =
[
1− (1− 1

2y)m
]
V0

even for an original holder who acquires at price equaling the nominal value V0.

A disturbing consequence in this situation is that if the instrument in Example 4.2 were

acquired by an original holder for a price V ∗
0 < V0, representing a true discount at original issue,

but with V ∗
0 > SRPM, it would officially be deemed to have the “original issue premium” amount

OIP =V ∗
0 − SRPM > 0 and would escape taxation of the supplementary interest payments I∗k−Ik

that add up to the discount amount V0−V ∗
0 .39 It would turn out that the holder would instead

have official sanction for deducting from income various amounts characterized as extra interest

expense incurred.

To drive the point home about how inadequate regulations have been in identifying the

possibilities they are supposed to prevent, because of uneven mathematical foundations, we

give a small, numerical example. This concerns a hypothetical instrument with features similar

to those in Example 4.2, but more extreme. A massive potential for tax advantage is clearly

revealed.

Example 4.3 (negative taxable interest income in every period).40 Consider a two-year instru-

ment with nominal initial investment V0 = $100, 000 and yield y = .10, compounded annually,

38 This is relative to S1.1273-1(a) and (b) of the IRS Proposed Regulations of 1986, still
regarded as authoritative for instruments issued up to 22 December 1992. The pending IRS
Proposed Regulations of 1992 seem to exclude this particular outcome; see Footnote 33.

39 Under the IRS Proposed Regulations of 1986; see the preceding footnote.
40 This example would presumably no longer operate under the pending IRS Proposed Reg-

ulations of 1992; see Footnotes 33 and 34. Whether instruments of such character were ever
written under the regulations in effect until recently is unknown; the change in the regulatory
circumstances appears to be a “lucky accident” in this respect. If such instruments were not
written, that is of course testimony to the lack of appreciation for mathematical perspectives
even on the part of those who would like to turn tax rules to their advantage.
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which pays out C1 = $100, 000 at the end of the first year and C2 = $11, 000 at the end of the

second, when it matures. There are three dates involved, i0, i1, and i2, spaced one year apart;

the constant period length is θ = 1.

This is a full specification in the sense of Definition 2.1, but is it consistent? The test is

made according to what happens to the principal. At the end of the first year one has

I1 = $10, 000, R1 = $90, 000, V1 = $10, 000,

while at the end of the second year the figures are

I2 = $1, 000, R2 = $10, 000, V2 = $0.

The fact that V2 = $0 confirms consistency.

To compute next the quantity that has been designated in regulations as the SRPM, the

beginning step is to determine the two potential yield rates y1 and y2 associated with the

payment stream. These are

y1 =
C1

θV0
=

100, 000
100, 000

= 1.00, y2 =
C2

θV1
=

11, 000
10, 000

= 1.10.

The operative yield rate is deemed therefore to be ŷ = 1.00, and the corresponding “qualified

periodic interest payments” are

Q1 = θŷV0 = $100, 000, Q2 = θŷV1 = $10, 000.

This means that the “stated redemption price at maturity” is officially considered to be

SRPM = [C1 −Q1] + [C2 −Q2] = $1, 000.

Suppose now that the instrument has been acquired by an original holder for a price V ∗
0 =

$99, 018, which corresponds to a revised specification in which the yield is y∗ = .11. Under this

revised specification the payment C1 is interpreted as giving

I∗1 = (.11)($99, 018) = $10, 892, R∗
1 = $89, 108, V ∗

1 = $9, 910,

while the payment C2 results in

I∗2 = (.11)($9, 910) = $1, 090, R∗
2 = $9, 910, V ∗

2 = $0.

The interest adjustments I∗1 − I1 = $892 and I∗2 − I2 = $90 add up to the true discount at

original issue, which is V0 − V ∗
0 = $982.
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It might seem that the holder should declare as taxable income the amounts I∗1 for the first

year and I∗2 for the second. But because SRPM < V ∗
0 , regulations construe the instrument as

not having “original issue discount.” Instead, there is “original issue premium” in the amount

of OIP =V ∗
0 − SRPM = $98, 018.

As will emerge from the rules laid out in Section 7, taxation goes forward in this case

relative to the nominal specification, but in addition the holder is permitted to utilize the so-

called premium amount in one way or another as an offset. In one approach,41 the premium could

be amortized by the straight-line method, with half of it deducted in each year. This means that

the holder could declare the net interest income from the instrument to be $10, 000− 49, 009 =

−$39, 009 in the first year and $1, 000− 49, 009 = −$48, 009 in the second. Even if the pseudo-

premium on the discount bond in Example 4.3 were not handled in such a remarkable way, there

would be a gratuitous tax advantage available to the holder42 through the fact that amortization

of bond premium has always been optional to the holder. Because the instrument would fall

into the category of having “original issue premium,” it would be shunted to taxation on its

nominal specification rather than its revised specification. The total interest income deemed

to be received from it would then be I1 + I2 = $11, 000, instead of I∗1 + I∗2 = $11, 982. The

difference in these interest amounts, equaling the true discount of $982 at original issue, would

escape being taxed as ordinary income. Perhaps it could be conceived, though, as a capital gain

at maturity: it is redeemed then for $0 when its basis is −$982, so that a gain of $982 might be

inferred.

This outcome is less dramatic (for this particular example), but from a theoretical stand-

point it still is impressive in showing that the rules do not accomplish what they set out to do.

With ingenuity, an entire array of instruments might, until very recently, have been formulated

and issued in such a manner as to exhibit OIP instead of OID, and thereby keep a portion of

real interest income out of the category of ordinary income.

Installment Obligations. Another inconsistency in the tax picture, again entering from

the way “qualified” interest has been conceived, is found in what constitutes an installment

obligation. One might expect that term would be applied to any instrument which in its nominal

specification has Rk > 0, or equivalently Ck > Ik, on some date ik before maturity. But the

41 Applicable to instruments issued before 28 September 1985.
42 This would be true if the instrument were issued any time under the tenure of the IRS

Proposed Regulations of 1986, i.e., up to 22 December 1992. After that, the value of SRPM
calculated for in this example would presumably be different.
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definition given in regulations43 is that it refers instead to an instrument for which Ck > Qk on

some date ik before maturity. Once more, there is nothing wrong when Qk is identified with Ik,

but if not there is trouble.

The next example indicates how an instrument can end up being called an installment

obligation officially, when the prescription for Qk in current regulations is followed, even if

principal is never returned before maturity under the instrument’s nominal specification.

Example 4.4 (an installment obligation with no early return of principal). Consider a three-

year instrument with constant yield rate y = .20 compounded annually, starting from V0 =

$1000, which for the first year returns all the interest earned, but for the second year only

returns half of it, reinvesting the other half. This means that C1 = $200 (so I1 = $200, R1 = $0,

V1 = $1000) but then C2 = $100 (while I2 = $200, R2 = −$100, V2 = $1100). For the third

year, the instrument provides C3 = (1 + y)V2 = $1320 (with I3 = $220 and R3 = $1100; then

V3 = $0). This furnishes a consistent, full specification in the sense of Definition 2.1 with period

length θ = 1.

To determine the “qualified” interest payments Qk, the lowest of the ratios

y1 =
C1

θV0
=

200
1000

, y2 =
C2

θV1
=

100
1000

, y3 =
C3

θV2
=

1320
1100

,

is selected as ŷ through (4.4); thus ŷ = .10. From the definition Qk = θŷVk−1 we then obtain

Q1 = $100, Q2 = $100, Q3 = $110.

Because Q1 < C1, the instrument is considered to be an installment obligation, even though

R1 = 0 and R2 < 0.

Incidentally, SRPM = [C1 − Q1] + [C2 − Q2] + [C3 − Q3] = $1310 in Example 4.4. This

makes little sense relative to the facts, according to which the final payment of $1320 consists of

$1000 in original principal, $100 in new principal (from interest income in the second year that

was reinvested), and $220 in interest. The inequality C1 > Q1, which is the only feature forcing

the instrument to be labeled as an installment obligation, obviously has nothing to do with any

kind of repayment of principal at the end of the first year.

For another surprise, look again at Example 4.3. The instrument described in this example

fails to be an installment obligation under the definition, because there is only one intermediate

date before maturity, namely i1, and we have Q1 = C1; yet almost all the principal is paid back

in the first year , with R1 being 90% of V0.

43 S1.1273–1(b)(2)(i) of the IRS Proposed Regulations of 1986.
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Adjusted Issue Price. We have seen in Section 3 that the revised principal value V ∗
k on

date ik is a quantity that evolves from the issue price V ∗
0 by the rule

V ∗
k = V ∗

k−1 + I∗k − Ck for k = 1, . . . ,m− 1, where I∗k = θky∗V ∗
k−1. (4.15)

Very close to this in tax literature is the concept of the adjusted issue price on date ik, which

we denote by V̂ ∗
k . This is described in regulations as evolving by the rule

V̂ ∗
k = V̂ ∗

k−1 + Ok − [Ck −Qk] for k = 1, . . . ,m− 1, with V̂ ∗
0 = V ∗

0 , (4.16)

where Ok represents “unqualified” interest—thought to be earned above the “qualified” Qk

amount—as computed for the kth period from

Ok =
{

Î∗k −Qk if Î∗k ≥ Qk,
0 if Î∗k < Qk,

where Î∗k = θky∗V̂ ∗
k−1. (4.17)

This interest amount Ok is considered to be the portion of income that a holder should declare

for the kth period as coming from “original issue discount” (hence our symbol Ok for denoting

it), whereas Ck−Qk is perhaps a putative return of principal. The total interest income believed

to be received by the holder in the kth period is Qk + Ok.

Formulas (4.16) and (4.17) are tailored for use on certain classes of instruments with “orig-

inal issue discount” as in (4.1). Even for such instruments, however, trouble can arise. Just as

earlier, the main culprit lies in taking Qk to mean anything other than Ik. But there is another

mathematical villain now in the cutoff rule in (4.17), which keeps the tax adjustment for the OID

portion from going negative. While that provision might seem offhand to be a simple precaution

against potential abuse, its actual effect is some cases to force the adjusted issue price to deviate

from the revised principal value and lose its economic grounding. When that happens the door

is opened to all sorts of difficulties.

The exact nature of the problem is set down in the following theorem. The main conclusion

is that an imbalance in accounting for the OID quantity arises directly in association with any

circumstance in which an interest payment under the revised specification does not cover all the

interest regarded as “qualified.”

Theorem 4.2 (potential imbalance in adjusted issue price and OID).

(a) If an instrument in its revised specification has the property that I∗k ≥ Qk on

all intermediates dates ik (i.e., for k = 1, . . . ,m− 1), then its adjusted issue price and

revised principal value always coincide:

V̂ ∗
k = V ∗

k for i = 0, 1, . . . ,m,
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and in particular V̂ ∗
m = V ∗

m = 0. Then moreover

O1 + O2 + · · ·+ Om = OID.

(b) But if there is a date ik∗ on which I∗k∗ < Qk∗ , then

V̂ ∗
k > V ∗

k for k = k∗, . . . ,m.

In the event of such an imbalance the adjusted issue price cannot reach 0 at maturity:

it will be true in particular that

V̂ ∗
m > 0, although V ∗

m = 0.

In fact the gap between V̂ ∗
k and V ∗

k will successively widen on each date ik after ik∗ .

If there are such dates (i.e., if k∗ < m), one will have

O1 + O2 + · · ·+ Om > OID.

Thus, the payments in which the OID quantity is supposed to be parceled out will

overshoot.

Proof. Observe first that because V̂ ∗
0 = V ∗

0 by definition, we start out with Î∗1 = I∗1 . If

this quantity is not exceeded by Q1, we get O1 = I∗1 − Q1 from (4.17) and therefore V̂ ∗
1 =

V̂ ∗
0 + [I∗1 −Q1]− [C1 −Q1] = V ∗

0 + I∗1 − C1 = V ∗
1 from (4.16) and then (4.15). So it continues:

we have from V̂ ∗
1 = V ∗

1 that Î∗2 = I∗2 , and if this quantity is not exceeded by Q2 we obtain

O2 = I∗1 −Q2 from (4.17), so that V̂ ∗
2 = V ∗

2 from (4.16) and (4.15). In following this pattern we

deduce that as long as I∗k ≥ Qk we get V̂ ∗
k = V ∗

k . This could go all the way to the end, and we

would reach the first conclusion in the theorem, moreover with

O1 + · · ·+ Om = [I∗1 −Q1] + · · ·+ [I∗m −Qm] = [I∗1 + · · ·+ I∗m]− [Q1 + · · ·+ Qm]

= [C1 + · · ·+ Cm − V ∗
0 ]− [Q1 + · · ·+ Qm]

= [C1 −Q1] + · · ·+ [Cm −Qm]− V ∗
0 = SRPM − V ∗

0 = OID,

(4.18)

where the equality on the second line utilizes (3.12), and the last two equalities invoke the

definition (4.7) of SRPM and the definition (4.1) of OID. This proves (a).

Otherwise the pattern of having V̂ ∗
k = V ∗

k only continues to a date ik∗ (take it to be the

first such) on which I∗k∗ < Qk∗ . At that stage we have V̂ ∗
k∗−1 = V ∗

k∗−1, so that Î∗k∗ = I∗k∗ still,

but Ok = 0. Then V̂ ∗
k∗ = V̂k∗−1 + 0 − [Ck∗ −Qk∗ ] in contrast to V ∗

k∗ = V ∗
k∗−1 + I∗k∗ − Ck∗ . By

subtracting the second relation from the first, we obtain

V̂ ∗
k∗ − V ∗

k∗ = Qk∗ − I∗k∗ > 0,
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which gives V̂ ∗
k∗ > V ∗

k∗ . Our aim next is to show that once this strict inequality has been

encountered it will be maintained henceforth. For this we write (4.15) and (4.16) in general in

the form
V ∗

k − V ∗
k−1 = [I∗k −Qk]− [Ck −Qk],

V̂ ∗
k − V̂ ∗

k−1 = Ok + [Ck −Qk],

and subtract the first equation from the second, obtaining[
V̂ ∗

k − V ∗
k

]
−

[
V̂ ∗

k−1 − V ∗
k−1

]
= Fk

with Fk = Ok − [I∗k −Qk] =

{[
Î∗k −Qk

]
−

[
I∗k −Qk

]
if Î∗k ≥ Qk,

0−
[
I∗k −Qk

]
if Î∗k < Qk,

=

{
θky∗

[
V̂ ∗

k−1 − V ∗
k−1

]
if Î∗k ≥ Qk,

Qk − I∗k if Î∗k < Qk.

(4.19)

Arguing now from k = k∗ + 1 on, we note that if V̂ ∗
k−1 > V ∗

k−1, then Î∗k > I∗k out of comparison

with the interest formulas in (4.15) and (4.16). It will be shown from this that the inequality

V̂ ∗
k−1 > V ∗

k−1 implies Fk > 0 in (4.19). In the case of (4.19) where Î∗k ≥ Qk, we have Fk =

θky∗
[
V̂ ∗

k−1 − V ∗
k−1

]
> 0. On the other hand, in the case of (4.19) where Î∗k < Qk we have

Fk = Qk − I∗k > 0 because Qk − I∗k > Qk − Î∗k through the inequality Î∗k > I∗k (as a consequence

of V̂ ∗
k−1 > V ∗

k−1). Since either way we get Fk > 0, we are able to conclude from the first equation

in (4.19) that

V̂ ∗
k − V ∗

k > V̂ ∗
k−1 − V ∗

k−1 > 0.

In other words, the inequality V̂ ∗
k−1 > V ∗

k−1 is inherited in the next period as V̂ ∗
k > V ∗

k . Thus,

as claimed, once a gap enters between the adjusted issue price and the revised principal value,

it holds to the end.

The argument shows in fact that the gap between the adjusted issue price and the revised

principal value keeps widening after it forms. It widens on date ik by the positive amount Fk

in (4.19).

Furthermore in this case, from having Î∗k > I∗k for all k > k∗, although the two interest

quantities are equal for k ≤ k∗, we will have through definition (4.17) that Ok > I∗k − Qk for

all k > k∗, although Ok = I∗k −Qk for all k ≤ k∗. Then in tracing the calculation in (4.18) we

find that, as long as k∗ < m, the first equality is replaced by “>” while all the other equalities

continue to hold. This establishes the final inequality claimed in (b).

It may be imagined that the discrepancy in the second case in Theorem 4.2 can never arise,

but that conjecture is false, as we now demonstrate. First we look at an example that comes

from further study of the instrument in Example 4.3.
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Example 4.5 (surplus basis after maturity).44 The adjusted issue price behaves as follows for

the discount bond in Example 4.3. It starts out with V̂ ∗
0 = V ∗

0 = $99, 018, this being the issue

price, in comparison to V0 = $100, 000. Since the instrument’s yield to maturity is y∗ = .11

relative to this price of purchase by an original holder, we get Î∗1 = I∗1 = $10, 892, and because

Q1 = $100, 000 > Î∗1 we have O1 = 0. Then

V̂ ∗
1 = V̂ ∗

0 + O1 − [C1 −Q1] = $99, 018,

since C1 = Q1; this is in contrast to

V ∗
1 = V ∗

0 + I∗1 − C1 = $9, 910.

In the next stage, Î∗2 = $10, 892; because Q2 = $10, 000 < Î∗2 , we obtain O2 = Î∗2 −Q2 = $892.

From the fact that C2 = $11, 000, we end up with

V̂ ∗
2 = V̂ ∗

1 + O2 − [C2 −Q2] = $98, 910

as the adjusted issue price at maturity—after all payments have been received. This contrasts

with V2 = $0 and V ∗
2 = $0.

If the holder were taxed according to “yield to maturity” as imagined to be realized through

this pattern generated from the adjusted issue price (instead of in an economically correct manner

from the revised specification), it might seem that the amounts Î∗1 = $10, 892 and Î∗2 = $10, 892

would be viewed as the taxable income received for the two years. This would differ markedly in

total from the amounts I∗1 = $10, 892 and I∗2 = $1, 090 dictated under the revised specification.

A potentially compensating feature, however, would appear in the residual of $98, 910 after

maturity. Presumably this could be interpreted as a capital loss.45If so, the net result would

hugely be to the holder’s advantage.

Rather than Î∗1 and Î∗2 , though, the interest income deemed to be received would be Q1 +

O1 = $100, 000 for the first year and Q2 + O2 = $10, 892 for the second, which is far more out

of line with I∗1 and I∗2 and harder than ever to justify in any sense as resulting from “constant

yield to maturity.” While the holder would be unhappy with such an interpretation of income,

44 Footnote 38 again applies.
45 This amount represents the difference between the holder’s “basis” going into the maturity

date i2, which is set up for purpose of determining capital gain or loss as will be explained
in Section 6, and the payment received then on retirement, which is regarded by law as cash
received “in exchange for” the instrument, cf. S1271(a) of the Internal Revenue Code. On the
face of things, less value was received when all was over than the value that had still been
deemed present, and the difference is then a capital loss.
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the issuer might be glad, because these amounts could be taken as deductible interest expense;

an instrument with these provisions could perhaps be issued by a taxed entity for purchase

by an untaxed entity, who would not need to worry about the other side of the tax picture.

Even if the issuer were obliged to declare $98, 910 as a capital gain, the outcome would still

be advantageous, not only because the expense declared in the first year would outweigh the

reverse effect in the second year, but through the time value of money and the possibility of

capital gains being taxed at a lower rate than interest.

But inconsistencies pile on inconsistencies and add further twists. A special provision for

handling adjusted issue price in the final accrual period requires that the final amount Om be

taken not from the general formula in (4.17) but to be whatever quantity is needed so as to

make V̂m come out to be zero at maturity—as long as the instrument is not an installment

obligation.46 It may have been taken for granted that the instrument under investigation is

an installment obligation, and therefore sidesteps this provision, because it returns most of its

initial principal in the first period under its nominal specification. Yet actually, as noted earlier,

it is not an installment obligation in the sense given in regulations, since C1 = Q1. Thus, the

surplus basis of $98, 910 is ephemeral. The issuer would not have to declare a capital gain after

all. The tax advantage would be hugely in the issuer’s favor.

On the other hand, the erasing of the final surplus in the adjusted issue price does not

necessarily prevent the holder from using the discrepancy between adjusted issue price and

revised principal value to some advantage. It merely prevents doing so on the date of maturity.

There is still some potential in the fact that V̂ ∗
1 = $99, 018, whereas V ∗

1 = $9, 910. From the

theory of constant yield to maturity it is known that the second of these figures is the amount

which, at the revised yield rate y∗ = .11, would result in receiving the payment C2 = $11, 000

at the end of the next (and final) period. Under the assumption that financial markets have

been stable over the first period, this comes out to be more or less the price at which the holder

could sell it right after date i1; let us suppose it is sold exactly at this price. The difference of

$99, 018 − 9, 910 = $89, 108 would then be written down as the holder’s capital loss. For the

particular instrument at hand, the net would not be in favor of the holder, but what is there to

exclude the possibility that for slightly different data written into the bond the result might go

the other way? When the “basis” value of an instrument differs, under regulations, so grossly

from its economic value, serious repercussions may be expected.

46 See the IRS Proposed Regulations of 1986, S1.1273(c)(2)(iii). This feature was simply
designed to catch errors in arithmetic that may have occurred earlier in including interest. It
was not based on any understanding that the adjusted issue price might turn out to be positive
after maturity.
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In the end, though, there is still another point of inconsistency to remember. None of

the mentioned approaches to tax consequences is correct, because the instrument, although

purchased at discount, is officially regarded as a premium instrument with OIP = $98, 018. For

such an instrument, regulations prescribe that the adjusted issue price never enters taxation at

all. The nominal specification is to be used instead, as explained earlier.

One could balk at these strange consequences and dismiss them on the grounds that they

are only due to having assigned values to Q1 and Q2 that are ridiculously far from the interest

payments I1 and I2 called for under the instrument’s nominal specification, and certainly not

the intent of the regulations. But that is just our point. The intent of the regulations can only

be interpreted from what they appear to say. We think they ought to indicate simply that Qk

should always be taken to be Ik.

Nevertheless, a less extreme example may be helpful in making clear that an imbalance

between V̂ ∗
k and V ∗

k can occur even in more homely circumstances.
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Example 4.6 (misbehavior of adjusted issue price in an almost standard bond). Consider a

20-year bond with V0 = $100, 000 and yield y = .10, compounded annually, which is just like a

standard bond, except that a small portion of the next-to-last interest payment is reinvested. The

explicit payments are Ck = $10, 000 for k = 1, . . . , 18, but C19 = $9, 000 and C20 = $111, 100.

This is a consistent, full specification in the sense of Definition 2.1 with

Ik = $10, 000, Rk = $0, Vk = $100, 000 for k = 1, . . . , 18,

I19 = $10, 000, R19 = −$1, 000, V19 = $101, 000,

I20 = $10, 100, R20 = $101, 000, V20 = $0.

To what extent are these interest payments “qualified”? The “operative” yield rate is ŷ = .09,

so that

Qk = $9, 000 for k = 1, . . . , 19, and Q20 = $9, 090.

The “stated redemption price at maturity” is therefore believed to be

SRPM = 18[10, 000− 9, 000] + [9, 000− 9, 000] + [111, 100− 9, 090] = $120, 010,

even though the principal is always $100, 000 except in the final period, when it is $101, 000 and

then returned.

Suppose this bond is issued for the price V ∗
0 = $119, 641, which corresponds in the revised

specification to a market yield rate of y∗ = .08. In this case it is issued in fact at a substantial

premium, but because V ∗
0 < SRPM it is believed instead to have original issue discount to the

extent of

OID = $370.

Its treatment for purposes of taxation should then presumably (under rules described later)

follow the adjusted issue price and the interest generated out of that, rather than simply the

revised specification. But if so, a strange result occurs, as shown in the accompanying table.

The adjusted issue price V̂ ∗
k keeps pace with the revised principal value V ∗

k until k = 13, when it

starts to deviate. The gap then gets wider and wider (in confirmation of Theorem 4.2(b)), and in

the end—after all payments have been received for year 20, there is a remainder of V̂ ∗
20 = $3, 494.

The cause of the discrepancy is seen in the column giving the differences Î∗k − Qk. These

reach 0 in year 12 and then go negative; they give Ok until then, but once they are negative,

Ok is 0. The total these amounts is therefore the total of the positive numbers in this column:

we have

O1 + · · ·+ O20 = $3, 863.

This is way in excess of the $329 that it is supposed to account for.
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In each period the holder is officially regarded as receiving the interest amounts Qk and Ok.

Through year 12 we have Qk + Ok = Qk + (Î∗k −Qk) = I∗k , because Î∗k = I∗k , and so the income

agrees with that under the revised specification. But thereafter Qk + Ok > I∗k , and there is

overreporting of interest income in comparison with the revised specification—by the amounts

displayed in the last column.

The total of the overreported income amounts under the scheme based on the adjusted issue

price V̂ ∗
k is $4, 113. This is partly compensated, however, by the final basis value of V̂20 = $3, 494,

which presumably could be taken as a capital loss. All three values can then be used to their

associated streams of interest income. The numerical results are displayed in Table 4.1.

Year V ∗
k I∗k V̂ ∗

k Î∗k Î∗k −Qk (Qk + Ok)− I∗k

0 119,641 119,641
1 119,212 9,571 119,212 9,571 571 0
2 118,749 9,537 118,749 9,537 537 0
3 118,249 9,500 118,249 9,500 500 0
4 117,709 9,460 117,709 9,460 460 0
5 117,125 9,417 117,125 9,417 417 0
6 116,495 9,370 116,495 9,370 370 0
7 115,816 9,320 115,816 9,320 320 0
8 115,080 9,265 115,080 9,265 265 0
9 114,287 9,206 114,287 9,206 206 0

10 113,429 9,143 113,429 9,143 143 0
11 112,504 9,074 112,504 9,074 74 0
12 111,504 9,000 111,504 9,000 0 0
13 110,424 8,920 110,504 8,920 −80 80
14 109,258 8,834 109,504 8,840 −160 166
15 107,999 8,741 108,504 8,760 −240 259
16 106,639 8,640 107,504 8,680 −320 360
17 105,170 8,531 106,504 8,600 −400 469
18 103,584 8,414 105,504 8,520 −480 586
19 102,870 8,287 105,504 8,440 −560 713
20 0 8,230 3,494 8,440 −650 860

Table 4.1 Misbehavior of Adjusted Issue Price.

Of course, any tax disadvantage to an original holder of such an almost standard bond

would be a tax advantage to the issuer.
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Trouble When Negative Offsets Are Disallowed. A problem would remain in the defi-

nition of the adjusted issue price even if the qualified payments Qk were to be identified always

with the interest payments Ik. It lies in the cutoff feature of formula (4.17), where Ok is taken

to be 0 when the amount of interest being subtracted overpowers the amount Î∗k at hand.47 The

first time in the life of an instrument that a negative value of Î∗k − Qk is replaced by 0, a gap

is created between V̂ ∗
k and V ∗

k which can never be removed, and which will result in surplus

“basis” after maturity, as proven in Theorem 4.2.

Can this come into play when Ik is substituted everywhere for Qk in determining the

evolution of V̂ ∗
k ? In other words, can it happen even in the aftermath of such a substitution

that Î∗k < Ik on some date ik? The next example establishes that it can, moreover on the date

i1 for some instruments, when Î∗k still agrees with I∗k .

Example 4.7 (a discount instrument paying less interest initially). Consider a ten-year CD-

like instrument with nominal value V0 = $10, 000 and constant yield y = .12, to be compounded

semiannually, which reinvests all interest until the end (cf. Example 3.4). This has Ck = 0 for

k = 1, . . . , 19, but C20 = $32, 071. Suppose it is acquired by an original holder for the price of

V ∗
0 = $8, 274, which corresponds to a yield of y∗ = .14. This instrument has been issued with

discount, the true amount of discount being V0 − V ∗
0 = $1, 726, although OID = $23, 797 by

official definition. Be that as it may, the most interesting feature concerns the interest payments

as time goes on.

Under the nominal specification, the interest deemed to be received by the holder on date

ik is Ik = (1.06)Vk−1, whereas under the revised specification it is I∗k = (1.07)V ∗
k−1. The

observation to make is that although the interest rate in the second case is higher in the second

case, it is being applied to a lower amount of principal in the beginning. These two tendencies

create a tug-of-war in the product, and whether the amount I∗k will come out larger than the

amount Ik is not a foregone conclusion. We do know from (3.13) in Theorem 3.1 that

(I∗1 − I1) + (I∗2 − I2) + · · ·+ (I∗19 − I19) + (I∗20 − I20) = V0 − V ∗
0 = $1, 722, (4.20)

but this ultimate balance might be attained with some of the initial difference terms negative,

as long as that is made up later by some of the subsequent difference terms being more positive.

Here we have exactly such a situation. We calculate that I∗1 = (1.07)8, 274 = $571, whereas

I1 = (1.06)(10, 000) = $600. Thus I∗1 − I1 = −$29.

47 This is written into the IRS Proposed Regulations of 1986; see S1.1272-1(c)(2)(1)(B). For-
tunately it is absent, however, from the corresponding part of the pending IRS Proposed Regu-
lations of 1992, which is S1.1272-1(b)(1)(iii).
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Furthermore, with Qk replaced by Ik in (4.16) and (4.17) we get V̂ ∗
1 = 8, 274+0−[0−600] =

$8, 874, in contrast to V ∗
1 = 8274 + 571 = $8, 845. By Theorem 4.2(b) it must be true that

V̂ ∗
k > V ∗

k for k = 2, . . . , 20 as well. The total O1 + · · ·+ O20 will end up exceeding the discount

amount $1722 it is supposed to account for.

Although the discrepancy in perception of interest in Example 4.7 is not very large, and

can only operate in early periods before compensation sets in to achieve the balance in (4.20),

the effect on adjusted issue price is permanent. With such an inconsistency admitted, there is

no telling what might be squeezed out of the tax situation. A disadvantage to a holder can be

erased when the holder is an untaxed entity, but resurface as an advantage to a taxed issuer.

Conclusions—How To Proceed. In response to the problems seen in this section, we hold

that the only reasonable interpretation of the qualified interest payments Qk is that they should

be the amounts Ik, even when these are partly explicit, and that the adjusted issue price must

be correspondingly be identified with the revised principal value V ∗
k .48 Furthermore, “stated

redemption price at maturity” should be identified with V0, and OID with V0 − V ∗
0 , when

positive. In consequence of identifying the qualified interest payment on date ik with Ik, an

“installment obligation” will be an instrument having a principal repayment Rk > 0 on some

date before maturity. This is how we shall interpret things in the rest of the study. The risky

and mathematically perplexing inconsistencies connected with the treatment of discount and

premium in the regulations, as they now seem to read, will thereby be avoided.

On a deeper level, though, what is the real root of so many clashes? Could there be other

problems of such a serious nature lurking in the regulations, or even in the Tax Code itself?

Only with the sharp tools of mathematical analysis can this possibly be found out, and only

through attention to sound theory based on consistent mathematical formulations of economic

ideas can the potential for nasty surprises be checked. We hope that this study will be seen as

a step in the right direction.

5. DATE SPACING TECHNICALITIES

Even with the understanding reached at the end of Section 4 on the need for reinterpreting

certain aspects of tax rules that are mathematically unworkable, not to speak of incompatible

with what must have been intended, there are difficult problems in code and regulations which

must be confronted before we can proceed to actual formulas for computing taxes. In looking at

48 With the cutoff feature for offsets dropped, cf. the preceding footnote and the discussion to
which it applies.
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these we shall see how the theory developed in Section 2 can be put to the test in distinguishing

whether a proposed method of calculating yield respects the given features of an instrument or

distorts its interest stream in one way or another.

Fortunately, the worst complications belong to the past. They are still required for the

taxation of instruments issued in the past that have not yet matured, but not for instruments

issued under the present regulatory regime. But much of what we are about to say has the side

aim also of clearing up persistent confusion in practice about yield computations.

There seems to be a widespread misconception, reflected to a degree in various provisions

in tax regulations—which are the cause of our concern here—that equal spacing of the dates

i0, . . . , im in a debt instrument is ultimately in some way prerequisite to a correct determination

of constant annual yield. In this notion, counter to the facts in Theorem 2.2 (as realized for

instance in Example 3.9), irregular accrual periods have to be broken down through the intro-

duction of supplementary compounding dates so as to make them regular, at least temporarily.

Some elaborations of the idea envision mistakenly that a yield rate computed in such a man-

ner might be utilized to determine the “correct” stream of interest income to be regarded as

received over the given (irregular) accrual periods, and that once this has been done, the sup-

plementary dates could thereafter be suppressed without incurring inconsistencies. According

to Theorem 2.2, however, the given dates already determine uniquely a correct yield rate and

stream of interest payments. Unless a proposed method of calculation comes up with this same

yield, something has to be out of line.

There is no difficulty with placing extra dates in the sequence i0, . . . , im so as to achieve

equal spacing. (In practice the smallest number of such dates would be used, unless the aim is to

pass to daily compounding.) But this does mean a change from the given specification of a debt

instrument to a new specification for which not only the annual yield rate, but also the interest

stream that is deemed to flow from it, will be different . The device is not an inconsequential

mathematical tactic; it has definite effects on the perception of income and therefore on the

amount and timing of taxes that might be owed on that income. Because of its unfortunate role

in tax regulations and literature, we need to examine it in some detail.

At stake is a theory that does a consistent job of defining the quantities of importance in

finance and does not merely leave them to the opinion of parties who may favor one approach to

calculation over another. Only with such a theory firmly in grasp is it possible to know which

figures for interest and outstanding principal are exact or approximate, and in the latter case,

whether the degree of approximation is satisfactory.

In the following analysis we keep to the basic notation of the nominal specification, but the

ideas carry over equally to the revised specification and any particularized specification.
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Definition 5.1 (fully compatible accrual length). A value θ will be said to give a

fully compatible accrual period length relative to the date sequence i0, . . . , ik, . . . , im if

each accrual period [ik−1, ik], when not already of length θ, can be divided into equal

subperiods of such length,49

θk = nkθ for k = 1, . . . ,m, where nk is a whole number. (5.1)

Under the slightly weaker condition where this property holds for all but the initial

and final accrual periods, i.e., where

θk = nkθ for k = 2, . . . ,m− 1, where nk is a whole number, and m > 2, (5.2)

θ will be said to give an internally compatible accrual period length.

For now we focus on full compatibility, but internal compatibility is a condition prominent

in certain tax regulations which will have to be dealt with also.

Method of Extra Dates. The approach we are about to describe has long been promulgated

in finance education and is very commonly used in practice when the question arises of calculating

yield. It has been adopted in tax regulations as an acceptable method for that purpose, although

it amounts to replacing a given instrument with its well determined yield (in the sense of Theorem

2.2) by a differently specified instrument having a higher yield rate, as we shall explain.

For any fully compatible accrual period length θ, think of extra compounding dates being

inserted in the sequence to mark the boundaries of the subperiods mentioned in Definition 5.1.

Take the explicit payments due for the subperiods ending on these extra dates to be 0. The

augmented sequence of dates could be renumbered, but without going through that notational

exercise, it can be appreciated that a constant annual yield value relative to the altered data is

uniquely determined through Theorem 2.2. Moreover, the yield-to-maturity equation needed for

that purpose is merely the version with equal spacing. A consistent, full specification different

from the one already available is thereby achieved. Denote the annual yield in this altered

specification by y.

The altered yield value y can be characterized within the original scheme of dates. In the

altered scheme, the principal at the end of each subperiod of length θ that does not terminate

in one of the original dates ik is merely multiplied by the factor (1 + θy); there is nothing to

49 Again the compromises in Footnote 10 may intervene. In particular daily accrual periods
can always be used; then θ = 1/365. Sometimes there are further compromises, like the 30-day
month, or the 360-day year.
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deduct because the explicit payment for such a subperiod has been taken to be 0. Therefore,

over the duration of an original period of length θk that has been divided into nk subperiods

of length θ, the principal that was present at the beginning just gets multiplied by (1 + θy)nk

before the amount Ck is subtracted off. From this it is evident that the effect of the alteration

on the yield-to-maturity equation in Theorem 2.2 for the original dates is simply to replace each

factor (1 + θky) by (1 + θy)nk . In other words, y is the unique solution to

V0 =
C1(

1 + θy
)n1 +

C2(
1 + θy

)n1+n2
+ · · ·+ Cm(

1 + θy
)n1+···+nm

, (5.3)

in contrast to y being the unique solution to (2.14).

Theorem 5.1 (effects of the method of extra dates). Suppose a consistent full spec-

ification of a debt instrument as in Definition 2.1 with positive net return as in Defini-

tion 2.2 has accrual periods that are not all equal in length. Then for any auxiliary ac-

crual period length θ fully compatible with the specified date sequence i0, . . . , ik, . . . , im

in the sense of Definition 5.1, the annual yield y in the altered specification having ac-

crual periods that are all of length θ will be smaller than the original yield:

y < y. (5.4)

The interest income over the life of the instrument will be the same with respect to the

altered specification, but some of it will be received in implicit payments of interest for

the subperiods ending on the extra dates, regarded as automatically reinvested.

Furthermore, receipt of interest income, even as aggregated over the original ac-

crual periods, will definitely be different relative to the altered specification. With Ik

denoting the total interest received over the original (unpartitioned) interval (ik−1, ik]

relative to the altered specification, one will necessarily have Ik > Ik for some dates ik

beyond i0, but Ik < Ik for others.

Proof. Because the instrument has positive net return, the yield y under the original specifi-

cation must be positive (as follows from Theorem 2.1), and likewise the yield y under the altered

specification must be positive. When the expression (1 + θy)nk is multiplied out algebraically

(the well known “binomial expansion”), the initial terms are 1 + nkθy. Any remaining terms

are positive (because y > 0). Therefore,

(1 + θy)nk > 1 + nkθy = 1 + θky unless nk = 1.
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Invoking this estimate in equation (5.3) we see that

V0 <
C1

(1 + θ1y)
+

C2

(1 + θ1y)(1 + θ2y)
+ · · ·+ Cm

(1 + θ1y)(1 + θ2y) · · · (1 + θmy)
.

The combination of this inequality with the equation in (2.14) tells us that y < y. Still, we must

have

I1 + · · ·+ Im = I1 + · · ·+ Im (5.5)

because by Theorem 2.1 (as applied to the altered specification as well as the original specifica-

tion) both sides equal the quantity C1 + · · ·+ Cm − V0, the net return.

Next, for each of the original dates ik, denote by V k the amount of principal outstanding

on that date relative to the altered specification, after subtraction of the explicit payment then.

We have

V k =
(
1 + θy)nkV k−1 − Ck for k = 1, . . . ,m, with V 0 = V0 (5.6)

and also

Ik =
[ (

1 + θy)nk − 1
]
V k−1 for k = 1, . . . ,m. (5.7)

These formulas may be compared with the ones for Vk and Ik in (2.3) and (2.4). For the amounts

Ik all to agree with the amounts Ik, we would have to have

(
1 + θy)nk =

(
1 + θky

)
=

(
1 + nkθy

)
for all k,

which would mean that

y =
[ (

1 + θy)nk − 1
]/

nk for all k.

This is impossible unless all the multiples nk are all the same. Hence Ik 6= Ik for at least one k.

But the equation (5.5) also holds, so there must be some dates ik on which Ik > Ik and others

on which Ik < Ik.

In the very broad context of Theorem 5.1 it cannot be said that the interest income is

necessarily shifted in one direction or the other. Of course the distortion might only be minor.50

The important thing for theory nonetheless is that a shift does occur. In its consequences the

method of extra dates definitely deviates from employing the given specification of an instrument

directly. The altered specification at least conforms to basic guidelines, however, since it is

another consistent, full specification of the instrument.

If a helpful mathematical simplification were achieved through the method of extra dates,

it could anyway be regarded as providing a convenient estimate of yield, which might be good

50 A numerical example will be furnished later in this section; see Example 5.1.
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enough for tax purposes. But the equation to be solved for y clearly requires more effort to

understand and set up than the one for y in Theorem 2.2, and numerical solution is likely to be

provided by a computer anyway. In the meantime, theory suffers if “yield” is merely regarded

as any one out of some “reasonable range” of numbers associated with an instrument through

various schemes of calculation. Whether a value is reasonable can only be answered in the

background of knowing first which value is the correct one mathematically.51

Forced Respecification. In certain situations which will be discussed in Section 7, the de-

scription of a debt instrument may be considered unacceptable under the Tax Code even if it

is a consistent, full specification. This may be triggered because the compounding dates are

deemed to be too far apart. Or it may result from the accrual periods being deemed to be too

irregular.52

The consequence then is that the instrument must be respecified. This may simply mean

applying the method of extra dates to achieve equal spacing relative to a fully compatible accrual

period length θ that does not exceed a certain size (e.g. a year or half a year, depending on the

circumstances). If the original accrual periods were already equal in length, such a change would

not shift income from one such period to another, but the inserted compounding dates would

be new occasions for the receipt of implicit interest or repayment of principal. The pattern in

which interest is regarded as arriving over the course of each of the original accrual periods

would therefore be shifted.53

Although respecification relative to the sequence of dates is really only necessary in practice

in situations where the revised specification or a particularized specification have to come into

51 This may illustrate a philosophical difference between legal language and mathematical
language. Both are motivated by a need to say things without the vagueness and multiplicity of
meanings common in ordinary speech and exalted in literature. They are designed for purposes
where meanings must not be left in doubt. Legal language is accustomed, of course, to the
realities of human affairs, where words are not adequate to all possibilities; when disputes do
arise a judge can settle them. Mathematics, while having no pretense of applying to most human
affairs, has the capability of deciding the actual truth or falsehood of a surprisingly wide range
of assertions, provided that its procedures and standards are dutifully respected.

52 The pending IRS Proposed Regulations of 1992 go far in erasing this whole problem—for
newly issued instruments. But they appear to do this by focusing even more on the “method
of fractional exponents,” explained below, as the way around irregularities. It will be seen that
this method is an outgrowth of the method of extra dates, but lacks its theoretical consistency.

53 In comparison with straight-line accrual of interest income in the form of simple interest
over each of the original periods [ik−1, ik] (see Section 6), the effect would be to shift interest
income within each of the original periods from the beginning toward the end. This could make
a difference in tax payments according to where the payment dates might lie in these intervals.
A postponement of interest is advantageous for the holder of an instrument but disadvantageous
for the issuer, who may be unable to claim interest expense until later.
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play, it is essential for the mathematical structure of the formulas to be presented in Section 7

that we treat the matter universally, as it applied to any specification. All three kinds of

specifications introduced in Section 3 could be involved in one of these formulas for a given

instrument, and unless a common sequence of dates can be used, the mathematics could become

unmanageable. Once more we continue with the basic notation of the nominal specification,

although it is not the only one to which the conclusions will apply.

For an instrument with irregular accrual periods, but having more than two periods (m > 2),

the rules involving forced respecification usually allow passage to an accrual period length θ that

is not fully compatible but just internally compatible in the sense of Definition 5.1. (Ordinarily

θ would have to be the largest such length that does not exceed a certain size.) Then it is only

the intermediate accrual periods that necessarily get divided into equal subperiods. The initial

period [i0, i1] is divided into as many subperiods of length θ as possible; if there is a fraction left

over, it is placed at the beginning. The final period [im−1, im] is similarly divided, but with any

fraction placed at the end. The result is a sequence of dates for which the accrual periods are all

equal of length θ, except that a shorter period may occur at the beginning, or the end, or both.

The specification of a new sequence of dates is insufficient in itself for determining how

interest income should be recomputed. The pattern of explicit payments relative to these dates

must also be indicated. In the case of passage to an internally compatible accrual period length

as just described, this is done as in the method of extra dates to achieve equal spacing. The

explicit payments for subperiods ending in the extra dates are taken to be 0. Original payment

amounts Ck are reassigned exclusively to the subperiods ending in the original dates ik.

Once this has been done, the corresponding constant annual yield rate y can be calculated

by solving the yield-to-maturity equation (2.14) in Theorem 2.2. The respecification then be-

comes a consistent full specification for the debt instrument in the sense of Definition 5.1, and

the interest payments associated with the instrument relative to the new accrual periods (in-

cluding the possibly shorter periods at the beginning and end) are unambiguously determined.

Unfortunately, as if the process of forced respecification were not complicated enough,54 tax reg-

ulations currently fail to provide clear recognition of the uniquely determined rate y or explain

how to get it. Instead, approaches to recalculating interest income are suggested that at best

arrive at approximate payment amounts, although without saving any effort over that required

for a correct calculation. Such an approach is the method of fractional exponents described

54 While stipulations that accrual periods should not be too long may be justified, motivation
for the insistence on achieving equal accrual periods in a respecified instrument, at least inter-
nally, is lacking. Perhaps the procedure has arisen through misunderstanding of what is needed
for a consistent treatment of taxation in terms of constant annual yield.
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below.

For one class of debt instruments which will be encountered in Section 7, regulations call for

respecification in terms of a sequence of dates starting with the date of issue and spaced exactly

one year apart,55 except that the final accrual period, ending on the date of maturity, can be

shorter. Other features of the required respecification are left in doubt, however. While the new

date sequence is clear—let us indicate it by i′0, i
′
1, . . . , i

′
m′−1, i

′
m′ where i′0 = i0 and im′ = im

—we need to know what explicit payments are to be regarded as received by a holder for each

of the respecified accrual periods [i′k′−1, i
′
k′ ]. There is no simple answer,56 but the solution we

adopt here is to take the amount C ′
k′ for each such period to be the sum of the amounts Ck in

the original specification for which i′k′−1 < ik ≤ i′k′ (hence 0 if none of the original dates ik falls

within the new period in question). Once this hurdle is past, we are able again to calculate a

constant annual yield rate y on the basis of Theorem 2.2 and thereby achieve a respecification

which is a consistent full specification of the debt instrument in the sense of Definition 5.1.

Joint Respecification in the Nominal, Revised, and Particularized Sense. In situa-

tions where the tax rules to be dealt with in Section 7 require forced respecification of a debt

instrument, we shall take this for our purposes as meaning simply that the original sequence

of dates and explicit payments is entirely supplanted by the altered data—for all three specifica-

tions, nominal, revised and particularized. We continue therefore to employ the usual symbols

for interest and other quantities associated with these specifications, as if the earlier versions

had never existed.

Method of Fractional Exponents. A currently much-used approach to calculating an in-

terest income stream for an instrument with irregular accrual periods is the method of fractional

exponents. This is an ad hoc procedure which leads to interest payment amounts which differ

from the ones derived from direct application of the principle of constant annual yield through

Theorem 2.2, yet it offers no mathematical simplifications.57

The method of fractional exponents has mainly been invoked for instruments having equal

accrual periods except for a short period at the beginning or end, or both, such as have been

55 See Footnote 10.
56 Garlock [1, p. 92] holds the view that the prescription in question is inconsistent with any

reasonable calculation of constant yield to maturity. All methods certainly distort the interest
accrual of the nominal specification.

57 Nevertheless it has widely been recommended in tax literature and is featured in the software
now available on financial calculators, while techniques for solving the correct yield-to-maturity
equation (2.14) are neglected.
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seen to arise in particular through the process of forced respecification explained above. We

shall describe it in more general terms, however, because that will make its relationship to other

approaches clearer.58 Let

θ̃ = the largest of the lengths θ1, . . . , θm, (5.8)

so that

θk/θ̃ ≤ 1 for k = 1, . . . ,m. (5.9)

The ratio θk/θ̃ expresses the length of the kth accrual period as a fraction of the reference length

θ̃. This ratio must equal 1 for at least some period by virtue of (5.8), but on the other hand it

will be less than 1 for some other period, or we would be back in the case of regular periods and

have no need for the maneuver about to be explained.

The method of fractional exponents takes the equation

V0 =
C1(

1 + θ̃ỹ
)p1

+
C2(

1 + θ̃ỹ
)p2

+ · · ·+ Cm(
1 + θ̃ỹ

)pm
,

where p1 =
(
θ1/θ̃

)
p2 =

(
θ1/θ̃

)
+

(
θ2/θ̃

)
· · ·

pm =
(
θ1/θ̃

)
+ · · ·+

(
θm/θ̃

)
(5.10)

as defining an annual yield rate ỹ to be associated with the instrument. In other words, each of

the factors (1 + θky) in the true yield-to-maturity equation (2.14) is replaced by (1 + θ̃ỹ)θk/θ.

The evolution of principal is considered then to be given by

Ṽk =
(
1 + θ̃ỹ

)θk/θ̃
Ṽk−1 − Ck for k = 1, . . . ,m, with Ṽ0 = V0. (5.11)

The corresponding interest payments are

Ĩk =
[ (

1 + θ̃ỹ
)θk/θ̃ − 1

]
Ṽk−1, (5.12)

while principal repayments are

R̃k = Ck − Ĩk = Ṽk−1 − Ṽk. (5.13)

The evolution rule (5.11) obviously does not correspond to utilizing the rate ỹ to generate

simple interest over the designated accrual periods, since for that purpose the factor (1 + θkỹ)

58 The pending IRS Proposed Regulations of 1992 elevate it to this wider applicability anyway.
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would be indicated. Therefore, the interest payments cannot be seen as corresponding to a

consistent, full specification of the instrument (in the sense of Definition 2.1) in which the date

sequence is i0, . . . , ik, . . . , im. But the following properties do hold anyway:

Ṽk > 0 for k = 1, . . . ,m− 1, but Ṽm = 0, (5.14)

Ṽk = R̃k+1 + · · ·+ R̃m

=
(
Ck+1 + · · ·Cm

)
−

(
Ĩk+1 + · · ·+ Ĩm

)
for k = 0, 1, . . . ,m− 1,

(5.15)

with Rm > 0, and in particular

C1 + · · ·+ Cm − V0 = Ĩ1 + · · ·+ Ĩm. (5.16)

These properties can be established in direct consequence of equation (5.10), but they also grow

out of a conceptual relationship between the method of fractional exponents and respecification

in terms of daily compounding. This will be seen in the proof of the next theorem.

Theorem 5.2 (inaccuracy of the method of fractional exponents). Suppose a debt

instrument specified in conformity with conditions (b)(c)(d) of Definition 2.1 has pos-

itive net return but accrual periods that are not all equal in length. Then the yield

value offered by the method of fractional exponents is well defined and positive, but it is

higher than the true yield obtained from the corresponding consistent, full specification

provided by Theorem 2.2:

ỹ > y. (5.17)

Although the total interest received over the life of the instrument will be the same in

both cases, that is,

Ĩ1 + · · ·+ Ĩm = I1 + · · ·+ Im, (5.18)

the receipt of this interest income will necessarily be shifted in time. In other words,

there will be some dates ik beyond i0 for which Ĩk < Ik, but others for which Ĩk > Ik.

Proof. First we make a comparison with the equation used for the method of extra dates in

order to confirm that equation (5.10) does have a unique solution ỹ > 0. For a fully compatible

accrual period length θ in the sense of Definition 5.1 (for instance θ = 1/365) let n denote

the highest of the multiples n1, . . . , nm, so that θ̃ = nθ on the basis of (5.2) and (5.8). Then

θk/θ̃ = nk/n, so that (
1 + θ̃ỹ

)θk/θ̃ =
[ (

1 + θ̃ỹ
)1/n ]nk .



63

Let y be the unique value such that(
1 + θ̃ỹ

)1/n =
(
1 + θy

)
,

or in other words,

y =
[ (

1 + θ̃ỹ
)1/n − 1

]/
θ.

Equation (5.12) then reduces to equation (5.3), which we have seen to be the correct yield-to-

maturity equation for the altered specification of the instrument in which all accrual periods

have been reduced to length θ. At the same time the quantities Ṽk and Ĩk are identified with

their counterparts V k and Ik in (5.6) and (5.7). It was established in Theorem 5.1 that the

income stream I1, . . . , Im is a distortion of I1, . . . , Im, so the same must be true of Ĩ1, . . . , Ĩm.

We still must prove (5.14), and for this purpose we to turn to properties of the calculus

relation

p

∫ z

0

(1 + w)p−1dw = (1 + z)p − 1 for z > 0. (5.19)

When p = 1, both sides of this relation degenerate to z. When p < 1, the inequality (1+w)p−1 <

1 holds in the integrand for w > 0, and the integral is then strictly bounded above by z. In

other words, we have

pz > (1 + z)p − 1.

Applying this to z = θ̃ỹ and p = θk/θ̃ we obtain(
1 + θ̃ỹ

)θk/θ̃ ≤
(
1 + θkỹ), with strict inequality if θk < θ. (5.20)

It follows then from equation (5.3) that

V0 >
C1

(1 + θ1ỹ)
+

C2

(1 + θ1ỹ)(1 + θ2ỹ)
+ · · ·+ Cm

(1 + θ1ỹ)(1 + θ2ỹ) · · · (1 + θmỹ)
. (5.21)

For the function f utilized in the proof of Theorem 2.2, we have from (2.14) and (5.21) that

f(y) > f(ỹ), and since the function value decreases for larger values of its argument we conclude

that ỹ > y.

As with the method of extra dates, the distortion of income that results from the method

of fractional exponents could in general go in either time direction, but in the important case of

standard bonds income to the holder is systematically shifted a bit into the future.59 This will

be established in Theorem 5.3 below.

59 Actual income in the explicit payments Ck is not postponed, but merely the receipt some
portion of the implicit interest payments. The effects are unlikely to be of much significance,
however; see Example 5.1.
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It should be noted carefully that the distortion issue addressed in Theorem 5.2 is separate

from the question of whether one method of determining interest income might better reflect

economic content than another. That issue is behind the introduction of the revised and partic-

ularized specifications in Section 3. It is separate also from questions of convenience. Instead,

the issue goes to the heart of the theory of constant annual yield. Is the direct description of

how interest income is generated by a debt instrument with constant annual yield, as embod-

ied in Definition 2.1, with simple interest earned over periods delimited by compounding dates,

correct and admissible as a mathematical building block? To reject this description would be

to deny the validity of traditional financial arrangements of the simplest sort. On the other

hand, if the description is accepted, the true yield-to-maturity equation has to be the one in

Theorem 2.2. Then the method of fractional exponents comes off at best as a unnecessarily

inaccurate approach to calculation.

If one were to start with a consistently specified instrument in the sense of Definition 2.1

with its interest income stream I1, . . . , Im correctly laid out, but such that the accrual periods

are not all of the same length, and then compute the yield ỹ indicated by the method of fractional

exponents and use that to get an interest income stream Ĩ1, . . . , Ĩm, one would always find a

difference. According to Theorem 5.2 the payment decomposition Ck = Ik + Rk provided by

the instrument’s specification would be overturned. On various dates ik it would be replaced by

a distinctly different decomposition Ck = Ĩk + R̃k in which sometimes Ĩk is larger than Ik and

sometimes smaller.

This discrepancy deserves emphasis because some tax regulations actually refer to the

method of fractional exponents as the “exact” approach to computing interest income, in con-

trast to approaches utilizing simple interest over irregular accrual periods, which are termed

“approximate.”60 The analysis provided here shows that the two terms have somehow gotten

reversed in their mathematical content.

Although the method of fractional exponents is kin to the method of extra dates to achieve

equal spacing, there is an important distinction. The method of extra dates replaces the given

specification of an instrument by an altered one, which is then treated in perfect accord with

general theory. The inserted dates are not just an accounting fiction but occasions for the

receipt of implicit interest payments. The method of fractional exponents is in contrast a hybrid

procedure in which such intermediate dates end up having no role. Whatever the ideas from

which the method is derived, interest is ultimately regarded as arriving just on the given dates

ik. This is not quite the way the matter comes out in practice, because the concept of the

60 See IRS Proposed Regs. of 1986, S1.1272–1(c)(2)(ii)(B) and (C), and Garlock [1, p. A–2].
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“basis” of an instrument, which will be explained in Section 6, spreads the receipt of interest

evenly over each period. Still, the results even in this respect will be different when the method

of fractional exponents is used61 instead of the method of extra dates or the original specification

itself through the yield-to-maturity equation in Theorem 2.2.

From another direction, such inconsistency underscores once more the fact that the method

of fractional exponents does not fit squarely with the meaning of constant annual yield. If it did,

the growth factors (1 + θ̃ỹ)θk/θ̃ in (5.11) for the specified accrual periods could be expressed in

the form (1 + θky′) for some single value y′ ≥ 0. But this is not possible without equal spacing

of dates. Instead, one has

(
1 + θ̃ỹ

)θk/θ̃ =
(
1 + θkỹk

)
for k = 1, . . . ,m,

where the value ỹk is defined by

ỹk =
[ (

1 + θ̃ỹ
)θk/θ̃ − 1

]/
θk.

This means that the method of fractional exponents effectively applies to each accrual period

[ik−1, ik] an annual yield rate ỹk which varies with the length of the period . It is truly a method

that comes up with a scheme of variable yields from which to compute taxable income or expense,

instead of keeping to the goal of determining interest relative to a single, fixed yield rate as the

law prescribes.

Effects of the Method of Fractional Exponents. The consequences of using the method of

fractional exponents to estimate interest income, instead of using the yield-to-maturity equation

(2.14) provided by basic theory, stand out especially in the case of the particularized specification

of a standard bond as in Example 3.9. The accrual length θ̃ in the method of fractional exponents

can be identified then with θ, so equation (3.33) is replaced by

Pa =
C(

1 + θỹ∗∗
)θa/θ

+
C(

1 + θỹ∗∗
)θa/θ(1 + θỹ∗∗

)
+

C(
1 + θỹ∗∗

)θa/θ(1 + θỹ∗∗
)2

+ · · ·+ C + V0(
1 + θỹ∗∗

)θa/θ(1 + θỹ∗∗
)m−k

.
(5.22)

61 The method of fractional exponents is sometimes described as based on daily compounding
as the “most accurate” way of keeping track of interest, cf. Garlock [1, p. A–2]. But if that
viewpoint were consistently adopted the method would not revert to linear accrual over the
original periods when it comes to “basis” and capital gain; accrual would become nonlinear
for such purposes. Anyway, daily compounding is just one of the ways that interest may be
specified in financial transactions in conformity with constant annual yield (as made precise
Definition 2.1). All are equally “accurate.”
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The value ỹ∗∗ obtained by solving this equation is used to calculate income amounts Ĩk, . . . , Ĩm

different from the ones in Example 3.9. This is done by first setting

Ṽ ∗∗
k

=
(
1 + θỹ∗∗

)θa/θ
Pa − C (5.23)

along with

Ĩ∗∗
k

=
[ (

1 + θỹ∗∗
)θa/θ − 1

]
Pa (5.24)

and thereafter taking

Ṽ ∗∗
k =

(
1 + θỹ∗∗

)
Ṽ ∗∗

k−1 − C for k = k + 1, . . . ,m− 1,

Ĩ∗∗k = θỹ∗∗V ∗∗
k−1 for k = k + 1, . . . ,m,

(5.25)

which will result in Ṽ ∗∗
m = 0.

Theorem 5.3 (income shift induced by method of fractional exponents). Suppose

that a standard bond is acquired on an intermediate date within an accrual period

[ik−1, ik] that is not the final period. Then the yield rate ỹ∗∗ determined from the

method of fractional exponents will be higher than the particularized yield rate y∗∗:

ỹ∗∗ > y∗∗.

The interest stream Ĩk, . . . , Ĩm developed by that method will exhibit a systematic shift

of income into the future relative to the interest stream Ik, . . . , Im derived from the

particularized specification in Example 3.9. In other words, one will have

Ĩ∗∗
k

+ · · ·+ Ĩ∗∗k < I∗∗
k

+ · · ·+ I∗∗k for k = k, . . . ,m− 1, (5.26)

although in the end the total imputed interest will be the same,

Ĩ∗∗
k

+ · · ·+ Ĩ∗∗m = I∗∗
k

+ · · ·+ I∗∗m . (5.27)

Proof. We know from Theorem 5.2 that ỹ∗∗ > y∗∗. Comparing the formula

V ∗∗
k−1 =

(
1 + θy∗∗

)−1[
V ∗∗

k + C
]

(cf. (3.36)) with the corresponding formula

Ṽ ∗∗
k−1 =

(
1 + θỹ∗∗

)−1[
V ∗∗

k + C
]
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(cf. (5.25)), where Ṽ ∗∗
m = V ∗∗

m = 0, we find then that

Ṽ ∗∗
k < V ∗∗

k for k = k, . . . ,m− 1. (5.28)

But also I∗∗k + · · · + I∗∗m = (m − k + 1)C − V ∗∗
k (as follows from Theorem 2.1, there being

m− k + 1 payments of the coupon amount C on the dates ik, . . . ,m), whereas Ĩ∗∗k + · · ·+ Ĩ∗∗m =

Ck + · · ·+ Cm − Ṽ ∗∗
k . The inequalities in (5.28) therefore imply

Ĩ∗∗k + · · ·+ Ĩ∗∗m > I∗∗
k

+ · · ·+ I∗∗k for k = k + 1, . . . ,m. (5.29)

On the other hand, (5.27) is correct because both sides give the net return (m− k + 1)C − Pa

to the holder who acquired the bond on date a. The combination of (5.27) and (5.29) produces

the inequalities claimed in (5.26).

The shift identified in Theorem 5.3 is not likely to be of much significance, as the next

example illustrates. Thus, there is little incentive for employing the method of fractional expo-

nents rather than the consistent yield-to-maturity calculation in Example 3.9 in order to gain

some tax advantage. On the other hand, its usage obscures the mathematical picture.

Example 5.1 (numerical comparisons for a zero-coupon bond). For a detailed example, which

will show the differences between the interest stream computed under three different approaches,

consider a zero-coupon bond which was purchased with 1.25 years left in its life. Let the date

of acquisition be September 30, 1990, the date of maturity be December 31, 1991, and the

intervening dates in the specification (perhaps as a result of forced respecification to semiannual

compounding) be December 31, 1990, and June 30, 1991. These dates will be designated by a,

i1, i2, and i3 = im. (For notational simplicity only, we are supposing that k = 1, i.e., that the

instrument was acquired in its first accrual period.) We have θ1 = .25 but θ2 = θ3 = .5. Also,

since a zero-coupon bond is involved, we have C1 = C2 = 0 but C3 = V0. The yield-to-maturity

equation provided by Theorem 2.2 therefore takes the form

Pa =
V0

(1 + .25 y)(1 + .5 y)2
. (5.30)

In contrast, the equation used by the method of fractional exponents from (5.22) would be

Pa =
V0

(1 + .5 ỹ)2.5
. (5.31)

A third approach would be to respecify the bond with five quarterly accrual periods by intro-

ducing the dates i′2 = March 31, 1991, and i′3 = September 30, 1990. Then, in application of

the method of extra dates in (5.3), the equation would be

Pa =
V0

(1 + .25 y)5
. (5.32)
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Let us suppose that the face value is V0 = $1, 000, 000 while the acquisition price is Pa =

$906, 428. This choice of Pa has the property that the direct yield-to-maturity equation (5.30)

is satisfied with y = .8. (For any choice of Pa > 0 the unique annual yield value y could be

determined from (5.31) by a numerical method programmed on a computer.) The values of ỹ

and y can be calculated from (5.31) and (5.32) by rewriting the first equation as

(
1 + .5 ỹ

)
=

[
V0/Pa

]1/2.5

and the second as (
1 + .25 y

)
=

[
V0/Pa

]1/5
.

All three values can then be used to compute their associated streams of interest income. The

numerical results are displayed in Table 5.1.

Approach Direct Fractional Extra Dates

Yield Value y = 8.000% ỹ = 8.015% y = 7.937%

Interest on i1 I1 = $18, 129 Ĩ1 = $17, 986 I1 = $17, 986

Interest on i2′ I2′ = $18, 343

Interest on i2 I2 = $36, 982 Ĩ2 = $37, 051 I2 = $18, 708

Interest on i3′ I3′ = $19, 078

Interest on i3 I3 = $38, 461 Ĩ3 = $38, 535 I3 = $19, 457

Total Interest I = $93, 572 Ĩ = $93, 572 I = $93, 572

Table 5.1. A comparison of interest calculations in Example 5.1.

The tabulated results confirm various properties of the three approaches that we have

developed theoretically. The relation y < y < ỹ (Theorems 5.1 and 5.2) is exhibited along with

the fact that the total interest received is always the same. Also evident is the slight shift of

interest income to the future when the method of fractional exponents is used. The sum of I2′

and I2 in the method of extra dates equals Ĩ2, and likewise sum of I3′ and I3 equals Ĩ3. But

the two portions in each case are not equal.

The method of extra dates is strictly based on constant yield to maturity over five quarterly

periods instead of the given irregular periods, and the larger amounts assigned to the second
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halves of each of the semiannual periods reflect compounding on this finer scale. In particular,

straight-line accrual of the interest amounts for each quarter under the method of extra dates

will not be consonant with straight-line accrual of the interest amounts for the corresponding

semiannual periods under the method of fractional exponents. This signals again the fact that

the method of fractional exponents does not square with the theory of constant yield to maturity

and suffers from a mixture of concepts. The direct method gives the unique interest values that

come from using a constant annual yield rate with straight-line accrual (simple interest) over

the original accrual periods.

6. BASIS AND GAIN

Various dates can be crucial to the taxation of a debt instrument besides the dates i0, . . . , ik, . . . , im

in its specification. The acquisition date a has already been seen as an example. If the instru-

ment is sold before maturity, the date of disposal will be important similarly. Other dates of

significance are the ones marking the ends of tax years.

It is essential therefore to keep track of the income earned from an instrument in a day-by-

day manner. This need underlies the concept of the basis of the instrument on any date i relative

to a given specification. We begin by discussing the basis relative to the nominal specification,

where the explanation is the simplest. Then we go on to the revised and particularized specifi-

cations. Each shift in the interpretation of basis causes a parallel shift in the determination of

capital gain or loss. The mathematical details are therefore unavoidable in moving toward our

goal of being able to translate tax rules into precise mathematical formulas of wide applicability.

Basis Under the Nominal Specification. In tracking the amount of principal considered

to be outstanding at any time under the nominal specification, any principal repayment amount

Rk (when nonzero) is regarded as being received precisely on the compounding date ik, but the

interest payments Ik are generally viewed differently.62 Each amount Ik is accrued , i.e., treated

as arriving in equal increments distributed over the dates i (each day) in the preceding period,

namely the ones satisfying ik−1 < i ≤ ik. The fraction of Ik earned on such a date is taken

to be 1/(ik − ik−1). (Note that the fraction can vary slightly from one accrual period to the

next because of the calendar effects described in Footnote 10.) Equivalently, the simple interest

62 This is the case for an accrual-basis taxpayer. For a cash-basis taxpayer, the nominal
interest amounts Ik would be interpreted as earned in single amounts on the dates ik, like the
principal repayment amounts Rk. But even for a cash-basis taxpayer, this would only be valid
for nominal interest. Other forms of interest developed through tax law, e.g. in connection
with OID, are always accrued. (If a cash-basis taxpayer disposes of a debt instrument between
interest payment dates, then straight-line accrual is used to determine the interest income during
the last period before disposal.)
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developed by the instrument over each accrual period is regarded as being paid as it is earned .

To capture the accrual mechanism conveniently for use later in mathematical formulas, we

introduce the symbol

I(i′, i) = nominal interest earned from date i′ through date i (6.1)

for any dates i′ and i satisfying i0 ≤ i′ < i ≤ im. (This is to be interpreted as 0 in general

formulas where the case i′ = i might arise.) Of particular importance will be amounts earned

after the date a on which the instrument was acquired, which can be calculated through63

I(a, i) =


i− a

ik − ik−1
Ik when ik−1 ≤ a < i ≤ ik, but

I(a, ik−1) + i− ik−1
ik − ik−1

Ik when a < ik−1 < i ≤ ik.
(6.2)

Here the amounts I(a, ik−1), in cases where a < ik−1, are given by the following formula, in

which il denotes the first compounding date after a:

I(a, ik−1) =
(

il − a

il − il−1

)
Il + Il+1 + · · ·+ Ik−1 when il−1 ≤ a < il ≤ ik−1. (6.3)

(The terms Il+1 + · · ·+ Ik−1 drop out when l = k − 1.) Obviously

I(i′, i) = I(a, i)− I(a, i′) when a ≤ i′ < i. (6.4)

As developed out of this notion of accrual, the nominal basis in the instrument on date i is

defined to be the quantity

Bi = Vk−1+I(ik−1, i) =
(
1 + tiθky

)
Vk−1 with ti =

i− ik−1

ik − ik−1

when ik−1 ≤ i < ik (k = 1, . . . ,m).
(6.5)

Observe that ti = 0 when i = ik−1, so the formula gives Bi = Vk−1 when i = ik−1. Thus, the

nominal basis value agrees with the nominal principal value on all compounding dates, but of

course the nominal principal value is only defined on such dates, whereas the nominal basis is

defined for every date i. An equivalent definition of Bi, in view of the relationship between V0

and later values Vk, is

Bi = V0 + I(i0, i)−
[

sum of Ck payments for dates ik ≤ i
]
. (6.6)

63 For a cash-basis taxpayer, I(i′, i) would instead be the sum of the quantities Ik for the dates
ik such that i′ < ik ≤ i.
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On any date i during the life of the instrument, the nominal basis is therefore the nominal value

plus all the nominal interest accrued so far, minus the explicit payments received so far.

The nominal basis treats the accruing interest as if it were temporarily being added to

the outstanding principal. The rationale is that this is the usual pattern when interest income

is considered to have been earned but not yet made available to the holder. We have seen

in Section 2 that reinvested interest appears as negative repayment of principal. From this

perspective, the nominal basis can be identified with the amount of principal outstanding in the

instrument when this is tracked not just on the dates ik, but in an day-to-day manner relative

to accrual. An important distinction, though, is that these additions to principal do not lead

to compounding. Simple interest continues to be computed relative to the amount of principal

present at the beginning of the accrual period.

The nominal basis must be distinguished from the holder’s nominal basis, which is defined

instead to be the quantity

Hi = Bi + (Pa −Ba) = Pa − (Ba −Bi), (6.7)

with Pa the cost of acquisition on date a as earlier. The nominal basis could, though, be

interpreted as the basis of a holder who acquired the instrument on its issue date by paying the

nominal initial value V0, a hypothetical nominal holder. If the price Pa, paid on date a by the

general holder we have been considering, happens to have agreed with Ba, that holder’s nominal

basis on each future date i would agree with the nominal basis Bi.

The holder’s nominal basis on date i represents the holder’s nominal stake in the investment

then. The final expression in (6.7) explains this amount as the initial investment on date a

minus the net of any principal repayments provided by the instrument from date a to date i.

The equivalent expression in the middle characterizes it as running exactly parallel to the basis

of a “nominal holder” at all times, the constant difference being equal to the initial difference

on date a.

The holder’s nominal basis enters the computation of capital gain or loss at the time of

disposal of an instrument, at least relative to its nominal specification. Alongside the acquisition

date a and acquisition cost Pa in (3.16)–(3.17) let us now consider

d = date of date of disposal, i0 < a ≤ im, (6.8)

which like a may or may not be one of the compounding dates ik, and the amount

Pd = proceeds of disposal to the holder, with Pd ≥ 0 (but Pd = 0 if d = im). (6.9)

The disposal may be considered to be through sale when d < im, and then Pd is the sale price

minus transaction costs. The provision that Pd = 0 when d is the date of maturity, and all
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payments from the instrument have already been received , is only a mathematical convenience

to avoid having to state special cases in formulas. “Disposal” at that time just refers to the end

of the mathematical bookkeeping on the instrument.

The nominal capital gain for the holder on the disposal date d is the difference between the

proceeds Pd and the holder’s basis on date d relative to the nominal specification, namely from

(6.7) the amount

Pd −Hd =
(
Pd −Bd

)
−

(
Pa −Ba

)
=

(
Pd − Pa

)
−

(
Bd −Ba

)
. (6.10)

A negative capital gain translates to a nominal capital loss.

The idea behind the nominal basis in its handling of intermediate dates can now be under-

stood from another angle. Suppose the disposal date d falls between compounding dates ĩ
k−1

and ĩ
k
. The quantity Pd should anticipate the fact that d, which is also the acquisition date a′

for some new holder, is nearer to the remaining payments C
k̃
, . . . , Cm, than is the date ĩ

k−1
.

To this extent Pd should be elevated above the market value that the instrument had on date

ĩ
k−1

, the amount being roughly the time value of the investment for the number of days from

ĩ
k−1

to d. Since a taxpayer who is selling the instrument has already placed the accrued interest

for this period in the category of ordinary income, it makes sense that the amount in question

should not appear also as capital gain due to a higher price Pd. Therefore Bd, rather than the

nominal principal value V
k̃−1

, is subtracted rather from Pd in determining capital gain. Similar

thinking applies to Pa and Ba when a is an intermediate date, except that then the taxpayer

under consideration is in the role of buyer instead of seller.

Basis Under the Revised Specification. It will be necessary to have notation for handling

the effects of the revised specification on a day-to-day basis, just as for the nominal specification.

We let

I∗(i′, i) = revised interest earned from date i′ through date i (6.11)

for any dates i′ and i satisfying i0 ≤ i′ < i ≤ im, and observe in parallel with (6.2) and (6.3)

that

I∗(a, i) =


i− a

ik − ik−1
I∗k when ik−1 ≤ a < i ≤ ik, but

I∗(a, ik−1) + i− ik−1
ik − ik−1

I∗k when a < ik−1 < i ≤ ik,
(6.12)

where the amounts I∗(a, ik−1), in cases having a < ik, are given by

I∗(a, ik−1) =
(

il − a

il − il−1

)
I∗l + I∗l+1 + · · ·+ I∗k−1 when il−1 ≤ a < il ≤ ik−1 (6.13)

and satisfy

I∗(i′, i) = I∗(a, i)− I∗(a, i′) when a ≤ i′ < i ≤ s. (6.14)
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The difference

I∗(i′, i)− I(i′, i), where i′ < i,

gives the amount of interest implicitly received from date i′ through date i beyond the nominal

amount, due to discount at original issue, if present.

The revised basis in the instrument on date i is defined to be the quantity

B∗
i = V ∗

k−1+I∗(ik−1, i) =
(
1 + tiθky∗

)
V ∗

k−1 with ti =
i− ik−1

ik − ik−1

when ik−1 ≤ i < ik (k = 1, . . . ,m).
(6.15)

The revised basis agrees with the revised principal value on the dates i0, i1, . . . , im, but in

contrast to the latter it is defined for all intermediate dates as well. Just as in equation (6.5)

for the nominal basis, we have

B∗
i = V ∗

0 + I∗(i0, i)−
[

sum of Ck payments for dates ik ≤ i
]
. (6.16)

From this equation and the earlier one in (6.5) the relation

(B∗
i −B∗

i′)− (Bi −Bi′) = I∗(i′, i)− I(i′, i) (6.17)

can be deduced as a generalization of (3.13) by noting that (6.4) and (6.14) hold equally well

with the date a replaced by i0. Here B∗
i − B∗

i′ is the net increase in principal from date i′ to

date i relative to the revised specification, and Bi−Bi′ is the same thing relative to the nominal

specification.

The holder’s revised basis on date i is the quantity

H∗
i = B∗

i + (Pa −B∗
a) = Pa − (B∗

a −B∗
i ), (6.18)

which parallels the nominal version in (6.7). The revised capital gain for the holder on the

disposal date d is obtained by using this version of the holder’s basis in place of the nominal

one in (6.10):

Pd −H∗
d =

(
Pd −B∗

d

)
−

(
Pa −B∗

a

)
=

(
Pd − Pa

)
−

(
B∗

d −B∗
a

)
. (6.19)

Basis Under a Particularized Specification. We look next at the particularized specifi-

cation, as introduced in Section 3. In this case the assumption that the holder acquired the

instrument on date a for the price Pa enters from the beginning.

The day-by-day consequences of the particularized specification involve

I∗∗(i′, i) = particularized interest earned from date i′ through date i (6.20)
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for any dates i′ and i satisfying ik−1 ≤ i′ < i ≤ im. We observe that

I∗∗(a, i) =


i− a

ik − ik−1
I∗∗
k

when a < i ≤ ik, but

I∗∗(a, ik−1) + i− ik−1
ik − ik−1

I∗∗k when ik−1 < i ≤ ik, k ≥ k.
(6.21)

The amounts I∗∗(a, ik−1), in cases where a < ik−1, are given by

I∗∗(a, ik−1) =
(

il − a

il − il−1

)
I∗∗l + I∗∗l+1 + · · ·+ I∗∗k−1 when il−1 ≤ a < il ≤ ik−1. (6.22)

If Pa < Ba, the difference

I∗∗(i′, i)− I(i′, i), where i′ < i, (6.23)

is positive and gives the amount of interest viewed as implicitly received from date i′ through

date i above the nominal amount, when the particularized specification is used in place of the

nominal specification. If Pa > Ba, the difference is negative and reflects an implicit interest cost

to the holder which offsets some of the nominal income.

The particularized basis in the instrument on a date i > a is defined to be

B∗∗
i = V ∗∗

k−1+I∗∗(ik−1, i) =
(
1 + tiθky∗∗

)
V ∗∗

k−1 with ti =
i− ik−1

ik − ik−1

when ik−1 ≤ i < ik (k = k, . . . ,m).
(6.24)

When i is a compounding date ik, B∗∗
i agrees with the particularized value V ∗∗

k on that date.

One has

B∗∗
a = Pa, (6.25)

and moreover

B∗∗
i = V ∗∗

0 + I∗∗(i0, i)−
[

sum of Ck payments for dates ik ≤ i
]
. (6.26)

As in (6.14) we will have for any dates i and i′ with a ≤ i′ < i that

(Bi −Bi′)− (B∗∗
i −B∗∗

i′ ) = I∗∗(i′, i)− I(i′, i),

(B∗
i −B∗

i′)− (B∗∗
i −B∗∗

i′ ) = I∗∗(i′, i)− I∗(i′, i).
(6.27)

The holder’s particularized basis on any date i simply coincides with the particularized

basis:

H∗∗
i = B∗∗

i . (6.28)

This fits with the other versions of the holder’s basis in (6.7) and (6.15) because the quantity

B∗∗
i + (Pa −B∗∗

a ) = Pa − (B∗∗
a −B∗∗

i )
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reduces to B∗∗
i through the definition of B∗∗

a as Pa. The particularized capital gain for the holder

on the disposal date d comes out therefore as just

Pd −H∗∗
d = Pd −B∗∗

d . (6.29)

As final note to this theme, we record that the revised basis for an instrument can be

interpreted as the holder’s particularized basis for an original holder of the instrument.

7. TAX RULES FOR LONG-TERM OBLIGATIONS

In broad outline, tax law has evolved since the 1950’s from relying on the nominal specification

of a debt instrument64 toward insisting on the particularized specification for each holder as the

key to how much interest income is really provided to that holder.65

The evolution has not been complete even in the treatment of recently issued instruments,

however, and many “fossils” are embedded in older strata. The main departures from taxation

based directly on the particularized specification are seen in the fact that tax law at present

(a) exhibits asymmetry between “discount” and “premium” cases,

(b) provides “simplifications” for investors unable to cope with algebraic formulas,

(c) maintains earlier compromises for instruments issued in the past,

(d) gives different stipulations of the lengths of acceptable accrual periods for various in-

struments, and

(e) demands separate handling and accounting distinctions in situations which mathemat-

ically could be regarded as identical.

In order to determine the taxable income associated with a given instrument, it is generally

necessary to know not only the instrument’s nominal specification but the issue value (original

issue price) and also the holder’s data on acquisition and disposition as in (3.16)–(3.17) and

(6.8)–(6.9). From this information the instrument’s revised specification and particularized

specification can be filled out. However, this is still not enough. Also critical is the instrument’s

classification according to type and date of issue. For long-term instruments, which are the

64 Internal Revenue Code SS61(a), 163(a), 451(a), and 461(a).
65 Internal Revenue Code SS1271–1278.
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Table 7.1 Date Ranges for Tax Rules

Set 0. Instruments issued before 1955; nongovernmental noncorporate instruments issued

from 1 January 1955 through 1 July 1982.

Set 1. Governmental instruments issued from 1 January 1955 through 1 July 1982; corporate

instruments issued from 1 January 1955 through 27 May 1969.

Set 2. Corporate instruments issued from 28 May 1969 through 1 July 1982.

Set 3. Instruments issued from 2 July 1982 through 18 July 1984 and acquired through 18

July 1984.

Set 4. Instruments issued from 2 July 1982 through 18 July 1984 but acquired from 19 July

1984 onward.

Set 5. Instruments issued from 19 July 1984 through 31 December 1984.

Set 6. Instruments issued from 1 January 1985 through 27 September 1985.

Set 7. Instruments issued from 28 September 1985 through 21 December 1992.

Set 8. Instruments issued from 22 December 1992 on.

topic of this section, there are eight separate categories (Sets 0 to 8) to consider.66 67 68 69

The following distinction with respect to original issue discount is also important. Here

we see asymmetry in operation, since there is nothing comparable in the tax code with respect

to original issue premium. (No threshold is needed for the latter.) It is essential here for the

reader to be aware of the conclusions reached at the end of Section 4, because they are the source

of a number of differences between the way we state things and they way they seem to appear in

various regulations. The following definition is a case in point, because in this we are identifying

“stated redemption price at maturity” with V0.

66 Here for Set 0 see S1232 of the 1954 Code and S117(f) of the 1939 Code. For Sets 3–7 see
SS1271–1273 and 1275–1278 of the 1984 Code, and SS1.1271–1 to 1.1275-5 of the IRS Proposed
Regulations of 1986.

67 Excluded from this classification are obligations issued by a natural person before 2 March
1984 as well as, beyond that date, all nonbusiness loans from one natural person to another
(as long as the total between the parties does not exceed $10,000, and tax avoidance is not the
primary purpose).

68 U.S. Savings Bonds, which are in small denominations and not part of mainstream finance,
are handled as belonging to Set 0 regardless of the date of issue.

69 Annuities based on the life of an individual are left out, because they require different
treatment.
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Definition 7.1 (de minimis rule for original issue discount). A debt instrument is

called an OID instrument when it is not in Set 0, its issue value V ∗
0 is less than its

nominal value V0, and the difference exceeds a certain minimal amount derived as

follows. Generally the threshold is

V0 − V ∗
0 > (N/400)V0, (7.1)

where N denotes the number of full years included in the time span from issue to

maturity.70 The test is different, however, if the instrument is an installment obligation

(meaning that there is a positive principal repayment amount at some intermediate

time, i.e., Rk > 0 for at least one k besides k = m). Then the threshold is that71

V0 − V ∗
0 ≥

{
(N/600)V0 and
(1/400)

[
θ1R1 + (θ1 + θ2)R2 + · · ·+ (θ1 + · · ·+ θm)Rm

]
.

(7.2)

Basically, it will be seen that any debt instrument which is not an OID instrument is handled

relative to its nominal and particularized specifications only, and the revised specification is

set aside. Otherwise, all three specifications may enter the picture from one side or another.

Moreover rules concerning appropriate accrual periods then come up, which may require these

specifications to be redone with respect to an altered date sequence–forced respecification as

explained in Section 5.

The tax treatments of the different sets of instruments diverge mainly in the way that

several kinds of implicit interest are regarded as received (or in the case of negative interest,

expensed). The key is the relationship between the holder’s acquisition cost Pa on date a and

the nominal basis value Ba and revised basis value B∗
a on that date.

In overview, if Pa < Ba, the particularized specification of the instrument indicates that

the holder theoretically receives positive implicit interest payments beyond any nominal interest

70 The years are measured from the date of issue to the same calendar date in each successive
year (identifying February 29 with February 28), and any fraction of a year at the end is dropped.

71 The rationale for these amounts seems to stem from rough estimates of interest at the
annual rate y. The quantity yNV0 is the simple interest earned by the initial principal V0 over
the N full years in the instrument. On the other hand, y(θ1 + · · ·+ θk)Rk is the simple interest
earned by the principal amount Rk in the k accrual periods before it is repaid, so that the sum
of such amounts for k = 1, . . . ,m constitutes all such interest earned by the various portions
of the initial principal (since R1 + · · · + Rm = V0). The rule requires the interest y(V0 − V ∗

0 )
earned by the OID in one year to be more than (1/600)th of the first quantity and more than
(1/400) of the second quantity before the rules for OID taxation are applied. The formula for
the second threshold quantity has been extrapolated from the description provided in the IRS
regulations, which in its wording only covers the case of equal accrual periods.
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payments. On the other hand, if Pa > Ba, the holder theoretically has implicit interest expenses

which may be eligible for offset of interest income from other sources; mathematically these can

be viewed as negative implicit interest payments to be added in with other payments. In the

case of an OID instrument with Pa < Ba but Pa 6= B∗
a, the implicit interest payments are not

viewed directly but seen as having two parts. One part is the amount that would apply to an

original holder, or in other words, if Pa = B∗
a. The other part is a correction which is positive

if Pa < B∗
a (additional interest amounts become taxable) but negative if Pa > B∗

a (the interest

implicitly received from OID is offset by certain costs). Positive and negative interest amounts

or corrections are generally not treated with symmetry.

For a systematic presentation more or less in parallel with the organization of current

tax code, we shall set up the calculation of taxes for a given instrument in terms of one or

more adjustments relative to the nominal rule of taxation that would simply follow the nominal

specification. Afterward, we shall explain how the net effect of these adjustments can be viewed

for recently issued instruments.

There are four types of adjustments to ordinary income which arise in the manner sketched,

although not all simultaneously. The designations used in present tax literature are somewhat

inconsistent and apt to be confusing,72 so we generally hold back from them and refer simply to

Adjustments 1–4. The precise nature of the adjustment types will be explained presently, but

as a mnemonic and “glossary” we list them as follows.

Adjustment 1 “OID” added

Adjustment 2 “acquisition premium” subtracted

Adjustment 3 “market discount” added

Adjustment 4 “amortizable premium” subtracted

Table 7.2. Types of income adjustment for taxation of debt obligations.

72 For instance, “market discount” can refer to discount relative to either the nominal basis or
the revised basis, depending on the circumstances. The same quantity for a short-term obligation
is customarily referred to instead as “acquisition discount.” On the other hand, “acquisition
premium” refers only to a truncated amount of premium relative to the revised basis. If it were
not for the habit of using “acquisition premium” only in the context of long-term OID obligations
and “acquisition discount” only for short-term non-OID, a bond purchased for a price between
the nominal basis and the revised basis would simultaneously have both “acquisition premium”
and “acquisition discount.”
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The notation we adopt for dealing with these adjustments quantitatively is

Aj(i′, i) = total adjustment of type j from date i′ through date i. (7.3)

Postponing temporarily the recitation of formulas for these quantities, which will vary accord-

ing to the classification of the instrument, we describe how they are to be used. “Stripped”

instruments and short positions are reserved for separate discussion in Section 9.

General Rule of Taxation: Long-Term Instruments. The ordinary income

deemed to be earned by the holder from date i′ through date i (for any dates satisfying

i0 ≤ a ≤ i′ < i ≤ d ≤ im, with a the date of acquisition by the holder and d the date

of disposal (through sale or redemption) is, with a minor exception, the amount

O(i′, i) =

 I(i′, i) + A1(i′, i)−A2(i′, i)−A4(i′, i) when i′ < i < d, but

I(i′, d) + A1(i′, d)−A2(i′, d) + A3(i′, d)−A4(a, d) when i′ < d ≤ i,
(7.4)

whereas the capital gain on date d is

G = (Pd − Pa)− (Bd −Ba)−A1(a, d) + A2(a, d)−A3(a, d) + A4(a, d). (7.5)

The exception concerns A1 and A2 in the case of instruments in Set 1; they are handled

then just like A3.
73 For a tax-exempt instrument, the ordinary income amount in this

formula is not taxable (regardless of whether the interest involved is explicit or implicit),

but capital gain is taxable; it is given by the simpler formula

G = (Pd − Pa)− (Bd −Ba)−A1(a, d) (7.6)

In the case of the issuer rather than a holder, the interest regarded as paid out from

date i′ through date i is

O(i′, i) = I(i′, i) + A1(i′, i)−A2(i′, i). (7.7)

73 Investors have an (irrevocable) option of treating A3 just like A1, A2, and A4 (for all
instruments currently held, and all those acquired from then on). The positive implicit interest in
question would then be included in each tax year as accrued. This would amount to volunteering
to pay taxes earlier than necessary.
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The several different rules that can come into play in calculating the adjustments, depending

on the situation, are laid out below in Table 7.3. This table can be used to see which rules apply

in a given case. (When an alternative rule is given in parentheses, this means that the holder can

optionally use it as well, although it would generally be less advantageous.) In all cases involving

symbols derived from the nominal, revised and particularized specifications of an instrument in

which the accrual periods are not all equal, the quantities in question could be replaced by the

approximate ones developed through application of the method of fractional exponents (although

this would be no saving of mathematical effort).

Rules for Adjustment 1: Interest Added for OID.

Rule 0. Disregard; take A1(i′, i) = 0 always.

Rule 1. Let Mad denote the number of full months from date a to date d, and let M be

the number of full months from date of issue to date of maturity. (Full months are measured

relative to the day in each month that corresponds to the day of issue; any fractional month is

ignored.) Let D denote the effective amount of OID in the instrument on date a, namely

D =

{
Ba −B∗

a = I∗(a, im)− I(a, im) for an OID instrument,

0 for a non-OID instrument
(7.8)

(where the equation is obtained from (6.13) with i′ = a, i = m). Then take

A1(a, d) =


(Pd − Pa)− (Bd −Ba) if 0 < (Pd − Pa)− (Bd −Ba) ≤ Mad

M D,

Mad
M D if 0 ≤ Mad

M D < (Pd − Pa)− (Bd −Ba),

0 if (Pd − Pa)− (Bd −Ba) ≤ 0,

A1(i′, i) =
{

A1(a, d) if a ≤ i′ < i = d,
0 if a ≤ i′ < i < d.

(7.9)

Rule 2. Let M∗
i′,i denote the number of exact months from date i′ to date i, and let M∗ be

the number of exact months from date of issue to date of maturity. (Exact months are measured

relative to the day in each month that corresponds to the day of issue, and fractions are included.

For instance, if date i falls on the 13th day of a 31-day month,while i′ falls before the beginning

of the month, then the fraction 13/31 would be included in M∗(i′, i) for the partial month at

the end of the period from i′ to i. Another such fraction would be included for a partial month

at the beginning of the period, if any.) Then, with D the OID amount in (7.8), take

A1(i′, i) =
M∗

i′,i

M∗ D. (7.10)
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A D J U S T M E N T S Accrual

1 2 3 4 Periods

OID Acqui- Market Amorti-
sition Discount zable

ISSUE DATES Premium Premium

Set 0: GC∗ ≤ 1954, and Rule 0
NGNC∗ ≤ 1/Jul/82

Set 1: G∗ 1/Jan/55–1/Jul/82, Rule 1
Rule 0

C∗ 1/Jan/55–27/May/69 Rule 0

Set 2: C∗ 28/May/69–1/Jul/82 Rule 2 Rule 1 Rule 0

Set 3: 2/Jul/82–18/Jul/84, Rule2
acquired ≤ 18/Jul/84 Rule 0

Set 4: 2/Jul/82–18/Jul/84, Rule 1

acquired ≥ 19/Jul/84 Rule 3

Set 5: 19/Jul/84–31/Dec/84 Rule 3

Set 6: 1/Jan/85–27/Sep/85 Rule 1

Set 7: 28/Sep/85–21/Dec/92 ∗∗ or 2
Rule 1

Rule 2

Set 8: 22/Dec/92–current ∗∗ Rule 3

∗ G=governmental, C=corporate, GC=G or C, NGNC=neither G nor C.
∗∗ For taxation of issuers, see a potential exception under the AHYDO Rules below.

Table 7.3 Applicable rules for income and expense from long-term obligations.

Rule 3. Take

A1(i′, i) = I∗(i′, i)− I(i′, i) (7.11)

Rules for Adjustment 2: Interest Subtracted for Acquisition Premium.

Rule 0. Disregard; take A2(i′, i) = 0.

Rule 1. In terms of the exact month notation in Rule 2 for Adjustment 1, take

A2(i′, i) =
M∗

i′,i

M∗ (Pa −B∗
a). (7.12)
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Rule 2. With D denoting the OID amount in (7.8), take

A2(i′, i) =
( i− i′

im − i0

)
D. (7.13)

Rule 3. Define the fraction α by

α =


Pa −B∗

a
Ba −B∗

a
when B∗

a < Pa ≤ Ba, but

0 otherwise.

(7.14)

Then take

A2(i′, i) = α
[
I(i′, i)− I∗(i′, i)

]
. (7.15)

Rules for Adjustment 3: Interest Added for Market Discount.

Rule 0. Disregard; take A3(i′, i) = 0.

Rule 1. Consider first the quantity

D′ =


B∗

a − Pa for an OID instrument with B∗
a − Pa > (Na/400)B∗

a,

Ba − Pa for a non-OID instrument with Ba − Pa > (Na/400)Ba,

0 otherwise,

(7.16)

where Na is the number of full years from acquisition to maturity. (Full years are counted

from the issue date to the corresponding calendar day in each successive year, and a fractional

remainder (if any) is dropped.) If D′ 6= 0, take

A3(i′, i) =

 I∗∗(i′, i)− I∗(i′, i) for an OID instrument,

I∗∗(i′, i)− I(i′, i) for a non-OID instrument.
(7.17)

Rule 2. With D′ 6= 0 as in (7.16), take74

A3(i′, i) =
( i− i′

im − i0

)
D′. (7.18)

74 Under this rule, in comparison to the preceding one, the holder of an instrument could end
up paying more tax (never less), and paying it earlier. Incentive for such a choice it is therefore
lacking, except that the rule is “simpler.”
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Rules for Adjustment 4: Interest Subtracted for Amortizable Premium.

Rule 0. Disregard (take A4(i′, i) = 0 for all intervals) or: open. The method can be one

“regularly employed by the holder of the bond, if such method is reasonable,” or it can be

one designated as reasonable by tax regulations. In particular, it can be the following rule of

straight-line amortization:

A4(i′, i) =
i− i′

m− a
(Pa −Ba). (7.19)

Rule 1. Disregard (take A4(i′, i) = 0 for all intervals) or: take

A4(i′, i) =

{
I∗∗(i′, i)− I(i′, i) when Pa > Ba, but

0 when Pa ≤ Ba.
(7.20)

Rules for Accrual Periods.

Rule 0. Use the dates ik in the nominal specification.

Rule 1. Use the dates ik in the nominal specification if the instrument is not an OID

instrument. Otherwise respecify for taxation purposes with accrual periods exactly one year in

length starting from the issue date except for the possibility of a fractional period at the end;

see the discussion of forced respecification in Section 5.75

Rule 2. Use the dates ik in the nominal specification if the number m of accrual periods is

more than 2, the periods do not exceed one year, and they are equal in length except perhaps

for a shorter period at the beginning or the end, or both. Otherwise respecify according to the

longest internally compatible accrual period length θ of length not exceeding one year (in the

manner explained in Section 5; see Definition 5.1 in particular), unless m ≤ 2. If m = 2, use a

fully compatible accrual period length θ. If m = 1 (the case where there are no compounding

dates intervening between the date of issue and the date of maturity), respecify with equal

accrual periods six months in length, except for a possible shorter period at the beginning.

Rule 3. Use the dates ik in the nominal specification if the accrual periods do not exceed

one year. Otherwise respecify through extra dates so as to shorten the accrual periods to meet

this requirement. The accrual periods do not have to be of equal length.

75 This is the most troublesome case of forced respecification. For some instruments is hard to
make sense out of, although a prescription that would pass muster was provided in Section 2. It
is likely that the more reasonable (although still inadequately unmotivated) Rule 2 that follows
would be accepted for taxation in practice in cases where implementation seemed difficult. See
IRS Proposed Regulations of 1986, 1.1272–1(d)(1)(i)(ii).
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Net Effect for Recent Instruments. The relationship between present tax rules and tax-

ation relative to the particularized specification of an instrument is clearest in the case of in-

struments in Set 7. Consider first the case of a non-OID instrument. If the implicit interest

in Adjustment 3 were included in current income, instead of just being declared at the end (cf.

Footnote 72), and if the rule in (7.14) were dropped (so that no threshold would be invoked

before taxes started to apply), the result would be the particularized rule precisely. Thus, no

matter where Pa lies in relation to Ba, the ordinary income declared as accruing from date i′

to date i would be the particularized interest I∗∗(i′, i). The capital gain on date d would be

Pd −B∗∗
d .

For an OID instrument almost the same is true, but a perturbation occurs because of use

of the fraction α in Rule 3 for Adjustment 2. The ordinary income comes out as

O(i′, i) =

 I∗∗(i′, i) when Pa ≥ Ba or Pa ≤ B∗
a, but

(1− α)I∗(i′, i) + αI(i′, i) when Pa = (1− α)B∗
a + αBa, 0 < α < 1.

(7.21)

where it may be recalled that the particularized interest is

I∗∗(i′, i) =

 I(i′, i) when Pa = Ba,

I∗(i′, i) when Pa = B∗
a.

(7.22)

Similarly, the capital gain comes out as

G = Pd−B̃∗∗
d , where

B̃∗∗
d =


B∗∗

d when Pa ≥ Ba or Pa ≤ B∗
a, but

(1− α)B∗
d + αBd when Pa = (1− α)B∗

a + αBa, 0 < α < 1,

(7.23)

where

B∗∗
i =


Bi when Pa = Ba,

B∗
i when Pa = B∗

a.
(7.24)

Exception in Taxing Recent Issuers for High Interest Rates: AHYDO Rules.

For issuers, the adjustments listed in Table 7.2 as “added” would actually be subtracted

from income, and vice versa. In particular, the amount A1(i, i′) would generally furnish a

deduction. In certain circumstances intended to be covered by the “Applicable High Yield

Obligation” (AHYDO) rules in S163 (e)(5) and (i), in which the issuer is a corporation, it would

seem that the deduction may be delayed or reduced. These rules are mathematically ambiguous,

however, and no regulations have ever been written to provide guidance in implementing them.

The consequence has nonetheless been to stop the issuance of any instruments that might be

imagined as covered.
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The affected instruments, called AHYDO instruments, are supposed to be the ones meeting

all three of the following tests:

Test 1. Issued by a corporation after 10 July 1989 with a maturity of more than five years, i.e.,

with the time from date i0 to date im exceeding 5 years.

Test 2. Having y∗ ≤ F + .05, where F is the Applicable Federal Rate of interest on the issue

date i0 relative to the instrument’s compounding period. (Such rates, explained in

general in S1.1274(e)(1)(i), are specified by the IRS for every month. In the case of an

instrument not fitting the compounding periods for which a rate is published, the rate

for the published compounding period closest to the average period of the instrument

is the one that presumably could be used.)

Test 3. Has “significant original issue discount,” which is taken to mean that on at least one

date ik more than five years after i0 the portion of I∗(i0, ik) “not yet paid” exceeds I∗1 .

Test 3 causes a serious problem. Perhaps the portion mentioned in Test 3 could be identified

with the quantity D∗
k of deferred interest as computed by (2.20) from the revised specification

instead of the nominal specification. But the whole idea that imputed interest might not yet

have been paid is fraught with serious inconsistencies, as we have demonstrated in Section 4;

we have taken the position that all of I∗(i0, ik) must be regarded always as having been paid.

This test is inconsistent with the concept behind OID taxation itself, which insists that imputed

payments have really been received by the holder.

Furthermore, the words “significant original issue discount” in Test 3 have little relation to

the suggested criterion. For instance, an instrument having no OID at all—because V ∗
0 = V0

(and therefore I∗(i0, ik) = I(i0, ik) and I∗1 = I1)—might be deemed as having significant original

issue discount.

Anyway, an effort to give mathematical interpretation to the modification of A1(i′, i) desired

in the code runs into other difficulties. Not only amounts associated with OID under the revised

specification, but those under the nominal specification and any particularized specification

would have to be reconsidered in connection with what amount of interest has “really” been

paid already between two dates i′ or i or has not. This route leads straight to the dangers

illuminated in Section 4.

8. TAX RULES FOR SHORT-TERM OBLIGATIONS

For short-term debt instruments the picture is much simpler, since for example there is no

necessity of dealing with obligations from past eras in tax law. Furthermore, there are only two

sets to keep straight: governmental and nongovernmental.

The taxation for each of these could be described independently as a unit, but with the
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patterns in Section 7 available it is convenient to indicate the treatment in the same manner.

This will also make comparisons easier.

As before, we consider four types of adjustment to taxation by the nominal rule. These

are identical to the ones in (7.1), except that for some reason the term “acquisition discount”

is customary for Adjustments 1 and 3 in the short-term case instead of “market discount.”

Adjustments 1 and 2 in fact fall by the wayside (so the terms “original issue discount” and

“acquisition premium” have no role).

General Rule of Taxation: Short-Term Instruments. The ordinary income

deemed to be earned by the holder76 from date i′ through date i (for any dates satisfying

a ≤ i′ < i ≤ d) is the amount

O(i′, i) = I(i′, i) + A1(i′, i) + A3(i′, i)−A4(i′, i), (8.1)

whereas the capital gain on date d is

G = (Pd − Pa)− (Bd −Ba)−A1(a, d)−A3(a, d) + A4(a, d). (8.2)

No adjustment of type A2 is ever made. In the case of a tax-exempt instrument, O(i′, i)

is instead 0 and the capital gain is

G = (Pd − Pa)− (Bd −Ba)−A1(a, d) (8.3)

For the issuer of an instrument, the amount of interest considered to be paid out from

date i′ to date i is

O(i′, i) = I(i′, i) + A1(i′, i). (8.4)

The key to computing the adjustment amounts is provided in the following table.

Rules for Adjustment 1: Interest Added for Acquisition Discount, Type 1.

Rule 0′. Disregard this type of interest income; take A1(i′, i) = 0.

Rule 1′. Use daily compounding, i.e., pass to the altered specification (as in the method of

extra dates) in which all dates from a to d are included. In that sense take77

A1(i′, i) =

 I∗(i′, i)− I(i′, i) if B∗
a < Ba, but

0 if B∗
a ≥ Ba.

(8.5)

76 This refers to accrual-basis taxpayers only. For a cash-basis taxpayer, short-term obligations
are taxed according to the nominal specification only.

77 Once this rule has been adopted for an instrument, the holder must continue with it and is
not permitted to switch later to Rule 2′.
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A D J U S T M E N T S
1 3 4

OID Market Amortizable
INSTRUMENTS Discount Premium

Governmental Rule 0’ Rule 1’ (or 2’) Rule 1’
Nongovernmental Rule 1’ (or 2’) Rule 0’

Table 8.1 Applicable Rules for Income from Short-Term Obligations.

Rule 2′. Take

A1(i′, i) =


i− i′

im − i0
(Ba −B∗

a) if B∗
a < Ba, but

0 if B∗
a ≥ Ba.

(8.6)

Rules for Adjustment 3: Interest Added for Acquisition Discount, Type 2.

Rule 0′. Disregard this type of interest income; take A3(i′, i) = 0.

Rule 1′. Use daily compounding i.e., pass to the altered specification (as in the method of

extra dates) in which all dates from a to d are included. In that sense take

A3(i′, i) =

{
I(i′, i)− I∗∗(i′, i) if Pa < Ba, but

0 if Pa ≥ Ba.
(8.7)

Rule 2′. Take

A3(i′, i) =


i− i′

im − i0
(Ba − Pa) if Pa < Ba, but

0 if Pa ≥ Ba.
(8.8)

Rules for Adjustment 4: Interest Subtracted for Amortizable Premium.

Rule 1′. Use daily compounding, and in that sense take

A4(i′, i) =

{
I(i′, i)− I∗∗(i′, i) if Pa > Ba, but

0 if Pa ≤ Ba.
(8.9)
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Net Effect for Governmental Instruments. In comparing the rules for Adjustments 3 and

4 in the case of a short-term governmental obligation,it becomes clear that the particularized

specification is precisely what is involved. The ordinary income is always O(i′, i) = I∗∗(i′, i),

whereas the capital gain is always Pd − B∗∗
d . But the particularized specification is the one

obtained by first reinterpreting the accrual periods in the instrument as consisting of single

days—daily compounding.

9. STRIPPED INSTRUMENTS AND SHORT POSITIONS

Two ways that new instruments are often created out of existing ones will now be examined.

Taxation of Stripped Instruments. The holder of any debt instrument may sell the rights

to some of the payments, or portions of them, to other parties. This process is called stripping .

Basically, stripping transforms an existing instrument into two or more instruments, which are

regarded as newly issued. The old instrument disappears, leaving only the memory of whether

it was “governmental” or “tax-exempt,” which is passed on to the new instruments. These are

in turn taxed by the rules already covered, once their specifications are fully understood. The

only complications in arriving at the specifications are in the treatment of the accrual period

and the basis of the holder who does the splitting.

Suppose that an existing instrument with payments Ck on dates ik is divided on a certain

date b into n new instruments indexed by j = 1, . . . , n, where the jth instrument pays the

amount Cjk on date ik,

Ck = C1k + · · ·+ Cnk for ik > b, with Cjk ≥ 0 for j = 1, . . . , n. (9.1)

For each j there must of course be at least one payment Cjk > 0. The latest of the dates ik

for which this is true becomes the maturity date for the jth new instrument, while the date b

becomes the issue date.

A particularized specification for the jth new instrument, with issue date b replacing ac-

quisition date a in the formulas laid out in Section 3, will be uniquely determined as soon as

the value to replace Pa in these formulas has been fixed, which will be taken care of shortly.

The nominal specification and the revised specification will be identified with this particular-

ized specification. It will be governmental, or tax-exempt, according to the classification of the

parent instrument, except that the yield on any stripped instrument is tax exempt only to the

extent that it does not exceed the original yield on the underlying instrument.

For a purchaser of the jth new instrument at the time of splitting, the value on the acqui-

sition date b is the price actually paid then for the instrument. Taxation proceeds accordingly,

just as with the acquisition of any other debt obligation.
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For the holder who did the splitting, the main issue is how to allocate the current basis of

the parent instrument to the new instruments in order to determine capital gain or loss if a new

instrument is sold, or the initial value on date b if the new instrument is kept. Let78

Pjd =
{

sale price if the jth new instrument is sold,
fair market value if the jth new instrument is kept. (9.2)

The holder’s current basis in the old instrument as of the splitting date b, which for purposes of

capital gains has been seen in Sections 7 and 8 to be

H =



Pa + (Bb −Ba) + A1(a, b)−A2(a, b) + A3(a, b)−A4(a, b)
if long-term, not tax-exempt,

Pa + (Bb −Ba) + A1(a, b) + A3(a, b)−A4(a, b)
if short-term, not tax-exempt,

Pa + (Bb −Ba) + A1(a, b)
if tax-exempt, either long- or short-term,

(9.3)

must by law be allocated to the new instruments in the same proportions as the values Pjd. In

other words, the portion of the basis assigned to the jth new instrument must be

Hj =
Pjd

P1d + P2d + · · ·+ Pnd
H. (9.4)

Therefore, if the jth instrument is sold the corresponding capital gain (or loss) to the holder

will be

Gj = Pjd −Hj ,

whereas if it is kept, its value on date b, for working out the particularized specification, is

regarded as Hj .

Taxation of Short Positions. In assuming a short position in a bond (or conceivably some

other kind of debt instrument), an investor receives a sum of money in the present for taking

on the obligation of meeting the stream of payments associated with that instrument. The

mechanics of the transaction need not concern us here, just the tax consequences. These come

from the view that the investor has in effect issued a new instrument in which the dates ik and

payments Ck are those in the remaining life of the shorted bond, and the amount received is the

issue price. From these elements the associated yield y can be derived through Theorem 2.2. One

then has a consistent, full specification in the sense of Definition 2.1. This specification fills the

roles of the nominal, revised and particularized specifications simultaneously—the standpoint

being that of an issuer.

78 There is no cut-and-dried method of determining the fair market value of a debt obligation
unless it closely resembles some instrument that is commonly traded, but various mathematical
approaches to comparison can be devised. Tax law is vague on this point. The approach would
of course have to be “reasonable.”
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10. SUMMARY

This study has had two main goals: the elucidation of the mathematical principles underlying

the taxation of debt instruments, and the development of formulas for such taxation that will

facilitate computerization in financial decision making. The basic problem is that of determin-

ing for a given instrument, acquired for a certain price at a certain time, how much interest

income should be deemed to have been received by a holder in any period, and how much re-

payment of principle. In the United States, this matter has increasingly been approached in

terms of constructing from the instrument’s data an appropriate constant annual yield rate. The

prescriptions for doing this have been incomplete and to some degree inconsistent, however.

The mathematical theory of constant yield has here been developed and laid out in a form

able to cope with the many complications that come up in practice. A number of misconceptions

have been cleared up, and a rigorous methodology has been furnished for resolving ambiguities

such as have caused serious difficulties in the past. This methodology reveals how debt instru-

ments, even with payment patterns different from those commonly marketed today, must be

taxed if dangerous inconsistencies with current rules are to be avoided. Issuers contemplating

new instruments have thereby been furnished with a powerful tool for tracing tax consequences.

In the course of developing the new methodology, a number of examples have been put

together which demonstrate how far astray the effects of tax regulations can be from their original

intent. The source of the trouble has been shown to be a lack of appreciation of how much can go

wrong when rules are devised as reasonable-seeming extrapolations from simple, familiar cases,

instead of being formulated and tested within a broad and consistent mathematical framework.

The public policy implications are evident: in the complicated financial world of today, where

markets can move quickly but the regulatory process is slow, it is essential to subject proposed

tax rules to careful mathematical analysis from the start, and this analysis needs to be revolve

around a sound theory of how debt instruments—conceived quite generally—provide income to

a holder.

An important part of the approach taken in this paper has been the notion of a full, consis-

tent specification of a debt instrument. This notion sets a new standard for resolving conflicts

and uncertainties about taxation. As many as three such specifications may be necessary in

computing taxes according to current rules, and these have been explained and contrasted in

detail. Technicalities over the spacing of payment dates and the accrual of interest between

such dates, which cannot be avoided in determining capital gain or loss, have been addressed

rigorously as well.

As a result of this care, it has been possible to provide formulas which will enable computers

to keep track of the tax consequences of debt holdings at a level previously not attainable. These
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formulas apply to both long-term and short-term instruments, which are divided into a number

of categories according to their type and their date of issue, as is required in determining which

era of tax rules should govern the calculations. They have been organized to start from a basic

representation of income to the holder and then adjust it in response to various circumstances,

much in the manner that tax law itself is organized. Tables have been furnished to indicate the

particular rules of adjustment to be invoked, and these rules have been cast in mathematical

form. The taxation of stripped instruments and short positions has been covered as well.
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