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Abstract. The study of problems of maximization or minimization subject to constraints
has been a fertile field for the development of mathematical analysis from classical times.
In recent decades, convexity has come forward as an important tool, and the geometry of
convexity has been translated into notions of directional derivatives and subgradients of
functions that may not be differentiable in the ordinary sense. Now there has emerged a
form of analysis able to deal robustly, even in the absence of convexity, with the phenomena
of nonsmoothness that arise in variational problems.

The Need for Variational Analysis

Differential calculus has been so successful in treating a variety of physical phenomena that
mathematics has long relied on differentiable functions as the main tools of analysis. The
domain of such a function, in a finite-dimensional setting, is typically an open subset of IRn

or of a differentiable manifold such as might be defined by a system of equations in IRn and
coordinatized locally by IRd for some d < n. Many of the systems and phenomena that have
come under mathematical scrutiny in recent decades, however, are of interest especially at
their frontiers of feasibility. They involve functions and mappings whose domains may be
closed sets with very complicated boundaries, expressed often by numerous inequalities as
well as equations. Behavior around boundary points of these domains is seen as crucial,
but it cannot well be investigated without a development of ideas beyond the customary
framework.

A major source of this trend lies in the fact that mathematical models are being
used more and more for prescriptive as well as merely descriptive purposes. Nowadays
one seeks not only to describe what happens in the world but to influence or improve the
way it happens. New subjects have been created like optimization theory, control theory,
and viability theory, which are heavily involved with finding the extremes of what may be
possible under given circumstances. This has stemmed from an increasing preoccupation

∗ The written text of this lecture has been adapted from the introduction of the forth-
coming book Variational Analysis by R. T. Rockafellar and R. J-B Wets.

1



with problems in engineering design, operations management, economics, statistics, and
biology, alongside of those in the physical sciences.

Computers have made it possible to cope with a vast array of such problems, too
complex to have been taken on in the past. They have opened up new applications of
mathematics and at the same time have caused a shift in attitude, where “closed form”
solutions are removed from the pedestal as the compelling ideal, and structure conducive
to obtaining numerical answers is emphasized instead. Whether a solution is expressed by
a formula in classical terms or by an algorithm for computation makes little difference if
the tools are available for understanding the nature of the solution and how it depends on
the data.

Variational analysis, which has grown from these challenges, extends classical analysis
by admitting a much wider class of functions and incorporating them into a “subdifferen-
tial” calculus that continues to utilize standard properties when possible but is not limited
by them. Smoothness, a term referring to continuous differentiability and its graphical
counterparts, no longer plays a dominating role. Instead the spotlight is on one-sided tan-
gents, one-sided derivatives, and “subgradients.” This part of the subject is often called
nonsmooth analysis, but variational analysis covers other ground too and is not concerned
just with nonsmoothness.

Set-valued mappings and extended-real-valued functions emerge as central objects of
study for generalizations of continuity, convergence and approximation as well as differen-
tiability. The measurability theory of set-valued mappings and the special measurability
properties of extended-real-valued “integrands,” which are essential to the formulation of
many problems involving integrals over time or expectations in probability, are an im-
portant part of variational analysis also. Operations of maximization and minimization,
because of their significance in identifying extremal behaviors and describing properties of
boundaries, are elevated to a status comparable to that of integration in being used sys-
tematically to define functions and mappings and to express their derivatives, rather than
merely to state problems. Characteristically, there is a strong tie to geometry throughout
the subject, but the modes of geometric thinking are often different from the long-familiar
ones.

A core idea is that of analyzing local variations or perturbations of a mathematical
object, like a set or mapping, when these variations or perturbations are liable to run up
against crucial restrictions, or are admitted only relative to side conditions which may
be far from transparent in their effects and require close study in themselves. A basic
purpose lies in describing the circumstances in which a given function achieves an extreme
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value over a given set, and in answering questions of the stability and sensitivity to change
exhibited by the extreme value or the points where it is attained. A further purpose is to
set the mathematical stage for techniques of computing such points.

Constraints and Nonsmoothness

In a context of searching for extremes, the concept of constraints is fundamental. Con-
straints are the conditions that define the set of elements over which a particular search
takes place. They may have many forms, but quite commonly they involve restrictions
on the values of a collection of functions of variables xj , which are interpreted as the
coordinates of a vector x = (x1, . . . , xn).

A typical example is a set C ⊂ IRn is defined by

C =
{
x ∈ X

∣∣ fi(x) ≤ 0 for i ∈ I1 and fi(x) = 0 for i ∈ I2

}
(1)

where X denotes another subset of IRn, perhaps IRn itself, and I1 and I2 are general index
sets for a collection of real-valued functions. The conditions fi(x) = 0 are then called
equality constraints, while the conditions fi(x) ≤ 0 are inequality constraints. Each fi is
a constraint function. (The condition x ∈ X in this example is referred to as a constraint
too, even though it is on an abstract level until more is specified about X.)

In classical mathematical models in this format, there are typically only a few, simple
constraints: I1 and I2 are small, finite sets. In fact there are usually only equality con-
straints, and X is open. The constraint functions are differentiable, and their gradients
satisfy conditions of linear independence. This gives C the character of a differentiable
manifold. Even when inequality constraints do come into play, they are relatively elemen-
tary. For instance, one might think of a cube in IR3 or the intersection of two balls. Then,
although C may not itself be treatable as a differentiable manifold, it can be decomposed
into a manageable number of readily identifiable pieces, each of which is a differentiable
manifold in the form of a curve, surface, or open region. These pieces can be analyzed
separately.

In contrast, the problems seen in applications today may involve sets C described by
conditions (1) in which the inequality constraints are dominant and could number in the
thousands, if not millions—often as a result of discretization in time, space, or probability.
There can be far more of such constraints than variables xj , although the number of those
can be enormous too. Approaches based only on “smoothness” are then totally inadequate.

At any particular point x of C, some of the inequality constraints in (1) can be active
(satisfied as equations fi(x) = 0) while others are inactive (satisfied as strict inequalities
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fi(x) < 0). Quite apart from the large numbers involved, there is usually no easy way to
determine which combinations of active versus inactive constraints actually do occur. Even
if there were, one would not necessarily get a nice decomposition of C into differentiable
manifolds, due to possible breakdowns of linear independence among constraint gradients.
Anyway, there would be too many subsets in the decomposition to make a case-by-case
analysis reasonable.

To look at this from a different angle, suppose that C is specified by inequality con-
straints alone:

C =
{
x ∈ IRn

∣∣ fi(x) ≤ 0 for i ∈ I
}

(2)

where the fi’s are smooth and the index set I is finite but large. Suppose in addition that
the interior of C consists of the points x satisfying fi(x) < 0 for all i ∈ I, and that C

is the closure of its interior. The boundary of C might then be thought of as a kind of
“nonsmooth surface.” In general there would be no way to study it in separate pieces, and
one would hope instead to find some direct approach.

Note by the way the inherent asymmetry in the boundary set in this example (as
imagined in more than two dimensions). It has all its “creases” and “corners” on the side
corresponding to the exterior of C, none on the side corresponding to the interior. For
this reason it is better studied jointly with C than as a hypersurface all on its own. Such
one-sided treatments of mathematical structure are common in variational analysis.

The pictures created by inequality constraints are seen also when functions are defined
in terms of the operations “max” and “min.” Suppose we have

f(x) = max
i∈I

fi(x), (3)

again with fi smooth. This formula means that the value of f at a point x is taken to be the
highest of all the values fi(x) as i ranges over I. Regardless of the degree of differentiability
of the fi’s, the function f is unlikely to be smooth. There is a strong resemblance between
this situation and that of a “nonsmooth set,” and this is hardly an accident, because the
graph of f is the boundary of a set D defined much as C was in (2):

D =
{
(x, α) ∈ IRn × IR

∣∣ fi(x)− α ≤ 0 for i ∈ I
}
.

This example brings out a very important connection between nonsmooth sets and
nonsmooth functions, as induced by inequality constraints in one direction and by “max”
or “min” in the other. It is often worthwhile in variational analysis to pass between the
two points of view. In the study of f defined by (3) one can apply geometric concepts
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most profitably to the set D, the so-called epigraph consisting of the points in IRn+1 lying
on or above the graph of f , rather than to the graph itself. In the other direction, the set
C in (2) can be expressed in terms of f as

C =
{
x ∈ IRn

∣∣ f(x) ≤ 0
}
. (4)

The trick of aggregating the constraints defining C into a single “nonsmooth constraint”
by means of (3) is attractive for a number of purposes. But of course it cannot be used
to much effect unless techniques are available for working with the functions f that are
thereby created.

The virtues of studying sets by way of inequality constraints, and functions by way of
their epigraphs, were first appreciated in the special context of convex analysis, for which
[1] serves as a reference. A subset C of IRn is said to be convex if it includes for every pair
of points the line segment that joins them, or in other words, if for every choice of x0 ∈ C

and x1 ∈ C the point x0 + τ(x1−x0) = (1− τ)x0 + τx1 belongs to C also for all τ ∈ (0, 1).
A function f on a convex set C is said to be convex relative to C if for all x0 and x1 in C

it satisfies

f
(
(1− τ)x0 + τx1

)
≤ (1− τ)f(x0) + τf(x1) for all τ ∈ (0, 1).

The closed convex sets in IRn turn out to be the sets representable by linear inequalities
as in (2), but with a possibly infinite index set. The convex functions on IRn can be studied
geometrically through the fact that their epigraphs are convex sets. When the epigraph of
such a function f is closed, a property termed lower semicontinuity, its representation by
a system of linear inequalities corresponds to a representation of f as in (3) by a possibly
infinite collection of fi’s, each of which is a linear function plus a constant.

The theory of convexity is thus inevitably concerned with nonsmoothness. The po-
tential lack of differentiability notwithstanding, convexity is a natural assumption in eco-
nomics, for instance, where smoothness assumptions are hard to justify axiomatically. Not
surprisingly in this connection, mathematical models in economics and related areas are
especially rich in inequality constraints. Goods can be present only in nonnegative quan-
tities. Resource stocks may be under-utilized if not needed, but no quantity larger than is
available can be drawn into production.

Inequality constraints are frequently seen in engineering in the form of bounds placed
on certain variables. They also occur in fields like physics and chemistry, although little
attention was paid to this in the past. A chemical system such as a planetary atmosphere,
oil reservoir, or human blood, can in some situations be modeled by “states” that specify
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the current amounts of various chemical species in a number of different phases. A state is
then a point in some space IRn. Restrictions on which states are chemically realizable are
given by mass balance equations and laws of interaction, but also by the simple fact that
no species can occur in an amount less than zero. Zero amounts, on the other hand, are
quite possible: a particular substance may, for instance, be present only in one of several
possible liquid or solid phases. The set C consisting of all realizable states is determined
therefore by numerous inequality constraints (nonnegativity) combined with a number of
equations.

To find the state of equilibrium in such a chemical system, one would be obliged to
minimize over this complicated set C a certain energy function f . The function f in this
case (Gibbs free energy) happens not to be differentiable everywhere on C or for that
matter even to have a natural extension beyond C. This poses a serious obstacle in under-
standing the nature of equilibrium, at least within the confines of classical methodology.
The obstacle is all the greater in any attempt to see how such a system might evolve
over time in obedience to laws of dynamics. Variational analysis, however, aims at the
treatment of just such situations in addition to the classical ones.

Note that the study of f and C in this application could serve not only for characteriz-
ing the equilibrium state of the chemical system. It could lead to schemes for calculating it.
Here we see a modern twist to a venerable topic, that of expressing the equilibrium states
of a system as the ones that minimize an energy function—a so-called variational princi-
ple. Where previously this was mainly an interesting interpretation that could be given
for some forms of equilibrium, it can now serve also not only as a basis for computation
but in extending the conditions for equilibrium to systems subject to more complicated
constraints than the ones formerly considered.

Variational principles in this general vein are one of the prime motivations for the
development of the new forms of analysis. Besides physics and chemistry, they appear for
instance in economics. The static equilibrium states of an economy have been characterized
under certain assumptions in terms of producers maximizing their profits and consumers
maximizing their “utility.”
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Optimization

Variational principles are often associated with descriptive models of phenomena, but
prescriptive models involve the very same theoretical challenges, from a mathematical
standpoint. For both kinds of models, the notion of an optimization problem has proven
to be valuable. We shall rely on this concept even though the term “optimization,” in
apparently referring to a search for the “best” among possibilities, is not linguistically
ideal for all situations.

An optimization problem (in the sense of minimization) is specified by a set C and a
real-valued (or extended-real-valued) function f on C, called the objective function. The
elements x ∈ C are called the feasible solutions to the problem. The ones that minimize f

relative to C, if any, are called (globally) optimal solutions, and the greatest lower bound
(not necessarily finite) for f relative to C is called the optimal value. (Minimization could
be replaced here by maximization, but of course every problem of maximization can be
converted to one of minimization by a change of sign.)

The double use of the word “solution” in this definition may seem odd, but it reflects
a fundamental two-stage structure in many mathematical models. The set C is usually
defined by constraints within some larger, standard space like IRn. Not only may these
constraints be complicated, they may in some cases even be inconsistent. This is not merely
due to poor formulation. An important question may be whether there is any x at all that
satisfies the full collection of constraints, and if so, how one may be determined numerically.
(Such a point might in particular be desired to initiate an algorithm for minimizing f over
C.) An x belonging to C can therefore appropriately be viewed as a type of solution at a
preliminary level. “Feasible,” in referring to the fulfillment of constraints, means roughly
the same as “admissible” or “realizable,” or in certain dynamical settings, “viable.”

Whether the ultimate interest in an optimization problem resides in the optimal value
(a number), or the optimal solutions (distinguished elements of the feasible set), or both,
would depend on circumstances. A particular optimization problem is by definition always
focused on just one of the operations of maximization or minimization, however.

Extended-real-valued functions enter the territory of optimization theory by several
routes, but one of the most important is the use of “infinite penalty” representations of
constraints. To explain this briefly, consider again a problem of minimizing f over C, and
define the function f̄ : IRn → IR = [−∞,∞] by

f̄(x) =
{

f(x) when x ∈ C,
∞ when x /∈ C.

Then the given problem becomes that of minimizing f̄(x) over all x ∈ IRn, since the
points where f̄ has the value ∞ are the least interesting and in effect are excluded from
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consideration. An optimization problem in n variables subject to various constraints can
thus be identified with a single function f̄ on IRn.

Of course, in passing to an extended-real-valued function in this manner another
step is taken away from classical analysis. In particular, the graph of f̄ can no longer
be the basis of geometric thinking, since it would be a subset of IRn × IR instead of
IRn × IR, where IR = [−∞,∞], and IRn × IR is not a vector space. But the epigraph{

(x, α) ∈ IRn × IR
∣∣ α ≥ f̄(x)

}
remains as a subset of a vector space and can fill the

geometric gap.

Many complications can arise in a careful investigation of optimal solutions, even
in a “smooth” case where there are no constraints. There can well be more than one
optimal solution, in fact infinitely many of them, not necessarily isolated from each other.
Misleading “locally optimal” solutions can be arbitrarily close by. Still, in following a
function f downward, as in generating a sequence of points xk ∈ C for which the values
f(xk) are decreasing, there is no guarantee that an optimal solution will eventually be
approached, even if the sequence of numbers f(xk) does itself converge to the optimal
value.

One of the nicest consequences of convexity, when it is present, is that troubles with
local versus global optimality disappear. With a certain “strict” convexity, multiple opti-
mal solutions are eliminated too. As a matter of fact, convexity conditions are virtually the
only practical way of safeguarding against the difficulties indicated—practical in the sense
that a criterion can be checked in terms of the given features of a problem in advance of
computations, the results of which might otherwise be hard to interpret rigorously. There
is consequently a high premium on being able to recognize the presence of convexity, and
a well developed apparatus does exist for this purpose. While in classical analysis the
division between linear and nonlinear is the principal watershed, in variational analysis
the division between convex and nonconvex has this prominence.
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Variational Inequalities

The solutions to an optimization problem or variational principle cannot be analyzed and
interpreted without first characterizing them in terms of some kind of necessary condi-
tions and sufficient conditions. This is all the more a prerequisite for the development of
numerical techniques for computing solutions.

For a problem of minimizing a smooth function f over IRn without constraints, a
locally optimal solution x̄ must satisfy ∇f(x̄) = 0. The calculation of locally optimal
solutions can thus be identified to some extent with the calculation of solutions to a
possibly nonlinear equation. As a matter of fact, much of the methodology in numerical
analysis for solving linear and nonlinear equations M(x̄) = 0 for a vector-valued mapping
M is concentrated precisely on cases where M = ∇f for some function f . Many of
the applications are to finite-dimensional discretizations of operator equations in function
spaces, where a variational principle may be involved. For instance, a partial differential
operator of elliptic type can be expressed as the gradient of a certain kind of convex integral
functional, so that partial differential equations with such operators have this quality.

For minimization problems with constraints, the characterization of optimal solutions
is much more challenging, especially when large numbers of inequality constraints may be
involved. To cope with the difficulties, new levels of abstraction are required so that the
essential features of a situation or class of numerical methods can be surveyed apart from
a mass of distracting details.

An example is the concept of a “variational inequality.” In the case of a nonempty,
closed, convex set C ⊂ IRn and a continuous mapping M : C → IRn, a point x̄ is said to
satisfy the variational inequality for C and M if

x̄ ∈ C and 〈M(x̄), x− x̄〉 ≥ 0 for all x ∈ C. (5)

Here 〈v, w〉 denotes the standard inner product in IRn.

This condition gives some insight into the modern ways of thinking in variational
analysis. When the mapping M in a variational inequality is the gradient ∇f of a smooth,
real-valued function f , the condition is related to local minimization because the negative
of the vector M(x) = ∇f(x), if nonzero, points in the direction of greatest decrease of f .
This provides the simplest case for interpretation, but applications involving “minimax”
problems, or involving no minimization or maximization at all, also occur.

If x̄ belongs to the interior of C, the variational inequality condition is just the equa-
tion M(x̄) = 0. If x̄ is on the boundary, however, the condition has a one-sided quality:
it restricts the angle that −M(x̄) is allowed to make with difference vectors x − x̄ corre-
sponding to the various points x of C other than x̄. The angle cannot be acute.
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The formulation of the variational inequality in this manner, without just saying
whether x̄ is to be on the boundary or in the interior of C, is of the essence. In practice
there is usually no way of knowing in advance which case will prevail, and it would be
unwieldy to have to deal with the matter in terms of a list of special alternatives, each
dependent on the ultimate location of x̄.

Variational inequalities were first introduced in an infinite-dimensional setting for the
sake of applications to partial differential operators, which may be the gradient mappings
associated with certain integral functionals, as already noted. They make it possible
there to handle problems with one-sided boundary conditions or obstacles, as for instance
a membrane of minimal area stretched around a given object and fastened in certain
places. The variational inequality is then a “partial differential inequality” which can
be viewed as the optimality condition corresponding to a variational principle involving
inequality constraints. A finite-dimensional variational inequality can correspondingly arise
through discretization for purposes of computation, just as in the case of a classical partial
differential equation being converted into the numerical solution of an equation M(x̄) = 0.

Perturbations

Critical to the study of almost all mathematical models—and optimization problems are
no exception—is the issue of sensitivity with respect to changes in input data and various
parameters. This too is a prime stimulus to developments in variational analysis, because
it quickly leads beyond the range of classical theory, a fact not always appreciated enough
by those working with applications of minimization. An impression often gained from
traditional applied mathematics is that any well formulated and physically well motivated
problem one may wish to solve will, under palatable assumptions that could be gone into if
necessary, have a unique solution which reacts in only minor ways to minor perturbations.
Such may be true in some degree for problems built up with standard operations for which
the continuity properties have long been established, but minimization is not an operation
in that class, as already emphasized earlier in this discussion.

Approaching the issue systematically, let us consider a minimization problem in vari-
ables x1, . . . , xn that depends on other variables u1, . . . , ud. Specifically, let us suppose
that for each vector u in a certain set U ⊂ IRd we want to look at the problem

minimize f0(u, x) over all x ∈ C(u) (for fixed u), where

C(u) =
{
x ∈ X

∣∣ fi(u, x) ≤ 0 for i ∈ I1, fi(u, x) = 0 for i ∈ I2

}
.

(6)

Let p(u) denote the optimal value in this problem for a given u, and let P (u) denote the
corresponding set of optimal solutions. What can be said about the way that p(u), P (u)
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and C(u) vary with u?

It is unlikely, except in quite special circumstances, that p(u) will be a differentiable
function of u, no matter how smooth f0 and the constraint functions fi are, even if X = IRn.
Moreover, p might sometimes fail to be continuous. Still, there are many situations where
an understanding of possible rates of change of p, to the extent that these might be captured
by a notion of differentiation more flexible than the standard one, could be very valuable.
For example, there are applications where a function defined like p can enter into a different
optimization problem as its objective function or as one of the constraint functions. This
is especially seen in schemes for decomposing large problems into smaller ones.

The study of the optimal solution set P (u) for the problem in (6) brings up other
difficulties which must be dealt with squarely. As noted, there is frequently no way to
guarantee that P (u) always consists of a single element without making restrictions that
could be severe, unrealistic, or impossible to check. A multiplicity of optimal solutions
may well occur for at least some choices of u. On the other hand, P (u) could be empty
for other choices of u, not merely because of a failure of existence criteria for optimal
solutions, but because constraints could become inconsistent. It is essential, therefore, to
treat P as a set-valued mapping and to pay attention to the boundary of its “effective”
domain: the set of vectors u such that P (u) 6= ∅. This domain would typically be a closed
set with a boundary whose treatment might be problematical. Again there is incentive for
developing notions of generalized differentiability, not to mention continuity, that adapt
well to the desired applications.

Such issues in the study of the optimal solution set P (u) are central likewise in coming
to grips with the feasible solution set C(u) as defined parametrically in (6). Still further
in this vein, the variational inequality in (6) could depend on parameters: instead of M(x)
for x ∈ C one could have M(u, x) for x ∈ C(u). It would then have a solution set S(u)
dependent on u, and the effects on S(u) of “errors” in u could be of keen interest.

11



Analysis of Set-Valued Mappings

To some extent, therefore, variational analysis necessarily takes on the character of what
might be called set-valued analysis. Set-valued mappings must somehow be treated on a
par with ordinary single-valued mappings. But set-valued mappings are “nonsmooth” in
the more profound sense that in the past there never was any calculus for them, not the
slimmest recipe for derivatives. Only in fairly recent times has a substantial theory even
of continuity and semicontinuity of set-valued mappings been put together. That theory
must inevitably play a part in any broadening of the calculus to deal with the challenges
already mentioned, but it can also serve purposes of its own.

In working with P (u) and C(u), for example, one needs to know what meaning to
assign to the convergence of a sequence of sets to a limit set. Concepts of set convergence
turn out also to be the key to a robust theory of approximation of one optimization problem
by another, such as can be put to good use in the development of numerical methods. They
are essential too in understanding the perturbations of a given problem, and—on the level
of mathematical modeling in complex situations where asymptotics necessarily take over—
sometimes even in constructing the natural “limit problem” that ought to be solved.

Such is the case with the infinite-dimensional technique known as stochastic homoge-
nization, for instance. An optimization model or variational principle may be set up that
involves a porous material with random holes of various sizes, but where a specific rep-
resentation of all the holes by inequality constraints, say, would be out of the question.
On the other hand, existing physical theory may not provide a clear substitute for such
a representation. In that case one has to try to identify through convergence the correct
asymptotic model, involving a kind of averaging, but the limit that must be taken does
not fit a traditional mold.

The basics of set convergence lead to the companion notion of “epi-convergence” of
functions, which corresponds to set convergence of epigraphs. Such nonclassical function
convergence has strong appeal in many applications involving optimization in its broad
sense, but also in purely theoretical investigations. The role of set convergence and epi-
convergence in generalized differentiation is also crucial.

The need for looking beyond an ordinary framework of point-to-point mappings and
continuity is illuminated from a different side by the case of mappings that are monotone
in the following sense. A mapping T that associates with each point x ∈ IRn a subset
T (x) ∈ IRn is called monotone if

〈v′ − v, x′ − x〉 ≥ 0 whenever v ∈ T (x) and v′ ∈ T (x′).

It is a maximal monotone mapping if there is no monotone mapping T ′ 6= T with T ′(x) ⊃
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T (x) for all x.

The reason for mentioning monotone mappings here is that although they are often
merely single-valued in the sense of T (x) consisting of just a single vector v, and quite
generally are single-valued “almost everywhere,” their full development depends on aban-
doning single-valuedness. This is because many of the constructions utilized in applications
of such mappings, like taking inverses, destroy single-valuedness yet preserve monotonicity.
Furthermore, the basic geometry of monotonicity becomes clear only through considera-
tion of the idea that every monotone mapping can be enlarged to a maximal one, which
can fail to be single-valued even though single-valuedness may have been present initially.

In the one-dimensional case there is a close resemblance of the graph of T to that of
a function from IR to IR. To get the graph of a function, it would only be necessary to
replace each of the vertical segments by a single one of its elements; then T would still be
monotone but no longer maximal monotone. The higher-dimensional analogs, although
harder to visualize, are similar, in that a maximal monotone mapping T can be described
rather generally as coming from a single-valued one with domain and range in IRn by filling
in, at points of discontinuity, between the different limit values obtainable by approaching
from different directions. Multivaluedness is thus introduced at such points. The reward
for allowing it is that the resulting graph set turns out to be a connected n-dimensional
manifold in IRn × IRn.

In higher dimensions monotonicity is a kind of generalization of positive semidefinite-
ness. Indeed, if T (x) consists for each x of a single vector v = Ax+a, where A is a matrix
in IRn×n (not necessarily symmetric) and a is a given vector in IRn, one has T monotone
if and only if 〈x, Ax〉 ≥ 0 for all x, and T strictly monotone if and only if 〈x,Ax〉 > 0 for
all x 6= 0.

While the study of monotone mappings inevitably requires a push beyond classical
analysis, some of the necessary innovations can well be anticipated. Addition of monotone
mappings can be developed in a natural way along with other operations. Approximations
can be carried out in terms of closeness of the graph sets. A theory of limits of mappings—
set-valued as well as single-valued—is thereby suggested which is not describable in the
usual terms of pointwise convergence of functions, much less uniform convergence, but
through a geometrical notion of graph convergence.

Monotone mappings are a key ingredient in numerical procedures for solving varia-
tional inequalities and optimization problems in a setting of convexity. Many problems
can be represented in terms of finding a point x̄ such that 0 ∈ T (x̄), where T is maximal
monotone.
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The development of procedures for solving 0 ∈ T (x̄), whether T is maximal monotone
or not, is a step beyond the numerical analysis of a nonlinear equation 0 = T (x̄) for a
smooth single-valued mapping T , but for many applications it is quite analogous. There is
strong incentive therefore in keeping the parallels between set-valued and ordinary single-
valued mappings as close as possible from a theoretical perspective. As for generalized
differentiation of T at x̄, one aim can then be to characterize convergence properties of
algorithms just as may be done in the single-valued, smooth case of T in terms of the
Jacobian matrix for T at x̄.

Set-valued mappings are of interest in numerical work for more general reasons as
well. Quite commonly an algorithm can be described as generating a sequence {xk}ν∈IN

through a procedure of the form xk ∈ S(xk−1) that starts from a point x0, the goal being
convergence to a point x̄ such that x̄ ∈ S(x̄). Here the mapping S might be replaced
by a separate mapping Sν in each iteration according to some rule, but anyway a lack of
single-valuedness may come from several sources. In the case of numerical optimization,
one source is often the use of inexact minimization in obtaining xk from xk−1 through a
subproblem such as line search. Again, the analysis of generalized continuity and differen-
tiability properties of set-valued mappings is a critical need.

Integral Functionals and Measurability

Variational problems in an infinite-dimensional setting often involve expressions like

Jf (x) =
∫

Ω

f
(
ω, x(ω)

)
dω for x ∈ X , (7)

where Ω is perhaps a subset of IRd (but could also be a general measure space with measure
dω, e.g. a probability space), and X is some space of functions x : Ω → IRn (perhaps a
standard Banach space). The function f on Ω× IRn is an integrand, and Jf is an integral
functional.

For example, a Lagrange problem of minimizing

Φ(y) =
∫ t1

t0

f
(
t, y(t), ẏ(t)

)
dt

over all continuously differentiable functions y : [t0, t1] → IRm satisfying y(t0) = a0,
y(t1) = a1, with the notation ẏ = dy/dt, can be viewed in terms of Ω = [t0, t1] and
x(t) =

(
y(t), ẏ(t)

)
. The problem is then seen as involving the composition of an integral

functional Jf with a linear mapping y 7→ (y, ẏ).

Classically, an integrand f in (7) would be assumed differentiable to whatever de-
gree seemed convenient, but for modern purposes differentiability may not be taken for
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granted, because f could arise in some of the ways already suggested and be nonsmooth.
Interestingly, just by allowing f to be extended-real-valued it is possible to achieve so
much breadth, even in the otherwise ordinary statements of problems in the calculus of
variations, that general problems of optimal control of ordinary and partial differential
equations and variational inequalities are encompassed.

Of course, with the integrand f extended-real-valued one can hardly speak of continu-
ity of f , much less differentiability, so in following this path the need for new methodology
in the analysis of the functional Jf is inescapable. The very existence of Jf , in the sense
of the integral being well defined for every function x ∈ X , requires new foundations,
because of technicalities concerning measurability of the function ω 7→ f

(
ω, x(ω)

)
which

cannot satisfactorily be dealt with in the old ways. A fresh approach has to be taken to
the question of what it means for the function f(ω, · ) on IRn to depend measurably, as a
whole, on the parameter element ω ∈ Ω. Very similarly, one needs to determine the right
sense in which a set S(ω) depends measurably on ω.

In the case of a probability space, this is important in properly pinning down the
notion of a random set or function. The relationship between random sets and random
functions is seen in variational analysis through the fact that every extended-real-valued
function on IRn can be identified with a specific subset of IRn+1, namely its epigraph. On
the other hand, an extended-real-valued function on IRn can be interpreted, in the manner
explained above in connection with ∞ penalties, as fully designating a particular problem
of optimization in n variables subject to constraints, so a random function could represent
a random problem. Presumably, a random problem of optimization should give rise to
a random optimal value and a random optimal solution set, but again, this terminology
cannot legitimately be employed without first answering a host of technical questions about
“measurability” that were never even posed in the classical setting. A sound theory of
stochastic optimization is not possible without the elaboration of such details. Applications
to variational principles in statistics have a stake in the matter too.

Measurable dependence on parameters is closely related to the generalized sorts of
continuous dependence on parameters that have already been alluded to. This topic is
finite-dimensional in a large way despite the integrand f and properties of the associated
integral functional Jf on an infinite-dimensional space.

While the study of how sets and functions (through their epigraph sets) may depend
measurably on parameters cannot properly be placed under the heading of variational
analysis itself, it does furnish a strong example of how variational analysis interacts with
other branches of mathematics and calls for major innovations in well established theories.
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Generalized Differentiation

The notion of a variational inequality has already been described as providing a handle
on the characterization of solutions to problems of optimization. In a larger scheme it is
essential to develop generalized forms of differentiation that can be applied to a variety of
situations lying beyond the capabilities of classical differential analysis.

On the geometric level, classical analysis can be said to revolve around the local study
of smooth manifolds, sets which possess at each point a well defined tangent space and
normal space, these being linear subspaces dual to each other in the sense of orthogonality.
Such sets can in particular be the graphs of functions and vector-valued mappings, and
in this way the geometry of tangents and normals may be translated into the analysis of
directional derivatives, gradients, Jacobians and the like.

In variational analysis there is a similar pattern, but smooth manifolds are replaced
by arbitrary closed sets, and instead of tangent and normal spaces one works with tangent
and normal cones. A set is called a cone if it is nonempty and contains for each of its
vectors w all multiples λw with λ ≥ 0. Pictorially, a cone which is more than just {0} is a
bundle of rays (half-lines emanating from the origin). Subspaces are particular examples
of cones.

For a closed set C ⊂ IRn and a point x̄ ∈ C, the tangent cone to C at x̄, denoted by
TC(x̄), consists of all the vectors w such that there exists a sequence of vectors xk → x̄ in
C along with a sequence of scalars λk > 0 such that λk(xk − x̄) → w. On the other hand,
the normal cone to C at x̄, denoted by NC(x)̄, consists of all the vectors v such that there
exists a sequence of vectors xk → x̄ in C along with a sequence of vectors vk → v such
that

〈vk, x− xk〉 ≤ o(x− xk) for x ∈ C.

The cones TC(x̄) and NC(x̄) are always closed.

When C is a smooth manifold, TC(x̄) and NC(x̄) turn out to be the classical tangent
and normal spaces. When C is a convex set, on the other hand, they are not subspaces
orthogonal to each other but convex cones polar to each other, in the sense that

NC(x̄) =
{

v
∣∣ 〈v, w〉 ≤ 0 for all w ∈ TC(x̄)

}
,

TC(x̄) =
{

w
∣∣ 〈v, w〉 ≤ 0 for all v ∈ NC(x̄)

}
.

(8)

In the convex case there is a simpler formula that can be used equivalently for the normal
cone: one has

NC(x̄) =
{

v
∣∣ 〈v, x− x̄〉 ≤ 0 for all x ∈ C

}
.
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Note that on the basis of this specialized formula of convex analysis the variational in-
equality (5) can be written as

−M(x̄) ∈ NC(x̄).

The polarity relation (8) between tangent and normal cones holds not only when C

is convex but in many other important cases as well, for instance when C is defined by a
system of smooth constraints satisfying a constraint qualification as usually employed in
the theory of optimization. Then C is said to be Clarke regular at x̄. But the polarity
relation does not hold universally. In the most general cases, the cones TC(x̄) and NC(x̄)
can fail also to be convex. Nonetheless, they embody a great amount of local information
about the set C which can be put to use effectively.

The lack of convexity and polarity just mentioned was viewed in the earlier stages of
development of variational analysis as a serious drawback, and for this reason the definitions
of TC(x̄) and NC(x̄) given here were not the ones used. Alternative definitions of the
tangent and normal cones, which did yield convex cones, were employed instead; specifically
the normal cone was taken to be the convex hull of the set denoted here by NC(x̄), and
the tangent cone was taken to be its polar. This is the pattern followed by Clarke in
[3] and [4], for instance, as well as in other works by a multitude of authors, including
the present writer. Through the work of Mordukhovich [5], however, it has come to
light that such convexification can be bypassed almost entirely (except in some special
circumstances where integral functionals are involved), and that the results obtained then
are even stronger. An updated view of the subject is being put together in [6].

The geometry of tangents and normals can be translated into concepts of analysis
through consideration of epigraphs. Consider a general function f : IRn → IR and a point
x̄ where f(x̄) is finite. The epigraph

E =
{

(x, α) ∈ IRn × IR
∣∣ α ≥ f(x)

}
is a closed set in IRn+1 with the point

(
x̄, f(x̄)

)
on its boundary. The cones TE

(
x̄, f(x̄)

)
i

and NE

(
x̄, f(x̄)

)
provide the needed handle on the local properties of generalized differen-

tiability of f at x̄.

The subderivative function associated with f at x̄ is the function df(x̄) : IRn → IR

defined by

df(x̄) = [ function having the set TE

(
x̄, f(x̄)

)
as its epigraph ],

while the subgradient set is the set ∂f(x̄) ⊂ IRn defined by

∂f(x̄) =
{

v ∈ IRn
∣∣ (v,−1) ∈ NE

(
x̄, f(x̄)

) }
.
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In general, the subderivative function can always be expressed by the alternative
formula

df(x̄)(w̄) = lim inf
w→w̄
t↘ 0

[
f(x̄ + tw)− f(x̄)

]
/t.

On the other hand, it can be shown that v ∈ ∂f(x̄) if and only if there is a sequence of
points xk → x̄ with f(xk) → f(x̄) along with a sequence of vectors vk → v such that

f(x) ≥ f(xk) + 〈vk, x− xk〉+ o(x− xk).

In many cases, however, simpler formulas can be substituted which give the same result.

For instance, when f is convex, one actually has

∂f(x̄) =
{

v ∈ IRn
∣∣ f(x) ≥ f(x̄) + 〈v, x− x̄〉 for all x

}
.

When f is not only convex but finite on a neighborhood of x̄, one further has

df(x̄)(w̄) = lim
t↘ 0

[
f(x̄ + tw̄)− f(x̄)

]
/t.

The polarity in (8) is then available and translates into the relation

df(x̄)(w̄) = max
v∈∂f(x̄)

〈v, w̄〉. (9)

Equation (9), which also holds in many other cases beyond the convex one (although not
always), neatly generalizes the classical equation for directional derivatives of f in terms
of the gradient ∇f(x̄) when f is differentiable at x̄:

df(x̄)(w̄) = 〈∇f(x̄), w̄〉.

In fact, the latter is obtained from (9) when the set ∂f(x̄) consists of just a single vector
v. For a convex function, or a Lipschitz continuous function, such is the case if and only
if f differentiable at x̄, the unique subgradient v then being ∇f(x̄).

The elements of ∂f(x̄) are called the subgradients of f at x̄. They can be used to
express optimality conditions. An elementary first-order condition for x̄ to be optimal for
the problem of minimizing f is

0 ∈ ∂f(x̄).

This relation obviously generalizes Fermat’s rule 0 = ∇f(x̄) for the case where f is differen-
tiable. It would be of little value in itself, were it not for the existence of a robust machinery
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for the calculus of subgradients. For instance, under a mild assumption corresponding to
a constraint qualification, one has

∂(f1 + f2)(x̄) = ∂f1(x̄) + f2(x̄)

in the sense that the elements v of the set on the left are precisely the vectors of the
form v1 + v2 with v1 and v2 selected from the sets on the right. Interestingly too, as a
tie-in with the monotone mappings mentioned earlier, if f is convex, then the set-valued
mapping ∂f : x 7→ ∂f(x) is maximal monotone.

Generalized higher derivatives of nonsmooth functions are also beginning to be under-
stood. Broad second-order conditions for optimality are now available, for example. For
this topic we refer to [7], [8] and [9].
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