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A comprehensive approximation theory for optimization problems, variational inequal-
ities, linear or nonlinear systems of equations (including differential equations) is ultimately
rooted in the convergence theory for sets. This has been vividly demonstrated by the
results obtained via epi-convergence (equivalently, Γ-convergence) for constrained opti-
mization problems and the calculus of variations, via graphical convergence (equivalently,
G-convergence) for differential equations, in particular for problems involving nonsmooth
coefficients (e.g., for conductivity problems involving composite materials).

Although set convergence, introduced by Painlevé (between 1902 and 1905), has a long
mathematical history, it is only during the last two decades that it has started to be viewed
as a major tool for dealing with approximations in optimization, systems of equations and
related objects. One of the major shortcomings of the theory, as developed mostly by
point-set topologists (between 1930 and 1970), was the (somewhat arbitrary) restriction of
many results to hyperspaces (spaces of sets) consisting of the subsets of compacta. Because
epigraphs of functions and graphs of operators are typically unbounded sets, there was a
need for a theory that was not specifically aimed at the convergence of bounded sets,
and where the continuity of set-valued mappings was not defined to suit only the case
when these mappings are bounded. In its present state, the theory no longer makes any
restrictions on set types. In particular, the relationship between set convergence and the
various topologies one can define on hyperspaces is well understood, and this without any
restrictions on the hyperspace type.

However, even now the theory of set convergence has some operational shortcomings.
Very little is known about the preservation of convergence under various operations that
can be performed on sets, apart from the convex case. In fact, most of what is known for
nonconvex sets is “negative,” i.e., quite a number of examples can be exhibited which show
that set convergence is not preserved under addition, projections, taking convex hulls (or
affine hulls, or positive hulls), linear transformations, intersections, and so on. We are going
to show that it is possible to obtain conditions that will guarantee convergence under most
of these operations, provided that one relies on a somewhat stronger notion of convergence
for sets which also takes into account the points “at infinity” (direction points) that can
be associated with the limit sets.

Attention will be restricted here to the case where the underlying space is lRn. There
are no basic reasons why the theory could not be extended to a more abstract setting, in
particular to the case where the underlying space is an infinite-dimensional linear space,
but certain properties that we are going to bring to the fore, and exploit repeatedly, cannot
be carried over to the infinite-dimensional setting without modification.

We begin with a brief review of the theory of set convergence, at least as far as is
needed in the present context. Next, we introduce csm lRn, the n-dimensional cosmic
space, as an augmentation of lRn obtained by adding (abstract) direction points to lRn.
We then turn to the characterization of set convergence in csm lRn, and finally obtain a
number of results about the preservation of set convergence under various operations that
spell out the role played by this extended notion of convergence.
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1. SET CONVERGENCE

We assume that the reader is familiar with the basic facts about set convergence; an
excellent up-to-date exposition can be found in Aubin and Frankowska [2]. In this section,
we follow basically the same pattern that we have adopted in [4], to which we refer for the
detail of the proofs omitted here.

Throughout, we use the following notation: lRn for n-dimensional Euclidean space,
| · | for the Euclidean norm, d(x, y) := |x − y| for the metric on lRn, lB for the unit ball
and lB(x, η) for the closed ball of center x and radius η. The distance function associated
with a set C is denoted by dC , or when more convenient by d(·, C), with

dC(x) = d(x,C) := inf{ |x− y|
∣∣ y ∈ C }.

The hyperspace associated with lRn is

sets(X) := collection of all subsets of X.

We shall be mostly dealing with sequences, but for operational reasons it is convenient
to develop the theory in terms of the Fréchet filter on lN which, in a general index space
can be replaced by a filter and its associated grill. Let

N∞ :={N ⊂ lN | lN \N finite}
N#
∞ :={N ⊂ lN |N infinite} = { all subsequences of lN } ⊃ N∞.

We write limν∈N or limν→N ∞ in the case of convergence of a subsequence designated by
the selection of an index set N in N#

∞ or N∞.

1.1. Definition. For a sequence {Cν}ν∈lN of subsets of lRn, the inner limit is the set

lim inf
ν→∞

Cν := {x | ∃N ∈ N∞, xν ∈ Cν for ν ∈ N, with xν→
N x }

while the outer limit is the set

lim sup
ν→∞

Cν = {x | ∃N ∈ N#
∞, xν ∈ Cν for ν ∈ N, with xν→

N x }

The limit of the sequence exists if the inner and outer limit sets are equal:

lim
ν→∞

Cν := lim inf
ν→∞

Cν = lim sup
ν→∞

Cν . (1–1)

It is clear from the inclusion N∞ ⊂ N#
∞ that always lim infν Cν ⊂ lim supν Cν . The

limits sets can also be expressed in the following terms,

lim inf
ν→∞

Cν =
⋂

N∈N#
∞

cl
⋃

ν∈N

Cν, lim sup
ν→∞

Cν =
⋂

N∈N∞

cl
⋃

ν∈N

Cν . (1–2)
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From this it follows that limit sets are always closed, and that they only depend on the
closure of the sets Cν , i.e., if

cl Cν = clDν =⇒
{

lim infν Cν = lim infν Dν

lim supν Cν = lim supν Dν .

The sequence {Cν}ν∈lN is said to converge to a set C when limν Cν exists and equals
C. Set convergence in this sense is known more specifically as Painlevé-Kuratowski con-
vergence. In section 3, we are going to consider another kind of set convergence induced
by the imbedding of lRn in the cosmic space csm lRn, which allows for the possibility of
an unbounded sequence of points to converge to a direction point (in the “horizon” of lRn,
as described in the next section). Other convergence notions occupy an important place
as well, when dealing with subsets of an infinite-dimensional linear space, but in finite
dimensions, they all coincide with Painlevé-Kuratowski convergence.

1.2. Theorem. (Salinetti and Wets [5, Theorem 2.2]). For subsets Cν and C of lRn with
C closed, one has

(a) C ⊂ lim infν Cν if and only if for every ρ > 0 and ε > 0 there is an index set
N ∈ N∞ such that

C ∩ ρ lB ⊂ Cν + ε lB for all ν ∈ N ;

(b) C ⊃ lim supν Cν if and only if for every ρ > 0 and ε > 0 there is an index set
N ∈ N∞ such that

Cν ∩ ρ lB ⊂ C + ε lB for all ν ∈ N.

Thus, C = limν Cν if and only if for every ρ > 0 and ε > 0 there is an index set
N ∈ N∞ such that such that both of these inclusions hold.

Taking C = ∅ in statement (a) of the theorem, leads to the following characterization
of “convergence” to the empty set.

1.3. Corollary. (Salinetti and Wets [5, Lemma 2.1]). The condition Cν → ∅ (or equiva-
lently, lim supν Cν = ∅) holds for a sequence {Cν}ν∈lN in lRn if and only if for every ρ > 0
there is an index set N ∈ N∞ such that Cν ∩ ρ lB = ∅ for all ν ∈ N .

Instead of “convergence” to the empty set, it will be helpful in the situation described
in 1.3 to refer to the sequence {Cν}ν∈lN in sets(lRn) as escaping to the horizon. When we
shift in section 3 from the context of subsets of lRn to that of subsets of the n-dimensional
cosmic space csm lRn, the “horizon” in this terminology will take on its specific meaning
(as the set of all “direction” points).

Certain geometric properties are preserved under set convergence. The following are
immediate consequences of the definitions of set limits.

1.4. Proposition.
(a) Monotone sequences always converge. If Cν is nondecreasing (i.e., Cν+1 ⊃ Cν),

then limν Cν = cl
⋃

ν∈lN Cν . If Cν is nonincreasing (i.e., Cν+1 ⊂ Cν), then limν Cν =⋂
ν∈lN cl Cν .
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(b) Suppose the sequence {Cν}ν∈lN consists of convex subsets of lRn. Then lim infν Cν

is convex, and so too, when it exists, is limν Cν . (But lim supν Cν need not be convex in
general.)

(c) For a sequence of cones Kν in lRn, the inner and outer limits, as well as the limit if
it exists, are cones.

The next result gives a useful characterization of general set convergence from a dif-
ferent angle.

1.5. Theorem. (hit-and-miss criterion, Choquet [3]). For subsets Cν and C of lRn with C
closed, one has

(a) C ⊂ lim infν Cν if and only if for every open set O ⊂ lRn with C ∩ O 6= ∅ there
exists N ∈ N∞ such that

Cν∩O 6= ∅ for all ν ∈ N ;

(b) C ⊃ lim supν Cν if and only if for every compact set B ⊂ lRn with C ∩B = ∅ there
exists N ∈ N∞ such that

Cν∩B = ∅ for all ν ∈ N ;

A remarkable feature of set convergence is the existence of convergent subsequences
for any sequence {Cν}ν∈lN in the space sets(lRn).

1.6. Theorem. (Zarankiewicz [6]). Every sequence of sets Cν in lRn that does not escape
to the horizon has a subsequence converging to a nonempty set C in lRn.

We turn next to a quantification of set convergence in terms of the convergence of
distance functions. The role of distance functions has already been glanced at in 1.2(a).

1.7. Theorem. (Choquet [3]). For subsets Cν and C of lRn with C closed and nonempty,
one has Cν → C if and only if d(x, Cν) → d(x,C) for all x ∈ lRn, in which event the
functions dCν actually converge uniformly to dC on all bounded subsets of lRn.

These properties of the distance function provide the springboard to a description of
set convergence in terms of a certain metric. We begin with an intermediate description
involving a family of pseudo-metrics. Of course, because set convergence does not distin-
guish between a set and its closure, no full metric space interpretation of set convergence
is possible unless we now focus on

sets(lRn) = the space of all nonempty, closed subsets of lRn, (1–3)

rather than sets(lRn). The exclusion of the empty set in the definition of sets(lRn) is in
line with the separate emphasis we give to sequences that escape to the horizon.

Two measures of distance between sets turn out to be the most convenient both for
theoretical and estimation purposes, they seem to have been first suggested in [1]. For
every ρ ∈ lR+ = [0,∞) and pair of nonempty sets C1 and C2, one defines

dlρ(C1, C2) := max
|x|≤ρ

∣∣dC1(x)− dC2(x)
∣∣,

d̂lρ(C1, C2) := min{ η ≥ 0 |C1 ∩ ρ lB ⊂ C2 + η lB, C2 ∩ ρ lB ⊂ C1 + η lB }.
(1–4)
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Clearly, dlρ is inspired by the uniformity property in 1.7 while d̂lρ relates to the one in
1.2. Although we do not insist on applying these expressions only to closed sets, the main
interest lies in thinking of dlρ and d̂lρ as functions from the product space sets(lRn) ×
sets(lRn) to lR+.

1.8. Theorem. (Attouch and Wets [1]). For each ρ ≥ 0, dlρ is a pseudo-metric on the space
sets(lRn), but d̂lρ is not. Both families {dlρ}ρ≥0 and {d̂lρ}ρ≥0 characterize set convergence:
for any ρ0 ∈ lR+, one has

Cν → C ⇐⇒ dlρ(Cν , C)→ 0 for all ρ ≥ ρ0

⇐⇒ d̂lρ(Cν , C)→ 0 for all ρ ≥ ρ0.

Proof. Theorem 1.7 gives us the characterization of set convergence in terms of dlρ,
while 1.2 gives it to us for d̂lρ. For dlρ, the pseudo-metric properties of nonnegativ-
ity dlρ(C1, C2) ∈ lR+, symmetry dlρ(C1, C2) = dlρ(C2, C1), and the triangle inequality
dlρ(C1, C2) ≤ dlρ(C1, C) + dlρ(C,C2), are obvious from the definition (1-4) and the in-
equality

|dC1(x)− dC2(x)| ≤ |dC1(x)− dC(x)|+ |dC(x)− dC2(x)|.

The triangle inequality can fail for d̂lρ: take C1 = {1} ⊂ lR, C2 = {−1}, C = {−6/5, 6/5}
and ρ = 1. Thus d̂lρ is not a pseudo-metric.

The Pompeiu-Hausdorff distance, dl∞(C1, C2) := supx∈lRn

∣∣dC1(x)− dC2(x)
∣∣ is a well-

known measure of the distance between sets, but dl∞(Cν , C) → 0 would define a kind
of convergence more stringent than Painlevé-Kuratowski convergence. The two kinds of
convergence are equivalent in some situations, such as for bounded sequences. But con-
vergence with respect to dl∞ is certainly not suitable for sequences involving unbounded
sets (such as epigraphs). We must therefore look elsewhere than the Pompeiu-Hausdorff
distance for a single metric characterizing ordinary convergence in sets(lRn). There are
many ways that such a metric can be derived from the family of pseudo-metrics dlρ. A
convenient expression is

dl(C1, C2) :=
∫ ∞

0

dlρ(C1, C2)e−ρdρ. (1–5)

This will be called the set distance between C1 and C2, in contrast to the quantity
dlρ(C1, C2) being called the ρ-distance. Note that

dl(C1, C2) ≤ dl∞(C1, C2), (1–6)

because dlρ(C1, C2) ≤ dl∞(C1, C2) for all ρ, and
∫∞
0

e−ρdρ = 1.

1.9. Lemma. For any nonempty, closed subsets C1 and C2 of lRn and any ρ ∈ lR+, one
has

(a) dl(C1, C2) ≥ (1− e−ρ)
∣∣dC1(0)− dC2(0)

∣∣ + e−ρdlρ(C1, C2),
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(b) dl(C1, C2) ≤ (1− e−ρ)dlρ(C1, C2) + e−ρ
(
max

{
dC1(0), dC2(0)

}
+ ρ + 1

)
.

Proof. We write

dl(C1, C2) =
∫ ρ

0

dlτ (C1, C2))e−τdτ +
∫ ∞

ρ

dlτ (C1, C2)e−τdτ

and note from the monotonicity of dlρ(C1, C2) in ρ that

dl0(C1, C2)
∫ ρ

0

e−τdτ ≤
∫ ρ

0

dlτ (C1, C2)e−τdτ ≤ dlρ(C1, C2)
∫ ρ

0

e−τdτ,

dlρ(C1, C2)
∫ ∞

ρ

e−τdτ ≤
∫ ∞

ρ

dlτ (C1, C2)e−τdτ

≤
∫ ∞

ρ

[
max{dC1(0), dC2(0)}+ τ

]
e−τdτ,

where the last inequality comes from the fact that for all ρ ∈ lR+ and any pair of nonempty
sets C1, C2, dlρ(C1, C2) ≤ max

{
dC1(0), dC2(0)

}
+ ρ. The lower estimates calculate to the

inequality in (a), and the upper estimates to the one in (b).

1.10. Theorem. The expression dl gives a metric on sets (lRn), and this metric characterizes
ordinary set convergence: one has

Cν → C ⇐⇒ dl(Cν, C)→ 0.

Furthermore, ( sets (lRn), dl ) is a complete metric space in which a sequence {Cν}ν∈lN

escapes to the horizon if and only if for some set C in this space (and then for every such
set C) one has dl(Cν, C)→∞.

Proof. We get dl(C1, C2) ≥ 0, dl(C1, C2) = dl(C2, C1), and the triangle inequality
dl(C1, C2) ≤ dl(C1, C)+ dl(C,C2) from the corresponding properties of the pseudo-metrics
dlρ(C1, C2). The estimate dlρ(C1, C2) ≤ max

{
dC1(0), dC2(0)

}
+ρ gives us dl(C1, C2) <∞.

Since for closed sets C1 and C2 the distance functions dC1 and dC2 are continuous and van-
ish only on these sets, respectively, we have

∣∣dC1(x) − dC2(x)
∣∣ positive on some open set

unless C1 = C2. Thus dl(C1, C2) > 0 unless C1 = C2. This proves that dl is a metric.
It is clear from the estimates in 1.9(a) and (b) that dl(Cν, C) → 0 if and only if

dlρ(Cν, C)→ 0 for every ρ ≥ 0. In view of theorem 1.7, we know therefore that the metric
dl on sets(lRn) characterizes set convergence.

From 1.3, a sequence {Cν} in sets (lRn) escapes to the horizon if and only if it even-
tually misses every ball ρ lB, or equivalently, has dCν (0)→∞. Since∣∣dCν (0)− dC(0)

∣∣ ≤ dl(Cν, C) ≤ max{ dCν (0), dC(0) }+ 1,

the sequence escapes to the horizon if and only if dl(Cν, C) → ∞ for every C (or for
just one C). In particular, a Cauchy sequence cannot have any subsequence escaping to
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the horizon, because in such a sequence the distances dl(Cµ, Cν) must be bounded, so
that lim supν dl(Cµ, Cν) <∞. It follows from the compactness property in 1.6 that every
Cauchy sequence in sets(lRn) has a subsequence converging to an element of sets (lRn),
this element then necessarily being the actual limit of the sequence. Thus, the metric space
( sets (lRn), dl) is complete.

1.11. Corollary (local compactness). The metric space ( sets (lRn), dl ) has the property
that for every C0 and every r > 0 the ball {C | dl(C,C0) ≤ r } is compact.

Proof. This is a consequence of the compactness in 1.6 and the criterion in 1.3 for escape
to the horizon.

2. n-DIMENSIONAL COSMIC SPACE

An important advantage that the extended real line lR has over the real line lR is compact-
ness: every sequence of elements has a convergent subsequence. This property is achieved
by adjoining to lR the special elements ∞ and −∞, which can act as limits for unbounded
sequences under special rules. An analogous compactification is possible for lRn and will
now be introduced.

We wish to think of the direction of x, denoted by dirx, as an abstract attribute
associated with x ∈ lRn under the rule that dirx = dir y if y = λx 6= 0 for some λ > 0.
The zero vector is to be viewed as having no direction; dir 0 is undefined. Directions
correspond thus to equivalence classes under the relation y = λx 6= 0 for some λ > 0.

There is a one-to-one correspondence between the various directions of vectors x 6= 0
in lRn and the rays in lRn. Every direction can be represented uniquely by a ray, but we
shall think of directions themselves as abstract points, called direction points, which lie
outside of lRn and form a set called the horizon of lRn, denoted by hor lRn.

In the case of n = 1 there are only two direction points, symbolized by ∞ and −∞.
By adding these direction points to lR one obtains the extended real line lR. We follow the
same procedure when n > 1 by adding all the direction points in hor lRn to lRn to form
the extended space

csm lRn := lRn ∪ hor lRn,

which will be called the cosmic closure of lRn, or n-dimensional cosmic space. (Note that
csm lRn is not the n-fold product lR× · · ·× lR.) We need to supply csm lRn with geometry
and topology so that it can serve as a companion to lRn in various questions of analysis,
just as lR serves alongside of lR.

There are several ways of viewing the n-dimensional cosmic space csm lRn geometri-
cally, all of them leading to the same mathematical structure but having different advan-
tages in different contexts. The simplest and most intuitive perhaps is the celestial model ,
in which lRn is imagined as shrunk down (e.g., x→ x/(|x|+ 1)) to an n-dimensional open
ball of finite radius, and hor lRn is identified with the surface of this ball.

A second approach to setting up the structure of analysis in n-dimensional cosmic
space utilizes the ray space model . Each x ∈ lRn is identified (uniquely) with a ray in
lRn × lR, specifically the ray passing through (x,−1). The points in hor lRn, on the other
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hand, correspond uniquely to the “horizontal” rays in lRn × lR, which are the ones lying
in the hyperplane (lRn, 0). This model, although less intuitive than the celestial model
and requiring an extra dimension, is superior for some purposes, such as extensions of
convexity.

A third approach, which in some respects fits between the other two, uses the fact
that each ray in the ray space model in lRn× lR, whether associated with an ordinary point
of lRn or a direction point in hor lRn, pierces the closed unit hemisphere

lH = lHn =
{

(x, β) ∈ lRn × lR
∣∣ β ≤ 0, |x|2 + β2 = 1

}
(2–1)

in a unique point. Thus, the hemisphere lH furnishes an alternative model of csm lRn in
which the rim of lH represents the horizon of lRn. This will be called the hemispherical
model of csm lRn.

Fig. 2–1. The hemispherical model for n-dimensional cosmic space.

2.1. Definition. A sequence of points xν in lRn is said to converge to a direction point
dir x, written xν → dir x, if for some sequence of scalars λν ↓0 (meaning that λν → 0 with
λν > 0) one has λνxν → x. Similarly, a sequence of direction points dir xν is said to
converge to a direction point dir x, written dir xν → dir x, if for some sequence of scalars
λν > 0 one has λνxν → x.

A mixed sequence of ordinary points and direction points is said to converge to dir x
if every subsequence consisting of ordinary points converges to dir x, and the same holds
for every subsequence consisting of direction points.

This extension of convergence to allow for direction points as possible limits, in combi-
nation with the usual notion of convergence to an ordinary point in lRn, yields the notion of
cosmic convergence for sequences of points in csm lRn. It is easily checked that a sequence
of points in csm lRn converges if and only if the corresponding sequence in the hemisphere
lH converges. The compactness of lH in lRn× lR then yields the central fact about csm lRn.

2.2. Theorem. The cosmic closure csm lRn of lRn is a compact space: every sequence
of points in csm lRn (whether ordinary points, direction points or some mixture) has a
convergent subsequence (in the extended sense of cosmic convergence). In this, the bounded
sequences in lRn are characterized as the sequences of ordinary points for which no direction
point is a cluster point.

Sometimes it is useful to quantify cosmic convergence through the cosmic metric dc on
csm lRn, in contrast to the Euclidean metric d on lRn. In this metric the distance between
any two points of csm lRn is taken to be the geodesic distance between the corresponding
points on the hemisphere lH, i.e., the angle in radians between the corresponding rays in
lRn × lR. Within lRn itself, the convergence induced by the cosmic metric is the same as
that induced by the Euclidean metric.

For a set C ⊂ lRn, we must distinguish between csm C, the cosmic closure of C in
which direction points are allowed as possible limits, and cl C, the ordinary closure in lRn.
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The collection of all direction points obtainable as limits of sequences in C will be called
the horizon of C and denoted by horC. Thus,

csm C = clC ∪ horC. (2–2)

The set horC furnishes a precise description of the unboundedness, if any, in C.
However, rather than working directly with hor C and other subsets of hor lRn in

developing specific conditions, we shall generally find it more expedient to work with
representations of those sets in terms of rays in lRn.

Aside from the zero cone {0}, the cones K in lRn are characterized as the sets ex-
pressible as nonempty unions of rays. The set of direction points represented by the rays
in K will be denoted by dir K. There is thus a one-to-one correspondence between cones
in lRn and subsets of the horizon of lRn,

K (cone in lRn) ←→ dir K (direction set in hor lRn),

where the cone is closed in lRn if and only if the direction set is cosmically closed in
csm lRn. Cones K are said in this manner to represent sets of direction points. The zero
cone corresponds to the empty set of direction points, while the full cone K = lRn gives
the entire horizon.

A general subset of csm lRn can be expressed in a unique way as C ∪ dir K for some
set C ⊂ lRn and some cone K ⊂ lRn. We shall say that C gives the ordinary part of the
set and K the horizon part. The corresponding cone in the ray space model is then{

(λx,−λ)
∣∣ x ∈ C, λ > 0

}
∪

{
(x, 0)

∣∣ x ∈ K
}
.

Our pattern will typically be to express the properties of C∪dir K in terms of the properties
of the pair C, K.

2.3. Definition. For a set C ⊂ lRn, the horizon cone C∞ is the closed cone in lRn repre-
senting the direction set hor C:

C∞ =
{
{x | ∃xν ∈ C, λν ↓0, with λνxν → x } when C 6= ∅,
{ 0 } when C = ∅.

In this notation and terminology, we have horC = dir C∞ and therefore csm C =
cl C ∪dir C∞ in place of the formula in (2-2). Note that (clC)∞ = C∞. If C itself happens
to be a cone, C∞ is just clC.

A subset of csm lRn, written as C ∪ dir K for a set C ⊂ lRn and a cone K ⊂ lRn,
is closed in the cosmic sense if and only if C and K are closed in the ordinary sense and
C∞ ⊂ K. In general, the cosmic closure of C ∪ dir K is given by

csm(C ∪ dir K) = clC ∪ dir(C∞ ∪ cl K).

The remainder of this section is devoted to the use of cosmic concepts in the formu-
lation of boundedness criteria.



10

2.4. Theorem. A set C ⊂ lRn is bounded if and only if its horizon cone is just the zero
cone: C∞ = {0}.

Proof. A set is unbounded if and only if it contains an unbounded sequence. Equivalently
by the facts in 2.2, a set is bounded if and only if its closure in the sense of cosmic
convergence contains no direction points, i.e., horC = ∅. Since C∞ is the cone representing
the points of horC, this means that C∞ = {0}.

A simple case where horizon cones can readily be determined, and theorem 2.4 then
applied, is that of sets defined by systems of linear equations and inequalities. It is not
difficult to verify that for a convex polyhedral set C,

C = {x | 〈ai, x〉 ≤ αi for i ∈ I1, 〈ai, x〉 = αi for i ∈ I2 },

one has that if C 6= ∅,

C∞ = {x | 〈ai, x〉 ≤ 0 for i ∈ I1, 〈ai, x〉 = 0 for i ∈ I2 }.

Thus C is bounded if and only if the linear system that defines C∞ has only the trivial
solution x = 0.

One can also develop systematic rules for determining or estimating the horizon cones
of various sets defined by s combination of linear and nonlinear constraints. However this
would take us to far afield of our main concern. By means of such rules, a “calculus of
boundedness” takes shape. The next few results give some of the most useful criteria,
which are rather straightforward consequences of the definitions.

2.5. Proposition. For a linear mapping L : lRd → lRn and a closed set D ⊂ lRd, a
sufficient condition for L(D) to be closed is that L−1(0)∩D∞ = {0}. Under this condition,
L(D∞) = L(D)∞. In particular, if D is a closed subset of lRn, C is its image under
orthogonal projection onto a linear subspace M ⊂ lRn, and M⊥ ∩D∞ = {0}. Then C is
closed, and its horizon cone C∞ is the orthogonal projection of D∞ on M .

Even in the simple setting of the projection, it is easy to find examples where the
hypothesis in 2.5 on the horizon cone D∞ is essential for the conclusions.

2.6. Proposition.
(a) For sets Ci ⊂ lRni , i = 1, . . . ,m, one always has (C1×· · ·×Cm)∞ ⊂ C∞1 ×· · ·×C∞m ,

with equality if the sets Ci are convex.
(b) For closed sets Ci ⊂ lRn, i = 1, . . . ,m, a sufficient condition for C1 + · · ·+Cm to be

closed is the nonexistence of any combination of vectors xi ∈ C∞i such that x1+· · ·+xm = 0,
except when xi = 0 for all i. Then also (C1 + · · ·+ Cm)∞ ⊂ C∞1 + · · ·+ C∞m .

(c) For any collection of sets Ci ⊂ lRn for i ∈ I, an arbitrary index set, one has[ ⋂
i∈I

Ci

]∞ ⊂⋂
i∈I

C∞i ,
[ ⋃

i∈I
Ci

]∞ ⊃⋃
i∈I

C∞i ,

with equality for the first inclusion if the sets are convex, and with equality for the second
inclusion if I is finite.
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3. COSMIC CONVERGENCE

In the brief survey of the theory of set limits in section 1, our concern has been exclusively
with sequences of sets in lRn. The definitions and most of the results, however, carry over
to a more general framework. The definition of inner and outer limits in 1.1 makes sense
for subsets of any metric space, for instance. The formulas then remain equivalent to the
ones in (1-2), and many of the results, such as the convergence of monotone sequences
(1.4a(a)), the closedness of limit sets, and the hit-and-miss criteria (1.5) are still valid
with only minor notational adjustments. We want to focus now on set convergence in the
cosmic space csm lRn, which is a metric space under the cosmic metric dc introduced in
section 2 (following 2.2).

For set convergence in csm lRn, to which we refer as cosmic set convergence, one has
to bear in mind that the limit of a sequence of points can be either an ordinary point in
lRn or a direction point, i.e., an element of the horizon set hor lRn (2.1). To avoid possible
confusion in situations where the sets we may be dealing with are actually in lRn, as a
subspace of csm lRn, we signal cosmic set convergence by writing →c and c-lim in place
of → and lim.

3.1. Definition. For a general sequence of sets Cν ∪ dir Kν in csm lRn with each Kν a
cone, the cosmic inner limit is the set

C ∪ dir K = c-lim infν

(
Cν ∪ dir Kν

)
in csm lRn consisting of (1) all the ordinary points x obtainable as limits of sequences
{xν}ν∈N with xν ∈ Cν for an index set N ∈ N∞, (2) all the direction points dir y obtain-
able as limits of such sequences (when unbounded), and (3) all the direction points dir y
obtainable as limits of sequences of direction points {dir yν}ν∈N selected from the horizon
sets dir Kν . (The set C gives the ordinary points belonging to the limit, while the cone K
represents through dir K the various direction points belonging to it.) The cosmic outer
limit is the set

C ∪ dir K = c-lim supν

(
Cν ∪ dir Kν

)
in csm lRn obtained in like manner, except with index sets N ∈ N#

∞. When the cosmic
inner and outer limits are the same set C ∪ dir K, the cosmic limit is said to exist. This
is indicated by

C ∪ dir K = c-limν

(
Cν ∪ dir Kν

)
or Cν ∪ dir Kν →c C ∪ dir K.

We are going to look more closely at the relationship between C and K and the
sequences of sets Cν and Kν , and this will enable us to proceed in a more “computational”
manner. For now we focus on the geometry.

A sequence of subsets of csm lRn that happens to be in lRn is identified by having
Kν = {0} for all ν. Thus, for Cν in lRn we may, on the one hand, have ordinary convergence
Cν → C for some set C in lRn, while in the context of cosmic convergence in csm lRn the
same sequence may fail to converge, or may be such that Cν→c C∪dir K where the cone K
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is not just {0}. This is because the cosmic inner and outer limits of the sequence {Cν}ν∈lN

may contain direction points, whereas such points are excluded from the ordinary inner
and outer limits.

Indeed, the cosmic outer limit set must contain a direction point unless the sequence
is bounded: for an unbounded sequence {Cν}ν∈lN one can select for ν in some index set
N ∈ N#

∞ points xν ∈ Cν such that |xν |→N ∞, and the sequence {xν}ν∈N will then have
cluster points, each of which is a direction point belonging to c-lim supν Cν (2.2). A couple
of examples will help to make this clearer.

• For a fixed vector a 6= 0 in lRn and fixed δ > 0, let Cν be the ball lB(νa, δ). With
respect to ordinary convergence we have Cν → ∅, i.e. the sets Cν escape to the horizon
(1.3), but with respect to cosmic convergence we have Cν→c {dir a}.
• Expand this by taking any compact set C 6= ∅ in lRn and defining Cν = C ∪ lB(νa, δ)

for ν even but Cν = C ∪ lB(−νa, δ) for ν odd. Then Cν → C but the cosmic limit
does not exist. One has c-lim infν Cν = C, whereas c-lim supν Cν = C ∪dir K for the
cone K = {λa |λ ∈ lR } (the one-dimensional subspace generated by a).
The interplay between the two forms of convergence of a sequence of sets Cν in lRn is

one of the main motivations for studying cosmic set convergence. Cases where the cosmic
limit is “predictable” from the ordinary limit correspond to a form of convergence in the
space sets(lRn) that is stronger than ordinary set convergence and is associated with a
metric dlc different from the metric dl utilized in theorem 1.10. This will be discussed in
section 4 under the heading of “paracosmic” convergence.

From the closedness of limits comes the following basic property of cosmic set conver-
gence.

3.2. Proposition. If C ∪ dir K is the inner or outer cosmic limit of a sequence of sets
Cν ∪ dir Kν , where K and Kν are cones, then C ∪ dir K can depend only on the cosmic
closures of the sets Cν ∪ dir Kν , i.e., their closures as subsets of csm lRn. Furthermore,
C ∪ dir K must itself be cosmically closed: C and K must be closed in lRn with C∞ ⊂ K.

These facts can be obtained by elementary direct argument, but they can also be
deduced from general principles about the relationship between csm lRn and lRn. One can
appeal to the isometry between csm lRn and its hemispherical model lH in lRn+1, recalling
that the cosmic metric on csm lRn arises from the geodesic metric on lH. This approach
leads to two handy methods of shifting arguments about cosmic set convergence back to
the framework of ordinary set convergence.

3.3. Lemma.
(a) Inner and outer cosmic limits of sequences of sets in csm lRn correspond to the

ordinary inner and outer limits of the associated sequences of subsets of the hemisphere
lH, regarded simply as sequences of bounded subsets of lRn+1.

(b) Inner and outer cosmic limits of sequences of sets in csm lRn correspond to the
ordinary inner and outer limits of the sequences of cones in lRn+1 that are associated with
them in the ray space model for csm lRn.

Proof. (a) This is true because a sequence of points in lH converges with respect to the
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geodesic metric on lH if and only if it converges with respect to the ordinary metric on
lRn+1.

(b) This is an application to lRn+1 of the following fact about the unit sphere S =
{x | |x| = 1 }: for a sequence of cones Kν , one has K = lim supν Kν if and only if K ∩S =
lim supν(Kν ∩ S), and similarly for lim inf. This fact is established from the observation
that one has xν → x for nonzero vectors xν and x if and only if xν/|xν | → x/|x| and
|xν | → |x|.

Through these models, many results about ordinary set convergence can be translated
to cosmic set convergence. For example, the fact that monotone sequences always converge
cosmically is obvious from either model via 1.4(a). The fact that cosmically convergent
sequences of convex sets have convex limits follows from 1.4(b). A uniformity result for
general cosmic convergence along the lines of 1.2 can be obtained through the hemispherical
model in terms of the cosmic metric, and so forth. Rather than make a formal statement
of each such result, we shall usually rely on the general principles of translation in lemma
3.3.

As already seen, the chief distinction between ordinary set convergence in lRn and
cosmic set convergence in csm lRn lies in the way unbounded sequences of sets Cν in lRn

are handled. The cosmic limit of such a sequence, if it exists, has to contain at least one
direction point. An unbounded sequence that escapes to the horizon can have only such
points in the limit. The contrast in this respect is especially evident in the compactness
result that holds for cosmic set convergence.

3.4. Theorem. Every sequence of nonempty sets Cν∪dir Kν in csm lRn has a subsequence
converging cosmically to a nonempty, cosmically closed subset C∪dir K in csm lRn. This is
true in particular for an unbounded sequence of sets Cν in lRn that escapes to the horizon,
the cosmic limit set then being a nonempty subset of hor lRn.

Proof. Apply the compactness theorem for ordinary set convergence in 1.6 to the hemi-
spherical setting in 3.3(a).

The cosmic metric dc on csm lRn gives us a cosmic distance function dc( · , C ∪ dir K)
associated with any subset C ∪ dir K. This is slightly more complicated to deal with
in notation than the distance functions on lRn utilized so far, because of the need to
distinguish whether an argument is an ordinary point or a direction point, but otherwise
the considerations are quite the same. A useful observation is that because dc( · , C∪dir K)
is continuous on csm lRn, its values on the horizon hor lRn are obtainable as limits of its
values on lRn, and the latter therefore furnish an adequate hold on the cosmic metric
aspects of the set C ∪ dir K for many purposes.

3.5. Theorem. For Cν∪dir Kν and C∪dir K as subsets of csm lRn with C∪dir K cosmically
closed, one has that Cν∪ dir Kν→c C ∪ dir K if and only if the functions dc( · , Cν∪ dir Kν)
converge pointwise to dc( · , C ∪ dir K) on csm lRn. This is the case if and only if these
functions converge uniformly on lRn.

Proof. This is true on the grounds of the hemispherical interpretation in 3.3(a). We know
that the cosmic metric on csm lRn corresponds to the geodesic metric on the hemisphere
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lH, which in turn is equivalent to the ordinary Euclidean metric on lH as a bounded subset
of lRn. The convergence facts in 1.7 can be invoked therefore relative to subsets of lH.
Uniform convergence of dc( · , Cν∪ dir Kν) to dc( · , C ∪ dir K) on csm lRn is equivalent to
uniform convergence on lRn, on the basis of the observation made just before the statement
of the theorem.

The uniform convergence in this theorem suggests a good way of defining the cosmic
distance between two sets C1 ∪ dir K1 and C2 ∪ dir K2 in csm lRn, namely by

dlc
(
C1∪dir K1, C2∪dir K2

)
:= sup

x∈lRn

∣∣ dc(x, C1∪dir K1)− dc(x, C2∪dir K2)
∣∣. (3–1)

This formula can be invoked without the sets necessarily being closed in csm lRn. At
present, though, our concern lies with the space

sets (csm lRn) := the space of all nonempty, closed subsets of csm lRn. (3–2)

3.6. Theorem. The expression dlc( C1 ∪ dir K1, C2 ∪ dir K2 ) is a metric on sets (csm lRn),
and this metric characterizes cosmic set convergence: one has

Cν∪ dir Kν →c C ∪ dir K ⇐⇒ dlc(Cν∪ dir Kν, C ∪ dir K )→ 0.

In fact (sets (csm lRn), dlc) is a metric space which is not only complete but compact.

Proof. The metric properties of dlc are apparent from the formula in (3-1) and the
observation that for cosmically closed sets C1 ∪ dir K1 and C2 ∪ dir K2, where K1 and K2

are cones, the distance functions dc( · , C1∪ dir K1) and dc( · , C2 ∪ dir K2) cannot coincide
on lRn unless C1 = C2 and K1 = K2. The compactness of the metric space is immediate
from the compactness theorem 3.4. A compact metric space is also complete.

We have seen that the inner or outer limit of a sequence of sets Cν∪dir Kν in csm lRn,
where each Kν is a cone, can be written uniquely as C ∪ dir K, where K likewise is a
cone. This description has already served us in several ways, but for closer analysis it is
desirable to have formulas indicating exactly how C and K can be derived from Cν and
Kν . Such formulas will enable us to utilize properties of cosmic convergence as we wish
without leaving the framework of convergence in lRn itself. The secret lies in translating to
sequences of sets the dictum in 2.1 that convergence xν → dir x, where x 6= 0, corresponds
to having λνxν → x for some sequence λν ↓0.

3.7. Definition. For a sequence {Cν}ν∈lN of subsets of lRn, the inner horizon limit, denoted
by lim inf∞ν Cν , and the outer horizon limit, denoted by lim sup∞ν Cν , are the cones in
lRn representing the direction points that belong to the cosmic inner and outer limits
c-lim infν Cν and c-lim supν Cν , respectively:

lim inf∞ν Cν : = {0} ∪ {x 6= 0 | ∃xν→
N dir x with N ∈ N∞, xν ∈ Cν }

= {0} ∪ {x | ∃λνxν→
N x with N ∈ N∞, λν ↓0, xν ∈ Cν },

lim sup∞ν Cν : = {0} ∪ {x 6= 0 | ∃xν→
N dir x with N ∈ N#

∞, xν ∈ Cν }
= {0} ∪ {x | ∃λνxν→

N x with N ∈ N#
∞, λν ↓0, xν ∈ Cν }.
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The horizon limit is said to exist when the inner and outer horizon limits coincide:

lim∞ν Cν := lim inf∞ν Cν = lim sup∞ν Cν .

In these formulas, the insistence on the union with {0} in the second version in each
case is superfluous when Cν 6= ∅. On the other hand, for the empty sequence Cν ≡ ∅ both
the inner and outer horizon limits are just {0}.

With the device of horizon limits, the formulas for general cosmic limits can be stated
as follows.

3.8. Proposition. For any sequence of sets Cν ∪ dir Kν in csm lRn, where each Kν is a
cone, one has

c-lim infν

(
Cν ∪ dir Kν

)
=

(
lim infν Cν

)
∪ dir

(
lim inf∞ν Cν ∪ lim infν Kν

)
,

c-lim supν

(
Cν ∪ dir Kν

)
=

(
lim supν Cν

)
∪ dir

(
lim sup∞ν Cν ∪ lim supν Kν

)
.

Thus c-limν

(
Cν ∪ dir Kν

)
exists if and only if limν Cν exists and

lim inf∞ν Cν ∪ lim infν Kν = lim sup∞ν Cν ∪ lim supν Kν .

Proof. This is hardly more than a reinterpretation of definition 3.1 along the geometric
lines in 3.7

Note that the existence of the cosmic limit of Cν∪dir Kν requires neither the existence
of the horizon limit of the sets Kν nor the existence of the ordinary limit of the cones Kν ,
but a sort of joint property, at least in general.

3.9. Proposition. For any sequence {Cν}ν∈lN of subsets of lRn, the following properties
hold.

(a) The horizon limit sets lim inf∞ν Cν and lim sup∞ν Cν , as well as lim∞ν Cν when it
exists, are closed and depend only on the sequence {cl Cν}ν∈lN.

(b) Always, lim inf∞ν Cν ⊂ lim sup∞ν Cν .

(c) If Cν ≡ C, then lim∞ν Cν = C∞.

(d) Always, lim infν(Cν)∞ ⊂ lim inf∞ν Cν and lim supν(Cν)∞ ⊂ lim sup∞ν Cν .

(e) For cones Cν , lim inf∞ν Cν = lim infν Cν and lim sup∞ν Cν = lim supν Cν .

(f) If C ⊂ lim infν Cν , then C∞ ⊂ lim inf∞ν Cν . (But the inclusion C ⊃ lim supν Cν

does not imply that C∞ ⊃ lim sup∞ν Cν .)

Proof. For the most part, these assertions are direct consequences of the definitions. But
their validity can also be established, sometimes more easily, through the interpretations
in 3.3. A counterexample showing in (f) that the inclusion C ⊃ lim supν Cν does not imply
that C∞ ⊃ lim sup∞ν Cν is obtained by taking Cν = {ν} in lR.

3.10. Proposition. Let Cν and Kν be subsets of lRn with each Kν a cone.
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(a) If the sequence {Cν}ν∈lN is nondecreasing, then the horizon limit lim∞ν Cν exists.
If in addition the sequence {Kν}ν∈lN is nondecreasing, then the cosmic limit of the sets
Cν∪ dir Kν exists and is given by

c-limν

(
Cν ∪ dir Kν

)
=

(
cl∪νCν

)
∪ dir

(
lim∞ν Cν ∪ (cl∪νKν)

)
.

(b) If the sequence {Cν}ν∈lN is nonincreasing, then the horizon limit lim∞ν Cν exists.
If in addition the sequence {Kν}ν∈lN is nonincreasing, then the cosmic limit of the sets
Cν∪ dir Kν exists and is given by

c-limν

(
Cν ∪ dir Kν

)
=

(
∩ν cl Cν

)
∪ dir

(
lim∞ν Cν ∪ (∩ν cl Kν)

)
.

3.11. Proposition. For any sequence of convex sets Cν in lRn the cone lim inf∞ν Cν is
convex. For cones Kν such that the sets Cν∪ dir Kν are convex in csm lRn, the cosmic
inner limit c-lim infν (Cν∪ dir Kν) is likewise convex.

We now investigate the nature of cosmic limits Cν ∪dir Kν→c C ∪dir K in the special
case when Kν = {0} = K, so that actually Cν→c C in lRn. A sequence {Cν}ν∈lN in
lRn is ultimately (equi-)bounded if there an index set N ∈ N∞ such that the subsequence
{Cν}ν∈N is bounded, which means the sets Cν for ν ∈ N are all included in some bounded
subset B of lRn.

3.12. Proposition. For nonempty sets Cν and C in lRn, considered as subsets of csm lRn,
one has Cν→c C if and only if C is compact, Cν → C (ordinary set convergence), and the
sequence {Cν}ν∈lN is ultimately bounded.

Proof. The condition is sufficient by definition 3.1, because the boundedness excludes
any direction points from being involved in the cosmic limit. Taking a cosmic limit under
such circumstances is thus the same as taking an ordinary limit. Conversely, if C is the
cosmic limit of the sets Cν , it must coincide with its cosmic closure csm C by 3.2. This is
impossible for a subset of lRn unless it is compact. Likewise, it is impossible for the cosmic
outer limit of the sets Cν not to contain direction points, unless it is ultimately bounded.
Thus the condition is necessary.

Proposition 3.12 highlights one of the important differences between ordinary set
convergence and cosmic set convergence. In the case of ordinary convergence, one can
well have Cν → C with C bounded but {Cν}ν∈lN not ultimately bounded. A simple
example is furnished by the sets Cν = {0, νa} in lRn, where a 6= 0. Then Cν → {0} but
Cν→c {0} ∪ {dir a}.

To look at this another way, in the metric space ( sets(lRn), dl ) of ordinary set con-
vergence (1.10), the subspace consisting of all the nonempty, compact subsets of lRn is not
open, and in fact its complement is dense, i.e., every such set is the limit of a sequence of
unbounded sets. In the metric space ( sets(csm lRn), dlc ) of cosmic set convergence in 3.6,
this same subspace is open by virtue of 3.12, while still dense by 3.7(a).
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4. PARACOSMIC CONVERGENCE

When a sequence of sets Cν ⊂ lRn converges in the ordinary sense to a set C ⊂ lRn, we
know that C is closed and depends only on the closures clCν . When the same sequence
is regarded as residing in csm lRn, it may or may not also have a limit in the cosmic sense,
but when it does, the limit must be a cosmically closed subset of csm lRn which includes
the cosmic closure csm C and depends only on the cosmic closures csm Cν (3.2). The
question of whether the cosmic limit actually coincides with csm C in a given case is often
crucial.

4.1. Definition. A set C ⊂ lRn is the paracosmic limit of a sequence of sets Cν ⊂ lRn, writ-
ten Cν →p C, if not only Cν → C but also Cν→c csm C (or equivalently, csm Cν→c csm C).

Paracosmic convergence is the type of convergence induced on the space sets (lRn) by
identifying it with a certain subspace of sets (csm lRn) supplied with cosmic convergence,
namely through the pairing of each element of sets (lRn) with its cosmic closure. From
another perspective, this is the convergence we get by considering on sets (lRn) not the
metric dl , but dlc. The latter metric is well defined by (3-1) for all nonempty subsets of
csm lRn, including those that happen to lie just in lRn:

dlc
(
C1, C2

)
:= sup

x∈lRn

∣∣ dc(x, C1)− dc(x,C2)
∣∣. (4–1)

4.2. Proposition. Each of the following conditions is both necessary and sufficient in order
that Cν →p C:

(a) C = limν Cν and C∞ = lim∞ν Cν ;

(b) C = limν Cν and C∞ ⊃ lim sup∞ν Cν ;

(c) dlc(Cν, C)→ 0 (assuming Cν and C are nonempty and C is closed).

Proof. In all the situations described, C is closed in lRn, and therefore csm C = C∪dir C∞.
The characterization in (a) is immediate then from 3.8 in the case of Kν = {0}. The
characterization in (b) goes a step further in taking advantage of the inclusion in 3.9(f).
The condition dlc(Cν, C) → 0 is identical to dlc(csm Cν, csm C) → 0, and this gives us (c)
in accordance with the definition of paracosmic convergence in 4.1 and the interpretations
preceding the current proposition.

Paracosmic convergence can be counted on to be present, in the case of (ordinary)
set convergence, in some of the most common situations. In other words, the important
consequences of paracosmic convergence can be obtained often without extra cost.

4.3. Theorem. In the cases that follow, ordinary convergence Cν → C for nonempty sets
Cν and C in lRn always entails the stronger property of paracosmic convergence Cν→p C:

(a) the sets Cν are convex;

(b) the sets Cν are cones;

(c) the sequence is ultimately bounded;

(d) the sequence is nondecreasing;
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(e) dl∞(Cν , C)→ 0 (Pompeiu-Hausdorff convergence).

Proof. We take the cases in reverse order, invoking each time the criterion in 4.2(b). Case
(e) involves having Cν ⊂ C + εν lB for a sequence of values εν ↓0. Then

lim sup∞ν Cν ⊂ lim sup∞ν (C + εν lB) = C∞.

In case (d), we recognize the specialization of 3.10(a) to Kν = {0}. In (c), we have
lim sup∞ν Cν = {0} and necessarily also C∞ = {0}. Case (b) is covered by 3.9(e).

Finally, for (a) we consider an arbitrary point x ∈ lim sup∞ν Cν and proceed to demon-
strate that x ∈ C∞. By definition 3.7, there must exist N ∈ N#

∞ such that λνxν→
N x

for some choice of xν ∈ Cν and λν > 0 with λν→
N 0. Then in particular x belongs to

lim inf∞ν∈N Cν , a cone we may denote by KN . At the same time we have C = limν∈N Cν ,
so that C∪dir KN = c-lim infν∈N Cν by 3.8. Since Cν is convex, it follows that C∪dir KN

is convex as a subset of csm lRn (3.11). Thus, C +KN ⊂ C. Because x ∈ KN , this implies
that x0 + τx ∈ C for all x0 ∈ C and τ ≥ 0, hence x ∈ C∞.

Paracosmic convergence, rather than just ordinary convergence, of sets in lRn turns out
to be a necessary ingredient in obtaining results on the continuity of various operations that
can be performed on sets, such as taking convex hulls, sums, and images under mappings.

5. IMAGES AND OPERATIONS

Let us begin with the following simple relations which are immediate consequences of the
definition of paracosmic convergence (4.1) and its characterizations provided by 4.2 (with
(2.6) used also for the first one of these implications):

Cν
1 →p C1, C

ν
2 →p C2 =⇒ Cν

1 ∪ Cν
2 →p C1 ∪ C2,

Cν
1 →p C1, C

ν
2 →p C2 and Cν

1 ⊂ Cν
2 =⇒ C1 ⊂ C2.

5.1. Proposition. Let C1, C2, Cν
1 , Cν

2 be subsets of lRn. Then

Cν
1 → C1, C

ν
2 → C2 =⇒ Cν

1 × Cν
2 → C1 × C2.

Moreover, if (C1 × C2)∞ = C∞1 × C∞2 , then

Cν
1 →p C1, C

ν
2 →p C2 =⇒ Cν

1 × Cν
2 →p C1 × C2.

Thus, if the sets Cν
1 , Cν

2 are convex, Cν
1 → C1, Cν

2 → C2 implies Cν
1 × Cν

2 →p C1 × C2.

The following example shows that, in general, paracosmic convergence is not preserved
under taking products: pick Cν

1 = Cν
2 = { 2k, k < ν } ∪ [2ν ,∞).

Most of our results about operations will come from this fact about products and a
general theorem involving the images (under a mapping S) of convergent sequences.

The graph of a set-valued mapping u 7→ S(u) ⊂ lRn defined on lRd is a subset of
lRd × lRn, namely

gphS :=
{

(u, x)
∣∣ x ∈ S(u)

}
,

rather than a subset of U × sets(X). To emphasize this we write S : U →→ X instead
of S : U → sets(X). Note that S(u) is possibly empty; the “effective” domain of S is
dom S := {u ∈ lRd |S(u) 6= ∅ }.
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5.2. Definition. A set-valued mapping S : lRd →→ lRn is inner semicontinuous (isc) at u
if for all uν → u, one has lim infν S(uν) ⊃ S(u); it is outer semicontinuous (osc) at u if
lim supν S(uν) ⊂ S(u) for all uν → u. It is continuous at u if it is both isc and osc at u.
The mapping S is isc, osc or continuous (on lRd) if it is isc, osc or continuous at all u ∈ lRd.

A mapping S : lRd →→ lRn is paracosmically continuous at u if it is continuous at u and
whenever uν → u and lim∞ν S(uν) = S(u)∞. The mapping S is paracosmically continuous
if this holds at every u ∈ lRd.

Since S(u)∞ ⊂ lim inf∞ν Sν(u) is guaranteed by S(u) ⊂ lim infν S(uν) (3.10(f)), the
condition on the horizon limit of the sets S(uν) could thus be replaced by the apparently
weaker condition: lim sup∞ν S(uν) ⊂ S∞(u).

5.3. Proposition. A set-valued mapping S : lRd →→ lRn that is continuous at u is also
paracosmically continuous at u if there exists a neighborhood U of u on which S is convex-
or cone-valued, or if S is locally bounded at u, or if S is monotone increasing or decreasing
(with respect to inclusion) for any sequence uν → u, or if dl∞(S(uν), S(u)) → 0 for all
uν → u (i.e., S is continuous at u with respect to the Pompeiu-Hausdorff metric).

Proof. For a mapping S, continuity at u implies that S(uν) → S(u) for any sequence
uν → u. It now suffices to observe under the conditions stated that criteria 3.9(a)-(e)
actually guarantee paracosmic convergence of the sets S(uν) to S(u) for every uν → u.
And this is all that is required for paracosmic continuity (5.2).

Note that as a consequence of this proposition, if G : lRd → lRn is a continuous
function, viewed as a set-valued mapping, it is always paracosmically continuous because
it is locally bounded.

Our general result about the convergence of the images S(Cν) of a sequence Cν under
a mapping S requires not only an examination of the horizon limits associated with the
sequence of sets Cν , but also how the mapping S will affect them. This brings us to
consider a certain positively homogeneous mapping associated with S.

5.4. Definition. For S : lRd →→ lRn, one says that S is positively homogeneous if 0 ∈ S(0)
and S(λu) = λS(u) for all λ > 0 and u ∈ lRd, or in other words, gphS is a cone in lRd×lRn.

Linear mappings are positively homogeneous, in particular. This concept leads to an
extension of the developments on horizon cones (section 2) to nonlinear mappings, single-
valued or set-valued, and in the process we reap a generalization of the important result in
2.5 on the horizon cones of image sets. For S : lRd →→ lRn, the associated horizon mapping
S∞ : lRd →→ lRn is specified by

gphS∞ := (gphS)∞. (5–1)

Thus x ∈ S∞(u) if and only there exist sequences of points uν ∈ lRd, xν ∈ S(uν), and
scalars λν ↓0 such that λνuν → u and λνxν → x. Note that since the graph of S∞ is a cone
in lRd× lRn, S∞ is a positively homogeneous mapping (5.4). Obviously (S−1)∞ = (S∞)−1.

The horizon mapping S∞ expresses certain growth properties of S. In the case where
S is a linear mapping L, one has S∞ = L because the set gphS = gphL is a linear
subspace of lRd × lRn. More generally, S∞ = clS whenever S is positively homogeneous.
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5.5. Theorem. A sufficient condition for a mapping S : lRd →→ lRn to be locally bounded
is S∞(0) = {0}. Then the horizon mapping S∞ is locally bounded as well.

Proof. Suppose S is not locally bounded. Then for some u ∈ lRd we can find uν → u and
xν ∈ S(uν) with {xν} unbounded. Passing to subsequences if necessary, we can assume
xν tends to some direction point dirx. This means there are scalars λν ↓0 such that
λνxν → x 6= 0. Then λν(uν , xν) → (0, x) with (uν , xν) ∈ gphS, so (0, x) ∈ (gph S)∞.
Thus, S∞(0) contains the nonzero vector x in violation of the stated condition.

Because (gph S)∞ is a closed cone, we have ((gphS)∞)∞ = (gphS)∞ and consequently
(S∞)∞ = S∞. Thus, when S∞(0) = {0}, the mapping T = S∞ has T∞(0) = {0} and, by
the argument already given, is locally bounded.

The fact that the condition in 5.5 is not necessary for S to be locally bounded, merely
sufficient, is seen from simple examples like the mapping S : lR→ lR defined by S(u) = u2.
This mapping is locally bounded but has S∞(0) = [0,∞). The condition in 5.5 is useful
nevertheless because of the convenient calculus that can be built around it. For example one
obtains the following simple criterion for the closedness of images (that we state without
proof).

5.6. Theorem. Let S : lRd →→ lRn be osc. The set S(D) is closed when D is closed
and (S∞)−1(0) ∩ D∞ = {0} (as is true if either (S∞)−1(0) = {0} or D∞ = {0}). Then
S(D)∞ ⊂ S∞(D∞).

We now have all the tools needed to formulate our main result about the convergence
of images.

5.7. Theorem. Let S : lRd →→ lRn be a mapping and let C and Cν be subsets of lRd.

(a) lim infν S(Cν) ⊃ S(C) when lim infν Cν ⊃ C and S is isc on C.

(b) lim supν S(Cν) ⊂ S(C) when lim supν Cν ⊂ C, S is osc on C, (S∞)−1(0)∩C∞ = {0}
and lim sup∞ν Cν ⊂ C∞. One further has lim sup∞ν S(Cν) ⊂ S(C)∞ when, in addition,
(S∞)(C∞) ⊂ S(C)∞ and for all u ∈ C and all uν → u, lim sup∞ν S(uν) ⊂ S(u)∞ (i.e., S is
“paracosmically outer semicontinuous” on C).

(c) Also, lim supν S(Cν) ⊂ S(C) when lim supν Cν ⊂ C, S is osc on C, and (S∞)−1(0) =
{0}.

Hence S(Cν)→ S(C) when S is continuous on C and either Cν → C and (S∞)−1(0) =
{0} or Cν→p C and (S∞)−1(0)∩C∞ = {0}. One has S(Cν)→p S(C) if S is paracosmically
continuous on C, Cν→p C, (S∞)−1(0) ∩ C∞ = {0} and (S∞)(C∞) ⊂ S(C)∞.

Proof. Statement (a) is a direct consequence of the definitions of the inner limit (1.1)
and of inner semicontinuity (5.2).

To prove (c) we need to show that x ∈ S(C) whenever there exist xν→
N x for some

N ∈ N#
∞ with xν ∈ S(Cν) for all ν ∈ N . Pick uν ∈ S−1(xν)∩Cν . If the sequence {uν}ν∈N

clusters to a point u, then u ∈ C(⊃ lim supν Cν) and by outer semicontinuity of S at u,
we have that x ∈ S(u) ⊂ S(C). Otherwise, the uν cluster to a point in the horizon of lRn,
say dir u (with u 6= 0). Since (uν , xν) ∈ gphS, this would imply that u ∈ (S∞)−1(0), but
the assumption that (S∞)−1(0) = {0} does not allow for such a possibility.
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Essentially the same argument works for the first statement in (b), except that when
dir u is a cluster point of the uν , then u ∈ lim sup∞ν Cν ⊂ C∞. Hence 0 6= u ∈ (S∞)−1(0)∩
C∞ and this violates the assumption that only 0 belongs to their intersection.

To complete the proof of (b), we need to show that lim sup∞ν S(Cν) ⊂ S(C)∞ when
lim sup∞ν S(uν) ⊂ S(u)∞ for all u ∈ C and all uν → u, i.e., x ∈ S(C)∞ whenever there
exist xν → dir x for some N ∈ N#

∞ with xν ∈ S(Cν) for all ν ∈ N . Pick uν ∈ S−1(xν) ∩
Cν . If the uν cluster to u ∈ lRn, then u ∈ C(⊃ lim sup Cν) and since by assumption
lim sup∞ν S(uν) ⊂ S(u)∞, it follows that x ∈ S(u)∞ ⊂ S(C)∞. Otherwise, there exist
N0 ⊂ N , N0 ∈ N#

∞, u 6= 0 such that uν→
N0

dir u; note that then u ∈ C∞ ⊃ lim sup∞ν Cν .
Since {(uν , xν)}ν∈N0 ⊂ gphS and |xν | ↑∞, |uν | ↑∞, there exists λν ↓0, ν ∈ N0 such
that λν(uν , xν) clusters to a point of the type (αu, βx) 6= (0, 0) with α ≥ 0, β ≥ 0. If
β = 0, then 0 6= u ∈ (S∞)−1(0) ∩ C∞ and that is ruled out by the assumption that
(S∞)−1(0) ∩ C∞ = {0}. Thus β > 0, and x ∈ (S∞)(αβ−1u) ⊂ (S∞)(C∞) ⊂ S(C)∞ where
the inclusion comes from the last assumption in (b).

The two remaining statements are just a rephrasing of the consequences of (a) and
(b) when limits or paracosmic limits exists, making use of 3.9(f).

Applying the theorem in the case G : lRd → lRn continuous and (G∞)−1(0)∩C∞ = 0
yields G(Cν)→ G(C) if Cν → C. If actually Cν→p C, then G(Cν)→p G(C) provided that
also G∞(C∞) ⊂ G(C)∞.

5.8. Corollary. Let Cν , C ⊂ lRd and let H : lRd → lRn be an affine mapping, H(x) :=
Ax + a for A a matrix in lRn×d and a vector a ∈ lRn. If Cν → C and A is invertible, then
H(Cν)→ H(C). If Cν→p C and {x |Ax = 0 } ∩ C∞ = {0}, then H(Cν)→p H(C).

Proof. When viewed as set-valued mappings, affine mappings are not only continu-
ous but also paracosmically continuous (proposition 5.3), and H∞(x) = Ax. In general,
H∞(C∞) ⊂ H(C)∞. There now remains only to apply the theorem.

Except for the special case when the affine mapping is invertible, not that as soon as
we impose the conditions suggested by the theorem to obtain (ordinary) convergence of
the images, we actually end up with the paracosmic convergence of the images.

5.9. Corollary. Let M be a linear subspace of lRn with projM the orthogonal projection
on M , and Cν → C ⊂ lRn. If M⊥ ∩ C∞ = {0}, then projM (Cν)→p projM (C).

Proof. This is the special case of 5.8 when H = projM .

5.10. Corollary. Let C1, C2, C
ν
1 , Cν

2 be subsets of lRd such that Cν
1 →p C1 and Cν

2 →p C2.
Then Cν

1 +Cν
2 →p C1 +C2 provided that C∞1 ×C∞2 = (C1×C2)∞ and C∞1 ∩– C∞2 = {0}. In

particular, if the sets Cν
1 , Cν

2 are convex, and Cν
1 → C1, Cν

2 → C2, then Cν
1 +Cν

2 →p C1+C2

if C∞1 ∩ – C∞2 = {0}.

Proof. Apply 5.8 to L : lRn × lRn → lRn, L(x, y) := x + y, and use the results about the
convergence of products 5.1.

5.11. Corollary. Suppose the sequence Cν ⊂ lRn is ultimately bounded and Cν → C.
Then con Cν→p con C.
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Proof. With Σ = {α ∈ lRn+1 |
∑n

j=0 αj = 1, α ≥ 0 }, the unit simplex, S : lR(n+1)n ×
lRn+1 → lRn defined by

S(u0, u1, . . . , un, α) :=
n∑

j=0

αju
j , xj ∈ lRn,

it follows from Caratheodory’s theorem that for any D ⊂ lRn,

con D = S(D ×D × . . .×D × Σ).

The mapping S is continuous. Also C is bounded since the sequence Cν is ultimately
bounded, and not only does this imply that actually the Cν converge cosmically to C
(4.3(c)), but also that (C × C × . . . × C × Σ)∞ = {(0, 0, . . . , 0, 0)}. In view of theorem
(5.8), this allows us to conclude that con Cν → con C. But these are convex sets, and then
(ordinary) convergence implies paracosmic convergence (4.3(a)).

The preceding result is remarkable in part for its limitations! In terms of our general
result about the convergence of images (5.8), this may be attributable to the fact that for
the horizon mapping S∞ associated with the creation of convex hulls, one has (S∞)−1(0) =
lR(n+1)n × {0} (dom S∞ = lR(n+1)n × {0}). This reflects the fact that some points in the
convex hull could be generated by points that are arbitrarily close to the horizon in opposite
(or very different) directions.

5.12. Corollary. Let Cν , C ⊂ lRn be such that Cν → C and 0 /∈ C. Then pos Cν→p pos C.

Proof. Let S(u) := pos u = {λu |λ ≥ 0 }, then S is a continuous mapping except at
0. Moreover S is positively homogeneous and thus S = S∞ and (S∞)−1(0) = {0}. We
apply the theorem and use the fact that the sets pos Cν and pos C are cones to pass from
convergence to paracosmic convergence (4.3(b)).

One of the implications of this last corollary is that if Cν is a sequence of sets con-
verging to a set C, then pos(Cν ×{−1})→p pos(C×{−1}), i.e., convergence of sets in lRn

implies the convergence of the corresponding cones in the ray space.


