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A CHARACTERIZATION OF EPI.CONVERGENCE
IN TERMS OF COI\I\TERGENCE OF LEVEL SETS

GERALD BEER, R. T. ROCKAFELLAR, AND ROGER J.-B. WETS

(Communicated by Andrew M. Brucliner)

Assrnecr. L€t LSC(X) denote the extended real-valued lower semicontinuous
functions on a separable metrizable space X . We show that a sequence (/r) in
LSCIX; is epi-convergent to f € LSC(X) if and only for each real a , the level
set of height a of f can be recovered as the Painlevd-Kuratowski limit of an
appropriately chosen sequence of level sets of the fn at heights ca approaching
a . Assuming the continuum hypothesis, this result fails without separability.
An analogous result holds for weakly lower semicontinuous functions defined
on a separable Banach space with respect to Mosco epi-convergence.

l. INrnooucrroN

An extended real-valued function f : X - [--, -] on a metrizable space
X is called lower semicontinuous provided its epigraph

epif ={(x, o): x e X, o € R, and a> f(x)}
is a closed subset of X x R . Alternatively, f is lower semicontinuous provided
foreach real o,the level setat height a of f , lev(f , a) : {x e X : f(x) ( o},
is a closed subset of X . A fundamental convergence concept for sequences of
lower semicontinuous functions in optimization theory, decision theory, homo-
genization problems, the theory of integral functionals, algorithmic procedures,
and variational analysis is the notion of epi-convergence (see, e.g., [MB, Wl,
W2, A, DG, V, RW, BLl, AF, BDMI). Given a sequence (1,) of lower semicon-
tinuous functions on a metric space (X, d),we say that ("6) is epi-convergent
to f , andwe write f : e-limfn, provided at each x e X, the following two
conditions both hold:

(l) whenever (xr) is convergent to x, we have f (x) S liminfl,(xr) ;

(2) there exists a sequence \x") convergent to x such that f(x) :
lim fr(x,) .
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Epi-convergence of ("fr) of / amounts to the Painleve-Kuratowski convprgence

[K, $29] of the sequence of epigraphs;(epil,) to epi/ [A, Theorem 1.39].
Recall that given closed but possibly empty subsets A, At , A2, A3, .. . of X ,

(A) is declared Painlev4-Kuratowski convergeit to ,4 provided A =LiA,:
LsAr, where

LiA,r: {x e X: there exists a sequence (ar) convergent to x
with an e A, for all but finitely many integers n),

LsAr: {x e X: there exist positive,integors n1 3 nz < nz 1... and ap e Anu

such that (a1,) -- x1.

When A: LiAn - LsAr, we write A: PK-limAr. Thus, (/r) is epi-
convergent to f if and only if epi/: PKlim epif". As is well-known, even
for convex functions, epi-convergence is neither stronger nor weaker than point-
wise convergence [SW, Wl].

The main result of this note asserts that for a separable metrizable space
X,if f , ft, fz, fi,... arelowersemicontinuousfunctionson X and (1,) is
epi-convergent to f , then for each real number a , lev(f , o) can be recovered
as the Painlev6-Kuratowski limit of some sequence of level sets \lev(f", a"))
where (o) -- o. Furthermore, this level set convergence property actually
charactenzes epi-convergence. Finally, we show that this result necessarily fails
without separability of X , assuming the continuum hypothesis.

2. Sorvrn BAcKcRouND MATERIAL

Unless otherwise specified, X will denote a metrizable space with an un-
derlying metric d . When working with epigraphs, one must consider the
product space X x R, and in this space, the box metric will be understood:
Pl(xt, c,r), (xz, az)f : max{d(x1, xz), lat - "zl}. For a e x and e > 0,
we write Sr[a] for the open ball with center a and radius e . For A c X
nonempty and x e X, d(x,A): inf{d(x,a): a e A}, and we adopt the
convention d(x , a) : oo . The e-enlargement of a subset A of X is the set

S,l,4l = [J S,trt : {x € X: d(x, A) < e}.
a€A

In any metrizable space X (more generally in any first countable space),
Painleve-Kuratowski convergence of sequences of closed sets is compatible with
the Fell topology [Fe], also called lhe topology ofclosed convergence, on the space

of all closed subsets 2x of X (see, e.g., [FLL, p. 353] or [Bel, Lemma 1.0]).
To introduce this topology, wo need some notation. For ,E a nonempty subset
of X , we designate the following subsets of 2x :

E-:{Ae2x:AnEla}, E*:{Ae2x:AcE}.
With this notation in mind, the Fell topology rp or 2x has as a subbase all

setsof theform V- and V isanopensubset of X, andallsetsof theform
(K')+ where K is a compact subset of X . Notice that A e Z- means that
,4 hits the open set V , whereas A e (K')+ means lhat A misses the compact
set K . By the compatibility of Painlev6-Kuratowski convergence with the Fell
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topology, we mean precisely this: given closed subsets A, Ar , Az, . .. of X ,

AcLiA" if andonlyif foreachopen.subset V of X with,4nV+s)we
have An n V + z eventually, and LsAn'c'A if and only if for each compact
subset K of X with AoK: a,wehave AnoK: a evenlually.

It turns out that zp is Hausdorffif and only if X is locally compact and that
with no assumptions whatsoever on X, the hyperspace (2x , cp) is compact

[A, p. 251]l If X is separable, then the topology is sequentially compact,
i.e., each sequence (A) in 2x has a subsequence that is Painleve-Kuratowski
convergent to some closed set ,4 (see, e.g., [K, p. 3401 or [AF, p. 23I). If X is
both locally compact and separable, then tp is metrizable as well as compact

[A, Proposition 2.77].
LSC(X) will represent the lower semicontinuous functions with domain X

and values in [-oo, oo]. For / e LSC(X) , we denote inf{/(x): x e X} by
a(f ).We call f proper provided that f is somewhere finite and for each x,
we have f(x) > -oo. For / proper and lower semicontinuous, the possibly
empty closed subset of minimizers of / will be denoted by Argmin f . The
following facts about level sets and the value function / - u(f ) are known:

(a) it f : e-limfn, then a(f ) > limsupo(1,) [A, Proposition 2.9];
(b) if / : e-limf, and (or) * c, the lev(f , a) > Lslev(fn, o'r) [V, p. 199;

W2, Theorem ll.
(c) if / : e-limfn, and if each fn is convex, then / is convex and for each

o > u(f ), we have lev(f , o) : PKJimlev(f", o) [Mo2, Lemma 3.1];
(d) if /: e-limfn and u(f):limu(f) and for each a > a("f ) we have

lev(/, a) : cl{x: f(x) < c}, then f : e-limf, if and only for each a > u(f ),
we have lev(f , o) : PKlimlev(fn, o) [St, Th6oreme 2.I;BLl, Theorem 5.1].

To appreciate properly our characterization of epi-convergence, some coun-
terexamples are in order. First in the convex case, it is clear that f : e-limfn
need not force Argmin f to agree with PK Jim Argmin fr, even if Argmin l, is
nonempty and u(f ):limu(fn) foreach n. Ontheline,let f ,.fi, fz, fi,...
be defined by

f 0 if x > 0,
f(x) : {' Ioo ifx<0;

if x > 0,
if x < 0,

On the other hand, in the convex case, lev(/, a) : PKJimlev(fn, a) for each

aZu(f ) need not force / : e-limfr: on the line, take ,f : 0 and fn = -n.
For nonconvex but quasi-convex functions, f : e-limf, does not guaran-

tee convergence of level sets at heights above u(f) : Let f , ft, fz, .fi,'.' be

defined by

f 0 if x:0,
,r(x) :t r if x*0..

f,(x) : {O 
lAlx - nl

f 0 if x:0,
f,(x):\r*rln ifxlo.

Then lev(/, l) I PK-limlev(1,, 1).

forn:1,2,3,....
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3. Tnn MArN REsuLT

Theorem 3.1. Let X be a separable metrizable space and let f , fr , fz, .. . be
extended real valued lower semicontiituous functions on X .

(l) If f : e-limfn, then for each c e R there exists'a sequence (o,) of
reals convergent to a such that lev(f , a) : pK - lim lev(fn , a,) ;(2) iffor each a e R there exists a sequence (o,r) ofrears convergent to a
with lev(f , a) : PK-limlev(f,, 6,n), then f : e-limfn.

Proof of Theorem 3.1 . ( I ) Fix a e R,. As mentioned in g2, it is well known that
\r anV sequence (on) convergent 1b o, we have Lslev(fr, ar) clev(f , a).
For completeness, we supply a proof. Suppose x e Lslev(fn, ar)., i.e., there
existindices h1 <-fl2 1n3 <... and xroelev(frk,o,nk) for k:1,2,3,...
such that (xn) - x. For n # {nt: k e Z+}, set xn : x. Then (xr)-- x;
so, by epi-convergence, we have

f (x) < lim inf l, (x, ) 5, lim inf .f,o(x,07 ( lim inf c, r, : e.

This proves that x e lev(/, o).
To establish the companion inclusion lev(/, o) c Lilev(fn, a) requires

separability and a judicious choice of the scalars (on) . Let (x;) be a sequence in
lev(f , o) whose set of cluster points is lev(/, a) (this is a stronger requirement
than density of {x;: i e Z+} in lev(/, o)). Since epif cLiepif,, for each
positive integer m., there exists a positive integer N. such lhat yn ) N,, there
exists points {@[f),":?): i:1,2,3,...,m] in epif, such that for each

I ! {t ,2, ... , ffi} , we have both d@!i), 
",) < llm and, l"!? - al < tlm.

without loss of generality, we may assume that (N-)' is a stiictly increasing
sequence. We now may define our sequence of scalars (or) : take on : a l7
for n < N1 andfor N. <n < Nm+t,lake an:a+llm, 11 :1,2,3,4,....
We now show that this choice does the job.

To show that lev(/, o) c Li lev( .f, , on), we find it convenient to work with
the Fell topology equivalent as described in g2. To this end, suppose lev(f , a)o
V # o where V is anopen subset of X . pick x e lev(/, a)oV and e > 0
such that Sr[xl c V , Since x is a cluster point of (x;), we may choose
k e Z+ so that both llk < el2 and d(xp,n) < el2. Fix n 2 Nr,; then
there is a largest integer la such that n 2 N*. We have a@l|, x1) < lfm
and, lafr) _ c,l < tlm. Since l,(to[|rl < o(#,) . a+tlm: dn, we have
*,3) .lev(fn, o,). Also,

a@l|), x) < a@l|), xr,) * d(x1,, x) . * * I = I * |.. r,
sothat ,|I) , Z. Thismeansthatfor each n ) Nk,wehave Vnlev(f,, c.n)*
a. We may now assert that lev(f , a) c Lilev(fr, ar), so that lev(/, o) :
PKJimlev(.fn, o,) .

(2) The condition lev(f , a) c Lilev(f,,o), valid for each o e R and
for some sequence (nr) convergent to o, immediately implies that epi/ c
Liepif,. In fact, if we just know that lev(f , a) c Lilev(f,, o,,) for each
a > a("f), then epi f c Liepifl, holds. The details are left to the reader.



A CHARACTERIZATION OF EPI-CONVERGENCE 75'7

To see that Lsepil, c epi f, suppose to the contrary that (x, f) e Lsepif,
but that (x, f) # epif . Then B <.f(x,). We can find an increasing se-
quence of integers fl1 1tr2 <-n3 1fiq 1'... and (/*, fil eepifno such that
((xr, fi) is convergent to (x, B) . Choose a scalai a between. B and. f (x) ,
and let (on) be a sequence of scalars convergent to o for which lev(/, o) :
PKJimlev(fn,a,). Thenforall k sufficientlylarge,wehave Bp ('a,o. For
all such k, we have xp e lev(fnu,aro) and the condition Lslev(lr,o,r') C
lev(f , o) now yields x elev(f , a),. This contradicts f(x) > ". tr

The proof of the second assertion in the statement of Theorem 3.1 does
not use separability of X . On the other hand, if we accept the continuum
hypothesis, the first assertion fails in each nonseparable space.

Example. Lel (X , d) be a nonseparable metric space. By Zorn's Lemma, for
each e > 0 wecanfindamaximal e-discretesubset W, of X,i.e.,foreach to1
and w2 in W, we have d(wt, wz) > e. By the maximality of Wr, we have
S"[Wr] : X. Thus, by nonseparability, there exists some rs > 0 for which
V[/ : Wro is uncountable. Let O be the following set of rational sequences:

-- Q: Yk € Z+ , g(k) > 0, and 1im

Then Q has the cardinality of the continuum; so, by the continuum hypothesis,
there exists a one-to-one function q:{2-* W. Lel f : X -- R be the charac-
teristic function of p(Q)c. We produce a sequence (fr) of real-valued lower
semicontinuous functions epi-convergent to f for which condition (1) in the
statement of Theorem 3.1 fails.

For each g e O, let us write tl" for gG). We define f,: X --- R by

.f.(x): { i,,, :*;ft 
for some g,

Clearly ("6) is pointwise and epi-convergent to f . Let (an) be an arbitrary
sequence of reals tending to zero. We show that

A@) -- Argmin/ :lev(.f ,0) (Lilev(fn, a").

First, without loss of generality, we may assume that an > 0 for each z, for
replacing an by max{o, , l ln} results in a larger level set for each n . Now
choose g € Q such that for each n we have a" < g@) 12ar. We claim that
although w, e lev(f , 0), we have u, ( Lilev(fn, ar). To see this, notice
that Sro(to") contains no other points of W, so that for each positive integer
n with e(n) < I we have

inf{f,(x): x e,5,0(tr")} : f"(ws) : g(n) > aa.

Thus, for all n sufficiently large, we have Sro(t,") nlev(f", c"n): @.
The general line of reasoning in our last example can be adapted to show

that the sequential compactness of Painlev6-Kuratowski convergence fails with-
out separability. Let I be the set of all functions f : Z+ -- {0,1} such

o: 
{s: 

z* gtt) : o).
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that f (n) : I for infinitely many n, and let ry be a bijection frem some
uncountable e-discrete subset W -of,X onto I. For each n € Z+,let
A,: {x e W: ry(x)(n): l}. Now'l6t (,1"r} be an arbitrary subsequence of
(Anl . We claim that LiAnk is a proper subset of LsAno. .To see this, choose
x e W such that rlr(x) is the characteristic function of {n2, fl4, /t6, . . . } .

Since x E Anz* foreach k,we have x eLsAro. However, bythe e-discreteness
ofW,x(LiAno.

In metric spaces in which closed and bounded sets are compact, Painleve-
Kuratowski convergence of sequencas of sets agrees with other convergence no-
tions that are, in more general settings, much stfonger. The most important of
these is certainly convergence with respect to the metrizable bounded Hausdorff
topology r6s, which when specialized to epigraphs, is called the epi-distance
topology [AW, ALW, AP, Be3, BLz, P]. Convergence of a sequence (A"] to A
in this sense means uniform convergence ofthe associated sequence ofdistance
functionals (d(., Ar)) to d(-,A) on bounded subsets of X. Alternatively, it
can be shown [AP] that (A"l is r6p-convetgent to A if and only if for each
nonempty bounded subset B of X and each e > 0, there exists N e Z+ such
that for each n > N we have both AnB c Sr[Arl and AnnB c Se[l] . Notice
that a : rtn-limA, if and only if ,4n is eventually outside each bounded set.
This is not the case for Painlev6-Kuratowski convergence in a general metric
space.

It is in{eed possible to give a shorter proof of Theorem 3.1 when closed
and bounded sets are compact, using the coincidence of the two convergence
notions. By virtue of the next example, we see that Theorem 3.1 remains valid
when Painleve-Kuratowski convergence is replaced by r6s-aonvergence only in
this restrictive setting.

Example. Let (X , dl be a metric space in which some closed and bounded set is
noncompact,andfix xs € X. Weproduceasequence f , fr,.f2,... in LSC(X)
with / : tm-limfn and with Argmin/ : {x0} , but such that whenever (o,) -*
u(f ), we do not have Argmin/: rrn-limlev(fn,on). Choose p > 0 such
that B : {x € X: d(x, xo) ( p} is noncompact. Let x1, x2, x3,... be a
sequence in B without a clusterpoint, andlet d: inf{d(xo,xp):k e Z*}.
We define our functions / and f, as follows:

1O if x:xo.
f(x): I ttt if x:xp forsome ft ) l,

( I otherwise;

( 11, if x:xo.
f,(x): < llk if x:x1 for some k > l, for n:1,2,3,....

I I otherwise,
Evidently, we have uniform convergence of \"frl to /, from which r6s-cohver-
gence of epigraphs follows. Clearly, Argmin/ : {rcg} and u(/) : g. Fix
/; e Z+. For the inclusion

B n Argmin/ c ,Sa(lev(fn, dn))

to hold, we must have a, > 0. But for each tr, ) 0 , lev(fn, nr) must contain
all xp for k sufrciently large, so that the inclusion

B nlev(fn, c'n) C 55(Argmin/)
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must fail whenever .B n Argminf c S5(lev(1,, or) holds. As a result,
(lev(1,, ar)) cannot converge in the bounded Hausdorff topology to Argmin

/ for any choice of (an) convergent to zeib.

The reader may consult tBL2.$31 for the interplay between convergence of
conrrex functions in the epi-distance topology and the convergence of their level

sets in a general normed space.

,

4. Tun wEAKLY LowER sEMIcoNTINUous cAsE

In a seminal paper in the theory of set convergence, Mosco [Mo I ] introduced
an analogue of Painleve-Kuratowski convergence for sequences of closed convex

sets in a Banach space and sequences of lower semicontinuous convex functions
as identified with their epigraphs. This convergence notion has been widely
studied over the past twenty years and is invariably called Mosco convergence

in the literature. A sequence of closed convex sets is declared Mosco convergent

(,4 : MJim An) to a closed convex set ,4 provi ded A : Li An : Ls An with re-

spect to the metric given by the norm, and in addition, A : w-Li An : w-Ls An ,

where w-LiA, and w-Ls,4, denote the lower and upper limits of the sequence

with respect to the weak topology. It is well known and easy to verify that
A:M-limAn if andonlyif AcLiAn and w-Ls,4ncA. Moscoconvergence
so defined has been a particularly productive notion in the setting of reflexive
spaces, for then .4 : M-lim,4, implies -4o : M-lim Al and if f : M-lim fn ,

i.e., epif : M-limepifn, then .f* : MJimff lMo2l- Here, A represents

the polar of a convex set A, and f* represents the conjugate of a convex func-
tion f , and closedness and nonemptiness of sets and properness of functions
is understood. Continuity of such maps has been subsequently shown to char-

acterize reflexivity [BB]. We also note that in the reflexive setting, interesting
connections between Mosco convergence and Banach space geometry have been

revealed by several authors (see, e.g. [A, So, T, BF, BP]).
Without reflexivity, Mosco convergence of sequences of convex sets and con-

vex functions in any Banach space is compatible with a topology of the Fell
type identified in [Be2]. This topology of Mosco convergence r74 orr the closed

convex subsets C(X) of a Banach space has as a subbase all sets of the form
I/- where Z is an open subset of X , and all sets of the form (K')+ where

K is a weakly compact subset of X (this should come as no surprise). Thus,

we have in any Banach space X, ,4 : M-lim An if and only if A: tu-limAn
[8e2, Theorem 3.1]. Reflexivity for the Mosco topology seems to parallel local
-ompactness for the Fell topology t 7,1 is Hausdorffif and only if X is reflexive

[BB], and if X is separable and reflexive then the space of nonempty closed

convex subsets equipped with r7'1 is completely metrizable [A, Be2, T].
Although it has not been frequently observed, Mosco convergence and the

associated Mosco topology are also compatible for the larger class of weakly

closed subsets of X and for the weakly lower semicontinuous functions on X
(weak lower semicontinuity of f : X - [-oo, oo] means that epi/ is weakly

closed in X x R) . Moreover, a standard proof in the convex case [Mol, Lemma
l.l0] shows that for weakly lower semicontinuous functions f , fr , fz, fi, . . .

on X, the relation epif : M-limepil, locally amounts to the conjunction of
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the expected two conditions: at each x e X ,

(l ) whenever the sequence (;rn) is weakly convergent to x , we have f (x) <
liminf f,(xn);

(2) there exists a sequence (xr) convergent strongly to x such that f(x):
lim fn(xn) .

A straightforward modification of the proof of Theorem 3.1 yields this analog:

Theorem 4.l.Let X beaseparableBanachspaceandlet f ,fi,f2,... be
extended real valued weakly lower sernicontinuous functions on X .

(l) If f : M-limfr, thenfor each a € R. there exists a sequence (o,) of
reals convergent to a such that lev(f , a) : M-limlev(fn, a);

(2) iffor each a e R there exists a sequence (an) ofreals convergent to o
with lev(f , a) : M-limlev(f" , an) , then f : M-lim f, .

Recall that an extended real-valued function defined on a normed linear space
is called quasi-convex provided its level sets are convex. As weak lower semi-
continuity and lower semicontinuity for such functions coincide, we have this
coroliary of interest.

Corollary 4.2. Let X be a separable Banach space and let f , fr, f2, ... be
extended real-valued lower semicontinuous quasi-convex functions on X .

(l) If f :M-limfn,thenforeach o€R thereexistsasequence (oil of
reals convergent to a such that lev(f , a) : M-limlev(f, , a);

(2) iffor each a e R there exists a sequence (a,) ofreals convergent to a
with lev(f , a) : M-limlev(f, , an) , then f : M-lim f, .
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