
SIAM J. Optimization c©1992 Society for Industrial and Applied Mathematics

Vol. ???, No. ???, pp. ???–???, ??? 1992 ???

PRIMAL-DUAL PROJECTED GRADIENT ALGORITHMS
FOR EXTENDED LINEAR-QUADRATIC PROGRAMMING*

CIYOU ZHU† and R. T. ROCKAFELLAR‡

Abstract. Many large-scale problems in dynamic and stochastic optimization can be modeled
with extended linear-quadratic programming, which admits penalty terms and treats them through

duality. In general the objective functions in such problems are only piecewise smooth and must be
minimized or maximized relative to polyhedral sets of high dimensionality. This paper proposes a

new class of numerical methods for “fully quadratic” problems within this framework, which exhibit
second-order nonsmoothness. These methods, combining the idea of finite-envelope representation
with that of modified gradient projection, work with local structure in the primal and dual problems

simultaneously, feeding information back and forth to trigger advantageous restarts.

Versions resembling steepest descent methods and conjugate gradient methods are presented.
When a positive threshold of ε-optimality is specified, both methods converge in a finite number of

iterations. With threshold 0, it is shown under mild assumptions that the steepest descent version
converges linearly, while the conjugate gradient version still has a finite termination property. The

algorithms are designed to exploit features of primal and dual decomposability of the Lagrangian,
which are typically available in a large-scale setting, and they are open to considerable parallelization.

Key words. Extended linear-quadratic programming, large-scale numerical optimization,

finite-envelope representation, gradient projection, primal-dual methods, steepest descent methods,

conjugate gradient methods.

AMS(MOS) subject classifications. 65K05, 65K10, 90C20

1. Introduction. A number of recent papers have described “extended linear-
quadratic programming” as a modeling scheme that is much more flexible for problems
of optimization than conventional quadratic programming and seems especially suited
to large-scale applications, in particular because of way penalty terms can be incorpo-
rated. Rockafellar and Wets in [1], [2], first used the concept in two-stage stochastic
programming, where the primal dimension is low but the dual dimension is high. It was
developed further in its own right in Rockafellar [3], [4], and carried in the latter paper
to the context of continuous-time optimal control. Discrete-time problems of optimal
control, both deterministic and stochastic (i.e., multistage stochastic programming)
were analyzed as extended linear-quadratic programming problems in Rockafellar and
Wets [5] and shown to have a remarkable property of Lagrangian decomposability in
the primal and dual arguments, both of which can be high dimensional. These models
raise new computational challenges and possibilities.

A foundation for numerical schemes in large-scale extended linear-quadratic pro-
gramming has been laid in Rockafellar [6] and elaborated for problems in multistage
format in Rockafellar [7]. The emphasis in [6] is on basic finite-envelope methods, which
use duality in generating envelope approximations to the primal and dual objective
functions through a finite sequence of separate minimizations or maximizations of the
Lagrangian. These methods generalize the one originally proposed in [1] for two-stage
stochastic programming and implemented by King [8] and Wagner [9]. They center

*Received by the editors December ???, 1990; accepted for publication (in revised form) ???

???, 1992. This work was supported in part by AFOSR grants 87-0281 and 89-0081 and NSF grants
DMS-8701768 and DMS-8819586.

†Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD 21218.

‡Department of Applied Mathematics, FS-20, University of Washington, Seattle, WA 98195.

1

2 c. zhu and r. t. rockafellar

on the “fully quadratic” case, where strong convexity is present in both the primal
and dual objectives, relying on exterior schemes such as the proximal point algorithm
to create such strong convexity iteratively when it might otherwise be lacking.

Here we propose new algorithms which for fully quadratic problems combine the
idea of finite-envelope representation with that of nonlinear gradient projection. In
these methods the envelope approximations are utilized in a sort of steepest descent
format or conjugate gradient format in the primal and dual problems simultaneously.
A type of feedback is introduced between primal and dual that takes advantage of
information jointly uncovered in computations, which in practice greatly speeds con-
vergence. Both algorithms fit into a fundamental scheme for which global convergence
is established. Under a weak geometric assumption akin to strict complementary
slackness at optimality, the steepest descent version is shown to converge at a linear
rate, while the conjugate gradient version has a finite termination property.

Both versions differ significantly from their traditional namesakes not only through
the incorporation of a primal-dual scheme of gradient projection, but also in handling
objective functions that generally could involve a complicated polyhedral “cell” struc-
ture not conducive to explicit description by linear equations and inequalities. They
treat the underlying constraints without resorting to an active set strategy, which
would not be suitable for problems having high dimensionality in both primal and
dual.

An important feature is that the computations are not carried out in terms of
a large, sparse matrix, such as might in principle serve in part to specify the two
problems, but through subroutines for separate minimization and maximization of the
Lagrangian in its primal and dual arguments. This framework appears much better
adapted to the special structure available in dynamic and stochastic applications, and
it supports extensive parallelization. To make this point clearer, and to introduce facts
and notation that will later be needed, we discuss briefly the nature of extended linear-
quadratic programming and the way it differs from ordinary quadratic programming.

From the Lagrangian point of view, extended linear-quadratic programming is
directed toward finding a saddle point (ū, v̄) of a function

(1.1) L(u, v) = p·u + 1
2u·Pu + q·v − 1

2v·Qv − v·Ru over U × V,

where U and V are nonempty polyhedral (convex) sets in lRn and lRm respectively,
and the matrices P ∈ lRn×n and Q ∈ lRm×m are symmetric and positive semidefinite.
(One has p ∈ lRn, q ∈ lRm, and R ∈ lRm×n.) Associated with L, U and V are the
primal and dual problems

minimize f(u) over all u ∈ U, where f(u) := sup
v∈V

L(u, v),(P)

maximize g(v) over all v ∈ V, where g(v) := inf
u∈U

L(u, v).(Q)

We speak of the fully quadratic case of (P) and (Q) when both of the matrices P and
Q are actually positive definite.

Standard quadratic programming would correspond to Q = 0 and V = lRm1
+ ×

lRm2 . Then f would consist of a quadratic function plus the indicator of a system
of m1 linear inequality constraints and m2 linear equations, the indicator being the
function which assigns an infinite penalty whenever these constraints are violated.
Other choices of Q and V yield finite penalty expressions of various kinds. This is
explained in [4, Secs. 2 and 3] with many examples. For sound modeling in large-scale

primal-dual projected gradient algorithms for elqp 3

applications with dynamics and stochastics such as in [1], [2] and [5], it appears wise
to use finite rather than infinite penalties whenever constraints are “soft.” Extended
linear-quadratic programming makes this option conveniently available. To the extent
that constraints in the primal problem are “hard,” they can be handled either by plac-
ing them in the definition of the polyhedron U or through an augmented Lagrangian
technique which corresponds to an exterior scheme of iterations of the proximal point
algorithm, as already mentioned.

Theorem 1.1. [4] (Properties of the objective functions.) The objective functions
f in (P) and g in (Q) are piecewise linear-quadratic: in each case the space can be
partitioned in principle into a finite collection of polyhedral cells, relative to which the
function has a linear or quadratic formula. Moreover, f is convex while g is concave.
In the fully quadratic case of (P) and (Q), f is strongly convex and g is strongly
concave, both functions having continuous first derivatives.

Theorem 1.2. [4], [1] (Duality and optimality.)
(a) If either of the optimal values inf(P) or sup(Q) is finite, then both are finite

and equal, in which event optimal solutions ū and v̄ exist for the two problems. In the
fully quadratic case in particular, the optimal values inf(P) and sup(Q) are finite and
equal; then, moreover, the optimal solutions ū and v̄ are unique.

(b) A pair (ū, v̄) is a saddle point of L(u, v) over U ×V if and only if ū solves (P)
and v̄ solves (Q), or equivalently, f(ū) = g(v̄).

Current numerical methods in standard quadratic programming, and the some-
what more general area of linear complementarity problems [10], where U = lRn

+,
V = lRm

+ , and Q is not necessarily the zero matrix, are surveyed by Lin and Pang [11].
Other efforts in recent times have been made by Ye and Tse [12], Monteiro and Adler
[13], Goldfarb and Liu [14].

None of these approaches is consonant with the large-scale applications that at-
tract our interest, because the structure in such applications is not well served by the
wholesale reformulations that would be required when penalty expressions are much
involved. Although any problem of extended linear-quadratic programming can in
principle be recast as a standard problem in quadratic programming, as established
in [1, Theorem 1], there is a substantial price to be paid in dimensionality and loss
of symmetry, as well as in potential ill-conditioning. If the original problem had n
primal and m dual variables, and the expression of U and V involved m′ and n′ con-
straints beyond nonnegavity of variables, then the reformulated problem in standard
format would generally have n+n′+m primal and m+m′ dual variables, and its full
constraint system would tend to degeneracy (see [1, proof of Theorem 1]). The dual
problem would be quite different in its theoretical properties from the primal problem,
so that computational ideas developed for the one could not be applied to the other.

Any problem of extended linear-quadratic programming can alternatively be
posed in terms of solving a certain linear variational inequality (generalized equa-
tion) as explained in [6, Theorem 2.3], and from that one could pass to a linear
complementarity model. Symmetry and the meaningful representation of dynamic
and stochastic structure could be maintained to a larger extent in this manner. But
linear complementarity algorithms tend to be less robust than methods utilizing ob-
jective function values, and an increase in dimensionality would still be required in
handling constraints, even if these are simply upper and lower bounds on the variables.
Furthermore, such algorithms typically have to be carried to completion. They do not
generate sequences of primal-feasible and dual-feasible solutions along with estimates
of how far these are from being optimal, as is highly desirable when problem size
borders on the difficult.

4 c. zhu and r. t. rockafellar

While much could be said about the special problem structure in dynamic and
stochastic applications [5], [7], it can be summarized for present purposes in the asser-
tion that such problems, when formulated with care, satisfy the double decomposability
assumption [6]. This means that for any fixed u ∈ U it is relatively easy to maximize
L(u, v) over v ∈ V , and likewise, for any fixed v ∈ V it is relatively easy to minimize
L(u, v) over u ∈ U , usually because of separability when either of the Lagrangian ar-
guments is considered by itself. These subproblems of maximization and minimization
calculate not only the objective values f(u) and g(v) but also, in the fully quadratic
case where L is strongly convex-concave, the uniquely determined vectors

(1.2) F (u) = argmax
v∈V

L(u, v) and G(v) = argmin
u∈U

L(u, v).

The issue is how to make use of such information in the design of numerical methods.
Some proposals have already been made in Rockafellar [6]. Other ideas, which involve
splitting algorithms, have been explored by Tseng [15], [16]. Here we aim at adapting
classical descent algorithms with help from convex analysis [17].

In this paper we make the blanket assumption of double decomposability, taking
it as license also for exact line searchability [6]: the supposition that it is possible to
minimize f(u) over any line segment joining two points in U , and likewise, to maximize
g(v) over any line segment joining two points in V . We focus on the fully quadratic
case, even though standard quadratic programming is thereby excluded and a di-
rect comparison with other computational approaches, apart from the finite-envelope
methods in [6], becomes difficult. Our attention to that case is justified by its own po-
tential in mathematical modeling (cf. [2], [4]) and because strong convexity-concavity
of the Lagrangian can be created, if need be, through some outer implementation of
the proximal point algorithm [18], [19], as carried out in [1] and [8]. The questions
concerning such an outer algorithm are best handled elsewhere, since they have a
different character and relate to a host of primal-dual procedures in extended linear-
quadratic programming besides the ones developed here, cf. [1], [2], [6]. In particular,
such questions are taken up in Zhu [20].

The supposition that line searches can be carried out exactly is an expedient to
allow us to concentrate on more important matters for now. It is also in keeping with
the exploration of finite termination properties of the kind usually associated with
conjugate gradient-like algorithms, which is part of our agenda. One may observe
also that because of the piecewise linear-quadratic nature of the objective functions
in Theorem 1.1, line searches in our context are of a special kind where “exactness”
is not far-fetched.

A common sort of problem structure which fits with double decomposability is
the box-diagonal case, where P and Q are diagonal matrices,

(1.3) P = diag[α1, . . . , αn] and Q = diag[β1, . . . , βm],

the entries αj and βi being positive (for fully quadratic problems), while U and V are
boxes representing upper and lower bounds (not necessarily finite) on the components
of u = (u1, . . . , un) and v = (v1, . . . , vm):

(1.4) U = [u−1 , u+
1]× · · · × [u−n , u+

n] and V = [v−1 , v+
1]× · · · × [v−m, v+

m].

In this case, we have for each u ∈ U that the problem of maximizing L(u, v) over v ∈ V
to obtain f(u) and F (u) decomposes into separate one-dimensional subproblems in

primal-dual projected gradient algorithms for elqp 5

the individual coordinates: for i = 1, . . . ,m

(1.5) maximize
[
qi −

n∑
j=1

rijuj

]
·vi − 1

2βiv2
i subject to v−i ≤ vi ≤ v+

i .

Likewise, the problem of minimizing L(u, v) over u ∈ U for given v ∈ V , so as to
calculate g(v) and G(v), reduces to the separate problems

(1.6) minimize
[
pj −

m∑
i=1

virij

]
·ui + 1

2αju2
j subject to u−j ≤ uj ≤ u+

j .

Clearly, there exist very simple closed-form solutions to these one-dimensional sub-
problems. No actual minimization or maximization routine needs to be invoked. Often
there are ways also of obtaining the answers without explicitly introducing the rij ’s.

In notation, we shall refer consistently to

(1.7)
ū = the unique optimal solution to (P),
v̄ = the unique optimal solution to (Q),

these properties meaning by Theorem 1.2 that

(1.8) (ū, v̄) = the unique saddle point of L on U × V,

or equivalently in terms of the mappings F and G that

(1.9) v̄ = F (ū) and ū = G(v̄).

Furthermore, we shall write

(1.10) ‖u‖P = [u·Pu]
1
2 and ‖v‖Q = [v·Qv]

1
2 ,

〈w, u〉P = w·Pu and 〈z, v〉Q = z·Qv

for the norms and inner products corresponding to the positive definite matrices P
and Q. It is these norms and inner products, rather than the canonical ones, that
intrinsically underlie the analysis of our problems, and it is well to bear this in mind.
Just as the function f , if it is C2 around a point u, can be expanded as

f(u′) = f(u) +
〈
∇f(u), u′ − u

〉
+ 1

2

〈
u′ − u,∇2f(u)(u′ − u)

〉
+ o
(
‖u′ − u‖2

)
,

it can also be expanded as

f(u′) = f(u) +
〈
∇P f(u), u′ − u

〉
P

+ 1
2

〈
u′ − u,∇2

P f(u)(u′ − u)
〉
P

+ o
(
‖u′ − u‖2P

)
for a certain vector ∇P f(u) and a certain matrix ∇2

P f(u); similarly for g in terms of
∇Qg(v) and ∇2

Qg(v). Clearly,

(1.11)
∇P f(u) = P−1∇f(u), ∇2

P f(u) = P−1∇2f(u),
∇Qg(v) = Q−1∇g(v), ∇2

Qg(v) = Q−1∇2g(v).

6 c. zhu and r. t. rockafellar

In appealing to this symbolism we shall better be able to bring out the basic structure
and convergence properties of the proposed algorithms.

We cite now from [6] several fundamental properties on which the algorithmic
developments in this paper will depend.

Proposition 1.3. [6, p. 459] (Optimality estimates.) Suppose û and v̂ are ele-
ments of U and V satisfying f(û)−g(v̂) ≤ ε, where ε ≥ 0. Then û and v̂ are ε-optimal
in the sense that |f(û)− f(ū)| ≤ ε and |g(v̂)− g(v̄)| ≤ ε. Moreover, ‖û− ū‖P ≤

√
2ε

and ‖v̂ − v̄‖Q ≤
√

2ε.
Proposition 1.4. [6, pp. 438, 469] (Regularity properties.) The functions f and

g are continuously differentiable everywhere, and the mappings F and G are Lipschitz
continuous:

(1.12)
∇f(u) = ∇uL(u, F (u)) = p + Pu−RT F (u),
∇g(v) = ∇vL(G(v), v) = q −Qv −RG(v),

where in terms of the constant

(1.13) γ(P,Q,R) := ‖Q−
1
2 RP−

1
2 ‖

one has

(1.14)
‖F (u′)− F (u)‖Q ≤ γ(P,Q,R)‖u′ − u‖P for all u and u′,

‖G(v′)−G(v)‖P ≤ γ(P,Q,R)‖v′ − v‖Q for all v and v′.

The finite-envelope idea enters through repeated application of the mappings F
and G. The rationale is discussed at length in [6], but the main facts needed here are
in the next two propositions.

Proposition 1.5. [6, p. 460] (Envelope properties.) For arbitrary u0 ∈ U and
v0 ∈ V , let v1 = F (u0) and u1 = G(v0), followed by v2 = F (u1) and u2 = G(v1).
Then in the primal problem
(1.15)

f(u) ≥ L(u, v1) for all u, with L(u0, v1) = f(u0) and ∇uL(u0, v1) = ∇f(u0),
f(u) ≥ L(u, v2) for all u, with L(u1, v2) = f(u1) and ∇uL(u1, v2) = ∇f(u1),

while in the dual problem
(1.16)

g(v) ≤ L(u1, v) for all v, with L(u1, v0) = g(v0) and ∇vL(u1, v0) = ∇g(v0),
g(v) ≤ L(u2, v) for all v, with L(u2, v1) = g(v1) and ∇vL(u2, v1) = ∇g(v1).

Proposition 1.6. [6, p. 470] (Modified gradient projection.) For arbitrary u0 ∈
U and v0 ∈ V , let v1 = F (u0) and u1 = G(v0), followed by v2 = F (u1) and u2 = G(v1).
Then

L(u, v1) = f(u0) +∇f(u0)·(u− u0) + 1
2 (u− u0)·P (u− u0)

= f(u0) + 〈∇P f(u0), u− u0〉P + 1
2‖u− u0‖2P ,

= 1
2

∥∥(u− u0) +∇P f(u0)
∥∥2

P
+ const.(1.17)

L(u1, v) = g(v0) +∇g(v0)·(v − v0)− 1
2 (v − v0)·Q(v − v0)

= g(v0) + 〈∇Qg(v0), v − v0〉Q −
1
2‖v − v0‖2Q,

= − 1
2

∥∥(v − v0)−∇Qg(v0)
∥∥2

Q
+ const.(1.18)

primal-dual projected gradient algorithms for elqp 7

so from the definition of u2 and v2 one has that

(1.19)
u2 − u0 = P -projection of −∇P f(u0) on U − u0,

v2 − v0 = Q-projection of ∇Qg(v0) on V − v0.

Proof. The first equation in (1.17) expands L(· , v1) at u0 in accordance with
(1.15), and the rest of (1.17) re-expresses this via (1.10) and (1.11). Since u2 :=
argminu∈U L(u, v1), u2 is thus the ‖ · ‖P -nearest point of U to u0−∇P f(u0), so u2−u0

is the ‖ · ‖P -projection of −∇P f(u0) on U −u0. The assertions in the v-argument are
verified similarly.

The formulas in (1.19) give the precise form of (nonlinear) gradient projection
that is available through our assumed ability to calculate F (u) and G(v) whenever
we please. It is this form, therefore, that we shall incorporate in our algorithms.
The reader should note this carefully, or a crucial feature of our approach, in its
applicability to large-scale problems, will be missed. Although the gradients of f
and g exist and are expressed by the formulas in Proposition 1.4, we do not have
to calculate them through these formulas, much less apply a subroutine for gradient
projection. In particular, it is not necessary to generate or store the potentially huge
or dense matrix R. To execute our algorithms, one only needs to be able to generate
the points u1, u2, v1 and v2 from a given pair u0 and v0. As explained, this can be done
through subroutines which minimize or maximize the Lagrangian individually in the
primal or dual argument, cf. (1.2). For multistage, possibly stochastic, optimization
problems expressed in the format of [1], [2], and [6], such subroutines can easily be
written in terms of the underlying data structure (without ever introducing R!).

In obtaining our results about local rates of convergence, a mild condition on the
optimal solutions ū and v̄ will eventually be required. To formulate it, we introduce
the sets

U0 := argmin
u∈U

∇uL(ū, v̄)·u = argmin
u∈U

∇f(ū)·u = argmin
u∈U

〈
∇P f(ū), u

〉
P

,(1.20)

V0 := argmax
v∈V

∇vL(ū, v̄)·v = argmax
v∈V

∇g(v̄)·v = argmax
v∈V

〈
∇Qg(v̄), v

〉
Q

,(1.21)

which are called the critical faces of U and V in (P) and (Q) [6]. They are closed
faces of the polyhedral sets U and V , and they contain the optimal solutions ū and
v̄, respectively, by virtue of the elementary conditions for the minimum of a smooth
convex function (or the maximum of a smooth concave function).

Definition 1.7. (Critical face condition.) The critical face condition will be said
to be satisfied at the optimal solutions ū and v̄ if ū ∈ riU0 and v̄ ∈ riV0 (where “ri”
denotes relative interior in the sense of convex analysis).

We do not add this condition as a standing assumption, but it will be invoked
several times in connection with the following property of the envelope mappings F
and G, which is implicit in [6, Theorem 5.4] in its proof, but is stated here explicitly.

Proposition 1.8. (Envelope behavior near the critical faces.) There exist neigh-
borhoods of ū and v̄ with the property that if the points u0 ∈ U and v0 ∈ V belong to
these neighborhoods, then the points

v1 = F (u0), u1 = G(v0), v2 = F (u1), u2 = G(v1),

will be such that u1 and u2 belong to the primal critical face U0, while v1 and v2 belong
to the dual critical face V0. Under the critical face condition, the neighborhoods can
be chosen so that u1 and u2 actually belong to riU0, while v1 and v2 belong to riV0.

8 c. zhu and r. t. rockafellar

Proof. We adapt the argument given for [6, Theorem 5.4]. From (1.9) and the
continuity of F and G in Proposition 1.4, we know that by making u0 and v0 close to
ū and v̄ we will make u1 and u2 close to ū and v1 and v2 close to v̄. For each vector
w ∈ lRn, let M(w) be the closed face of the polyhedron U on which the function
u 7→ w·u achieves its minimum. This could be empty for some choices of w, but in
the case of w̄ = ∇uL(ū, v̄) it is U0, which contains ū. The graph of M as a set-
valued mapping is closed (as can be verified directly or through the observation that
M is the subdifferential of the support function of U , cf. [17, Secs. 13, 23]), and M
has only finitely many values (since U has only finitely many faces). It follows that
M(w) ⊂ M(w̄) = U0 when w is in some neighborhood of w̄. We can apply this in
particular to w = ∇uL(u1, v0), noting that this vector will be close to w̄ when u0 and
v0 are sufficiently close to ū and v̄. The point u1 minimizes L(u, v0) over u ∈ U and
therefore has the property that ∇uL(u1, v0)·(u − u1) ≤ 0 for all u ∈ U , which means
u1 ∈ M(w). Therefore u1 ∈ U0 when u0 and v0 are sufficiently close to ū and v̄.

Parallel reasoning demonstrates that v1 ∈ V0 under such circumstances. If the
critical face condition holds, then as u1 and v1 approach ū and v̄ they must actually
enter the relative interiors riU0 and riV0. The same argument can be applied now to
reach these conclusions for u2 and v2.

2. Formulation of the Algorithms. The new methods for the fully quadratic
case of problems (P) and (Q) will be formulated as conceptual algorithms involving
line search. The convergence analysis will be undertaken in Sections 3, 4, and 5, and
the numerical test results will be given in Section 6.

In what follows, we use [w1, w2] to denote the line segment between two points
w1 and w2, and we use ν as the running index for iterations.

The main characteristic of the new methods is the coupling of line search proce-
dures in the primal and dual problems with interactive restarts. To assist the reader
in understanding this, we first formulate the method analogous to steepest descent,
where there are fewer parameters and the algorithmic logic is simpler.

Algorithm 1. (Primal-Dual Steepest Descent Algorithm, PDSD.) Construct pri-
mal and dual sequences {uν

0} ⊂ U and {vν
0} ⊂ V as follows.

Step 0 (initialization). Choose a real value for the parameter ε ≥ 0 (optimality
threshold). Set ν := 0 (iteration counter). Specify starting points û0

0 ∈ U and v̂0
0 ∈ V

for the sequences {ûν
0} ⊂ U and {v̂ν

0} ⊂ V that will be generated along with {uν
0} and

{vν
0}.

Step 1 (evaluation). Calculate{
f(ûν

0), g(v̂ν
0), obtaining as by-products v̂ν

1 = F (ûν
0), ûν

1 = G(v̂ν
0),

g(v̂ν
1), f(ûν

1), obtaining as by-products ûν
2 = G(v̂ν

1), v̂ν
2 = F (ûν

1).

Step 2 (interactive restarts). Take{
uν

0 := ûν
0 , vν

1 := v̂ν
1 , uν

2 := ûν
2 if f(ûν

0) ≤ f(ûν
1),

uν
0 := ûν

1 , vν
1 := v̂ν

2 , uν
2 := G(vν

1) otherwise (this is an interactive primal restart).{
vν
0 := v̂ν

0 , uν
1 := ûν

1 , vν
2 := v̂ν

2 if g(v̂ν
0) ≥ g(v̂ν

1),
vν
0 := v̂ν

1 , uν
1 := ûν

2 , vν
2 := F (uν

1) otherwise (this is an interactive dual restart).

(In an interactive primal restart, the calculation of G(vν
1) yields the new g(vν

1). Like-
wise, in an interactive dual restart, the calculation of F (uν

1) yields the new f(uν
1).)

primal-dual projected gradient algorithms for elqp 9

Step 3 (optimality test). Let

û :=
{

uν
0 if f(uν

0) ≤ f(uν
1),

uν
1 if f(uν

0) > f(uν
1), and v̂ :=

{
vν
0 if g(vν

0) ≥ g(vν
1),

vν
1 if g(vν

0) < g(vν
1).

If f(û)− g(v̂) ≤ ε, terminate with û and v̂ being ε-optimal solutions to (P) and (Q).
Step 4 (line segment search). Search for

ûν+1
0 := argmin

u∈[uν
0 ,uν

2]

f(u) and v̂ν+1
0 := argmax

v∈[vν
0 ,vν

2]

g(v).

Return then to Step 1 with the counter ν increased by 1.
Basically, the idea in this method is that if the point ûν

1 calculated as a by-product
of finding the projected gradient (1.19) in the dual problem gives a better value to
the objective in the primal problem than does the current primal point ûν

0 , we take it
instead as the current primal point (and accordingly recalculate the projected gradient
in the primal problem). Likewise, if the point v̂ν

1 calculated as a by-product of finding
the projected gradient (1.19) in the primal problem happens to give a better value to
the objective in the primal problem than the current dual point v̂ν

0 , we take it instead
as the current dual point (and accordingly recalculate the projected gradient in the
dual problem). Here it may be recalled that ûν

1 minimizes over U the convex quadratic
function L(· , v̂ν

0), which is a lower approximant to the objective function f in (P) that
would have the same minimum value as f over U if v̂ν

0 were dual optimal. By the
same token, v̂ν

1 maximizes over V the concave quadratic function L(ûν
0 , ·), which is

an upper approximant to the objective function g in (Q) that would have the same
maximum value as g over V is ûν

0 were primal optimal.
Once the issue of triggering a primal or dual interactive restart (or both) settles

down in a given iteration, we perform line searches in the directions indicated by the
projected gradients in the two problems. If U were the whole space lRn, the primal
search direction would be the true direction of steepest descent for f (relative to the
geometry induced by the Euclidean norm ‖ · ‖P on lRn). Similarly, if V were the whole
space lRm, the dual search direction would be the true direction of steepest ascent for
g (relative to the geometry of the Euclidean norm ‖ · ‖Q on lRm). However, even in
this unconstrained case there would be a difference in the way the searches are carried
out, in comparison with classical steepest descent, because instead of looking along
an entire half-line we only optimize along a line segment whose length is that of the
gradient, i.e., we restrict the step size to be at most 1. (Also, we call for an “exact”
optimum because the objective is piecewise strictly quadratic with only finitely many
pieces. Clearly, this requirement could be loosened, but the issue is minor and we do
not wish to be distracted by it here.)

The restriction to a line segment instead of a half-line is motivated in part by the
fact that the line segment is known to lie entirely in the feasible set. A search over
a half-line would have to cope with detecting the feasibility boundary in the search
parameter, which could be a disadvantage in a high-dimensional setting, although
this topic could be explored further. Heuristic motivation for the restriction comes
also from evidence of second-order effects induced by the primal-dual feedback, as
discussed below. It turns out that under mild assumptions the optimal step sizes
along a half-line would eventually be no greater than 1 anyway.

The interactive restarts may seem like a merely opportunistic feature of Algo-
rithm 1, but they have a marked effect, as the numerical tests in Section 6 will re-
veal. When interactive restarts are blocked, so that the algorithm reverts to two

10 c. zhu and r. t. rockafellar

independent procedures in the primal and dual settings (through a sort of computa-
tional “lobotomy”), the performance is slowed down to what one might expect from
a steepest-descent-like algorithm. On the other hand, when the interactions are per-
mitted the performance in practice is quite comparable to that of more complicated
procedures which attempt to exploit second-order properties. The feedback between
primal and dual appears able to supply some such information to the calculations.

In order to develop a broader range of interactive-restart methods, analogous not
only to steepest descent but to conjugate gradients, we next formulate as Algorithm 0
a bare-bones procedure which will serve in establishing convergence properties of such
methods, including Algorithm 1. The chief complication in Algorithm 0 beyond what
has already been seen in Algorithm 1 comes through the introduction of cycles for
primal and dual restarts. With respect to these cycles an additional threshold param-
eter is introduced as a technical safeguard against interactive restarts being triggered
too freely, without assurance of adequate progress.

Algorithm 0. (General Primal-Dual Projected Gradient Algorithm, PDPG.)
Construct primal and dual sequences {uν

0} ⊂ U and {vν
0} ⊂ V as follows.

Step 0 (initialization). Choose an integer value for the parameter k > 0 (cycle
size) and real values for the parameters ε ≥ 0 (optimality threshold) and δ > 0
(progress threshold). Set ν := 0 (iteration counter), kp := 0 (primal restart counter),
and kd := 0 (dual restart counter). Specify starting points û0

0 ∈ U and v̂0
0 ∈ V for the

sequences {ûν
0} ⊂ U and {v̂ν

0} ⊂ V that will be generated along with {uν
0} and {vν

0}.
Step 1 (evaluation). Calculate{

f(ûν
0), g(v̂ν

0), obtaining as by-products v̂ν
1 = F (ûν

0), ûν
1 = G(v̂ν

0),
g(v̂ν

1), f(ûν
1), obtaining as by-products ûν

2 = G(v̂ν
1), v̂ν

2 = F (ûν
1).

Step 2 (interactive restarts). Take{
uν

0 := ûν
0 , vν

1 := v̂ν
1 , uν

2 := ûν
2 if f(ûν

0) ≤ f(ûν
1), or f(ûν

0) < f(ûν
1)+δ and kp < k,

uν
0 := ûν

1 , vν
1 := v̂ν

2 , uν
2 := G(vν

1) otherwise (this is an interactive primal restart).{
vν
0 := v̂ν

0 , uν
1 := ûν

1 , vν
2 := v̂ν

2 if g(v̂ν
0) ≥ g(v̂ν

1), or g(v̂ν
0) > g(v̂ν

1)− δ and kd < k,
vν
0 := v̂ν

1 , uν
1 := ûν

2 , vν
2 := F (uν

1) otherwise (this is an interactive dual restart).

(In an interactive primal restart the calculation of G(vν
1) yields the new g(vν

1). Like-
wise, in an interactive dual restart the calculation of F (uν

1) yields the new f(uν
1).)

Set {
kp := 0 if an interactive primal restart occurred in this step,
kd := 0 if an interactive dual restart occurred in this step.

Step 3 (optimality test). Let

û :=
{

uν
0 if f(uν

0) ≤ f(uν
1),

uν
1 if f(uν

0) > f(uν
1), and v̂ :=

{
vν
0 if g(vν

0) ≥ g(vν
1),

vν
1 if g(vν

0) < g(vν
1).

If f(û)− g(v̂) ≤ ε, terminate with û and v̂ being ε-optimal solutions to (P) and (Q).
Step 4 (search endpoint generation). Take{

uν
e := uν

2 if kp ≡ 0(mod k),
uν

e ∈ U according to an auxiliary rule otherwise.{
vν

e := vν
2 if kd ≡ 0(mod k),

vν
e ∈ V according an auxiliary rule otherwise.

primal-dual projected gradient algorithms for elqp 11

Step 5 (line segment search). Search for

ûν+1
0 := argmin

u∈[uν
0 ,uν

e]

f(u) and v̂ν+1
0 := argmax

v∈[vν
0 ,vν

e]

g(v).

Return then to Step 1 with the counters ν, kp and kd increased by 1.
By specifying the auxiliary rules in Step 4 for generating the search interval end-

points uν
e and vν

e in iterations where kp or kd is not a multiple of k, we obtain particular
realizations of Algorithm 0. An attractive case in which these rules correspond to a
“conjugate gradient” approach with cycle size k will be developed presently as Algo-
rithm 2. Before proceeding, however, we want to emphasize for theoretical purposes
that Algorithm 1 is itself a particular realization of Algorithm 0.

Proposition 2.1. Algorithm 0 reduces to Algorithm 1 when the cycle size is
k = 1 (except for a slight difference in iteration ν = 0).

Proof. In returning from Step 4 of Algorithm 0 to Step 1, the counters kp and kd

are always at least 1. It follows that if k = 1 the condition in Step 2 with progress
threshold δ will never come into play after such a return. Thus, the only possible effect
of this threshold will be in iteration ν = 0, where a restart will be avoided unless it
improves the objective by at least δ. In Step 4, kp and kd will always be multiples of
k, so we will always have uν

e = uν
2 and vν

e = vν
2 . Thus the counters kp and kd become

redundant and the auxiliary rules moot.
In Algorithm 0 in general, kp counts iterations in the primal problem from the

start or the most recent interactive primal restart. An iteration that begins with kp

being a positive multiple of k is said to be one in which an ordinary primal restart takes
place (whether or not an interactive primal restart also takes place), because it marks
the completion of a cycle of k iterations not cut short by an interactive primal restart.
Every iteration involving an ordinary or interactive primal restart ends by searching
the line segment [uν

0 , uν
2], where uν

2−uν
0 is the negative of the current projected gradient

of f in (1.19). The dual situation is parallel in terms of the counter kd and the notion
of an ordinary dual restart.

The role of the parameter δ > 0 is to control the extent to which the algorithm
forgoes interactive restarts and insists on waiting for ordinary restarts. Interactive
restarts are always accepted if they improve the corresponding objective value by
the amount δ or more, but there can only be finitely many iterations with this size of
improvement, due to the finiteness of the joint optimal value in (P) and (Q) (Theorem
1.1). When such improvement is no longer possible, interactive restarts are blocked
in the primal until an ordinary restart has again intervened, unless one is already
occurring in the same iteration; the same holds in the dual. This feature ensures that
full cycles of k iterations will continue to be performed in the primal and dual as long
as the algorithm keeps running, which is important in establishing certain properties
of convergence.

Recall that the point uν
2 minimizes over U the lower envelope function L(u, v1)

as a representation of f(u) at uν
0 (Proposition 1.5), which has ∇uL(uν

0 , vν
1) = ∇f(uν

0).
Even apart from the projected gradient interpretation, therefore, there is motivation
in searching the line segment [uν

0 , uν
2] in order to reduce the objective value f(u) in

primal. The same motivation exists for searching [vν
0 , vν

2] in the dual.
As a matter of fact, we shall prove in Proposition 5.1 that on exiting from Step 5

(line segment search) of Algorithm 0, the point ûν+1
1 = G(v̂ν+1

0) will be the minimum
point relative to U for the envelope function

fν(u) := max
v∈[vν

0 ,vν
2]

L(u, v) ≤ max
v∈V

L(u, v) = f(u).

12 c. zhu and r. t. rockafellar

When the algorithm reaches Step 2 in the iteration, it will compare the point ûν+1
0

resulting from the just-completed line search in the primal with the point ûν+1
1 result-

ing from minimizing the lower envelope function fν(u), and it will take the “better”
of the two as the next primal iterate. In the dual procedure there are corresponding
comparisons between v̂ν+1

0 and v̂ν+1
1 .

We focus now on a specialization of Algorithm 0 in which, in contrast to Algo-
rithm 1, the cycle provisions are crucial and the auxiliary rules nontrivial. The rules
emulate those of the classical conjugate gradient method (Hestenes-Stiefel).

Algorithm 2. (Primal-Dual Conjugate Gradient Method, PDCG.) In the imple-
mentation of Algorithm 0, choose a cycle size k > 1 and use the following auxiliary
rules to get the search intervals in Step 4. Unless kp ≡ 0(mod k), set

wν
p := ∇P f(uν

0)−∇P f(uν−1
0),(2.1)

βν
p :=

{
max{0, 〈wν

p , uν
0− uν

2〉P }/〈wν
p , uν−1

e − uν
0〉P if 〈wν

p , uν−1
e − uν

0〉P > 0,
0 otherwise,

(2.2)

uν
cg := (uν

2 + βν
puν−1

e)/(1 + βν
p),(2.3)

[uν
0 , uν

e] :=
{

[uν
0 , uν

cg] if ‖uν
cg − uν

0‖P ≥ 1,
Lν

p ∩ U otherwise,(2.4)

where Lν
p =

{
u ∈ lRn | u = uν

0 +λ(uν
cg−uν

0), 0 ≤ λ ≤ ‖uν
cg−uν

0‖
−1
P

}
. Similarly, unless

kd ≡ 0(mod k), set

wν
d := −∇Qg(vν

0) +∇Qg(vν−1
0),(2.5)

βν
d :=

{
max{0, 〈wν

d , vν
0− vν

2 〉Q}/〈wν
d , vν−1

e − vν
0 〉Q if 〈wν

d , vν−1
e − vν

0 〉Q > 0,
0 otherwise,

(2.6)

vν
cg := (vν

2 + βν
dvν−1

e)/(1 + βν
d),(2.7)

[vν
0 , vν

e] :=
{

[vν
0 , vν

cg] if ‖vν
cg − vν

0‖Q ≥ 1,
Lν

d ∩ V otherwise,(2.8)

where Lν
d =

{
v ∈ lRm | v = vν

0 + λ(vν
cg − vν

0), 0 ≤ λ ≤ ‖vν
cg − vν

0‖
−1
Q

}
.

Note that because the auxiliary rules are never invoked in iteration ν = 0 (where
kp = 0 and kd = 0), the points indexed with ν − 1 in the statement of Algorithm 2
are all well defined. Another thing to observe is the fact that in (2.2) and (2.6) we
actually have

(2.9) 〈wν
p , uν−1

e − uν
0〉P ≥ 0 and 〈wν

d , vν−1
e − vν

0 〉Q ≥ 0.

These inequalities follow from (2.1) and (2.5) and the monotonicity of gradient map-
pings of convex functions. In Proposition 4.4 we shall prove that under the critical
face condition the inequalities in (2.9) hold strictly in a vicinity of the optimal solution
if the critical faces are reached by the corresponding iterates.

On the other hand, it is apparent from (2.3) and (2.7) that
(2.10)

uν
cg − uν

0 =
uν

2 − uν
0 + βν

p (uν−1
e − uν

0)
(1 + βν

p)
and vν

cg − vν
0 =

vν
2 − vν

0 + βν
d (uν−1

e − vν
0)

(1 + βν
d)

.

Hence, the search direction vector in the primal is, in fact, a convex combination of
the P -projection of −∇P f(u0) and the search direction vector in the previous primal

primal-dual projected gradient algorithms for elqp 13

iteration. Similarly, the search direction vector in the dual is a convex combination
of the Q-projection of ∇Qg(v0) and the search direction vector in the previous dual
iteration.

We shall prove in Theorem 4.5 that under the critical face condition, the primal
iterations in Algorithm 2 reduce in a vicinity of the optimal solution to (P) to the
execution of the Hestenes-Stiefel conjugate gradient method if the critical face U0 is
eventually reached by the primal iterates, and similarly for the dual iterations. From
this we will obtain a termination property for Algorithm 2, which will be invoked by
an interactive restart of the algorithm.

Algorithm 2 departs a bit from the philosophy of Algorithm 1 in utilizing un-
projected gradients in (2.1) and (2.5) instead of just projected gradients. These un-
projected gradients are available through (1.11) and (1.12) (also (1.15) or (1.16)),
and for multistage optimization problems in the pattern laid out in [7] they can still
be calculated without having to invoke the gigantic R matrix. An earlier version of
Algorithm 2 that we worked with did use the projected gradients exclusively, and it
performed similarly, but there were technical difficulties in establishing a finite termi-
nation property. Future research may shed more light on this issue. The same can be
said of another small departure in Algorithm 2 from the philosophy one might hope
maintain in a “conjugate gradient” method: the introduction on occasion of step sizes
possibly greater than 1 relative to [uν

0 , uν
cg] or [vν

0 , vν
cg] (although not, of course, relative

to the designated intervals [uν
0 , uν

e] or [vν
0 , vν

e]) through the second alternatives in (2.4)
or (2.8).

3. Global Convergence and Local Quadratic Structure. This section es-
tablishes some basic convergence properties of Algorithms 0, 1 and 2. It also reveals
the special quadratic structure in (P) and (Q) around the optimal solutions ū and v̄ in
the case where the critical face condition is satisfied, which will be utilized in further
convergence analysis in Section 5.

Proposition 3.1. (Feasible descent and ascent.)
(a) In Algorithm 0 (hence also in Algorithms 1 and 2) the vector uν

2 − uν
0 gives a

feasible descent direction for the primal objective function f at uν
0 (unless uν

2−uν
0 = 0,

in which case uν
0 = ū). Similarly, the vector vν

2 − vν
0 gives a feasible ascent direction

for the dual objective function g at vν
0 (unless vν

2 − vν
0 = 0, in which case vν

0 = v̄).
(b) In Algorithm 2, the vector uν

cg − uν
0 gives a feasible descent direction for the

primal objective f at uν
0 unless uν

0 = ū. Similarly, the vector vν
cg − vν

0 gives a feasible
ascent direction for the dual objective g at vν

0 unless vν
0 = v̄. Thus, Algorithm 2 is

well defined in the sense that, regardless of the type of iteration, as long as it does not
terminate in optimality, the vector uν

e − uν
0 gives a feasible descent direction at uν

0 in
the primal while the vector vν

e − vν
0 gives a feasible ascent direction at vν

0 in the dual.
Proof. (a) We know that uν

2 minimizes L(u, vν
1) over u ∈ U , where L(u, vν

1) is
given by formula (1.17). We obtain from this formula that unless uν

2 = uν
0 , implying

uν
0 is optimal for the primal, we must have ∇f(uν

0)·(uν
2 − uν

0) < 0. Descent in this
direction is feasible because the line segment [uν

0 , uν
2] is included in U by convexity.

The proof of the dual part is parallel.
(b) The argument is by induction. From the optimality test in Step 3 we see that

the algorithm will terminate at (ū, v̄) if either uν
0 = ū in the primal or vν

0 = v̄ in the
dual. (For instance, if uν

0 = ū, then vν
1 = v̄, so that f(û)− g(v̂) = 0.) Suppose neither

uν
0 nor vν

0 is optimal. Proposition 3.1(a) covers our claims for the initial iteration of
each primal or dual cycle. Suppose that the claims are true for iteration l − 1 of a
primal cycle, 0 < l < k, this corresponding to iteration ν − 1 of the algorithm as a

14 c. zhu and r. t. rockafellar

whole. We have (uν
2−uν

0)·∇f(uν
0) < 0 by part (a) and (uν−1

e −uν
0)·∇f(uν

0) ≤ 0 through
the line search. (Note that we get this inequality instead of an equation because the
search is over a segment rather than a half-line; the minimizing point could be at the
end of the segment.) Hence

(uν
cg − uν

0)·∇f(uν
0) =

(uν
2 − uν

0)·∇f(uν
0) + βν

p (uν−1
e − uν

0)·∇f(uν
0)

1 + βν
p

< 0.

Therefore, the vector uν
cg − uν

0 6= 0 gives a descent direction, so the segment Lν
p in

(2.4) is nontrivial. From (2.3), we see further that uν
cg is a convex combination of two

feasible points uν
2 ∈ U and uν−1

e ∈ U . Hence the point uν
cg is feasible, i.e., uν

cg ∈ U ,
and the direction of uν

cg − uν
0 is a feasible direction in the primal at uν

0 . The vector
uν

e − uν
0 therefore gives a feasible descent direction for f at uν

0 , since it results from a
scaling of the vector uν

cg − uν
0 . Iteration l of the primal cycle thus again satisfies the

claim. The case of dual cycles is handled similarly.
Theorem 3.2. (Global convergence.) In Algorithm 0 (hence also in Algorithms 1

and 2) with optimality threshold ε > 0, termination must come with ε-optimal solutions
û and v̂ in just a finite number of iterations. With ε = 0, unless the procedure happens
to terminate with the exact optimal solutions ū and v̄ in a finite number of iterations,
the sequences generated will be such that uν

0 → ū and vν
0 → v̄ as ν →∞. Furthermore,

then uν
1 → ū and uν

2 → ū, as well as vν
1 → v̄ and vν

2 → v̄.
Proof. Consider first the case where ε = 0. From Proposition 1.4, the point

u2 = G
(
F (u0)

)
depends continuously on u0. Denote by D the continuous mapping

u0 7→ (u0, u2 − u0) from U to U × lRn. Let M : U × lRn → U be the line search
mapping defined by

M(u0, d) = argmin
u∈[u0,u0+d]

f(u).

The mapping M is closed at the point (u0, d) with d 6= 0, cf. [21, Theorem 8.3.1]. Now
by Proposition 3.1(a), u2 − u0 6= 0 for u0 6= ū. Hence the composite mapping M◦D is
closed on U \ {ū}, cf. [21, Theorem 7.3.2]. Define

A = B◦M◦D,

where B : U →→ U is the point-to-set mapping B(u) = {u′ ∈ U | f(u′) ≤ f(u)}. Note
that the sequence {f(uν

0)} is nonincreasing. Now let Kp be the sequence consists of the
indices of those iterations in which a line search on [uν

0 , uν
2] is performed for the primal

objective function. Then Kp is an infinite subsequence of {ν} unless the procedure
happens to terminate with the exact optimal solutions ū and v̄ in a finite number of
iterations. Let ν′′ and ν′ be two consecutive elements in Kp with ν′′ > ν′. Then we
can write

uν′′

0 ∈ A(uν′

0).

By Proposition 3.1, moreover, the vector u2 − u0 is a descent direction for the primal
objective f(u) at u0 unless u0 is already optimal. Since we are in the fully quadratic
case, the set {u ∈ lRn | f(u) ≤ f(u0

0)} is compact, and the optimal solution ū for
problem (P) is unique. It follows then that uν

0 → ū as ν → ∞, ν ∈ Kp, cf. [21,
Theorem 7.3.4]. Therefore f(uν

0) → f(ū) as ν →∞, which in turn implies uν
0 → ū as

ν →∞ since f is strongly convex (Theorem 1.1).
For analogous reasons, vν

0 → v̄. Then since uν
1 = G(vν

0) and ū = G(v̄) with the
mapping G continuous (Proposition 1.4), we have uν

1 → ū. Likewise, vν
1 → v̄. The

primal-dual projected gradient algorithms for elqp 15

argument can be applied then again: we have uν
2 = G(vν

1), so uν
2 → ū and in parallel

fashion vν
2 → v̄.

In particular, we have f(uν
0) − g(vν

0) → f(ū) − g(v̄) = 0 because f and g are
continuous (Theorems 1.1 and 1.2(a)). In the case where ε > 0, this guarantees
termination in finitely many iterations.

Corollary 3.3. (Points in the critical faces.) The sequences generated by Algo-
rithm 0 have the property that eventually uν

1 and uν
2 belong to the primal critical face

U0, while vν
1 and vν

2 belong to the dual critical face V0.
Proof. This follows via Proposition 1.8.
Corollary 3.4. (A special case of finite termination.) If ε = 0 and either of the

critical faces U0 or V0 consists of just a single point, Algorithm 0 (and therefore also
Algorithms 1 and 2) will terminate at the optimal solution pair (ū, v̄) after a finite
number of iterations.

Proof. When U0 consists of the single point ū, we have by Corollary 3.3 that
uν

2 = ū for all sufficiently large ν. Once this is the situation, the line search in the
first iteration of the next primal cycle will yield ū. On returning to Step 1 for the
succeeding iteration, v̄ will be generated as F (ū), and termination must then come in
Step 3. The situation is analogous when V0 consists of just v̄.

A companion result to Corollary 3.3 is the following.
Proposition 3.5. (Convergence onto critical faces.) Let {uν

0} and {vν
0} be se-

quences generated by Algorithm 1 or Algorithm 2. Then for the primal critical face
U0, we have either uν

0 ∈ U0 for all sufficiently large ν or uν
0 6∈ U0 for all sufficiently

large ν. Similarly, for the dual critical face V0 we have either vν
0 ∈ V0 for all suffi-

ciently large ν or vν
0 6∈ V0 for all sufficiently large ν.

Proof. We prove the primal part. The proof of the dual part is similar. Observe
that v̂ν

0 → v̄ as vν
0 → v̄ in the algorithm. Hence by Proposition 1.8, we have ûν

1 ∈ U0

as well as uν
2 ∈ U0 for sufficiently large ν. Then in Algorithm 1 we have

uν
0 ∈ U0 ⇒ [uν

0 , uν
2] ⊂ U0 ⇒ ûν+1

0 ∈ U0 ⇒ uν+1
0 ∈ U0

since uν+1
0 is defined either as ûν+1

0 or as ûν+1
1 . From this it is apparent that our

assertion is valid in the case of sequences generated by Algorithm 1.
For Algorithm 2, we claim that for sufficiently large ν we have uν

e ∈ U0 when
uν

0 ∈ U0. For if uν
e = uν

2 , we certainly have uν
e = uν

2 ∈ U0. If uν
e 6= uν

2 , then uν
cg

is a convex combination of uν−1
e and uν

2 ∈ U0, and there is no interactive restart in
iteration ν, i.e., ûν

0 = uν
0 ∈ U0. Now ûν

0 6= uν−1
0 by Proposition 3.1(b). Hence we have

either ûν
0 = uν−1

e which implies uν−1
e ∈ U0, or ûν

0 ∈ ri[uν−1
0 , uν−1

e], which also implies
uν−1

e ∈ U0 since U0 is a face of U . Then uν
cg ∈ U0, and by the definition of uν

e in the
algorithm we have uν

e ∈ U0. Therefore

uν
0 ∈ U0 ⇒ [uν

0 , uν
e] ⊂ U0 ⇒ ûν+1

0 ∈ U0 ⇒ uν+1
0 ∈ U0

for sufficiently large ν. Thus, our assertion is valid also in the case of sequences
generated by Algorithm 2.

Remark. With the aid of the concept of an ultimate quadratic region introduced
later in Definition 3.7, it will be seen that when the critical face condition is satisfied,
the assertion of the proposition can be written as follows: after the sequences {uν

0}
and {vν

0} have entered an ultimate quadratic region, once uν′

0 ∈ U0 for some ν′, then
uν

0 ∈ U0 for all ν ≥ ν′; and similarly once vν′′

0 ∈ V0 for some ν′′, then vν
0 ∈ V0 for all

ν ≥ ν′′.

16 c. zhu and r. t. rockafellar

For Algorithm 2, broader results on finite termination than the one in Corollary
3.4 will be obtained when the critical face condition is satisfied through reduction to
a simpler quadratic structure which is identified as governing in a neighborhood of
the solution. This local structure will also be the basis for developing convergence
rates for Algorithms 1 and 2 in cases without finite termination. In developing it in
the next theorem, we recall the notion of the affine hull aff C of a convex set C: this
is the smallest affine set that includes C, or equivalently, the intersection of all the
hyperplanes that include C [17].

Theorem 3.6. (Quadratic structure near optimality.) Suppose the critical face
condition is satisfied. Then f is quadratic in some neighborhood of ū, while g is
quadratic in some neighborhood of v̄. Furthermore, for points u0 ∈ U and v0 ∈ V
sufficiently close to ū and v̄, the P -projection of −∇P f(u0) on U − u0 is the same as
that on aff U0 − u0, while the Q-projection of ∇Qg(v0) on V − v0 is the same as that
on aff V0 − v0.

Proof. Since by Proposition 1.8 the point v1 = F (u0) lies in the critical face V0

when u0 is sufficiently close to ū, we have

(3.1) max
v∈V

{v·(q −Ru)− 1
2v·Qv} = max

v∈V0
{v·(q −Ru)− 1

2v·Qv}.

The mapping F is continuous (Proposition 1.4) and v̄ ∈ riV0 by assumption, so we
have v1 ∈ riV0 when u0 is sufficiently close to ū. Then (3.1) can further be written
instead as

max
v∈V

{v·(q −Ru)− 1
2v·Qv} = max

v∈affV0

{v·(q −Ru)− 1
2v·Qv}.

Locally, therefore,

(3.2) f(u) = p·u + 1
2u·Pu + max

v∈affV0

{v·(q −Ru)− 1
2v·Qv}.

Similarly, for v in some neighborhood of v̄ we have

(3.3) g(v) = q·v − 1
2v·Qv + min

u∈affU0

{u·(p−RT v) + 1
2u·Pu}.

The set aff V0, because it is affine and contains v̄, has the form v̄ + S for a certain
subspace S of lRm, which in turn can be written as the set of all vectors of the form
v′ = Dw for a certain m× d matrix D of rank d (the dimension of S). In substituting
v = v̄ +Dw in (3.2) and taking the maximum instead over all w ∈ lRd, we see through
elementary calculus and linear algebra that the maximum value is a quadratic function
of u. This establishes that f(u) is quadratic in u on a neighborhood of ū. The same
argument can be pursued in (3.3) to verify that g(v) is quadratic around v̄.

Next we consider the projected gradients. According to Proposition 1.6, the P -
projection of −∇P f(u0) on U −u0 is the vector u2−u0, where u2 = G

(
F (u0)

)
. When

u0 is close enough to ū in U , u2 belongs by Proposition 1.8 to ri U0, which is the
interior of U0 relative to aff U0. Thus, for u0 in some neighborhood of ū in U0 the
P -projection of −∇P f(u0) on U − u0 belongs to the relatively open convex subset
riU0 − u0 of U − u0 and must be the same as the projection on this subset or on
U0−u0 itself. When the nearest point of a convex set C belongs to riC, it is the same
the nearest point of aff C. The P -projection of −∇P f(u0) on U − u0 is therefore the

primal-dual projected gradient algorithms for elqp 17

same as the P -projection of −∇P f(u0) on aff U0 − u0. The Q-projection of ∇Qg(v0)
on V − v0 is analyzed in parallel fashion.

Theorem 3.6 together with Proposition 1.8 makes it possible for us to concentrate
our analysis of the terminal behavior of our algorithms, in the case of optimality
threshold ε = 0, on regions around (ū, v̄) of the following special kind.

Definition 3.7. (Ultimate quadratic regions.) By an ultimate quadratic region
for problems (P) and (Q) when the critical face condition is satisfied, we shall mean
an open convex neighborhood U∗ × V ∗ of (ū, v̄) with the properties that

(a) U∗ ∩ U0 = U∗ ∩ riU0 and V ∗ ∩ V0 = V ∗ ∩ riV0,
(b) f is quadratic on U∗ and g is quadratic on V ∗,
(c) for all u0 ∈ U∗∩U the P -projection of −∇P f(u0) on U−u0 is that on (aff U0)−

u0, while for all v0 ∈ V ∗ ∩ V the Q-projection of ∇Qg(v0) on V − v0 is that on
(aff V0)− v0,

(d) for all u0 ∈ U∗ ∩ U and v0 ∈ V ∗ ∩ V the points u1 = G(v0), v1 = F (u0),
u2 = G(v1) and v2 = F (u1) are such that u1 and u2 belong to ri U0, while v1 and v2

belong to ri V0.
Here we recognize that the affine sets aff U0 and aff V0 are translates of certain

subspaces, which in fact are the sets (aff U0)− ū and (aff V0)− v̄. The projections in
(c) of this definition can be described also in terms of these subspaces. Let

(3.4)
Sp = P -projection mapping onto the subspace (aff U0)− ū,

Sd = Q-projection mapping onto the subspace (aff V0)− v̄,

S⊥p = I − Sp, S⊥d = I − Sd.

The mapping S⊥p projects onto the subspace of lRn that is orthogonally complementary
to (aff U0) − ū with respect to the P -inner product in (1.10), while the mapping S⊥d
projects onto the subspace of lRm that is orthogonally complementary to (aff V0)− v̄
with respect to the Q-inner product. All these projections are linear transformations,
of course.

Proposition 3.8. (Projection decomposition.) For (u0, v0) in an ultimate
quadratic region U∗ × V ∗, one has for u2 := G(F (u0)) and v2 := F (G(v0)) that

u2 − u0 = Sp

(
−∇P f(u0)

)
− S⊥p (u0 − ū) = −Sp

(
∇2

P f(ū)(u0 − ū)
)
− S⊥p (u0 − ū),

v2 − v0 = Sd

(
∇Qg(v0)

)
− S⊥d (v0 − v̄) = Sd

(
∇2

Qg(v̄)(v0 − v̄)
)
− S⊥d (v0 − v̄).

Proof. The P -projection of −∇P f(u0) on (aff U0)− u0 can be realized by taking
the P -projection of −∇P f(u0) + (u0 − ū) on the set (aff U0)− u0 + (u0 − ū) and then
subtracting (u0 − ū). Therefore, in a region with property (c) of Definition 3.7 we
have by (1.17) in Proposition 1.6 that

u2 − u0 = Sp

(
−∇P f(u0) + (u0 − ū)

)
− (u0 − ū) = Sp

(
−∇P f(u0)

)
− (I − Sp)(u0 − ū),

which is the first equality asserted. The second equality comes from having
∇P f(u0) = ∇P f(ū) + ∇2

P f(ū)(u0 − ū) (since f is quadratic in the region in ques-
tion), and Sp

(
∇P f(ū)

)
= 0 by the optimality of ū. The proof of the dual equalities is

along the same lines.

4. Rate of Convergence. In taking advantage of the existence of an ultimate
quadratic region, we shall utilize in our technical arguments a change of variables that
will make a number of basic properties clearer. This change of variables amounts

18 c. zhu and r. t. rockafellar

to the introduction of orthonormal coordinate systems relative to the inner products
naturally associated with our problems, namely 〈· , ·〉P on lRn and 〈· , ·〉Q on lRm,
as given in (1.10). The coordinate systems are introduced in such a way that the
subspaces (aff U0)− ū and (aff V0)− v̄ for the projections in (3.4) and Proposition 3.8
take a very simple form.

Let W be an n× n orthogonal matrix and Z an m×m orthogonal matrix. Our

shift will be from u and v to ũ = WP
1
2 u and ṽ = ZQ

1
2 v. In these variables and with

Ũ = WP
1
2 U, Ṽ = ZQ

1
2 V,

our primal and dual problems take the form

minimize f̃(ũ) over all ũ ∈ Ũ ,(P̃)
maximize g̃(ṽ) over all ṽ ∈ Ṽ ,(Q̃)

where we have

(4.1) f̃(ũ) = sup
ṽ∈Ṽ

L̃(ũ, ṽ) and g̃(ṽ) = inf
ũ∈Ũ

L̃(ũ, ṽ),

(4.2) F̃ (ũ) = argmax
ṽ∈Ṽ

L̃(ũ, ṽ) and G̃(ṽ) = argmin
ũ∈Ũ

L̃(ũ, ṽ),

in the notation that

(4.3) L̃(ũ, ṽ) = p̃·ũ + 1
2‖ũ‖2 + q̃·ṽ − 1

2‖ṽ‖2 − ṽ·R̃ũ on Ũ × Ṽ ,

(4.4) p̃ = WP−
1
2 p, q̃ = ZQ−

1
2 q, R̃ = ZQ−

1
2 RP−

1
2 WT .

The optimal solutions ū and ū to (P) and (Q) translate into optimal solutions ¯̃u and
¯̃v to (P̃) and (Q̃), namely

(4.5) ¯̃u = WP
1
2 ū and ¯̃v = ZQ

1
2 v̄.

Let d1 be the dimension of the subspace (aff U0)− ū and d2 the dimension of the
subspace (aff V0)− v̄. We choose W such that, in the new coordinates corresponding

to the components of ũ, the set WP
1
2 (aff U0− ū) = aff Ũ0− ¯̃u is the subspace spanned

by the first d1 columns of In. Likewise, we choose Z such that in the ṽ coordinates

the set ZQ
1
2 (aff V0 − v̄) = aff Ṽ0 − ¯̃v is the subspace spanned by the first d2 columns

of Im. We partition the vectors ũ ∈ lRn and ṽ ∈ lRm into

(4.6) ũ =
(

ũf

ũr

)
and ṽ =

(
ṽf

ṽr

)
,

where ũf consists first d1 components of ũ and ṽf consists first d2 components of
ṽ. (Here uf is the “free” part of ũ, relative to (aff U0) − ū being the subspace that
indicates the remaining degrees of freedom in the tail of our convergence analysis when

primal-dual projected gradient algorithms for elqp 19

the critical face condition is satisfied, whereas ur is the “restricted” part of ũ.) The
projection mappings Sp, S⊥p , Sd, and S⊥d reduce in this way to the simple projections

(4.7)
S̃p :

(
ũf

ũr

)
7→
(

ũf

0

)
, S̃⊥p :

(
ũf

ũr

)
7→
(

0
ũr

)
,

S̃d :
(

ṽf

ṽr

)
7→
(

ṽf

0

)
, S̃⊥d :

(
ṽf

ṽr

)
7→
(

0
ṽr

)
.

We partition the columns of the matrix R̃ in accordance with ũ and the rows in
accordance with ṽ. Thus,

(4.8) R̃ =
(

R̃ff R̃fr

R̃rf R̃rr

)
.

In this notation the primal objective function in the transformed problem (P̃)
takes, in an ultimate quadratic region, the simple form

(4.9)
f̃(ũ) = 1

2 (ũ− ũ∗)·A(ũ− ũ∗) + const. for some ũ∗, where

A : = I +
(
R̃ff R̃fr

)T(
R̃ff R̃fr

)
,

while in the dual problem one similarly has

(4.10)
g̃(ṽ) = − 1

2 (ṽ − v∗)·B(ṽ − ṽ∗) + const. for some ṽ∗, where

B : = I +
(

R̃ff

R̃rf

)(
R̃ff

R̃rf

)T

.

In fact, in the notation (4.5) and with Ũ0 and Ṽ0 denoting the critical faces WP
1
2 U0

and ZQ
1
2 V0 in the transformed problems, one has the expansions

f̃(ũ) = f̃(¯̃u) + 1
2 (ũf − ¯̃uf)·

(
I + R̃T

ff R̃ff

)
(ũf − ¯̃uf) for ũ ∈ aff Ũ0,(4.11)

g̃(ṽ) = g̃(¯̃v)− 1
2 (ṽf − ¯̃vf)·

(
I + R̃ff R̃T

ff

)
(vf − ¯̃vf) for ṽ ∈ aff Ṽ0.(4.12)

It will be helpful to write the Hessian matrices A and B in (4.9) and (4.10) as

(4.13) A =
[

Aff Afr

Arf Arr

]
=
[

I + R̃T
ff R̃ff R̃T

ff R̃fr,

R̃T
frR̃ff I + R̃T

frR̃fr

]
,

(4.14) B =
[

Bff Bfr

Brf Brr

]
=
[

I + R̃ff R̃T
ff R̃ff R̃T

rf

R̃rf R̃T
ff I + R̃rf R̃T

rf

]
.

A crucial property of our change of variables ũ = WP
1
2 u and ṽ = ZQ

1
2 v is that

‖ũ‖ = ‖u‖P and ‖ṽ‖ = ‖v‖Q,

20 c. zhu and r. t. rockafellar

and accordingly

‖∇f̃(ũ)‖ = ‖∇P f(u)‖P and ‖∇g̃(ṽ)‖ = ‖∇Qg(v)‖Q,

‖∇2f̃(ũ)‖ = ‖∇2
P f(u)‖P and ‖∇2g̃(ṽ)‖ = ‖∇2

Qg(v)‖Q.

The following result is a strengthening of Proposition 3.1 in the sense that it
gives a quantitative estimate for the relationship between ‖u0 − u2‖P and ‖u0 − ū‖P

in primal, and between ‖v0 − v2‖Q and ‖v0 − v̄‖Q in the dual.
Proposition 4.1. (Norm estimates.) Suppose the critical face condition is sat-

isfied. Then for u0 and v0 in an ultimate quadratic region for problems (P) and (Q),
and with u2 := G(F (u0)) and v2 := F (G(v0)), one has

(4.15) (5+4‖∇2
P f(ū)‖2P)−

1
2 ‖u0− ū‖P ≤ ‖u0−u2‖P ≤ (1+ ‖∇2

P f(ū)‖2P)
1
2 ‖u0− ū‖P ,

(4.16) (5 + 4‖∇2
Qg(v̄)‖2Q)−

1
2 ‖v0 − v̄‖Q ≤ ‖v0 − v2‖Q ≤ (1 + ‖∇2

Qg(v̄)‖2Q)
1
2 ‖v0 − v̄‖Q.

Proof. In the transformed coordinates the first equation in Proposition 3.8 gives
us ũ2 − ũ0 = −S̃p

(
∇2f̃(˜̄u)(ũ0 − ˜̄u)

)
− S̃⊥p (ũ0 − ˜̄u). In the notation (4.13) for ∇2f(¯̃u)

this gives

‖ũ0 − ũ2‖2 = ‖S̃p

(
A(ũ0 − ¯̃u)

)
‖2 + ‖S̃⊥p (ũ0 − ¯̃u)‖2

≤ ‖A(ũ0 − ¯̃u)‖2 + ‖ũ0 − ¯̃u‖2 ≤ (‖A‖2 + 1) ‖ũ0 − ¯̃u‖2.

This gives the right half of (4.15). To get the left half, decompose ũ0− ¯̃u into µ1ξ+µ2η,
where ξ is a unit vector in the null space of (Aff Afr) while η is a unit vector in the
orthogonal complement of that null space, and the direction of η is so chosen that
µ2 > 0. Partition ξ and η as well:

ξ =
(

ξf

ξr

)
, η =

(
ηf

ηr

)
.

It follows from (Aff Afr)ξ = Affξf + Afrξr = 0 that ξf = −A−1
ff Afrξr and

‖ξf‖2 ≤ ‖A−1
ff ‖2‖Afr‖2‖ξr‖2 ≤ ‖Afr‖2‖ξr‖2,

because the smallest eigenvalue of Aff is no less than 1. Therefore

‖ξ‖2 = ‖ξf‖2 + ‖ξr‖2 ≤ (1 + ‖Afr‖2)‖ξr‖2 ⇒ ‖ξr‖2 ≥
1

1 + ‖Afr‖2
≥ 1

1 + ‖A‖2
.

Denote ‖ũ0 − ¯̃u‖ by κ. We get

‖µ1ξr + µ2ηr‖ ≥ µ1‖ξr‖ − µ2‖ηr‖ ≥ (κ2 − (µ2)2)1/2(1 + ‖A‖2)−1/2 − µ2.

Recalling that all the eigenvalues of Aff are no less than 1, we obtain

‖ũ0 − ũ2‖2 = ‖(Aff Afr)µ2η‖2 + ‖µ1ξr + µ2ηr‖2

≥ µ2
2 +

(
max{0, (κ2 − µ2

2)1/2(1 + ‖A‖2)−1/2 − µ2 }
)2

.

primal-dual projected gradient algorithms for elqp 21

But the term (κ2−µ2
2)1/2(1+ ‖A‖2)−1/2−µ2 decreases monotonically as µ2 increases

from 0. This term equals µ̄2 := (5+4‖A‖2)−1/2κ when µ2 = µ̄2. Therefore ‖ũ0−ũ2‖2 ≥
(µ̄2)2, from which the left half of (4.15) follows. The proof of (4.16) is similar.

Theorem 4.2. (Rate of convergence of PDSD.) Consider Algorithm 1 in the case
of threshold ε = 0, and suppose the critical face condition is satisfied. In terms of

γ := γ(P,Q,R) := ‖Q−
1
2 RP−

1
2 ‖, let

c1 := 1− 1
(1 + γ2)

[
2 + 5(1 + γ2) + 4(1 + γ2)3

] < 1,(4.17)

c2 :=
(

1− 1
1 + γ2/2

)2

< 1.(4.18)

Unless the algorithm actually terminates in a finite number of iterations with (û, v̂) =
(ū, v̄), the sequences {f(uν

0)} and {g(vν
0)} generated by it converge linearly to the com-

mon optimal value f(ū) = g(v̄) in the sense that

(4.19) limsup
ν→∞

f(uν+1
0)− f(ū)

f(uν
0)− f(ū)

≤ c1 and limsup
ν→∞

g(vν+1
0)− g(v̄)

g(vν
0)− g(v̄)

≤ c1.

Moreover let ν̄ be an iteration number such that for ν ≥ ν̄ all the points uν
0 , uν

2 and
vν
0 , vν

2 are in an ultimate quadratic region in Definition 3.7. Then once uν′

0 ∈ U0 for
some ν′ ≥ ν̄ (as is sure to happen in an interactive primal restart at that stage) one
has

(4.20)
f(uν+1

0)− f(ū)
f(uν

0)− f(ū)
≤ c2 ∀ν ≥ ν′,

and similarly, once vν′′

0 ∈ V0 for some ν′′ ≥ ν̄ (as is sure to happen in an interactive
dual restart at that stage) one has

(4.21)
g(vν+1

0)− g(v̄)
g(vν

0)− g(v̄)
≤ c2 ∀ν ≥ ν′′.

Proof. Under the assumption that the algorithm does not terminate after a finite
number of iterations at (ū, v̄), neither uν

0 nor vν
0 is optimal, as we have shown in the

proof of Proposition 3.1(b).
Again we work in the transformed coordinates. Consider ν ≥ ν̄, i.e., the sequences

{ũν
0}, {ũν

2} and {ṽν
0}, {ṽν

2} have entered the ultimate quadratic region. With respect
to the direction vector dν := ũν

2 − ũν
0 , the optimal step length λ̄ν for ũ = ũν

0 + λdν to
minimize the quadratic form (4.9) over all λ ∈ [0,∞) can be written as

(4.22)
λ̄ν =

−dν·A(ũν
0 − ũ∗)

dν·Adν

=

[
S̃pA(ũν

0 − u∗) + S̃⊥p (ũν
0 − ¯̃u)

]
·A(ũν

0 − ũ∗)[
S̃pA(ũν

0 − ũ∗) + S̃⊥p (ũν
0 − ¯̃u)

]
·A
[
S̃pA(ũν

0 − ũ∗) + S̃⊥p (ũν
0 − ¯̃u)

]
.

In the following, we first show that λ̄ν ≤ 1. Then the search on [ũν
0 , ũν

2] in Step 5 of
the algorithm is equivalent to a search on the corresponding half-line (or is “perfect,”
for short), and there exist easy ways to estimate progress in the line search step. By
Proposition 3.5 (cf. also the remark afterward), we have

22 c. zhu and r. t. rockafellar

Case 1: there exists some ν′ ≥ ν̄ such that ũν
0 ∈ Ũ0 for all ν ≥ ν′, or

Case 2: ũν
0 6∈ Ũ0 for all ν ≥ ν̄.

In Case 1 the equation S̃⊥p (ũν
0 − ¯̃u) = 0 holds for all ν ≥ ν′. Then it follows from

(4.22) that

λ̄ν =
S̃p

(
A(ũν

0 − ũ∗)
)
·A(ũν

0 − ũ∗)

S̃p

(
A(ũν

0 − ũ∗)
)
·AS̃p

(
A(ũν

0 − ũ∗)
) =

S̃p

(
A(ũν

0 − ũ∗)
)
·S̃p

(
A(ũν

0 − ũ∗)
)

S̃p

(
A(ũν

0 − ũ∗)
)
·AS̃p

(
A(ũν

0 − ũ∗)
) ≤ 1,

because all the eigenvalues of A are at least 1. Now Step 5 of the algorithm must
coincide with the steepest descent method for f̃ on aff Ũ0 with “perfect” line search,
since [ũν

0 , ũν
2] is in an ultimate quadratic region of the problem. Note that all the

eigenvalues of the Hessian matrix Aff are in the interval [1, 1 + ‖R̃ff‖2], where
‖R̃ff‖2 ≤ ‖R̃‖2 = γ2. Hence by using the expression of f̃ in (4.11), we have [22]

(4.23)
f̃(ˆ̃u

ν+1
0)− f̃(¯̃u)

f̃(ũν
0)− f̃(¯̃u)

≤

(
‖R̃ff‖2

‖R̃ff‖2 + 2

)2

≤

(
1− 1

1 + 1
2‖R̃‖2

)2

,

which yields (4.20) since f̃(ũν+1
0) ≤ f(ˆ̃u

ν+1
0) in the algorithm.

In Case 2 we have λ̄ν < 1 for all ν ≥ ν̄, since otherwise ũν
2 would be taken as the

next point ũν+1
0 and the iteration would be on the critical face Ũ0 thereafter. Hence

the line search restricted to [ũν
0 , ũν

2] is again “perfect.” On exiting from the line search
in Step 5, we have

f̃(ũν
0)− f̃(ˆ̃uν+1

0)
f̃(ũν

0)− f̃(¯̃u)
=

(λ̄ν)2dν·Adν

2
[
f̃(ũν

0)− f̃(¯̃u)
]

=

[
A(ũν

0 − ũ∗)·S̃p

(
A(ũν

0 − ũ∗)
)

+ A(ũν
0 − ũ∗)·S̃⊥p (uν

0 − ū)
]2

(dν·Adν)
[
(ũν

0 − ũ∗)·A(ũν
0 − ũ∗)− (¯̃u− ũ∗)·A(¯̃u− ũ∗)

]
=

[
dν·dν −

(
ũν

0 − ¯̃u−A(ũν
0 − ũ∗)

)
·S̃⊥p (ũν

0 − ¯̃u)
]2

(dν·Adν)
[
(ũν

0 − ¯̃u)·A(ũν
0 − ¯̃u) + 2(ũν

0 − ¯̃u)·A(¯̃u− ũ∗)
] .

Defining b(ũ) := ũ− ¯̃u−A(ũ− ũ∗) and observing f̃(ũν+1
0) ≤ f̃(ˆ̃uν+1

0), we obtain from
the equation S̃p

(
A(¯̃u− ũ∗)

)
= 0 (which is based on the optimality of ˆ̃u) that

f̃(ũν
0)− f̃(ũν+1

0)
f̃(ũν

0)− f̃(¯̃u)
≥

[
dν·dν + b(uν

0)·S̃⊥p (ũν
0 − ¯̃u)

]2
(dν·Adν)

[
(ũν

0 − ¯̃u)·A(ũν
0 − ¯̃u)− 2b(¯̃u)·S̃⊥p (ũν

0 − ¯̃u)
]

≥
(dν·dν)2 +

[
b(ũν

0)·S̃⊥p (ũν
0 − ¯̃u)

]2
(dν·Adν)

[
(ũν

0 − ¯̃u)·A(ũν
0 − ¯̃u)− 2b(¯̃u)·S̃⊥p (ũν

0 − ¯̃u)
] .

By Theorem 3.2 the algorithm converges, hence for arbitrarily chosen ε̃ > 0, we have
‖b(ũν

0)− b(¯̃u)‖ ≤ ε̃ for sufficiently large ν. Then

|b(ũν
0)·S̃⊥p (ũν

0 − ¯̃u)| = |b(¯̃u)·S̃⊥p (ũν
0 − ¯̃u) +

(
b(ũν

0)− b(¯̃u)
)
·S̃⊥p (ũν

0 − ¯̃u)|
≥ |b(¯̃u)·S̃⊥p (ũν

0 − ¯̃u)| − |
(
b(ũν

0)− b(¯̃u)
)
·S̃⊥p (ũν

0 − ¯̃u)|
≥ |b(¯̃u)·S̃⊥p (ũν

0 − ¯̃u)| − ε̃‖S̃⊥p (ũν
0 − ¯̃u)‖.

primal-dual projected gradient algorithms for elqp 23

But |b(¯̃u)·S̃⊥p (ũν
0 − ¯̃u)| = ‖∇f̃(¯̃u)‖·‖S̃⊥p (ũν

0 − ¯̃u)‖. Therefore

(4.24)
|b(ũν

0)·S̃⊥p (ũν
0 − ¯̃u)|

|b(¯̃u)·S̃⊥p (ũν
0 − ¯̃u)|

≥ 1− ε̃

‖∇f̃(¯̃u)‖

where ∇f̃(¯̃u) 6= 0, for otherwise Ũ0 = Ũ and then ũν
0 ∈ Ũ0 in contradiction to our

assumption in Case 2.
Now, if dν·dν ≥ −b(ũν

0)·S̃⊥p (ũν
0 − ¯̃u), we obtain from (4.15) that

f̃(ũν
0)− f̃(ũν+1

0)
f̃(ũν

0)− f(¯̃u)
≥ (dν·dν)2

(dν·Adν)
[
(ũν

0 − ¯̃u)·A(ũν
0 − ¯̃u) + 2dν·dν

]
≥ 1
‖A‖

[
2 + ‖A‖(5 + 4‖A‖2)

] .
Otherwise dν·dν < −b(ũν

0)·S̃⊥p (ũν
0 − ¯̃u), and then

f̃(ũν
0)− f̃(ũν+1

0)
f̃(ũν

0)− f̃(¯̃u)

≥
[
b(ũν

0)·S̃⊥p (ũν
0 − ¯̃u)

]2
‖A‖

[
b(¯̃u)·S̃⊥p (ũν

0 − ¯̃u)
][
‖A‖(5 + 4‖A‖2)b(¯̃u)·S̃⊥p (ũν

0 − ¯̃u) + 2b(¯̃u)·S̃⊥p (ũν
0 − ¯̃u)

]
=

1
‖A‖

(
2 + ‖A‖(5 + 4‖A‖2)

)(1− ε̃

‖∇f̃(¯̃u)‖

)
by (4.24). Thus, we have

liminf
ν→∞

f̃(ũν
0)− f̃(ũν+1

0)
f̃(ũν

0)− f̃(¯̃u)
≥ 1
‖A‖

(
2 + ‖A‖(5 + 4‖A‖2)

) ,
which can be written as

(4.25) limsup
ν→∞

f̃(ũν+1
0)− f̃(¯̃u)

f̃(ũν
0)− f̃(¯̃u)

≤ 1− 1
‖A‖

(
2 + ‖A‖(5 + 4‖A‖2)

) .
Noting that ‖A‖ = 1 + ‖(R̃ff R̃fr)‖2 ≤ 1 + ‖R̃‖2 = 1 + γ2, we get the first inequality
in (4.19), which is also true for Case 1 in view of (4.20) since c2 < c1. The dual part
has a parallel argument.

Observe that the rates in (4.20) and (4.21) are much better than the ones in
(4.19). The former will be effective if any interactive restarts occur for ν ≥ ν̄, as
indicated in the theorem. This partially explains the effects of interactive restarts on
the algorithm as observed in our numerical tests.

The role of the constant γ = γ(P,Q,R) in the convergence rate in Theorem 4.2 has
been borne out in our numerical tests, although because of the interactive restarts the
method appears to work much better than one might expect from “steepest descent.”
We have definitely observed in small-scale problems where some idea of the size of γ
is available that the convergence is faster with low γ than with high γ.

Although Theorem 4.2 centers on the specialization of Algorithm 0 to Algorithm 1,
the argument has content also for Algorithm 2. Recall from the discussion after the

24 c. zhu and r. t. rockafellar

statement of Algorithm 0 in Section 2 that in every k iterations of Algorithm 0 (when
implemented with cycle size k > 1) there is at least one primal line search on [uν

0 , uν
2]

and at least one dual line search on [vν
0 , vν

2]. This gives us the following result about
Algorithm 2, which will be complemented by a finite termination result in Theorem
4.5.

Corollary 4.3. (Rate of convergence of PDCG.) Suppose the critical face con-
dition is satisfied. Then Algorithm 2 with ε = 0 converges at least k-step linearly in
the sense that

(4.26) limsup
ν→∞

f(uν+k
0)− f(ū)

f(uν
0)− f(ū)

≤ c1 and limsup
ν→∞

g(vν+k
0)− g(v̄)

g(vν
0)− g(v̄)

≤ c1,

where c1 is the value defined in (4.17), unless the algorithm terminates after a finite
number of iterations with (û, v̂) = (ū, v̄).

To derive a special finite termination property of Algorithm 2, we need the fol-
lowing.

Proposition 4.4. (inequalities in PDCG.) Suppose the critical face condition is
satisfied. Let ν̂ be an iteration number such that for ν ≥ ν̂, all the points uν

0 , uν
2 and

vν
0 , vν

2 are in an ultimate quadratic region U∗ × V ∗ in Definition 3.7, where U∗ is
contained in the ‖ · ‖P -ball around ū of radius 1

2 , and likewise V ∗ is contained in the
‖ · ‖Q-ball around v̄ of radius 1

2 . If uν′

0 ∈ U0 for some ν′ ≥ ν̂, then in Algorithm 2 one
has

(4.27) 〈wν
p , uν−1

e − uν
0〉P > 0

whenever (2.1)–(2.4) are used to generate uν
e for ν > ν′, and similarly if vν′′

0 ∈ V0 for
some ν′′ ≥ ν̂, then in Algorithm 2 one has

(4.28) 〈wν
d , vν−1

e − vν
0 〉Q > 0

whenever (2.5)–(2.8) are used to generate vν
e for ν > ν′′.

Proof. It suffices once more to give the argument in the context of the transformed
variables. Observe that the gradient mapping ∇f̃ is strongly monotone, and that
w̃ν

p = ∇f̃(ũν
0)−∇f̃(ũν−1

0) with ũν
0 ∈ [ũν−1

0 , ũν−1
e] when (2.1)–(2.4) are used to generate

uν
e in the primal. Hence the primal part of the assertion is true if ũν

0 6= ũν−1
e for ν > ν′.

According to Proposition 3.5 (cf. also the remark after it), one has ũν
0 ∈ Ũ0 for all

ν ≥ ν′. We partition all vectors in conformity with the scheme in (4.6). Then ũν
0,r = ¯̃ur

and ũν
2,r = ¯̃ur.

If the (ν−1)th iteration with ν > ν′ is the first iteration of a primal cycle, then the
line search is performed on [ũν−1

0 , ũν−1
2]. For the direction vector dν−1 := ũν−1

2 − ũν−1
0 ,

the optimal step length λ̄ν for ũ = ũν
0 +λdν to minimize the quadratic form (4.9) over

all λ ∈ [0,∞) can be derived from the expression in (4.11) as

λ̄ν−1 =
−dν−1·∇f̃(ũν−1

0)
dν−1·Adν−1

=
dν−1

f ·dν−1
f

dν−1
f ·Affdν−1

f

,

where the first equation in Proposition 3.8 has been used with ∇f̃(ũν−1
0), and Aff is

the Hessian component in (4.13). Note that none of the eigenvalues of Aff is less than
1. Hence λ̄ν−1 ≤ 1, and the equality holds only if dν−1

f is an eigenvector corresponding
to 1 as an eigenvalue of Aff , i.e., Affdν−1

f = dν−1
f . But it follows from (4.11) and the

primal-dual projected gradient algorithms for elqp 25

first equation in Proposition 3.8 that we also have Aff (¯̃uf − ũν−1
0,f) = dν−1

f . Therefore
λ̄ν−1 = 1 implies ũν−1

2,f = ¯̃uf and ũν−1
2 = ¯̃u. And then ũν

0 = ¯̃u, i.e., the iteration
terminates at the primal optimal solution.

If the (ν − 1)th iteration with ν > ν′ is not the first iteration of a primal cycle,
then formulas (2.1)–(2.4) are used to define ũν−1

e . In the proof of Proposition 3.5,
we have actually shown that ũν−1

e ∈ Ũ0 for all ν > ν′. Hence [ũν−1
0 , ũν−1

e] ⊂ Ũ0 for
all ν > ν′. Then it follows from (2.4) that ‖ũν−1

e − ũν−1
0 ‖ ≥ 1 unless ũν−1

e is on the
relative boundary of Ũ0. In either case we have ũν

0 6= ũν−1
e again, since ũν−1

0 ∈ Ũ∗ for
ν > ν′ and Ũ∗ is contained in the ‖ · ‖P -ball around ū of radius 1

2 . The dual claims
can be verified similarly.

Theorem 4.5. (A finite termination property of PDCG.) Assume that the crit-
ical face condition is satisfied. Suppose that the cycle size k chosen in Algorithm
2 is such that k > k̄, where k̄ denotes the rank of the linear transformation u 7→
Sd

(
RSp(u)

)
. (It suffices in this to have k > min{m,n}.) Let ν̂ be an iteration num-

ber as defined in Proposition 4.4 and satisfying the conditions there. If uν′

0 ∈ U0 for
some ν′ ≥ ν̂ (as is sure to happen in an interactive primal restart at that stage), then
the algorithm will terminate in the next full primal cycle, if not earlier. Similarly, if
vν′′

0 ∈ V0 for some ν′′ ≥ ν̂ (as is sure to happen in an interactive dual restart at that
stage), then the algorithm will terminate in the next full dual cycle, if not earlier.

Proof. We concentrate on the primal part; the proof of the dual part is parallel.
In the transformed variables, where we place the argument once more, k̄ is the rank
of the submatrix R̃ff of R̃ in (4.8). Note that for ν ≥ ν̂ the process is in an quadratic
region of the problem as specified in Proposition 4.4. In the proof of Proposition 4.4,
we have shown that for all ν ≥ ν′, [ũν

0 , ũν
e] ⊂ Ũ0, and that the line searches on [ũν

0 , ũν
e]

are “perfect” in the sense that, on exiting Step 5 of iteration ν, ũν+1
0 minimizes f̃

on the half-line from ũν
0 in the direction of ũν

e − ũν
0 . Observe there is no interactive

primal restart in the first k− 1 iterations of a full primal cycle, i.e., ˆ̃uν
0 = ũν

0 for these
iterations. We claim now that the search direction vectors ũν

e − ũν
0 and ṽν

e − ṽν
0 are

the same as the ones that would be generated by a conjugate gradient algorithm on f̃
relative to aff Ũ0. The finite termination property will be a consequence of observing
that the Hessians of f̃ in an quadratic region of the problem (cf. (4.11)) have at most
k̄ + 1 different eigenvalues.

The proof of the claim will go by induction. We know from Proposition 3.8 that
the claim is true for the first iteration of the full primal cycle in question. Suppose
it is true for the (ν − 1)th iteration generating ũν

0 in that cycle, but ũν
0 6= ¯̃u. Then

by (4.27) in Proposition 4.4, the first alternative of (2.2) will be used to generate βν
p .

Hence it follows from (2.1)–(2.3) and Proposition 3.8 that
(4.29)

(ũν
cg − ũν

0)f =
(ũν

2 − ũν
0)f + βν

p (ũν−1
e − ũν

0)f

1 + βν
p

=
−∇f̃(ũν

0)f + βν
p (ũν−1

e − ũν
0)f

1 + βν
p

,

βν
p (ũν−1

e − ũν
0)f =

max{0, (∇f̃(uν
0)f −∇f̃(ũν−1

0)f)·∇f̃(ũν
0)f}

(∇f̃(ũν
0)f −∇f̃(ũν−1

0)f)·(ũν−1
e − ũν

0)f

(ũν−1
e − ũν

0)f ,

where all the points ũν−1
e , ũν

0 and ũν
2 are on the critical face Ũ0. By the induction

hypothesis, the directions of line search are the same as the ones generated by the
conjugate gradient algorithm in all the previous iterations of the cycle. Hence

∇f̃(ũν
0)f ·∇f̃(ũν−1

0)f = 0

26 c. zhu and r. t. rockafellar

which implies (∇f̃(ũν
0)f−∇f̃(ũν−1

0)f)·∇f̃(ũν
0)f ≥ 0. Therefore, by noting that ũν−1

e −
ũν

0 is a positive multiple of ũν
0 − ũν−1

0 , we obtain

(4.30) βν
p (ũν−1

e − ũν
0)f =

(∇f̃(ũν
0)f −∇f̃(ũν−1

0)f)·∇f̃(ũν
0)f

(∇f̃(ũν
0)f −∇f̃(ũν−1

0)f)·(ũν−1
0 − ũν

0)f

(ũν−1
0 − ũν

0)f .

Comparing (4.29) and (4.30) with the conjugate gradient formulas of Hestenes and
Stiefel [22], we see that the vector ũν

cg − ũν
0 is equivalent to the search direction vector

in a standard conjugate gradient algorithm for f̃ relative to the free variables, i.e.,
over aff Ũ0.

Observe that the rank of linear transformation in Theorem 4.5 is bounded above
by the ranks of the projection mappings Sp and Sd, which are dim U0 and dim V0.
Hence

k̄ ≤ min{dim U0, dim V0}.

Therefore, even in the case that the original problems (P) and (Q) are of high dimen-
sion, the optimal solution can still be reached in a relatively short cycle after entering
an ultimate quadratic regions for the problem if merely one of the critical faces U0

and V0 happens to be of low dimension, provided that at least one of the critical faces
is eventually reached by the corresponding iterates. This condition will certainly be
satisfied if any interactive restarts occur for ν ≥ ν̂, since all points ûν

1 and v̂ν
1 will be

on the critical faces U0 and V0 by Proposition 1.8, and once uν
0 or vν

0 are on the critical
faces, they will stay there (Proposition 3.5).

There are ways to force this condition to be satisfied, such as to insert at the be-
ginning of each primal cycle a line search in the direction of the projection of −∇f(uν

0)
on the tangent cone to U at uν

0 , and similarly in the dual. (See Burke and Moré [23].)
But even without such remedies, we often find in our test problems that the critical
faces are identified in the tail of iteration, and that restarts do occur in most cases,
after which the iteration terminates at the optimal solution in a few steps.

5. Envelope Properties. To finish off, we establish two results on the finite-
envelope property of the points uν

1 and vν
1 in our algorithms.

Proposition 5.1. (General saddle point property of iterates.) On exiting from
Step 5 of Algorithm 0 with ûν+1

0 and v̂ν+1
0 , the elements ûν+1

1 ∈ G(v̂ν+1
0) and v̂ν+1

1 ∈
F (ûν+1

0) that will be calculated on return to Step 1 will be such that the pair (ûν+1
0 , v̂ν+1

1)
is the unique saddle point of L(u, v) on [uν

0 , uν
2]×V , while the pair (ûν+1

1 , v̂ν+1
0) is the

unique saddle point of L(u, v) on U × [vν
0 , vν

2]. In particular, ûν+1
1 will be the unique

minimizing point relative to U for the envelope function

fν(u) := max
v∈[vν

0 ,vν
2]

L(u, v) ≤ max
v∈V

L(u, v) = f(u),

whereas v̂ν+1
1 will be the unique maximizing point relative to V for the envelope function

gν(u) := min
u∈[uν

0 ,uν
2]

L(u, v) ≥ min
u∈U

L(u, v) = g(u).

Proof. Recall that because we are in the fully quadratic case, L(u, v) and f(u)
are strictly convex in u, while L(u, v) and g(v) are strictly concave in v. In particular,
ûν+1

0 must be the unique solution to the problem in Step 5 of minimizing f(u) over
u ∈ [uν

0 , uν
2]. This is the primal problem of extended linear-quadratic programming

that corresponds to L on [uν
0 , uν

2] × V instead of U × V . Applying Theorem 1.1 to

primal-dual projected gradient algorithms for elqp 27

it instead of to the original problem we deduce the existence of a vector v′ such that
(ûν+1

0 , v′) is a saddle point of L relative to [uν
0 , uν

2] × V . Then v′ is the unique point
maximizing L(ûν+1

0 , v) with respect to v ∈ V (by the strict concavity of L(u, v) in v).
Thus, v′ is the unique element of F (ûν+1

0), so v′ = v̂ν+1
1 . It follows from Theorem 1.1

again that (ûν+1
0 , v̂ν+1

1) is the unique saddle point of L(u, v) on [uν
0 , uν

2]×V , and v̂ν+1
1

is the unique solution to the corresponding dual problem, which by definition consists
of maximizing the function gν over V .

The rest of the assertions are true by a parallel argument in which Theorem 1.1
is applied to the primal and dual problems that correspond to L on U × [vν

0 , vν
2].

Proposition 5.2. (Ultimate saddle point property of iterates.) Suppose the crit-
ical face condition is satisfied. Let ν̂ be an iteration number as specified in Proposition
4.4 and satisfying the conditions there. If ν = r ≥ ν̂ is the first iteration of some
primal cycle with vr

0 ∈ U0, then for all ν ≥ r in that cycle, on exiting from Step 5 of
Algorithm 2 with ûν+1

0 the element v̂ν+1
1 ∈ F (ûν+1

0) that will be calculated on return to
Step 1 will be such that (ûν+1

0 , v̂ν+1
1) is the unique saddle point of L(u, v) on Uν × V ,

where

(5.1) Uν := aff
{
[ur

0, u
r
e]× · · · × [uν

0 , uν
e]
}
∩ U0

and dim(aff
{
[ur

0, u
r
e] × · · · × [uν

0 , uν
e]
}
) = ν − r + 1. In particular, v̂ν+1

1 will be the
unique maximizing point relative to V for the envelope function

gν(v) := min
u∈Uν

L(u, v) ≥ min
u∈U

L(u, v) = g(u),

and one will have gν+1 ≤ gν in that primal cycle. Moreover, for ν = r + d1 − 1
with d1 := dim U0, it will be true that gν = g in an ultimate quadratic region for the
problem, and also that v̂ν+1

1 = v̄, as long as the algorithm does not terminate earlier.
Similarly, if ν = s ≥ ν̂ is the first iteration of some dual cycle with vs

0 ∈ V0,
then for all ν ≥ s in that cycle, on exiting from Step 5 of Algorithm 2 with v̂ν+1

0 the
element ûν+1

1 ∈ G(v̂ν+1
0) that will be calculated on return to Step 1 will be such that

(ûν+1
1 , v̂ν+1

0) is the unique saddle point of L(u, v) on U × V ν , where

(5.2) V ν := aff
{
[vs

0, v
s
e]× · · · × [vν

0 , vν
e]
}
∩ V0,

with dim(aff
{
[vs

0, v
s
e] × · · · × [vν

0 , vν
e]
}
) = ν − s + 1. In particular, ûν+1

1 will be the
unique minimizing point relative to U for the envelope function

fν(u) := max
v∈V ν

L(u, v) ≤ max
v∈V

L(u, v) = f(u),

and one will have fν+1 ≥ fν in that dual cycle. Moreover, for ν = s + d2 − 1 with
d2 := dim V0, it will be true that fν = f in an ultimate quadratic region for the
problem, and also that ûν+1

1 = ū, as long as the algorithm does not terminate earlier.
Proof. We concentrate on the primal part; the proof of the dual part is parallel.

The argument is similar to the one given for Proposition 5.1, but with the segment
[uν

0 , uν
2] replaced by Uν . Recall from the proof of Theorem 4.5 that for ν ≥ r, the primal

procedure is equivalent to the conjugate gradient algorithm on the restriction of f to
the affine hull aff U0 of the critical face U0. Therefore the vectors ur

e−ur
0, · · · , uν

e −uν
0

are linearly independent, and ûν+1
0 minimizes f(u) over u ∈ Uν . The inequality

gν+1 ≤ gν follows from the inclusion Uν+1 ⊃ Uν . When ν = r + d1 − 1 we have
dim

(
[ur

0, u
r
e]× · · · × [uν

0 , uν
e]
)

= d1, and then Uν = U0. From the fact that (3.3) holds

28 c. zhu and r. t. rockafellar

in Ṽ ∗ (cf. the derivation of this relation in the proof of Theorem 3.6) we get gν = g
in an ultimate quadratic region.

This result tells us that on entering an ultimate quadratic region, the primal iter-
ations in Algorithm 2 produce an improving envelope for the dual objective function
which approaches that function, whereas the dual iterations produce an improving
envelope for the primal objectives which approaches that function. To some extent
this explains the phenomenon we have observed in our numerical experiments that
restarts often incur fast termination, or at least bring significant progress in the next
few iterations.

6. Numerical Tests. Numerical tests of Algorithm 1, the Primal-Dual Steepest
Descent Algorithm (PDSD), and Algorithm 2, the Primal-Dual Conjugate Gradient
Algorithm (PDCG), have been conducted on a DECstation 3100 with double precision
on some medium to large-sized problems. For comparisons we have used the Basic
Finite Envelope Method (BFEM) of [6] and the Stanford LSSOL code of Gill, Ham-
marling, Murray, Saunders and Wright [24] for quadratic programming. To enhance
the performance of LSSOL in this situation, we tailored its Cholesky factorization
subroutine to take advantage of the special structure of the P and Q matrices in our
examples.

Comparisons with LSSOL are based on the fact that any extended-linear-quadratic
programming problem can be converted into a standard quadratic programming prob-
lem by introducing auxiliary variables and additional constraints [1, Theorem 1]. It
must be kept in mind, however, that such a transformation not only increases the
dimension substantially but disrupts much of the large-scale structure that might be
put to use. A fundamental difficulty with any comparisons with available QP meth-
ods, therefore, is that such methods are not really designed to handle the kinds of
problems we wish to tackle, which stem from [1], [2] and [6]. They typically require
setting up and working with the huge R matrix, and trying to exploit any sparsity
patterns that might be present in it, whereas we never need this matrix but work
with decomposition in the calculation of the F and G, as explained in Section 1, after
Proposition 1.6.

The integer recorded as the “size” of each problem is the number of primal vari-
ables and also the number of dual variables. (The two would not have to be the same.)
Thus, size = 100 means that problem (P) is an extended linear-quadratic program-
ming problem on lR100 for which the dual (D) is likewise such a problem on lR100, while
the associated Lagrangian saddle point problem concerns a quadratic convex-concave
function on a product of polyhedral sets in lR100 × lR100. In order to solve such a
problem using LSSOL, it must be reformulated as a primal problem in 400 variables
with 100 general equality constraints and 200 lower bounds on the auxiliary variables,
in addition to having the original polyhedral constraints on the 100 primal variables.

In all the tests of PDCG and PDSD we have taken δ = 10−2 as the progress
threshold and ε = 10−8 as the optimality threshold. For PDCG we have taken k = 5
as the cycle size parameter (whereas PDSD always has k = 1 by definition). We have
run BFEM with “mode=1,” which means that in each iteration a quadratic saddle
point subproblem is solved over a product of two triangles. For the sake of expediency
in solving this small subproblem we have set it up as a standard QP problem in the
manner of [1, Theorem 1] and have applied LSSOL. No doubt the CPU time could be
improved by using a customized procedure within BFEM instead of this heavy-handed
approach.

The generation of test problems of large size raises serious questions about the

primal-dual projected gradient algorithms for elqp 29

representative nature of such problems. It does not make sense to think of a large
problem simply in terms of a large matrix, the elements of which are all random.
Rather, a certain amount of structure must be respected. As an attempt to address this
issue, we have taken all our problems to have the (deterministic) dynamical structure
described in Rockafellar and Wets [5]. Only the parameters natural to this structure
have been randomized. The dynamical structure enables us to use special routines
in calculating f(u) and F (u), and on the other hand g(v) and G(v) [7]. For this
purpose, and in implementing BFEM, we rely on code written by S. E. Wright [25] at
the University of Washington.

The problems have been obtained as discretized versions of certain continuous-
time problems of extended linear-quadratic optimal control of the kind developed
in Rockafellar [4]. The first digit of the problem number corresponds to different
continuous-time problems and the second digit corresponds to different discretization
levels, i.e., the number of subintervals into which the fixed time interval has been
partitioned, which determines the size of the discretized problem. Hence, e.g., the
problems 0.1, 1.1, ..., 9.1 are the discretization of 10 different continuous-time prob-
lems with the same discretization level (a transverse family of test problems), and
the problems 1.0, 1.1, ..., 1.7 are the discretization of one continuous-time problem
with 8 different discretization levels (a vertical family of test problems). Only the
data values in the continuous-time model have been generated randomly, and in each
vertical family these are the same for all the problems. By increasing the number of
subintervals, one can get larger and larger problems which remain stable with respect
to the numerical scaling.

Table 1. Test results of problems 0.1–9.1.
CPU time (sec.) Iterations

Prb. Size PDCG PDSD BFEM LSSOL PDCG PDSD BFEM LSSOL
0.1 100 4.6 4.8 6.6 283.1 23 34 31 500
1.1 100 5.0 5.8 7.5 295.0 28 50 37 497
2.1 100 5.0 4.0 8.1 299.7 28 24 41 495
3.1 100 3.0 2.6 3.4 339.8 5 5 8 562
4.1 100 3.8 3.5 3.8 353.2 13 17 11 619
5.1 100 3.2 2.7 3.5 314.5 8 6 9 544
6.1 100 3.5 3.0 3.8 339.2 11 11 11 552
7.1 100 3.6 3.7 4.3 256.0 13 20 14 445
8.1 100 4.5 5.2 *17.5 290.6 22 42 ∗∗ 481
9.1 100 3.5 3.3 4.0 347.2 12 15 12 591

Table 2. Test results of problems 0.2–9.2.
CPU time (sec.) Iterations

Prb. Size PDCG PDSD BFEM LSSOL PDCG PDSD BFEM LSSOL
0.2 340 9.2 8.9 15.3 24 28 31
1.2 340 12.5 14.4 19.3 35 50 39
2.2 340 10.1 11.9 20.5 25 38 42
3.2 340 5.2 4.3 6.8 9 8 11
4.2 340 7.8 6.6 8.7 18 17 15
5.2 340 6.5 5.5 8.0 14 12 12
6.2 340 5.7 5.1 7.3 11 11 12
7.2 340 5.4 5.9 7.7 10 15 13
8.2 340 9.8 11.2 20.3 25 38 42
9.2 340 6.0 6.4 9.5 12 17 17

30 c. zhu and r. t. rockafellar

Table 3. Test results of problems 0.4–9.4.

CPU time (sec.) Iterations
Prb. Size PDCG PDSD BFEM LSSOLPDCG PDSD BFEM LSSOL
0.4 5140 122.6 138.6 270.8 23 32 38
1.4 5140 177.9 230.9 315.7 32 52 44
2.4 5140 218.6 191.7 399.3 40 44 56
3.4 5140 46.7 45.0 110.1 8 9 16
4.4 5140 111.8 94.8 126.7 20 20 18
5.4 5140 71.4 64.5 133.2 12 13 19
6.4 5140 80.5 78.2 141.2 14 16 20
7.4 5140 54.9 85.1 104.7 10 19 15
8.4 5140 161.1 235.9 362.9 29 55 50
9.4 5140 76.5 77.8 115.5 14 17 16

The test results in Tables 1, 2 and 3 concern transverse families of size 100, 340
and 5140 respectively. The problems in the first family are small enough for the
LSSOL approach to be viable as a comparison. But for the second and third families,
our DECstation 3100 falls short of having enough memory for the LSSOL approach.
Here we see that PDCG and PDSD are in the leading positions with BFEM not very
far behind in terms of CPU times.

The notation ∗∗ for the iterations of BFEM on problem 8.1 signifies that the
method failed to terminate with optimality in 100 iterations. The corresponding figure
for CPU time is preceded by * since it only indicates how long the first 100 iterations
took. (The same conventions are adopted in all other tables.)

Table 4. Test results of discretized problems 0.0–0.7.

CPU time (sec.)/Iterations
Prb. Size PDCG PDSD BFEM LSSOL Value
0.0 40 2.9/11 3.0/15 3.3/13 35.3/327 23.8626
0.1 100 4.3/23 4.8/34 6.6/31 244.4/500 15.7824
0.2 340 9.0/24 9.1/28 15.2/31 15.2107
0.3 1300 27.1/22 32.1/32 58.7/34 15.2145
0.4 5140 122.5/23 137.2/32 269.2/38 15.2179
0.5 20500 568.6/27 593.7/32 1396.2/46 15.2188
0.6 81940 2873.8/27 2722.6/32 *10637.6/∗∗ 15.2190
0.7 100020 4209.3/28 3976.5/32 7086.3/38 15.2191

Table 5. Test results of discretized problems 1.0–1.7.

CPU time (sec.)/Iterations
Prb. Size PDCG PDSD BFEM LSSOL Value
1.0 40 2.9/15 3.0/21 3.9/22 40.9/360 242.05983
1.1 100 4.9/28 5.9/50 7.5/37 294.8/497 249.07378
1.2 340 12.4/35 14.4/50 19.1/39 249.77975
1.3 1300 45.3/37 52.2/52 76.0/44 249.79866
1.4 5140 178.4/32 230.7/52 317.9/44 249.79956
1.5 20500 812.4/36 1007.5/52 1421.5/45 249.79972
1.6 81940 4015.8/36 4699.9/52 6119.9/45 249.79976
1.7 100020 5749.6/36 6538.5/52 8264.0/44 249.79976

primal-dual projected gradient algorithms for elqp 31

Table 6. Test results of discretized problems 2.0–2.7.

CPU time (sec.)/Iterations
Prb. Size PDCG PDSD BFEM LSSOL Value
2.0 40 3.6/28 4.4/63 *9.7/∗∗ 44.7/446 -261.5042
2.1 100 4.7/28 4.1/24 8.2/41 254.8/495 -362.2297
2.2 340 9.5/25 11.1/38 20.0/42 -369.7334
2.3 1300 41.4/33 39.8/39 97.6/56 -369.8073
2.4 5140 220.3/40 191.9/44 402.9/56 -369.8046
2.5 20500 936.9/43 769.4/40 1945.4/63 -369.8036
2.6 81940 4370.3/40 3396.5/39 8893.3/71 -369.8034
2.7 100020 6247.2/40 5123.7/40 10032.1/53 -369.8033

The test results in Tables 4, 5 and 6 refer to vertical families based on the first
three continuous-time problems. They cover sizes that are generally too large for the
LSSOL approach to be workable. The aim in this case is to examine the effects of
increasing size in a context where these effects can be isolated from other aspects of
the testing.

In these results the stability of the scaling is reflected by the way the optimal value
settles down and converges. Much to be noted is the fact that, although the CPU time
goes up as the problem size becomes larger, the number of iterations remains almost
constant once the approximation is close. This suggests that the methods are able
fairly quickly to identify the general location of the primal and dual optimal solutions,
and that they accomplish this in a manner that is relatively insensitive to the number
of variables and constraints. Quite the opposite behavior would be expected, of course,
from an active-set QP method. The increase in CPU time seems mainly due to the
increase in overhead in setting up the line searches as well as in the evaluations of
f(u), F (u), g(v) and G(v) when the dimension is high.

Tables 7, 8 and 9 test the importance of the interactive restarts in PDCG and
PDSD. The problems in this case are the same as in Tables 4, 5 and 6 correspondingly.
For each problem, the methods were applied in the proposed form, allowing interactive
restarts (the yes case), but then also in the modified form in which all such restarts are
suppressed (the no case). The difference that this makes is evident. Interactive restarts
have a big effect on the performance, and in the case of PDSD even dictate whether
the method is successful or not, in the sense of terminating within 100 iterations. The
tables also furnish information on the number of interactive restarts that occurred.
For instance, for problem 0.5 under the interactive version of the PDSD method one
reads that termination came in 32 iterations, and that in the course of these there
were 7 interactive primal restarts and 6 interactive dual restarts. The noninteractive
version took 89 iterations.

Another fact to be observed in these large problems is that the simplicity of
PDSD sometimes overtakes the carefully designed properties of PDCG in CPU time.
An interpretation is that when the dimension is very high, but PDCG is not yet near
to the solutions and is anyway just using cycle size k = 5, the conjugate-gradient-
like features do not always provide a gain that offsets the extra overhead. While the
number of iterations in PDCG remains less, the time it takes, in comparison to PDSD,
can be more. Perhaps the greatest advantage of these methods comes therefore from
the information feedback involved in the interactive restarts, rather than from the
attention paid to the choice of the descent (or ascent) direction.

32 c. zhu and r. t. rockafellar

Table 7. Test results of restart role in problems 0.0–0.7.
CPU time (sec.) Iterations

PDCG PDSD PDCG PDSD
Prb. Yes No Yes No Yes No Yes No
0.0 2.9 3.0 3.0 3.4 11(3/3) 16 15(3/8) 38
0.1 4.3 4.4 4.8 8.7 23(4/6) 25 34(4/9) 94
0.2 9.0 9.8 9.1 *24.8 24(3/7) 28 28(4/8) ∗∗
0.3 27.1 35.6 32.1 *92.6 22(3/6) 31 32(7/6) ∗∗
0.4 122.5 137.1 137.2 *416.0 23(4/6) 27 32(7/6) ∗∗
0.5 568.6 561.6 593.7 1671.3 27(4/7) 27 32(7/6) 89
0.6 2873.8 2949.1 2722.6 *8326.5 27(4/7) 27 32(7/6) ∗∗
0.7 4209.3 4012.9 3976.5 *12423.5 28(4/7) 27 32(7/6) ∗∗

Table 8. Test results of restart role in problems 1.0–1.7.
CPU time (sec.) Iterations

PDCG PDSD PDCG PDSD
Prb. Yes No Yes No Yes No Yes No
1.0 2.9 3.3 3.0 4.3 15(3/4) 25 21(5/6) 64
1.1 4.9 5.7 5.9 *9.5 28(3/7) 38 50(5/7) ∗∗
1.2 12.4 13.2 14.4 *26.2 35(2/7) 39 50(8/6) ∗∗
1.3 45.3 54.1 52.2 *97.3 37(2/8) 47 52(4/8) ∗∗
1.4 178.4 233.7 230.7 *444.9 32(3/6) 45 52(4/6) ∗∗
1.5 812.4 1011.5 1007.5 *1978.8 36(2/7) 48 52(4/6) ∗∗
1.6 4015.8 5043.6 4699.9 *8795.4 36(2/7) 48 52(4/6) ∗∗
1.7 5749.6 7325.6 6538.5 *12726.2 36(2/7) 48 52(4/6) ∗∗

Table 9. Test results of restart role in problems 2.0–2.7.
CPU time (sec.) Iterations

PDCG PDSD PDCG PDSD
Prb. Yes No Yes No Yes No Yes No
2.0 3.6 4.4 4.4 *5.4 28(5/6) 52 63(7/8) ∗∗
2.1 4.7 6.6 4.1 7.0 28(7/4) 54 24(8/5) 68
2.2 9.5 16.1 11.1 *24.9 25(7/4) 51 38(7/3) ∗∗
2.3 41.4 59.6 39.8 *92.9 33(9/5) 52 39(10/5) ∗∗
2.4 220.3 295.2 191.9 *423.2 40(9/5) 58 44(9/5) ∗∗
2.5 936.9 1362.4 769.4 *1899.4 43(9/6) 65 40(11/5) ∗∗
2.6 4370.3 6385.8 3396.5 *8497.5 40(9/5) 61 39(11/5) ∗∗
2.7 6247.2 9387.8 5123.7 *12359.7 40(9/5) 61 40(11/5) ∗∗

REFERENCES

[1] R.T. Rockafellar and R.J.-B. Wets, A Lagrangian finite generation technique for solving linear-
quadratic problems in stochastic programming, Math. Programming Studies 28 (1986), pp.
63–93.

[2] R.T. Rockafellar and R.J.-B. Wets, Linear-quadratic problems with stochastic penalties: the fi-
nite generation algorithm, in Numerical Techniques for Stochastic Optimization Problems,

Y. Ermoliev and R. J-B Wets (eds.), Springer-Verlag Lecture Notes in Control and Infor-

mation Sciences No. 81, 1987, pp. 545-560.
[3] R.T. Rockafellar, A generalized approach to linear-quadratic programming, in Proc. International

Conf. on Numerical Optimization and Appl. (Xi’an, China, 1986), pp. 58–66.
[4] R.T. Rockafellar, Linear-quadratic programming and optimal control, SIAM J. Control Opt. 25

(1987), pp. 781–814.

primal-dual projected gradient algorithms for elqp 33

[5] R.T. Rockafellar and R.J.-B.Wets, Generalized linear-quadratic problems of deterministic and
stochastic optimal control in discrete time, SIAM J. Control Opt. 28 (1990), pp. 810-822.

[6] R.T. Rockafellar, Computational schemes for solving large-scale problems in extended linear-

quadratic programming, Math. Programming 48 (1990), pp. 447-474.
[7] R.T. Rockafellar, Large-scale extended linear-quadratic programming and multistage optimiza-

tion, in Proc. Fifth Mexico-U.S. Workshop on Numerical Analysis (S. Gomez, J.-P. Hennart,

R. Tapia, eds.), SIAM Publications, 1990.
[8] A. King, An implementation of the Lagrangian finite generation method, in Numerical Tech-

niques for Stochastic Programming Problems, Y. Ermoliev and R. J-B Wets (eds.), Springer-

Verlag, 1988.
[9] J.M. Wagner, Stochastic Programming with Recourse Applied to Groundwater Quality Manage-

ment, doctoral dissertation, M.I.T., 1988.

[10] J.-S. Pang, Methods for quadratic programming: a survey, Computers and Chem. Engineering
7 (1983), pp. 583–594.

[11] Y.-Y. Lin and J.-S. Pang, Iterative methods for large convex quadratic programs: a survey, SIAM
J. Control Opt. 25 (1987), pp. 383–411.

[12] Y. Ye and E. Tse, An extension of Karmarkar’s projective algorithm for convex quadratic pro-

gramming, Math. Programming 44 (1989), pp. 157-179.
[13] R.D.C. Monteiro and I. Adler, Interior path following primal-dual algorithms. Part II: Convex

quadratic programming, Math. Programming 44 (1989), pp. 43-66.

[14] D. Goldfarb and S. Liu, it An 0(n3L) primal interior point algorithm for convex quadratic
programming, preprint.

[15] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and

variational inequalities, SIAM J. Control Opt. 29 (1991), pp. 119–138.
[16] P. Tseng, �Further applications of a splitting algorithm to decomposition in variational inequali-

ties and convex programming, Math. Programming Studies 48 (1990), pp. 249–263.

[17] R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1970.
[18] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Opt.

14 (1976), pp. 877–898.
[19] R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in

convex programming, Math. of Op. Research 1 (1976), pp. 97–116.

[20] C. Zhu, Modified proximal point algorithm for extended linear-quadratic programming, accepted
by Comput. Optim. and Appl., 1992.

[21] M.S. Bazaraa and C.M. Shetty, Nonlinear Programming: Theory and Algorithms, Wiley, 1979.

[22] M. Avriel, Nonlinear Programming: Analysis and Methods, Prentice Hall, 1976
[23] J.V. Burke and J.J. Moré, On the identification of active constraints, SIAM J. Numer. Anal. 25

(1988), pp. 1197–1211.

[24] P.E. Gill, S.J. Hammarling, W. Murray, M.A. Saunders, and M.H. Wright, User’s guide for
LSSOL (Version 1.0): a FORTRAN package for constrained linear least-squares and convex

quadratic programming, Tech. Rept. SOL 86–1, Dept. of Operations Research, Stanford

University, 1986.
[25] S.E. Wright (with introduction by R.T. Rockafellar), DYNFGM: Dynamic Finite Generation

Method, report, Department of Mathematics, University of Washington, 1989.

