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I. Introduction.

In this paper we refine the necessary conditions for optimality in the following
nonsmooth problem of dynamic optimization:

minimize Λ[x] := l(x(a), x(b)) +
∫ b

a

L(t, x(t), ẋ(t)) dt

subject to x ∈ AC ([a, b]; IRn) ,
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b],
x(t) ∈ X(t) ∀t ∈ [a, b],
(x(a), x(b)) ∈ S.

(P )

This problem involves the constrained minimization of a continuous Bolza functional
Λ over the space of absolutely continuous functions x carrying the given interval
[a, b] into IRn. The constraints are typical of those in optimal control: they are the
dynamic constraint ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b]; the state constraint x(t) ∈ X(t)
∀t ∈ [a, b]; and the endpoint constraint (x(a), x(b)) ∈ S. The range of problems that
fit into this general framework is very broad—see Clarke [5] for examples.

Our main result, stated below as Theorem 1.1, provides necessary conditions
for optimality in (P ) which represent a threefold advance in the state of the art.
First, they allow a cost functional Λ involving an integral term without imposing any
constraint qualification such as normality or calmness. In the case where L ≡ 0, our
problem is closely related to the extensively-studied differential inclusion problem, for
which necessary conditions without calmness are already available ([2]; see Section 2).
The traditional approach to (P ) has been to reduce it to the case L ≡ 0 through
the introduction of an auxiliary state variable: we take this approach too, but give
a sufficiently careful analysis of the resulting differential inclusion problem to exploit
this reduction without sacrificing the generality of the original problem. It is not
surprising that this is possible, since the functional Λ and the multifunction F are
Lipschitzian; however, we believe that this useful observation has not appeared in
print before.

Second, our formulation of problem (P ) features an intrinsic representation of
all the problem’s constraints. We regard the state x ∈ IRn and its evolution x(·)
as the fundamental quantities of interest, and therefore write down the constraints
on x(·) without any reference to such parametrizations as Φ(x(a), x(b)) ≤ 0, say,
for the endpoint constraints. (A satisfactory treatment of problems whose velocity
constraint is described intrinsically by a differential inclusion is one of the principal
accomplishments of nonsmooth analysis.) In particular, we represent the problem’s
state constraints in the inclusion form x(t) ∈ X(t) for all t ∈ [a, b], where X(t)
is a closed set whose time dependence may be rather general. This representation
removes some arbitrariness from the statement of the problem, and gives rise to nec-
essary conditions whose significance is more transparent. Our results make explicit
the common intuitive understanding that the influence of state constraints is reflected
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in the possibility of jumps in the adjoint function. Thus we consider adjoint func-
tions (“arcs”) p of bounded variation, whose jumps (or, more precisely, departures
from absolute continuity) occur at instants when the state constraint acts upon the
optimal solution, when they drive the adjoint function in the direction of an “out-
ward normal” to the state constraint set X(t). (If x(t) ∈ intX(t) for all t in some
open interval I, then the only outward normal vector is 0, and it follows that p is
absolutely continuous on I.) We note that two functions p1, p2 of bounded variation
are indistinguishable if p1(t−) = p2(t−) and p1(t+) = p2(t+) for all t ∈ (a, b), while
p1(a) = p2(a) and p1(b) = p2(b). Indistinguishability is an equivalence relation on
the set of functions with bounded variation on [a, b], and the corresponding set of
equivalence classes forms the vector space denoted by BV ([a, b]; IRn). The “outward
normal jump condition” mentioned above asserts, in the case where the sets X(t) are
convex, that

the singular part of dp is NX(t)(x(t))-valued.

(HereN denotes the usual normal cone of convex analysis.) This implies, for example,
that any simple discontinuity in the adjoint function p must be such that the jump
vector p(t+) − p(t−) is an outward normal to the state constraint set X(t) at the
position x(t).

The third, and most significant, advance reported here is a unification of three
types of necessary conditions, whose forms are inspired by the classical conditions of
Euler, Hamilton, and Weierstrass. Whereas the Hamiltonian system and the Euler
equation are equivalent in the classical calculus of variations and in some smooth
control problems (under suitable hypotheses), this equivalence does not persist in
the nonsmooth case. And although necessary conditions for nonsmooth problems
have been given in all three of the forms described here, ours is the first work to
produce a single adjoint arc which plays all three roles simultaneously.

We now state our main result, although some of the terms in its statement,
particularly N(t, x), will not be defined until Section 2. The maximized Hamiltonian
Hλ is defined as follows, for all λ ≥ 0:

Hλ(t, x, p) := max{〈p , v〉 − λL(t, x, v) : v ∈ F (t, x)}.

The hypotheses mentioned in the statement below are given in the early stages of
Sections 2 and 3; the proof occupies Sections 3 and 4.
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1.1. Theorem. Assume (H1)–(H7). Let x solve problem (P ). Assume the con-
straint qualification

N(t, x(t)) is pointed, for each t ∈ [a, b]. (CQ)

Then there exist a constant λ ∈ {0, 1} and a function p ∈ BV ([a, b]; IRn), not both
zero, together with an integrable selection ν(t) ∈ N(t, x(t)) for all t ∈ [a, b], such that
for almost all t ∈ [a, b],

(a) (−ṗ(t) + ν(t), ẋ(t)) ∈ ∂Hλ(t, x(t), p(t));

(b) (ṗ(t)− ν(t), p(t)) ∈ λ∂L(t, x(t), ẋ(t)) +Ngph F (t,·)(x(t), ẋ(t));

(c) p(t) ∈ λ∂vL(t, x(t), ẋ(t)) +NF (t,x(t))(ẋ(t)).

Moreover,

(d) (p(a),−p(b)) ∈ λ∂l(x(a), x(b)) +NS(x(a), x(b));

(e) the singular part of dp is N(t, x(t))-valued, and in particular is supported on the
set

{t : N(t, x(t)) 6= {0}} = {t ∈ [a, b] : (t, x(t)) ∈ bdry gphX(·)}.

Note that inclusion (a) is the usual Hamiltonian inclusion; inclusion (b) is the Eu-
ler inclusion; and inclusion (c) is the appropriate analogue of the classical Weierstrass
condition and the maximum principle of Pontryagin. (The generalized gradients ap-
pearing in (a) and (b) refer to the last two components only.) Taken independently,
inclusions (a) and (b) are equivalent to the more suggestive inclusions

(−ṗ(t), ẋ(t)) ∈ ∂Hλ(t, x(t), p(t))−N(t, x(t))× {0},
(ṗ(t), p(t)) ∈ λ∂L(t, x(t), ẋ(t)) +Ngph F (t,·)(x(t), ẋ(t)) +N(t, x(t))× {0}.

(A proof of this fact may be based on the results in [16].) However, the statement of
Theorem 1.1 asserts that the same selection ν(t) from the multifunction t→→N(t, x(t))
satisfies both of these inclusions at once.

The Generalized Problem of Bolza. It is instructive to compare our problem (P )
with the more comprehensive Generalized Problem of Bolza, which is to

minimize Λ1[x] := l1(x(a), x(b)) +
∫ b

a

L1(t, x(t), ẋ(t)) dt (P1)

over all x ∈ AC([a, b]; IRn). The key feature of (P1) is that the functions l1 and L1

are allowed to take values in IR ∪ {+∞}, and that the objective value +∞ may be
used to incorporate constraints directly into the objective functional. For example,
our problem (P ) may be put into this form by setting (for λ ≥ 0)

lλ(x, y) := λl(x, y) + ΨS(x, y),
Lλ(t, x, v) := λL(t, x, v) + Ψgph F (t,·)(x, v) + ΨX(t)(x).

(1.1)
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When X(t) ≡ IRn, this reduction leads to an instance of (P1) which satisfies the usual
hypotheses imposed on the Generalized Problem of Bolza, as described in [2, Ch. IV].
A transition in the opposite direction is also possible, of course: when confronted with
(P1), we need only define

F (t, x) := domL1(t, x, ·),
X(t) := ∪{domL1(t, ·, v) : v ∈ IRn},

S := dom l1(·, ·),

to deduce from (1.1) (with λ = 1) the definitions of the finite-valued functions l and
L needed to recast (P1) in the form of (P ). However, this latter reduction does not
allow us to treat the Generalized Problem of Bolza completely, since our analysis
of (P ) relies upon the assumption that the finite functions l and L, along with the
multifunction F , are Lipschitzian.

It is possible to remove our structural assumptions and give a result analogous to
Theorem 1.1 for the Generalized Problem of Bolza, provided that state constraints are
absent and the problem is calm. These conditions are among the standing hypotheses
in [2, Chap. IV]: if we place ourselves in that context, then our results may be
combined with Clarke’s arguments to yield Theorem 1.2 below. In its statement, we
write Hλ(t, x, p) := sup{〈p , v〉 − Lλ(t, x, v) : v ∈ IRn}: note that this definition is
consistent with our earlier notation in the context of problem (P ), the link being
furnished by (1.1).

1.2. Theorem. Let the data of (P1) satisfy the hypotheses of [2, Ch. IV]. Suppose
that the arc x solves (P1), and that (P1) is calm at x. Then there exists an absolutely
continuous function p: [a, b] → IRn such that for almost all t ∈ [a, b],

(a) (−ṗ(t), ẋ(t)) ∈ ∂H1(t, x(t), p(t));

(b) (ṗ(t), p(t)) ∈ ∂L1(t, x(t), ẋ(t));

(c) p(t) ∈ ∂vL1(t, x(t), ẋ(t)).

Moreover,

(d) (p(a),−p(b)) ∈ ∂l1(x(a), x(b)).

Returning to our original problem, let us suppose that an arc x solves (P ). If
state constraints are absent (X(t) ≡ IRn) and (P ) is calm at x, then the reformulation
of (P ) as (P1) sponsored by (1.1) allows us to apply Thm. 1.2 instead of Thm. 1.1.
This may lead to necessary conditions which are sharper than those of Thm. 1.1. In
conclusion (b), for example, Thm. 1.1 states

(ṗ, p) ∈ ∂L(t, x, ẋ) + ∂Ψgph F (t,·)(x, ẋ), (1.2)

while Thm. 1.2 asserts

(ṗ, p) ∈ ∂
[
L(t, ·, ·) + Ψgph F (t,·)

]
(x, ẋ). (1.3)
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In general the right side of (1.3) is a subset of that in (1.2), although equality pre-
vails in certain important cases. It is natural to ask to what extent this sharpening
of Thm. 1.1 remains valid when state constraints are retained and the calmness con-
dition is abandoned. For example, when can conclusions (a)–(d) of Thm. 1.1 be
replaced by the generally sharper conditions (a′)–(d′) below?

(a′) (−ṗ(t) + ν(t), ẋ(t)) ∈ ∂Hλ(t, x(t), p(t));

(b′) (ṗ(t)− ν(t), p(t)) ∈ ∂Lλ(t, x(t), ẋ(t));

(c′) p ∈ ∂vLλ(t, x(t), ẋ(t));

(d′) (p(a),−p(b)) ∈ ∂lλ(x(a), x(b)).

And how must these conditions be modified if l, L, and F are not assumed to be
Lipschitz?

Comments on the Literature. Part of the motivation for the research reported here
comes from the extensive and relatively complete theory of necessary conditions avail-
able for the “convex case” of the Generalized Problem of Bolza (P1). This theory,
put forward by Rockafellar in [12, 13, 14, 19], requires that the extended-valued
mappings l1 and L1(t, ·, ·) be convex. The desire to give the problem’s constraints an
intrinsic representation and the need to consider adjoint arcs of bounded variation
are clearly evident in Rockafellar’s work; indeed, each of the necessary conditions in
Theorem 1.1 has a precursor in [14] or [12].

In the current paper, we assume only that the map L(t, x, ·) and the sets F (t, x)
are convex: this reduced hypothesis is the current standard, and its widespread ac-
ceptance is firmly grounded upon its near necessity for existence theory. However,
the full power of Clarke’s nonsmooth analysis is required to treat the resulting version
of (P ), and Clarke’s methods and results (as set forth in [2], for example) are funda-
mental to our approach. In particular, our development starts by quoting Clarke’s
Hamiltonian necessary conditions for the case L ≡ 0 of problem (P ). The Euler-
Lagrange inclusion may also be found in Clarke’s early work [3], but a satisfactory
bridge between the two types of necessary conditions has remained unfinished until
now. (We note that Raissi studied their relationship in her thesis [9], where she
established their equivalence under certain additional hypotheses.)

A recent advance in another direction has been Clarke’s proof of Hamiltonian
necessary conditions for the Generalized Problem of Bolza in the absence of a calm-
ness hypothesis [6]. The results presented here also dispense with calmness, largely
by assuming enough Lipschitz continuity to sidestep some of the thorny technical is-
sues at the heart of [6]. We hope that the explicit consideration of a Bolza functional
in problem (P ) will not only be attractive to the users of our necessary conditions,
but will also—in conjunction with [6]—provide some useful insight into the questions
we have raised above.
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II. The Differential Inclusion Problem.

In this section we review and extend the known necessary conditions for problem
(P ) in the case L ≡ 0: this special case is denoted by (PD). Throughout this paper,
we use only the Euclidean norm and let B denote the open unit ball in IRn.

Basic Hypotheses. The time interval [a, b] is fixed, along with a relatively open subset
Ω of [a, b]× IRn having nonempty sections

∅ 6= Ωt = {x ∈ IRn : (t, x) ∈ Ω} ∀t ∈ [a, b].

The role of the set Ω is to allow the consideration of local minimizers in (PD): in
the problem we study below, the requirement that x(t) ∈ Ωt for all t ∈ [a, b] is an
implicit constraint. Throughout this section, we make the following hypotheses:

(H1) The endpoint functional l is Lipschitz on the closed set S0 := Ωa × Ωb, and the
local endpoint constraint set S ∩ S0 is closed;

(H2) The multifunction F is L × B measurable on Ω;

(H3) The sets F (t, x) are nonempty, convex, and compact for each (t, x) in Ω; and
there exists a nonnegative function φF ∈ L1[a, b] for which

F (t, x) ⊆ φF (t)B ∀(t, x) ∈ Ω;

(H4) There exists a nonnegative function kF (·) ∈ L1[a, b] for which one has the Lips-
chitz condition

F (t, y) ⊆ F (t, x) + kF (t)|y − x|B ∀t ∈ [a, b], ∀x, y ∈ Ωt;

(H5) The state constraint multifunction X has closed values X(t) and is lower semi-
continuous on Ω, in the sense that for every point (t0, x0) ∈ gphX ∩ Ω, and for
every sequence ti → t0, there exists a sequence xi → x0 satisfying xi ∈ X(ti) for
all i.

State Constraint Representation. Hypotheses (H1)–(H4) are standard, as is the as-
sumption that the multifunction X has closed values. Starting with only these hy-
potheses, let us show that the additional assumption of lower semicontinuity in (H5)
does not restrict the class of problems to which our results apply. Let x(·) be any arc
admissible for (PD). Then gphx is a compact subset of Ω, so there exists δ > 0 such
that x(t) + δB ⊆ Ωt for all t ∈ [a, b]. Define T := {(t, x) : t ∈ [a, b], |x− x(t)| < δ}.
It is clear that replacing Ω by T in (PD) has no effect on the structure of the problem
near x. Having made this change, we consider the multifunction

Y (t) := {x(t) :x ∈ AC([a, b]; IRn),
|ẋ(τ)| ≤ kF (τ) a.e. τ ∈ [a, b],

x(τ) ∈ X(τ) ∩ (x(τ) + δB) ∀τ ∈ [a, b]}.
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Obviously Y (t) ⊆ X(t) ∀t ∈ [a, b]. But it is also true that any arc x admissible for
(PD) must obey x(t) ∈ Y (t) for all t ∈ [a, b]. Therefore we may write Y in place of X
without altering the set of arcs admissible for (PD). Note, however, that Y has closed
values and is lower semicontinuous. In making hypothesis (H5), we are essentially
assuming that the state constraint sets X(t) have been trimmed to contain only those
points which are “reachable” in a very weak sense. This can reasonably be regarded
as an aspect of proper formulation of the problem.

Instead of writing state constraints in the intrinsic form x(t) ∈ X(t), many
authors impose a pointwise inequality of the form

g(t, x(t)) ≤ 0 ∀t ∈ [a, b] (2.1)

for some function g: Ω → IR. While the formulation (2.1) may be technically conve-
nient, especially when g is smooth, it has the serious drawback of being non-intrinsic.
In other words, the same constraint can be represented by many different functions
g, and an unsuitable choice may unduly complicate a given problem. Moreover, the
state constraint regions defined by

X(t) := {x ∈ IRn : g(t, x) ≤ 0} (2.2)

may form a multifunction X which fails to be lower semicontinuous. (Consider, for
example, the analytic function g(t, x) = sin2 t sin2 x.) We prefer the inclusion formu-
lation both because it is intrinsic, and because the hypothesis of lower semicontinuity
turns out to be useful in itself. On the other hand, once the state constraint sets X(t)
have been identified (either directly or via (2.2)), the definition g(t, x) := dist(X(t), x)
can be used to harness theoretical results designed for problems whose state con-
straints are given in inequality form (2.1). Indeed, we may regard this choice of g as
a canonical representation of the state constraint in the formulation (2.1). Hypoth-
esis (H5) ensures that the resulting function g is Lipschitz in x and (jointly) upper
semicontinuous in (t, x).

As we saw in the Introduction, jumps in the adjoint function p(·) must be vectors
normal to the state constraint region X(t). In the case where X is convex-valued,
“normality” refers to the usual normal cone of convex analysis. In the general case,
where the shapes of X are relatively unrestricted, an extended notion of normality is
required. We describe a suitable candidate here, first directly, and then in relation to
known concepts. Our description relies upon the notion of “graphical closure”: recall
that given a multifunction Γ:Ω→→IRn, the graphical closure of Γ is the multifunction
Γ whose graph equals gphΓ. More explicitly,

Γ(ω) = { lim
i→∞

γi : γi ∈ Γ(ωi), ωi → ω} ∀ω ∈ Ω. (2.3)

Consider the proximal normal multifunction π: gphX→→IRn defined by

π(t, x) := {ζ ∈ IRn : ∃σ > 0 s.t. 〈ζ , y − x〉 ≤ σ|y − x|2 ∀y ∈ X(t)}. (2.4)
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This gives the cone of proximal normals to the set X(t) at the point x. The normal
cone we propose to use is N(t, x) := cl coπ(t, x), i.e., the closed convex cone generated
by the graphical closure of π.

Readers familiar with the proximal normal formula [2], [8] will recall that the
(Clarke) normal cone to the setX(t) at the point x, denotedNX(t)(x), equals, for each
fixed t, the closed convex cone generated by the graphical closure of the multifunction
x→→π(t, x). Therefore the inclusion N(t, x) ⊇ NX(t)(x) always holds, and it may be
strict, since the cone N(t, x) contains information about the t-dependence of X(·)
which is absent from NX(t)(x). On the other hand, since π(t, x) ⊆ NX(t)(x) for all
(t, x) ∈ gphX, the graphical closure of the multifunction (t, x)→→NX(t)(x) generates
a closed convex cone which always contains N(t, x). The latter inclusion may also be
strict. Roughly speaking, this is true because the operations of taking the graphical
closure and computing the closed convex hull do not commute. An example which
illustrates both strict inclusions is furnished by the state constraint set

X(t) := {(x, y) ∈ IR2 : y ≥ tx or y ≤ 0 or x ≤ 0}.

Clearly X(0) = IR2, so NX(0)(0, 0) = {0}. However, N(0, (0, 0)) = {0} × IR, while
the graphical closure of NX(·)(·, ·) at the point (0, (0, 0)) is the right half plane. This
multifunction X(·) is clearly not convex-valued. For convex-valued multifunctions
X, the distinctions displayed by this example disappear. See Proposition 2.3(d).

Another way to understand the multifunction N(t, x) is to choose g(t, x) :=
dist(X(t), x) as recommended above, and then to note that

N(t, x) = cl

[
{0} ∪

⋃
r>0

r∂>
x g(t, x)

]
∀(t, x) ∈ gphX ∩ Ω, (2.5)

where ∂>
x g is the multifunction introduced by Clarke [2, Thm. 3.5.2] in this same

situation:

∂>
x g(t, x) := cl co{lim ζi : ζi ∈ ∂xg(ti, yi), (ti, yi) → (t, x), g(ti, yi) > 0 ∀i}. (2.6)

Our justification of (2.5) appears in Proposition 2.3 below, whose proof relies upon
the following observation.

2.1. Lemma. Let g: Ω → IR be a function which, for some constant K ≥ 0, satisfies

|g(t, y)− g(t, x)| ≤ K|y − x| ∀t ∈ [a, b], ∀x, y ∈ Ωt.

Then for every (t, x) ∈ Ω, one has

∂>
x g(t, x) = co{lim∇xg(ti, yi) : (ti, yi) → (t, x), g(ti, yi) > 0 ∀i}. (2.7)

Proof. Fix (t, x) ∈ Ω and let R(t, x) denote the set appearing on the right side
of (2.7). Observe that the inclusion ∂>

x g(t, x) ⊇ R(t, x) follows immediately from [2,
Prop. 2.2.2].
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To prove the reverse inclusion, note that R(t, x) is a compact convex set. Thus
it suffices to show that any ζ of the form below lies in R(t, x):

ζ = lim
i→∞

ζi, ζi ∈ ∂xg(ti, yi), (ti, yi) → (t, x), g(ti, yi) > 0. (2.8)

To do this, fix i and apply [2, Thm. 2.5.1]: then ζi may be represented as a convex
combination of limiting gradients, thus:

ζi =
n+1∑
k=1

λk
i ζ

k
i , where ζk

i = lim
j→∞

∇xg(ti, yk
ij),

yk
ij → yi as j →∞ (for each i, k),

λk
i ≥ 0 (∀i, k), and

n+1∑
k=1

λk
i = 1 (∀i).

(2.9)

Observe that since i is fixed, and g(ti, yi) > 0, we may use the Lipschitz continuity
of g(ti, ·) to assume g(ti, yk

ij) > 0 for all j, k.

The representation (2.8) remains valid along any subsequence of the indices i.
Thus we may use representation (2.9) to restrict our attention to a subsequence along
which

• for each k = 1, . . . , n+ 1, the sequence {λk
i }∞i=1 converges to some limiting value

denoted by λk
∞; and

• for each k = 1, . . . , n+ 1, the sequence {ζk
i }∞i=1 converges to some limiting value

denoted by ζk
∞.

Then for fixed i, k, we use representation (2.9) to generate an index j = j(i, k) so
large that

•
∣∣∣yk

ij(i,k) − yi

∣∣∣ < 1/i for all k = 1, . . . , n+ 1, for all i;

•
∣∣∣ζk

i −∇xg(ti, yk
ij(i,k))

∣∣∣ < 1/i for all k = 1, . . . , n+ 1, for all i.

Then (2.8) and (2.9) give the representation

ζ = lim
i→∞

ζi =
n+1∑
k=1

λk
∞ζ

k
∞,

where λk
∞ ≥ 0,

∑
λk
∞ = 1, and

ζk
∞ = lim

i→∞
∇xg(ti, yk

ij(i,k))

for a sequence {(ti, yk
ij(i,k))}

∞
i=1 which converges to (t, x), while satisfying g(ti, yk

ij(i,k)) >
0 for all i. Thus ζ ∈ R(t, x), and the proof is complete. ////
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2.2. Corollary. Let X satisfy (H5), and let g(t, x) := dist(X(t), x). Then g is
(jointly) upper semicontinuous, and for every (t, x) ∈ gphX ∩ Ω, one has

∂>
x g(t, x) = co{lim ζi : |ζi| = 1, ζi ∈ π(ti, xi), (ti, xi) → (t, x) in gphX}. (2.10)

Proof. The upper semicontinuity of g can be verified easily using its definition and
the lower semicontinuity of X.

We will show that the right side of (2.10) equals the right side of (2.7). In fact,
we will show that the sets of sequences whose convex hulls make up these two sets
are identical. In each direction, we begin with an individual entry in such a sequence
without its subscript. Let (t, y) ∈ Ω be a point where g(t, y) > 0 and ∇xg(t, y)
exists. According to [2], Propositions 2.5.4 and 2.5.5, the vector ζ = ∇xg(t, y) has
unit length, and belongs to π(t, x) for some point x ∈ X(t) obeying |x− y| = g(t, y).

Now let (t, x) ∈ gphX ∩ Ω be fixed, and let ζi be any sequence as described
on the right side of (2.7). Then, as we have shown, ζi is a sequence of unit vectors
in π(ti, xi), where |xi − yi| = g(ti, yi). Now (ti, yi) → (t, x), so lim sup g(ti, yi) ≤
g(t, x) = 0. Hence (ti, xi) → (t, x) also, and the sequence ζi is admissible on the right
side of (2.10).

Conversely, if ζ is a unit vector in π(t, x) for some x ∈ X(t), then for all λ > 0
sufficiently small, the point y = x+λζ obeys both g(t, y) = λ > 0 and ∇xg(t, y) = ζ.
(The proof of this fact is an entertaining exercise in the geometry of Euclidean balls.)
In particular, if ζi is any sequence as described on the right side of (2.10), then there
exists a sequence λi decreasing to zero such that the choices yi = xi + λiζi make the
sequence ζi admissible on the right side of (2.7). ////

2.3. Proposition. Assume (H1)–(H5). Let g(t, x) := dist(X(t), x). Then for any
(t, x) ∈ gphX ∩ Ω, one has

(a) N(t, x) = cl

[
{0} ∪

⋃
r>0

r ∂>
x g(t, x)

]
;

(b) 0 6∈ ∂>
x g(t, x) if and only if N(t, x) is pointed, in which case one has

N(t, x) = {0} ∪
⋃
r>0

r ∂>
x g(t, x);

(c) If the multifunction (t, x)→→NX(t)(x) has closed graph, then NX(t)(x) = N(t, x);
(d) If the multifunction X is convex-valued, then N(t, x) = NX(t)(x), and this cone
is pointed if and only if intX(t) 6= ∅.

Proof. (a) Corollary 2.2 shows that ∂>
x g(t, x) ⊆ coπ(t, x), from which the forward

inclusion (⊇) follows immediately.

To prove the reverse inclusion, let ζi be any convergent sequence satisfying ζi ∈
π(ti, xi) for a sequence (ti, xi) → (t, x) in gphX. Let ζ = lim ζi. If ζ = 0, then
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THE ADJOINT ARC IN NONSMOOTH OPTIMIZATION 11

certainly ζ belongs to the right-hand side. Otherwise, one has |ζi| → |ζ| > 0, so
ζi/|ζi| → ζ/|ζ|. By Corollary 2.2, ζ/|ζ| ∈ ∂>

x g(t, x), so ζ belongs to the right-hand
side of (a) in this case also. Thus the right-hand side contains π(t, x); since the right
side is closed and convex, it therefore contains N(t, x) = cl coπ(t, x) also.

(b) By Corollary 2.2, ∂>
x g(t, x) is the convex hull of a set of unit vectors. Hence

each of its extreme points is a unit vector. If 0 ∈ ∂>
x g(t, x) it follows that 0 is not

an extreme point, so it must be the midpoint of some line segment in ∂>
x g(t, x). The

line generated by this segment is a subspace of N(t, x) by part (a), so N(t, x) is not
pointed.

Conversely, suppose 0 6∈ ∂>
x g(t, x). Then there exist a vector µ 6= 0 and a

constant ε > 0 for which one has

〈µ , ζ〉 ≥ ε > 0 ∀ζ ∈ ∂>
x g(t, x).

Since ∂>
x g(t, x) is a subset of B, it follows that〈

µ ,
ζ

|ζ|

〉
≥ ε > 0 ∀ζ ∈ ∂>

x g(t, x).

Now the set of all ζ ∈ IRn satisfying the inequality above is a closed and pointed
convex cone. This cone contains N(t, x) by (a), so N(t, x) must also be pointed.

Finally, suppose N(t, x) is pointed. Since N(t, x) ⊇ π(t, x), it follows that π(t, x)
is also pointed, while π(t, x) is obviously closed. According to [15, p. 57], coπ(t, x)
is then closed and pointed. Thus N(t, x) = coπ(t, x): the identity in part (b) follows
from (2.10).

(c) Let (t, x)→→NX(t)(x) denote the graphical closure of the multifunction (t, x)→→NX(t)(x).
As we have already observed, the following inclusions always hold:

NX(t)(x) ⊇ N(t, x) ⊇ NX(t)(x).

Whenever the leftmost set in this statement equals the rightmost set, equality prevails
throughout.

(d) In view of (c), it suffices to show that the multifunction (t, x)→→NX(t)(x) has
closed graph. To do so, suppose ζi ∈ NX(ti)(xi) for some convergent sequence ζi,
where one has (ti, xi) → (t, x) in gphX ∩ Ω. Let ζ = lim ζi. By definition of the
convex normal cone,

〈ζi , y − xi〉 ≤ 0 ∀y ∈ X(ti).

Now let any point y ∈ X(t) be given. Since the multifunction X(·) is lower semicon-
tinuous, there exists a sequence yi → y satisfying yi ∈ X(ti) ∀i. Using this sequence
in the previous inequality, we have

〈ζi , yi − xi〉 ≤ 0 ∀i.
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12 PHILIP D. LOEWEN AND R. T. ROCKAFELLAR

In the limit as i→∞, this inequality yields

〈ζ , y − x〉 ≤ 0 :

since y ∈ X(t) is arbitrary, it follows that ζ ∈ NX(t)(x), as required. ////

Having characterized the multifunction (t, x)→→N(t, x) in various ways, let us
now observe that it is (jointly) Borel measurable. This is true because N(t, x) =
cl coπ(t, x): the multifunction π is Borel measurable because it has closed graph, and
hence cl coπ is Borel measurable by [16, Prop. 1H]. Likewise, for any continuous func-
tion x: [a, b] → Ω satisfying x(t) ∈ X(t) for all t, the multifunction N(t) := N(t, x(t))
is Borel measurable. To see this, note that π(t) := π(t, x(t)) is the composition of
Borel measurable multifunctions, hence Borel measurable, and apply [16, Prop. 1H]
again. Given a Borel measurable multifunction N : [a, b]→→IRn whose values are closed
convex cones, and a measure µ on [a, b] taking values in IRn, the statement that µ is
N(t)-valued means that there is a nonnegative measure µ0 on [a, b] and a measurable
selection ν(t) ∈ N(t) µ0 − a.e. such that dµ(t) ≡ ν(t) dµ0(t). (See [17, Section 5].)

The Hamiltonian. The Hamiltonian associated with the multifunction F is defined
by

H(t, x, p) := sup{〈p , v〉 : v ∈ F (t, x)}.

(Compare the definition immediately preceding Thm. 1.1.) Its basic properties are
described in [2, Prop. 3.2.4]; here is an extension of part (e) of that result.

2.4. Lemma. Under (H1)–(H5),

∂H(t, x, 0) = {0} × F (t, x).

Proof. We argue for fixed t ∈ [a, b], which will be suppressed throughout the notation
below. The identity asserted by the Lemma involves compact convex sets, which are
equal if and only if their support functions are identical. It therefore suffices to prove
that

H0(x, 0; v, w) = H(x,w) ∀(v, w) ∈ IRn × IRn. (2.11)

To prove the inequality ≥ in (2.11), consider the definition of H0(x, 0; v, w):

H0(x, 0; v, w) = lim sup
(y,q)→(x,0)

t→0+

H((y, q) + t(v, w))−H(y, q)
t

.

The choices y = x − tv and q = 0 can only reduce the value of the right-hand side,
whence

H0(x, 0; v, w) ≥ lim sup
t→0+

H(x, tw)
t

= H(x,w).
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The reverse inequality (≤) is more challenging. Choose sequences (yi, qi) →
(x, 0) and ti → 0+ such that

H0(x, 0; v, w) = lim
i→∞

H((yi, qi) + ti(v, w))−H(yi, qi)
ti

.

Apply the Mean Value Theorem ([2, Thm. 2.3.7]) to obtain the following estimate,
for some λi ∈ [0, 1]:

H(yi + tiv,qi + tiw)−H(yi, qi)
=H(yi, qi + tiw)−H(yi, qi)

+H(yi + tiv, qi + tiw)−H(yi, qi + tiw)

∈H(yi, qi + tiw)−H(yi, qi) + ti∂xH(yi + λitiv, qi + tiw)vB.

Now ∂xH(x, p) ⊆ |p|kFB in general notation ([2, Prop. 3.2.4(b)]), so the previous
inclusion implies

H(yi + tiv, qi + tiw)−H(yi, qi)
ti

≤ H(yi, qi + tiw)−H(yi, qi)
ti

+ kF |qi + tiw||v|.

Since the rightmost term converges to 0 as i→∞, it suffices to prove

lim sup
i→∞

H(yi, qi + tiw)−H(yi, qi)
ti

≤ H(x,w). (2.12)

To do so, choose a subsequence of indices (without relabelling) along which the left
side of (2.12) actually converges to its upper limit, and then apply the Mean Value
Theorem again. There results a sequence

ζi ∈ ∂pH(yi, qi + λitiw), λi ∈ [0, 1],

for which the difference quotient on the left side of (2.12) equals 〈ζi , w〉. Now ζi ∈
F (yi) for each i ([2, Prop. 3.2.4(d)]), so the sequence {ζi} is contained in the compact
set kFB and admits a convergent subsequence. Along this subsequence, ζi converges
to a point ζ in F (x) because F has closed graph. In summary,

LHS(2.12) = lim
i→∞

〈ζi , w〉 = 〈ζ , w〉

for some ζ ∈ F (x). This implies (2.12) and completes the proof. ////

The Hamiltonian Inclusion. We are now ready to review the standard Hamiltonian
necessary conditions for (PD). Our first result is a refinement of [2, Thm. 3.5.2]. It
pertains to the localized version of (PD) in which the requirement that x(t) ∈ Ωt for
all t ∈ [a, b] is added to the constraints.
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14 PHILIP D. LOEWEN AND R. T. ROCKAFELLAR

2.5. Theorem. Assume (H1)–(H5). Let the arc x(·) solve (PD), and assume the
constraint qualification

N(t, x(t)) is pointed, for each t ∈ [a, b]. (CQ)

Define g(t, x) := dist(X(t), x). Then there exist a scalar λ ∈ {0, 1}, an arc q ∈
AC([a, b]; IRn), and a finite nonnegative Borel measure µ on [a, b], together with a
measurable selection γ(t) ∈ ∂>

x g(t, x(t)) for all t ∈ [a, b], such that

(a) (−q̇(t), ẋ(t)) ∈ ∂H(t, x(t), q(t) +
∫
[a,t)

γ(s) dµ(s)) a.e. t ∈ [a, b];

(b) (q(a),−q(b)−
∫
[a,b]

γ(s) dµ(s)) ∈ λ∂l(x(a), x(b)) +NS(x(a), x(b));

(c) supp(µ) ⊆ {t : N(t, x(t)) 6= {0}} = {t : (t, x(t)) ∈ bdry gphX};

(d) λ+
∥∥∥q(t) +

∫
[a,t)

γ(s) dµ(s) + γ(b)µ{b}δ{b}(t)
∥∥∥
∞
> 0.

Proof. The quantities λ, q, µ, and γ are all provided by [2, Thm 3.5.2]. That result
gives the conclusions (a) and (b) recorded above, and asserts the following in place
of (c) and (d):

supp(µ) ⊆ {t : ∂>
x g(t, x(t)) 6= ∅}, (2.15)

λ+ ‖q‖∞ + µ[a, b] > 0. (2.16)

To recover (c), we prove that the set on the right side of (2.15) is the same as the set
on the right side of (c). Indeed, Prop. 2.3(a) implies that

∂>
x g(t, x) 6= ∅ ⇔ N(t, x) 6= {0},

so it suffices to show that

N(t, x) 6= {0} ⇔ (t, x) ∈ bdry gphX. (2.17)

To do so, note first that a point (t, x) lies in int gphX if and only if any sequence
(ti, xi) converging to (t, x) in gphX obeys xi ∈ intX(ti) for all i sufficiently large. So
if (t, x) ∈ int gphX, then π(t, x) = {0} and it follows that N(t, x) = {0}. Conversely,
if there exists a sequence (ti, xi) in gphX for which xi ∈ bdryX(ti) for all i while
(ti, xi) → (t, x), then π(ti, xi) 6= {0} for all i (cf. [2], Thm. 2.5.6, Cor. 1), so
π(t, x) 6= {0}. Hence N(t, x) = {0} implies (t, x) ∈ int gphX. We have shown

N(t, x) = {0} ⇔ (t, x) ∈ int gphX,

which is clearly equivalent to (2.17).

Now our conclusion (d) is strictly stronger than Clarke’s nontriviality condi-
tion (2.16), and hence requires an assumption which is absent from [2, Thm. 3.5.2].
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This is the constraint qualification (CQ), which we put to work as follows. If λ = 1
then (d) obviously holds, so suppose λ = 0. If∥∥∥q(t) +

∫
[a,t)

γ(s) dµ(s) + γ(b)µ{b}δ{b}(t)
∥∥∥
∞

= 0, (2.18)

then we must have q(t) +
∫
[a,t)

γ(s) dµ(s) + γ(b)µ{b}δ{b}(t) = 0 for all t ∈ [a, b].
Applying Lemma 2.4 to the Hamiltonian inclusion (a), we deduce that q̇(t) = 0 a.e.,
so q(t) = q(a) = 0 for all t ∈ [a, b]. Consequently∫

[a,t)

γ(s) dµ(s) + γ(b)µ{b}δ{b}(t) = 0 ∀t ∈ [a, b].

Subtraction yields the two identities

γ(b)µ{b} = 0,
∫

[α,β)

γ(s) dµ(s) = 0 ∀[α, β] ⊆ [a, b]. (2.19)

We will use (CQ) to deduce that µ is the zero measure: This will contradict (2.16),
thereby vindicating condition (d) and completing the proof.

Let C = supp(µ), and fix t ∈ C. By (c), N(t, x(t)) 6= {0}, while N(t, x(t))
is pointed by (CQ). Hence the compact convex set G(t) := ∂>

x g(t, x(t)) does not
contain 0 by Prop. 2.3(b), while G(t) 6= ∅ by (2.15). Therefore there exist a unit
vector p ∈ IRn and a constant ε > 0 such that 〈p , γ〉 ≥ 2ε > 0 for all γ ∈ G(t). Now
the multifunction G defined here has closed graph, so there exists δ > 0 so small that

t′ ∈ C, |t′ − t| < δ =⇒ ∅ 6= G(t′) ⊆ G(t) + εB.

In particular, for the given selection γ(t′) ∈ G(t′) µ− a.e. t′ ∈ C ∩ [t− δ, t+ δ], one
has

〈p , γ(t′)〉 ≥ ε > 0 µ− a.e. t′ ∈ C ∩ [t− δ, t+ δ].

Together with (c) and (2.19), this implies

0 = 〈p , 0〉 =

〈
p ,

∫
C∩[t−δ,t+δ)

γ(s) dµ(s)

〉
≥

∫
C∩[t−δ,t+δ)

ε dµ(s).

Consequently µ(C ∩ [t− δ, t+ δ)) = 0. This implies t 6∈ supp(µ) = C. Since t ∈ C is
arbitrary, it follows that C = ∅, i.e., that µ is the zero measure. ////

On the Constraint Qualification. In [2, p. 122], Clarke notes that whenever the
constraint qualification (CQ) (or its cognate in his notation—namely 0 6∈ ∂>

x g(t, x(t))
for all t—see Prop. 2.3(b)) is violated, then all the conclusions of [2, Thm. 3.5.2] may
hold without providing any useful information. Indeed, if one has 0 ∈ ∂>

x g(t, x(t))
for some t ∈ [a, b], then the choices µ = δ{t}, γ ≡ 0, p ≡ 0, and λ = 0 satisfy
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16 PHILIP D. LOEWEN AND R. T. ROCKAFELLAR

conclusions (a)–(c) with ‖µ‖ = 1, but give no insight into the behaviour of x(·).
Thus condition (CQ) is necessary for the conclusions of [2, Thm. 3.5.2] to be useful.
The point of Thm. 2.5 is that (CQ) is also sufficient for this purpose, since it gives
the improved nontriviality condition (d). (Note that (d) disallows the unenlightening
choices above, since they produce a function q(t) +

∫
[a,t)

γ(s) dµ(s) + γ(b)µ{b}δ{b}(t)
which is identically zero.)

Having identified (CQ) as a necessary and sufficient condition for the conclusions
of Thm. 2.5 to be useful, we now observe that this condition also has a useful technical
consequence: namely, that the set of measures which are N(t, x(t))-valued is weak∗-
closed. This is the assertion of Prop. 2.7 below, which we will apply in Section 3. To
prove it, we will need the following lemma.

2.6. Lemma. Let a multifunction γ: [a, b]→→IRn be given. If the values of γ are
pointed cones and γ has closed graph, then the same properties are enjoyed by the
multifunction Γ(t) := co γ(t).

Proof. For each t ∈ [a, b], the cone γ(t) is closed and pointed. It follows from the
arguments of [15], p. 57, that each cone Γ(t) = co γ(t) is likewise closed and pointed.

Now fix t ∈ (a, b). (The cases t = a and t = b are treated similarly.) Since Γ(t)
is closed and pointed, its polar cone Γ(t)0 has nonempty interior. Let −v be a unit
vector in int Γ(t)0, and let ε > 0 be chosen so that

−v + 2εB ⊆ Γ(t)0.

Observe that this implies

〈w , v〉 ≥ 2ε|w| ∀w ∈ Γ(t).

Consider the cone Kε(v) = {v : 〈v , v〉 ≥ ε|v|}. Since γ has closed graph, there exists
δ > 0 such that

γ(t′) ⊆ Kε(v) ∀t′ ∈ (t− δ, t+ δ).

(Suppose not: then there exist sequences ti → t and vi ∈ γ(ti)\Kε(v). Let v̂i = vi/|vi|
and limit attention to a subsequence along which v̂i → v̂. Since γ has closed graph,
v̂ ∈ γ(t) ⊆ Γ(t). But 〈v̂ , v〉 = lim 〈v̂i , v〉 ≤ ε = ε|v̂|, a contradiction.) In particular,

〈w , v〉 ≥ ε|w| ∀t′ ∈ (t− δ, t+ δ), ∀w ∈ Γ(t′). (2.13)

Now we show that gph Γ is closed at t. Let any sequence ti → t be given, together
with a convergent sequence vi ∈ Γ(ti): write v = lim vi. We must show that v ∈ Γ(t),
an exercise which is trivial unless v 6= 0. For each i, Caratheodory’s theorem allows
us to write

vi =
n+1∑
i=1

vi
k, where vi

k ∈ γ(ti) for k = 1, . . . , n+ 1.
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Since the sequence vi converges, it is bounded. That is, for some R > 0 we have
R ≥ |vi| for all i. We may therefore use (2.13) to estimate (for each i)

R ≥ |vi| =

∣∣∣∣∣
n+1∑
k=1

vi
k

∣∣∣∣∣ =

∣∣∣∣∣
n+1∑
k=1

vi
k

∣∣∣∣∣|v|
≥

〈
n+1∑
k=1

vi
k , v

〉
≥ ε

n+1∑
k=1

∣∣vi
k

∣∣ ≥ ε
∣∣vi

k

∣∣.
In particular, each of the n+1 sequences {vi

k}∞i=1 is bounded by R/ε and the successive
extraction of subsequences allows us to assume that vi

k → v∞k for each k = 1, . . . , n+1.
Since γ has closed graph, v∞k ∈ γ(t) for each k. Hence the vector

v = lim
i→∞

vi = lim
i→∞

n+1∑
k=1

vi
k =

n+1∑
k=1

v∞k

belongs to Γ(t), as required. ////

2.7. Proposition. Let Γ: [a, b]→→IRn be a multifunction whose values are closed
convex cones, and suppose gphΓ is closed. Then the set of measures G = {µ :
µ is Γ(t)-valued} is weak∗-closed.

Proof. Let K = {u ∈ C([a, b]; IRn) : u(t) ∈ Γ(t)0 ∀t ∈ [a, b]}. It suffices to prove that
G equals the convex cone

K0 =
⋂

u∈K

{µ : 〈µ , u〉 ≤ 0},

since the latter is obviously weak∗-closed. To do so, note first that the multifunction
t→→Γ(t)0 is lower semicontinuous, by Lemma 2.6 and [1, Prop. 18, p. 177]. According
to [17, Thm. 6] (with Q(t) = Γ(t)0), the set K introduced above is nonempty, closed,
and convex in C[a, b], and its support function on the space of measures is given by

Ψ∗
K(µ) =

∫ b

a

Ψ∗
Γ(t)0

(
dµ

dθ
(t)

)
dθ(t) ∀µ,

where θ is any nonnegative measure such that µ << θ. But Ψ∗
Γ(t)0 ≡ ΨΓ(t), so this

representation may be rewritten as

Ψ∗
K(µ) =

∫ b

a

ΨΓ(t)

(
dµ

dθ
(t)

)
dθ(t) ∀µ.

Consequently a measure µ is Γ(t)-valued if and only if Ψ∗
K(µ) = 0. To complete the

proof, note that K0 = NK(0) = ∂ΨK(0), while Young’s identity gives

µ ∈ ∂ΨK(0) ⇔ Ψ∗
K(µ) + ΨK(0) = 〈0 , µ〉

⇔ Ψ∗
K(µ) = 0. ////
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18 PHILIP D. LOEWEN AND R. T. ROCKAFELLAR

Now the formulation of Hamiltonian necessary conditions in terms of an adjoint
function of bounded variation represents a simple change of variables in Thm. 2.5.
The recipe for this change appears in the proof of the next result, in which the
improved nontriviality condition (d) of Thm. 2.5 is indispensable in establishing the
crucial phrase “not both zero”.

2.8. Theorem. Assume (H1)–(H5), and suppose an arc x(·) solves (PD) and sat-
isfies the constraint qualification

N(t, x(t)) is pointed, for each t ∈ [a, b]. (CQ)

Then there exist a scalar λ ∈ {0, 1} and a function p ∈ BV ([a, b]; IRn), not both zero,
together with a measurable selection ν(t) ∈ N(t, x(t)) for all t ∈ [a, b], such that

(a) (−ṗ(t) + ν(t), ẋ(t)) ∈ ∂H(t, x(t), p(t)) a.e. t ∈ [a, b];

(b) (p(a),−p(b)) ∈ λ∂l(x(a), x(b)) +NS(x(a), x(b));

(c) the singular part of dp is N(t, x(t))-valued, and in particular is supported on the
set

{t : N(t, x(t)) 6= {0}} = {t : (t, x(t)) ∈ bdry gphX}.

Proof. Apply Thm. 2.5, then adjust γ on a set of µ-measure zero to arrange

(t, x(t)) ∈ bdry gphX =⇒ γ(t) ∈ ∂>
x g(t, x(t)).

Then introduce a function p ∈ BV ([a, b]; IRn) by defining

p(t) = q(t) +
∫

[a,t)

γ(s)µ(ds) + γ(b)µ{b}δ{b}(t).

Note that p(a) = q(a), since [a, a) = ∅, while p(b) = q(b)+
∫
[a,b]

γ(s) dµ(s). Hence (b)
follows from Thm. 2.5(b).

Next, decompose dµ(t) = m(t) dt + dµs(t) for some nonnegative function m ∈
L1[a, b] and some nonnegative Borel measure µs totally singular with respect to
Lebesgue measure. Clearly m(t) = 0 for all t where (t, x(t)) ∈ int gphX, so the
definition

ν(t) :=
{
γ(t)m(t), if (t, x(t)) ∈ bdry gphX,
0 otherwise,

gives both ν(t) ∈ N(t, x(t)) for all t ∈ [a, b] (by Prop. 2.3(b) and Thm. 2.5(c)) and
ṗ(t) = q̇(t) + γ(t)m(t) a.e. Hence (a) holds.

Finally, the singular part of dp is the vector measure γ(t) dµs(t): it is N(t, x(t))-
valued by definition. ////
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III. Proof of Theorem 1.1.

We now pass from the case L ≡ 0 of the differential inclusion problem to the
general case of problem (P ). This requires a precise description of our hypotheses
concerning the integrand L. Thus we augment hypotheses (H1)–(H5) of Section 2
with the following hypotheses:

(H6) There exists ε > 0 such that the Lagrangian L: gph (F + εB) → IR is L × B-
measurable; for each fixed (t, x) ∈ Ω, the function v → L(t, x, v) is convex on
the set F (t, x) + εB;

(H7) There exists a nonnegative function kL(·) ∈ L1[a, b] such that

|L(t, x′, v′)− L(t, x, v)| ≤ kL(t)|(x′, v′)− (x, v)|
∀t ∈ [a, b], (x′, v′), (x, v) ∈ gph (F (t, ·) + εB);

also, the product kL(t)kF (t) is integrable.

A function of fundamental importance is the Hamiltonian introduced in Section 1:

Hλ(t, x, p) := sup{〈p , v〉 − λL(t, x, v) : v ∈ F (t, x)} ∀(t, x) ∈ Ω, p ∈ IRn.

As we now show, our standing hypotheses on F and L imply that H1 obeys the
“strong Lipschitz condition”.

3.1. Lemma. Assume (H1)–(H7). Then there is a function kH(·) ∈ L1[a, b] for
which

|H1(t, y, p)−H1(t, x, p)| ≤
1
2
kH(t)(1 + |p|)|y − x| ∀t ∈ [a, b], x, y ∈ Ωt, p ∈ IRn. (3.1)

Moreover, for each t ∈ [a, b], the multifunction E defined by

E(t, x) := {(v, w) : v ∈ F (t, x), w ≥ L(t, x, v)}

is Lipschitz of rank kH(t) on Ωt.

Proof. Taking λ = 1 in Lemma 4.1(c) below, we find that

|H1(t, y, p)−H1(t, x, p)| ≤ (kF (t)|p|+ kL(t) + kF (t)kL(t))|y − x|.

Consequently (3.1) will hold for the function kH = 2 max{kF , kL(1 + kF )}, which is
integrable by (H7).
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The desired Lipschitz continuity of E(t, ·) is a consequence of the strong Lipschitz
condition (3.1): this is proven as the first step of [2, Lemma 2, pp. 170–171]. ////

An Auxiliary Problem. Now suppose an arc x(·) solves problem (P ). Then x remains
admissible, and hence optimal, if the set Ω is assumed to obey Ωt = x(t)+δB for each
t ∈ [a, b], where δ ∈ (0, 1/6) is fixed. Similarly, x(·) must also solve any problem of
the following form, in which the running cost is augmented by a nonnegative function
M which satisfies M(t, ẋ(t)) = 0 a.e. t ∈ [a, b]:

min{l(x(a), x(b)) +
∫ b

a

[L(t, x(t), ẋ(t)) +M(t, ẋ(t))] dt :

x ∈ AC ([a, b]; IRn) ,
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b],
x(t) ∈ X(t) ∀t ∈ [a, b],
(x(a), x(b)) ∈ S}.

(3.2)

For our purposes the choice M(t, v) := θ(v − ẋ(t)) is convenient, where

θ(v) := [1 + |v|2]1/2 − 1.

Since θ(0) = 0 and ∇θ(0) = 0, the addition of M to the running cost makes a
change which is undetectable to first order along the arc x, while rendering the new
Lagrangian L̃ := L+M a strictly convex function of its third argument. This property
is crucial to the simultaneous derivation of the Eulerian and Hamiltonian inclusions.

Now if we use the solution x of (3.2) to define y(t) =
∫ t

a
L(r, x(r), ẋ(r)) dr,

then the arc (x, y) evidently solves the following problem, in which no integral term
appears:

min{l(x(a), x(b)) + y(b) :x ∈ AC ([a, b]; IRn) ,

(ẋ(t), ẏ(t)) ∈ Ẽ(t, x(t)) a.e. t ∈ [a, b],
(x(t), y(t)) ∈ X(t)× IR ∀t ∈ [a, b],
(x(a), y(a);x(b), y(b)) ∈ {(ξ0, η0; ξ1, η1) : (ξ0, ξ1) ∈ S, η0 = 0}}.

(P)

Here the dynamics are governed by the multifunction

Ẽ(t, x) := {(v, w) : v ∈ F (t, x), L̃(t, x, v) ≤ w}.

Roughly speaking, the results announced by Thm. 1.1 follow from an application of
Thm. 2.8 to problem (P), followed by a careful reduction of the Hamiltonian inclusion
involving Ẽ to the desired conclusions involving F and L. Let us outline the first
step in this program before confronting the fact that (P) fails to satisfy (H1)–(H5).
If we could apply Thm. 2.8 directly to (P), then we would find a scalar λ ∈ {0, 1}
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and a function (p, q) ∈ BV ([a, b]; IRn×IR), not both zero, together with an integrable
selection (ν(t), ρ(t)) ∈ N (t, x(t), y(t)) ∀t ∈ [a, b], such that

(a) (−ṗ(t) + ν(t),−q̇(t) + ρ(t), ẋ(t), L(t, x(t), ẋ(t))) ∈ ∂H(t, x(t), y(t), p(t), q(t));

(b) (p(a), q(a);−p(b),−q(b)) ∈ λ{(α0, 0;α1, 1) : (α0, α1) ∈ ∂l(x(a), x(b))}
+NS(x(a), 0;x(b), y(b));

(c) the singular part of (dp, dq) is N (t, x(t), y(t))-valued.

In these conditions the Hamiltonian is

H(t, x, y, p, q) := sup{〈p , v〉+ qw : (v, w) ∈ Ẽ(t, x)}.

Since it is independent of y, the y-component of its generalized gradient is always
zero, and the remaining information is contained in the generalized gradient of the
function

H̃(t, x, p, q) := H(t, x, y, p, q).

The tilde notation in H̃ is inspired by the tilde on L̃ = L+M via

Ẽ(t, x) := epi
[
L̃(t, x, ·) + ΨF (t,x)(·)

]
.

In conditions (a)–(c), the endpoint constraint set S = {(ξ0, η0; ξ1, η1) : (ξ0, ξ1) ∈
S, η0 = 0} has such a simple structure that its normal cone is closely related to
that for the original set S: thus (b) implies that −q(b) = λ and that the usual
transversality condition ((b′) below) holds for p. Similarly, the cone N (t, x, y) is
constructed from the state constraint multifunction X (t) = X(t) × IR just as in
Section 2: evidently N (t, x, y) = N(t, x) × {0}. Thus (c) implies that the singular
part of dq is zero, while (a) implies that q̇ = 0 a.e. Hence q ≡ −λ follows from (b),
and we are left with

(a′) (−ṗ(t) + ν(t), ẋ(t), L(t, x(t), ẋ(t))) ∈ ∂H̃(t, x(t), p(t),−λ) a.e.;

(b′) (p(a),−p(b)) ∈ λ∂l(x(a), x(b)) +NS(x(a), x(b));

(c′) the singular part of dp is N(t, x(t))-valued.

Conclusions (b′) and (c′) are just what we hope to get, while the extended Hamil-
tonian inclusion (a′) contains the germs of the ordinary Hamiltonian inclusion, the
Euler inclusion, and the Weierstrass-Pontryagin condition.

A Technical Necessity. Now as we mentioned above, the data of problem (P) fail to
satisfy the hypotheses of Thm. 2.8, so the arguments of the previous paragraph are
not completely rigorous. The main obstacle is that the multifunction Ẽ is unbounded,
and hence fails to satisfy both the compactness condition and the integrable bound
required by (H3). We surmount this difficulty by considering, instead of problem
(P), a sequence of problems (Pm) defined as follows: For each m ∈ N, problem (Pm)
is identical to (P), except that the multifunction Ẽ is replaced by

Ẽm(t, x) := Ẽ(t, x) ∩
[(
ẋ(t) +mkH(t)B

)
× [ẏ(t)−mkH(t), ẏ(t) +mkH(t)]

]
.
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It is clear that (x, y) remains admissible, and hence optimal, for each of the problems
(Pm). We now verify that each problem (Pm) satisfies the hypotheses of Thm. 2.8.
To confirm (H3), simply note that Ẽm(t, x) ⊆ φm(t)B ∀(t, x) ∈ Ω, where

φm(t) :=
∣∣ẋ(t)∣∣ +

∣∣L(t)
∣∣ + 2mkH(t).

Conditions (H1) and (H5) hold for (Pm) because they are independent of the dy-
namics. The measurability condition (H2) obviously holds. The sets Ẽm(t, x) are
clearly compact and convex for all (t, x) ∈ Ω: it remains only to show that they are
nonempty and satisfy the Lipschitz condition of (H4). To do so, we proceed directly,
aided by [2, pp. 170–172]. Fix t ∈ [a, b], and let x1 ∈ Ωt be given, together with
(v1, w1) ∈ Ẽ(t, x1) and x2 ∈ Ωt. By Lemma 3.1, the multifunction x→→E(t, x) is
Lipschitz of rank kH(t) on Ωt. Since (v1, w1 −M(t, v1)) ∈ E(t, x1), it follows that
there is some point (v2, w2) ∈ E(t, x2) satisfying

|(v2, w2)− (v1, w1 −M(t, v1))| ≤ kH(t)|x2 − x1|. (3.3)

For the corresponding point (v2, w2 +M(t, v2)) in Ẽ(t, x2), we have

|(v2, w2 +M(t, v2))− (v1, w1)| ≤ |(v2, w2)− (v1, w1 −M(t, v1))|+ |M(t, v2)−M(t, v1)|
≤ kH(t)|x2 − x1|+ |v2 − v1|.

(3.4)
The last term in this estimate arises because the function θ is globally Lipschitz of
rank 1. Combining (3.3) and (3.4), we have

|(v2, w2 +M(t, v2))− (v1, w1)| ≤ 2kH(t)|x2 − x1|.

Hence the multifunction x→→Ẽ(t, x) is Lipschitz of rank 2kH(t) on Ωt.

Now recall that Ωt = x(t) + δB for some fixed δ ∈ (0, 1/6). It follows that for
any (t, x) ∈ Ω, one has

(ẋ(t), ẏ(t)) ∈ Ẽ(t, x(t)) ⊆ Ẽ(t, x) + 2kH(t)|x− x(t)|B

⇒ Ẽ(t, x) ∩
(
(ẋ(t), ẏ(t)) + 2δkH(t)B

)
6= ∅.

(3.5)

Hence Ẽm(t, x) 6= ∅ for all x ∈ Ωt provided m > 2δ; and this holds for all m ≥ 1
by our choice of δ. Moreover, upon choosing rm = mkH(t)/3 and M ′ = 2kH(t), we
have rm > 2δkH(t), so (3.5) remains valid with rm in place of 2δkH(t). According to
[2, Lemma 3, p. 172], the multifunction Ẽm(t, ·, ·) = Ẽ(t, ·, ·) ∩

(
(ẋ(t), ẏ(t)) + 3rmB

)
is nonempty, compact-convex-valued, and Lipschitz of rank 5M ′ = 10kH(t) on Ωt.
Thus (H4) holds for the integrable function kFm(t) := 10kH(t). It is significant that
this function is independent of m.

We have justified the application of Thm. 2.8 to problem (Pm). Exactly the
same reasoning used above leads to the following conclusions: For each m ∈ N, there
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exist a constant λm ∈ {0, 1} and a function pm ∈ BV ([a, b]; IRn), not both zero,
together with a measurable selection νm(t) ∈ N(t, x(t)) ∀t ∈ [a, b], such that

(am) (−ṗm(t) + νm(t), ẋ(t), L(t, x(t), ẋ(t))) ∈ ∂H̃m(t, x(t), pm(t),−λm) a.e.;

(bm) (pm(a),−pm(b)) ∈ λm∂l(x(a), x(b)) +NS(x(a), x(b));

(cm) the singular part of dpm is N(t, x(t))-valued.

The Key Step. Conditions (am)–(cm) involve the Hamiltonian function

H̃m(t, x, p, q) := sup{〈p , v〉+ qw : v ∈ Fm(t, x),

L̃(t, x, v) ≤ w ≤ L(t, x(t), ẋ(t)) +mkH(t)}
(3.6)

corresponding to the Lagrangian L̃ through the multifunction Ẽm. The strict convex-
ity of L̃(t, x, v) as a function of v is the key to the fact that (am) simultaneously im-
plies the Euler inclusion, the Hamiltonian inclusion, and the Weierstrass-Pontryagin
condition for the original Lagrangian L. The reasons for this are given in detail in
Section 4: here we simply apply them. Throughout this process, we consider a fixed
time t ∈ [a, b] and index m ∈ N for which ẏ(t) = L(t, x(t), ẋ(t)) and inclusion (am)
holds, and suppress t in the notation. We also drop the subscript m from the multi-
pliers λm, pm, and νm. Thus our starting point, the inclusion (am), is written more
concisely as

(−ṗ+ ν, ẋ, ẏ) ∈ ∂H̃m(x, p,−λ), (3.7)

with
H̃m(x, p, q) = sup{〈p , v〉+ qw : v ∈ Fm(x), L̃(x, v) ≤ w ≤ R}. (3.8)

(Here R = L+mkH .) In parallel to (3.8), we introduce the notation

H̃m,λ(x, p) := sup{〈p , v〉 − λL̃(x, v) : v ∈ Fm(x)}. (3.9)

The functions Hm and Hm,λ are defined exactly as in (3.8) and (3.9), except that L
replaces L̃.

3.2. Lemma. Inclusion (3.7) implies that

|ṗ− ν| ≤ 10kH |(p,−λ)|.

Proof. By our previous discussion of (H4) and [2, Prop. 3.2.4(d)], the Lipschitz rank
of x 7→ H̃m(x, p, q) is 10kH |(p, q)|. The result follows. ////

The crux of this section is the following result, whose proof relies upon the
material in Section 4 below.
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3.3. Proposition. Inclusion (3.7) implies the following inclusions:

(−ṗ+ ν, ẋ) ∈ ∂Hm,λ(x, p), (3.10)
(ṗ− ν, p) ∈ λ∂L(x, ẋ) +Ngph F (x, ẋ), (3.11)
p ∈ λ∂vL(x, ẋ) +NF (x)(ẋ). (3.12)

Proof. All three inclusions follow from the results of Section 4. We apply those results
to the domain U = Ωt, the multifunction Fm, the Lagrangian L (or sometimes L̃),
and the perturbing function M . Notice that the technical hypotheses (A1)–(A3) of
Section 4 all hold for these choices: Ωt is a bounded open set on which Fm is compact
and convex-valued by (H3), while Fm is nonempty on Ωt because Ẽm is nonempty
there. Moreover, Fm is Lipschitz of rank km on Ωt; this property is inherited from
Ẽm. The possible choices L, M , and L̃ = L + M all satisfy (A2) (compare (H6)–
(H7)). Finally, assumption (A3) holds because Ẽm(t, x) 6= ∅ ∀x ∈ Ωt. Thus all the
results of Section 4 are available to us.

Consider the multifunction Ẽm introduced above, now written concisely as

Ẽm(x) = {(v, w) : v ∈ Fm(x), L̃(x, v) ≤ w ≤ R}.

Now (ẋ, ẏ) lies in Ẽm(x) by assumption: we observe that in fact,

(ẋ, ẏ) ∈ ext Ẽm(x). (3.13)

To prove this, suppose two points (vi, wi) ∈ Ẽm(x), i = 0, 1, obey

(ẋ, ẏ) =
1
2

[(v0, w0) + (v1, w1)] .

Then wi ≥ L̃(x, vi) implies that while ẋ = 1
2(v0 + v1),

ẏ = L̃(x, ẋ) =
1
2
(w0 + w1) ≥

1
2
L̃(x, v0) +

1
2
L̃(x, v1).

This is compatible with the strict convexity of L̃(x, ·) only if v0 = v1 = ẋ and
w0 = w1 = ẏ = L̃(x, ẋ). Thus (3.13) holds. We may therefore apply Thm. 4.7 (with
E = Ẽm, q = −λ, and −π = −ṗ+ ν) to deduce that

(ṗ− ν, p) ∈ λ∂L̃(x, ẋ) +Ngph Fm
(x, ẋ),

p ∈ λ∂vL̃(x, ẋ) +NFm(x)(ẋ).

But the sets Fm(x) and F (x) are indistinguishable on a neighbourhood of ẋ, and
similarly gphFm is identical to gphF on some open set containing (x, ẋ). Therefore
the previous inclusions are unchanged if the subscript m is deleted from F . Since
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L̃(x, v) = L(x, v) +M(v) for a smooth function M whose derivative is 0 at the point
(x, ẋ), it follows that these inclusions are identical to (3.11) and (3.12).

To recover (3.10), we apply Thm. 4.4. It follows that

(−ṗ+ ν, ẋ) ∈ ∂H̃m,λ(x, p). (3.14)

Now if λ = 0, then H̃m,λ ≡ Hm,λ, so (3.10) follows directly. However, if λ = 1, then
we may use Cor. 4.3(b). The estimate given there involves the set ∂pH̃m,1(x, p): let
us show that

∂pH̃m,1(x, p) = {ẋ}. (3.15)

The inclusion ⊇ follows directly from (3.14) and [2, Prop. 2.5.3]. The reverse inclusion
follows from Young’s identity, which implies that

v ∈ ∂pH̃m,1(x, p) ⇔ v ∈ arg max
v′ ∈ Fm(x)

{〈p , v′〉 − L̃(x, v′)}.

Now the function v′ → 〈p , v′〉 − L̃(x, v′) is strictly convex, so there can be at most
one vector v satisfying the latter relation. This vector must be ẋ, so (3.15) holds.
Since ∂M(ẋ) = {0}, the union in Cor. 4.3(b) actually involves only one pair (v, z):
thus that inclusion reduces to

∂H̃m,1(x, p) ⊆ co{(−π, v) : (−π, v) ∈ ∂Hm,1(x, p)}.

The desired result (3.10) follows from this estimate and (3.14). ////

Limiting Conclusions. We now revert to fully explicit notation. Recall that for each
(t, x) ∈ Ω, the set F (t, x) is compact. Consequently

⋃∞
m=2Am = [a, b], where the

measurable sets Am are defined by

Am = {t ∈ [a, b] : Fm−1(t, x(t)) = F (t, x(t))}.

But for t ∈ Am, one has Fm(t, x′) = F (t, x′) for all x′ sufficiently near x(t), since Fm

is Lipschitz in x′. Hence Hm,λ(t, x′, p) = Hλ(t, x′, p) for all x′ near x(t) and p ∈ IRn.
This gives ∂Hm,λ(t, x(t), p) = ∂Hλ(t, x(t), p) for all t ∈ Am, p ∈ IRn. We use this
observation to simplify the inclusion (3.10).

Taken together, inclusions (3.10)–(3.12) and statements (bm)–(cm) provide se-
quential versions of all the desired conclusions of Thm. 1.1. It remains to pass to the
limit as m→∞. To do so, it is convenient to treat the measures represented by each
pm more explicitly, using the change of variables below:

qm(t) := pm(a) +
∫ t

a

[ṗm(r)− νm(r)] dr

dµm(t) := dpm(t)− q̇m(t) dt.
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Note that the functions qm are absolutely continuous and satisfy qm(a) = pm(a),
while the IRn-valued measures µm are N(t, x(t))-valued. We now have

|q̇m(t)| ≤ 10kH(t) (|qm(t) + µm[a, t)|+ λm) a.e. t ∈ [a, b], (3.16)
(−q̇m(t), ẋ(t)) ∈ ∂Hλm

(t, x(t), qm(t) + µm[a, t)) a.e. t ∈ Am, (3.17)
(q̇m(t), qm(t) + µm[a, t)) ∈ λm∂L(t, x(t), ẋ(t)) +Ngph F (t,·)(x(t), ẋ(t)) a.e. t ∈ [a, b], (3.18)

qm(t) + µm[a, t) ∈ λm∂vL(t, x(t), ẋ(t)) +NF (t,x(t))(ẋ(t)) a.e. t ∈ [a, b], (3.19)

(qm(a),−qm(b)− µm[a, b]) ∈ λm∂l(x(a), x(b)) +NS(x(a), x(b)), (3.20)
supp(µm) ⊆ {t ∈ [a, b] : (t, x(t)) ∈ bdry gphX}, (3.21)
λm + |qm(a)|+ Var(qm(t) + µm[a, t) + µm{b}δ{b}(t); [a, b]) = 1. (3.22)

The last assertion is equivalent to λm + |pm(a)|+Var(pm; [a, b]) = 1; it is arranged by
scaling. Inequality (3.16) follows from Lemma 3.2, while (3.17)–(3.19) are the results
of Prop. 3.3. Conditions (3.20) and (3.21) are transcriptions of (bm) and (cm) above.

By successive extraction of subsequences, which we do not relabel, we may assert
the following:

1. The numbers λm converge to some λ ∈ [0, 1] (by the Heine-Borel Theorem);

2. The arcs qm converge uniformly to some arc q ∈ AC([a, b]; IRn), with q̇m
w−→q̇

weakly in L1([a, b]; IRn) (since |q̇m(t)| ≤ 10kH(t) a.e. by (3.16) and (3.22), the
Dunford-Pettis criterion implies that {q̇m} has a weakly convergent subsequence
in L1);

3. The measures µm converge weak∗ to some finite IRn-valued Borel measure µ on
[a, b] (since (3.22), together with item 2, implies that each component sequence
of {µm} consists of real-valued measures with uniformly bounded variation; we
apply Helly’s selection theorem to each component).

It follows from Prop. 2.7 that µ = w∗− limµm is itself N(t, x(t))-valued. Conse-
quently the limiting forms of (3.20)–(3.22) follow immediately, since only pointwise
convergence is involved: we have

q(t) + µ[a, t) ∈ λ∂vL(t, x(t), ẋ(t)) +NF (t,x(t))(ẋ(t)) a.e. t ∈ [a, b], (3.23)

(q(a),−q(b)− µ[a, b]) ∈ λ∂l(x(a), x(b)) +NS(x(a), x(b)), (3.24)
supp(µ) ⊆ {t ∈ [a, b] : (t, x(t)) ∈ bdry gphX}, (3.25)
λ+ |q(a)|+ Var(q(t) + µ[a, t) + µ{b}δ{b}(t); [a, b]) = 1. (3.26)

Next we turn to the two inclusions involving weak convergence, starting with (3.18).
If λ = limλm = 0, then consider the set of functions

S0 = {(r(·), s(·)) ∈ L1([a, b]; IRn × IRn) : (r(t), s(t)) ∈ Ngph F (t,·)(x(t), ẋ(t)) a.e.}.

This set is convex, and strongly closed in L1([a, b]; IR2n). Hence it is weakly closed.
The sequence of functions on the left sides of (3.18) converges weakly, and its terms
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approach the set S0 in norm since
∥∥λm∂L(t, x(t), ẋ(t))

∥∥
1
→ 0. It follows that the

weak limit of this sequence lies in S0.

On the other hand, if λm → λ > 0, then the same argument may be applied,
once S0 has been replaced by

Sλ := {(r, s) : (r(t), s(t)) ∈ λ∂L(t, x(t), ẋ(t)) +Ngph F (t,·)(x(t), ẋ(t)) a.e.}.

In short, we have the following inclusion for almost all t ∈ [a, b]:

(q̇(t), q(t) + µ[a, t)) ∈ λ∂L(t, x(t), ẋ(t)) +Ngph F (t,·)(x(t), ẋ(t)). (3.27)

As for (3.17), if λm = 0 ∀m then the multifunction on the right side of (3.17) is
always ∂H0, and the limiting validity of this relationship follows from [2, Thm. 3.1.7].

If λm → 0+, then for each m there is a measurable selection zm(t) ∈ B such
that, by Corollary 4.3(a) below,

(−q̇m(t), ẋ(t)) ∈ ∂H0(t, x(t), qm(t) + µm[a, t) + λmzm(t)kL(t)) + λmkL(t)B × {0}
a.e. t ∈ Am.

Again, the result follows from [2, Prop. 3.1.7].

Finally, if λm → λ > 0, then qm/λm → q/λ uniformly, with weak convergence
of the derivatives in L1. The limiting validity of (3.17) is established by dividing
through (3.17) by λm to obtain the following inclusion for almost all t in Am,(

− (q̇m(t)/λm) , ẋ(t)
)
∈ ∂H1 (t, x(t), (qm(t)/λm) + µ[a, t)/λm) ,

taking the limit with the aid of [2, Thm. 3.1.7], and then multiplying both sides by
λ to get the final result:

(−q̇(t), ẋ(t)) ∈ ∂Hλ(t, x(t), q(t) + µ[a, t)) a.e. t ∈ [a, b]. (3.28)

This notation is consistent with the results of all three cases.

Now conclusions (3.23)–(3.28) correspond closely to the conclusions of Thm. 2.8.
The desired assertions of Thm. 1.1 follow immediately upon reversing the change of
variables made above: the proof of Thm. 2.8 provides a model for this reduction.
This completes the proof of Thm. 1.1.

IV. Hamiltonian Calculus

Necessary conditions for problem (P) typically involve functions of the following
form:

Hλ(x, p) := sup{〈p , v〉 − λL(x, v) : v ∈ F (x)}. (4.1)
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In this section we study the generalized gradients of these functions for λ ≥ 0 from
three different viewpoints. We also consider the generalized gradients of the closely
related function

H(x, p, q) :=
{
H−q(x, p), if q < 0,
H0(x, p) + qR, if q ≥ 0, (4.2)

at points (x, p, q) where q ≤ 0. Our presentation offers a completely self-contained
description of the technical results underlying the main theorems of this paper. All
standing assumptions and notational conventions in Sections 1–3 are abandoned (ex-
cept for the useful motivation they provide), and we start with a clean slate.

Assumptions. Let U ⊆ IRn be a bounded open set. Throughout this section, we
assume the following.

(A1) The multifunction F :U→→IRn has nonempty, compact, convex values, and obeys
the following Lipschitz condition for some constant kF ≥ 0:

F (y) ⊆ F (x) + kF |y − x|B ∀x, y ∈ U ;

(A2) For some constant ε > 0, the function L: gph (F + εB) → IR is Lipschitz of rank
kL; for each fixed x ∈ U , the map v → L(x, v) is convex on F (x) + εB. (Here,
of course, gph (F + εB) = {(x, v) : x ∈ U, v ∈ F (x) + εB}.)

(A3) The constant R ≥ 0 appearing in definition (4.2) is large enough that the sets
F (x) ∩ {v : L(x, v) ≤ R} are nonempty for all x in U .

The most elementary properties of the functions Hλ are recorded below.

4.1. Lemma. Fix (x, p) ∈ U × IRn and λ ≥ 0. Then

(a) the function p→ Hλ(x, p) is finite-valued and convex on IRn;

(b) Young’s identity holds: that is, for any v ∈ IRn,

v ∈ ∂pHλ(x, p) ⇔ Hλ(x, p) = 〈p , v〉 − λL(x, v)
⇔ p ∈ λ∂vL(x, v) +NF (x)(v);

(4.3)

(c) the function x→ Hλ(x, p) is Lipschitz of rank λkL + kF (λkL + |p|) near x.

Proof. (a) Obvious. (b) Well-known.

(c) Let vλ(x, p) be any selection from arg maxHλ(x, p). Given x, y ∈ U choose
v ∈ F (y) such that |v − vλ(x, p)| ≤ kF |y − x|. Then

Hλ(y, p) ≥ 〈p , v〉 − λL(y, v)
≥ 〈p , vλ(x, p)〉+ 〈p , v − vλ(x, p)〉 − λL(x, vλ(x, p))− λkL|(x, vλ(x, p))− (y, v)|
≥ Hλ(x, p)− |p|kF |y − x| − λkL(|y − x|+ kF |y − x|).

Since x and y are interchangeable in this computation, the result follows. ////
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(a) Additional Lagrangian Terms.

Suppose that in addition to the multifunction F and the Lagrangian L, a sec-
ond function M : gph (F + εB) → IR is given. Assume that M satisfies (A2) with
Lipschitz constant kM . Let L̃(x, v) := L(x, v) + M(x, v), and define H̃λ(x, p) :=
sup{〈p , v〉 − λL̃(x, v) : v ∈ F (x)} just as in (4.1). Our first order of business is to
establish a relationship between ∂H1(x, p) and ∂H̃1(x, p) valid in U × IRn.

4.2. Theorem. For each (x, p) ∈ U × IRn, the following estimate holds:

∂H̃1(x, p) ⊆ co
⋃

v ∈ ∂pH̃1(x, p)
z ∈ ∂vM(x, v)

{(−π, v) + (γ, 0) : (−π, v) ∈ ∂H1(x, p− z),

(γ, v) ∈ ∂K1(x, z)},
(4.4)

where K1(x, p) := sup{〈p , v〉 −M(x, v) : v ∈ F (x) + 1
2εB}. In particular, one has

the following estimate, useful when kM is small:

∂H̃1(x, p) ⊆ co
⋃

|z| ≤ kM

(
∂H1(x, p− z) + kMB × {0}

)
. (4.5)

Proof. Let G = gphF , and S = IRn × (F (x) + 1
2εB). Since x has a neighbourhood

throughout which F (x) is a subset of F (x) + 1
2εB by (A1), the following identity

holds for all (x, p) in some neighbourhood of (x, p):

H̃1(x, p) = sup{〈p , v〉 − L(x, v)−ΨG(x, v)−M(x, v)−ΨS(x, v) : v ∈ IRn}
= min{H1(x, p− z) +K1(x, z) : z ∈ IRn}.

(4.6)

The second identity in (4.6) reflects the duality between addition and infimal con-
volution of convex functions: see [11, Thm. 16.4]. This computation reveals H̃1 as
the value function of a perturbed minimization problem. The generalized gradient
of such a value function can be evaluated using proximal analysis, and a result of
this sort appears in [18, Thm. 3.1]. Let h(z;x, p) denote the function in braces in
the last line of (4.6). Then h is locally Lipschitz in all variables by Lemma 4.1, and
satisfies the inf-compactness condition [18, (3.2)]. Lemma 4.1 also implies that H̃1

is locally Lipschitz. In the notation of [18], it follows that ∂̂∞H̃1(x, p) = {0}, so we
may conclude via [18, (2.5)] that

∂H̃1(x, p) ⊆ co{(α, v) : (0;α, v) ∈ ∂h(z;x, p), z ∈ Ξ(x, p)}. (4.7)

Here Ξ(x, p) denotes the set of points z ∈ IRn at which the minimum defining H̃1(x, p)
is attained. To obtain the estimate (4.4), we first enlarge the right-hand side of (4.7)
by replacing Ξ(x, p) by IRn. Then we estimate

∂h(z;x, p) ⊆ {(−β;−π, β) : (−π, β) ∈ ∂H1(x, p− z)}
+{(δ; γ, 0) : (γ, δ) ∈ ∂K1(x, z)}.
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It follows that if (0;α, v) belongs to ∂h(z;x, p), then there exist points (−π, β) ∈
∂H1(x, p−z) and (γ, δ) ∈ ∂K1(x, z) for which v = β = δ and α = −π+γ. Thus (4.7)
implies

∂H̃1(x, p) ⊆ co{(−π, v) + (γ, 0) : (−π, v) ∈ ∂H1(x, p− z),
(γ, v) ∈ ∂K1(x, z)}.

(4.8)

To obtain the restrictions on v and z which appear in (4.4), we observe that

(−π, v) ∈ ∂H1(x, p− z) ⇒ v ∈ ∂pH1(x, p− z) ⇒ p− z ∈ ∂v[L+ ΨG](x, v),
(γ, v) ∈ ∂K1(x, z) ⇒ v ∈ ∂pK1(x, z) ⇒ z ∈ ∂v[M + ΨS ](x, v). (4.9)

Now the first inclusion in (4.9) implies that v ∈ F (x) ⊆ int (F (x) + 1
2εB), so the

second inclusion implies z ∈ ∂vM(x, v). This is the second restriction made explicit
in (4.4). Moreover, adding the two inclusions in (4.9) yields

p ∈ ∂vL(x, v) + ∂vM(x, v) +NF (x)(v) = ∂v[L+M + ΨG](x, v).

This implies v ∈ ∂pH̃1(x, p), and hence establishes the first restriction appearing
in (4.4). The proof of (4.4) is complete.

Now as we have noted above, the vectors v participating in the right side of (4.4)
all lie in F (x). Therefore the inclusion z ∈ ∂vM(x, v) implies |z| ≤ kM . Moreover, the
inclusion (γ, v) ∈ ∂K1(x, z) implies that |γ| is bounded above by the Lipschitz rank
of the function x→ K1(x, z) near (x, z). This rank is estimated in Lemma 4.1(c): re-
placing kF by kS = 0, kL by kM , and λ by 1 in that result, we deduce that |γ| ≤ kM .
The estimate (4.5) follows immediately. ////

4.3. Corollary.

(a) For all λ ≥ 0 and any (x, p) ∈ U × IRn, one has

∂Hλ(x, p) ⊆ co
⋃

|z| ≤ λkL

(
∂H0(x, p− z) + λkLB × {0}

)
. (4.10)

(b) If the function M = M(v) appearing in Thm. 4.2 is independent of x, then one
has

∂H̃1(x, p) ⊆ co
⋃

v ∈ ∂pH̃1(x, p)
z ∈ ∂M(v)

{(−π, v) : (−π, v) ∈ ∂H1(x, p− z)},

(Note that equality holds if M ≡ 0.)

Proof. (a) The inclusion (4.10) is an obvious identity for the case λ = 0. We therefore
fix λ > 0 and apply Theorem 4.2 with L replaced by the zero function andM replaced
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by λM . These two choices obviously satisfy (A2), while the Lipschitz rank of λM
is λkM . Moreover, they imply H1 ≡ H0, so we may write the estimate (4.5) in the
form

∂H̃1(x, p) ⊆ co
⋃

|z| ≤ λkM

(
∂H0(x, p− z) + λkMB × {0}

)
. (4.11)

This is precisely the desired assertion (4.10), except that the names of L and M have
been interchanged.

(b) If M is independent of x, then so is K1(x, p) = M∗(p). Hence all vectors
(γ, v) appearing on the right side of (4.4) have γ = 0. Also, one has (0, v) ∈ ∂K1(x, z)
if and only if z ∈ ∂M(v): this condition needs to be imposed only once. ////

(b) The q-dependence in (4.2).

We now consider the generalized gradient of the function H defined by (4.2).
Corollary 4.3(a) proves useful in this analysis.

4.4. Theorem. For any (x, p) ∈ U × IRn and any q ≤ 0, one has

(−π, v, w) ∈ ∂H(x, p, q) =⇒ (−π, v) ∈ ∂H−q(x, p). (4.12)

Furthermore, for any (x, p, q) ∈ U × IRn × (−∞, 0] and λ > 0,

(α/λ, β) ∈ ∂H−q(x, p/λ) ⇔ (α, β) ∈ ∂H−λq(x, p). (4.13)

Proof. We first prove (4.13). Observe the identity

H−λq(x, p) = λH−q(x, p/λ) ∀(x, p, q) ∈ U × IRn × (−∞, 0], λ > 0. (4.14)

This identity implies that H−λq is differentiable at the point (x, p) if and only if H−q

is differentiable at the point (x, p/λ), and that in this case

∇H−λq(x, p) = (α, β) ⇔ (α/λ, β) = ∇H−q(x, p/λ).

Therefore the equivalence (4.13) follows from [2, Thm. 2.5.1].

To prove (4.12), we consider two cases. Suppose first that q < 0. Throughout
the open set U × IRn × (−∞, 0), we have

H(x, p, q) = −qH1(x, p/(−q))

by definition. Thus H is a product and composition of locally Lipschitz functions,
whose generalized gradient may be estimated using the product and chain rules of
nonsmooth calculus [2, Props. 2.3.13 and 2.6.6]:

∂H(x, p, q) ⊆ {(−qα, β, βp/(−q)−H1(x, p/(−q))) : (α, β) ∈ ∂H1(x, p/(−q))}
⊆ {(−qα, β) : (α, β) ∈ ∂H1(x, p/(−q))} × IR.
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According to (4.13), the set on the right side coincides with ∂H−q(x, p)×IR, and (4.12)
follows for q < 0.

Now consider the case q = 0. Since H is locally Lipschitz, we have the general
relation (using [2, Thm. 2.5.1] with S = IR2n×{0} in conjunction with [2, Prop. 2.2.2]
and [2, Prop. 2.1.5])

∂H(x, p, q) = co{lim(−πi, vi, wi) : (−πi, vi, wi) ∈ ∂H(xi, pi, qi),
(xi, pi, qi) → (x, p, q),
qi 6= 0 ∀i}.

(4.15)

Suppose, therefore, that a sequence (xi, pi, qi) → (x, p, 0) is given with qi 6= 0 ∀i. By
passing to a subsequence, we may assume either that qi > 0 for all i, or that qi < 0
for all i. To treat the first possibility, note that in the half-space where q > 0, one
has H(x, p, q) = H0(x, p) + qR and thus

∂H(x, p, q) = ∂H0(x, p)× {R}.

On the other hand, if the sequence (xi, pi, qi) has qi < 0 for all i, then the argu-
ments of the previous paragraph, together with Corollary 4.3(a), yield the estimates

∂H(xi, pi, qi) ⊆ ∂H−qi(xi, zi)× IR

⊆

co
⋃

|z| ≤ |qi|kL

(
∂H0(x, p− z) + |qi|kLB × {0}

)× IR.

The upper semicontinuity of the multifunction ∂H0 implies that the limit of the se-
quence (−πi, vi, wi) must lie in ∂H0(x, p)× IR. Therefore any convergent sequence as
described in (4.15) must have its limit point in ∂H0(x, p)×IR. This establishes (4.12)
in the case q = 0. ////

(c) An Estimate involving the Lagrangian.

Note that definition (4.2) is equivalent to H(x, p, q) = sup{〈(p, q) , (v, w)〉 :
(v, w) ∈ E(x)}, where E(x) := {(v, w) : v ∈ F (x), L(x, v) ≤ w ≤ R}. Our next
result details the relationship between the multifunctions ∂H and gphE.

4.5. Lemma. For each (x, p) ∈ U × IRn and q ≤ 0, one has

∂H(x, p, q) ⊆ co
⋃

(v, w)

{(−π, v, w) : (π, p, q) ∈ Ngph E(x, v, w),

(p, q) ∈ NE(x)(v, w)}.
(4.16)

Proof. Observe that definition (4.2) can be rewritten as

(−H)(x, p, q) = min{〈−(p, q) , (v, w)〉+ Ψgph E(x, v, w) : (v, w) ∈ IRn × IR}, (4.17)
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where E is the multifunction introduced above. The negative signs in (4.17) ap-
pear because subdifferential analysis is best suited to marginal functions arising from
minimization. The key to such analysis is the proximal subgradient (or, equivalently,
the proximal normal), and a suitable estimate of the generalized gradient of −H
may be extracted from [18, Thm. 3.1]. Indeed, let h(v, w;x, p, q) denote the function
whose minimum is computed on the right side of (4.17), and let Ξ(x, p, q) denote the
set of minimizing points (v, w) in IRn × IR. Then h is lower semicontinuous every-
where, the value −H(x, p, q) is everywhere finite, and the inf-compactness condition
[18, (3.2)] is easy to verify. In fact, −H is locally Lipschitzian, so

∂(−H)(x, p, q) ⊆ co
⋃

(v,w)∈Ξ(x,p,q)

{(π,−φ,−ψ) : (0, 0;π,−φ,−ψ) ∈ ∂̂h(v, w;x, p, q)}

⇒ ∂H(x, p, q) ⊆ co
⋃

(v,w)∈Ξ(x,p,q)

{(−π, φ, ψ) : (0, 0;π,−φ,−ψ) ∈ ∂h(v, w;x, p, q)}.

Now elementary subdifferential calculus implies that

(v, w) ∈ Ξ(x, p, q) ⇔ (p, q) ∈ NE(x)(v, w)

and that

(0, 0, π,−φ,−ψ) ∈ ∂h(v, w, x, p, q) ⇒ (π, p, q) ∈ Ngph E(x, v, w) and (φ, ψ) = (v, w).

Therefore (4.16) follows. ////

In applications of the estimate (4.16), the following result is useful.

4.6. Proposition. For any (x, p) ∈ U × IRn and q ≤ 0, one has

(p, q) ∈ NE(x)(v, L(x, v)) ⇒ p ∈ −q∂vL(x, v) +NF (x)(v), (4.18)
(π, p, q) ∈ Ngph E(x, v, L(x, v)) ⇒ (π, p) ∈ −q∂L(x, v) +Ngph F (x, v). (4.19)

Proof. Fix any point (x, v, L(x, v)), where x ∈ U and v ∈ F (x). Then there is a
neighbourhood of this point throughout which the following identities hold locally:

gphE = epi (L+ Ψgph F ),
E(x) = epi (L(x, ·) + ΨF (x)(·)).

The desired inclusions follow immediately from this observation and the general es-
timate

Nepi (l + ΨS)(s, l(s)) ⊆ {(ζ,−ε) : ζ ∈ ε∂l(s) +NS(s)},

which holds for any closed set S ⊆ IRn, locally Lipschitz function l:S → IR, and
point s ∈ S. A proof of this estimate may be found in [7, Lemma 4.1]. ////
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4.7. Theorem. Let (x, p) ∈ U × IRn and q ≤ 0. Let (v, L(x, v)) be an extreme
point of the compact convex set E(x). Then any point (−π, v, L(x, v)) in ∂H(x, p, q)
satisfies

p ∈ −q∂vL(x, v) +NF (x)(v), (4.20)

(π, p) ∈ −q∂L(x, v) +Ngph F (x, v). (4.21)

Proof. Applying inclusion (4.16) at the point (x, p, q), we find that the vector (−π, v, L(x, v))
belonging the the left-hand side must admit the decomposition

(−π, v, L(x, v)) =
N∑

i=1

αi(−πi, vi, wi), (4.22)

for some N ∈ N and αi ≥ 0 with
∑
αi = 1, where

(πi, p, q) ∈ Ngph E(x, vi, wi), (4.23)

(p, q) ∈ NE(x)(vi, wi). (4.24)

Inclusion (4.23) implies that each (vi, wi) belongs to E(x). By assumption, (v, L(x, v))
is an extreme point of this set, so the last two components of (4.22) force (vi, wi) =
(v, L(x, v)) for all i. Consequently the right sides of (4.23) and (4.24) are actually
convex cones independent of i, and (4.22) implies

(−π, p, q) ∈ Ngph E(x, v, L(x, v)), (4.25)

(p, q) ∈ NE(x)(v, L(x, v)). (4.26)

The desired results follow from (4.25)–(4.26) via Proposition 4.6. ////

Remarks on ∂H0(x, p). As noted in the introduction, Hamiltonian necessary condi-
tions for the Generalized Problem of Bolza in the absence of a calmness hypothesis
have been given by Clarke in [6]. In the normal case, the right-hand side of Clarke’s
Hamiltonian inclusion is simply ∂H1, as it is in ours. But in the abnormal case,
the right-hand side of Clarke’s inclusion is Γ(t, x(t), p(t)), where (dropping the t-
dependence for clarity)

Γ(x, p) := cl co{lim(εiφi, vi) : (φi, vi) ∈ ∂H1(xi, pi/εi),
(xi, pi) → (x, p),
εi → 0+}.

(This follows from [6, Prop 4.1].) Upon substituting −πi = εiφi and using iden-
tity (4.13), we find that

Γ(x, p) = cl co{lim(−πi, vi) : (−πi, vi) ∈ ∂Hεi
(xi, pi),

(xi, pi) → (x, p),
εi → 0+}.
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Note that every sequence (−πi, vi) appearing on the right-hand side of this relation
is bounded by Cor. 4.2(a). Indeed, any such sequence obeys

(−πi, vi) ∈ co
⋃

|z|≤εikL

(
∂H0(xi, pi − z) + εikLB × {0}

)
∀i.

Consequently lim(−πi, vi) ∈ ∂H0(x, p) and we deduce that

Γ(x, p) ⊆ ∂H0(x, p).

Hence Clarke’s form of the abnormal Hamiltonian inclusion implies ours.
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X(t) for all t; second, we make no assumption of calmness or normality; and third, we
show that a single adjoint function of bounded variation simultaneously satisfies the
Hamiltonian inclusion, the Euler-Lagrange inclusion, and the Weierstrass-Pontryagin
maximum condition, along with the usual transversality relations.
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