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1. Introduction

Generalized equations are a convenient model for sensitivity analysis in many areas of
mathematical programming. There is a considerable body of work concentrating on prob-
lems of the form: choose x ∈ lRn to satisfy

(1.1) 0 ∈ f(p, x) + N(x),

where f is a given function from Ω× lRn to lRm, N a multifunction from lRn to lRm, and p

an element of an open subset Ω of a normed linear space P . By constructing different mul-
tifunctions, one can make this generalized equation cover a wide range of applications from
variational inequalities and complementarity problems to first-order necessary conditions
in optimization. Our objective in this paper is to develop natural conditions that when
holding at a point p̄ ensure that the solutions are well-behaved for all p near p̄ and are in
some sense differentiable at p̄, but for a wider class of perturbations than has heretofore
been treated in the literature.

An important example of the sort of perturbations we would like to treat in this study,
and one that will be covered in a separately derived theorem as a prototype of the sort of
analysis we will use on (1.1), is that of a simple generalized equation 0 ∈ F (x) perturbed
by the subtraction of a continuous function from the right-hand side, i.e.

(1.2) 0 ∈ F (x)− p(x).

This equation could be molded into the form of (1.1) by defining f to be the evaluation
functional, f(p, x) = p(x), in which case the problem should perhaps be studied using
the theory developed by Robinson in the papers [16] [17] [19]. However, it seems to fall
outside the scope of any of these papers. In [17] and [19], the theorems guarantee a unique
solution for all p in a neighborhood of p̄ = 0. We know this cannot be true of (1.2), since
the perturbations, even though continuous, can be wild enough to induce multi-valued
solutions no matter how close the perturbations are in sup-norm to zero. (For this reason
the results of Dafermos [2], Fiacco [4], Kyparisis [11], or Shapiro [29] cannot apply here
either.) The result of [16] does not impose single-valued solutions, but it does require
f(p, ·) = p(·) to be Frechet differentiable in x and ∇xf(·, ·) continuous on a neighborhood
of (p̄, x̄). Such assumptions are too strong for the study of (1.2).

The perspective developed in this paper permits a study of the perturbed generalized
equation (1.1) that is general enough to encompass (1.2) despite its apparent unruly be-
havior. We first employ a classical fixed point theorem of von Neumann and Kakutani to
ensure the existence of solutions, provided that the multifunction F (·) = f(p̄, ·)+N(·) sat-
isfies a condition we term subinvertibility. We then derive surprisingly strong conclusions
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concerning derivatives of the solution mapping under only the simple additional assump-
tion that the contingent derivative of F−1 be everywhere at most a singleton (this allows
for the prospect that it may be empty-valued somewhere). No assumptions concerning
differentiability in x of the functions f(p, ·) are required for any p ∈ P other than the
single point p̄.

What we obtain for the sensitivity analysis of (1.1) is not a perfect generalization of
the implicit function theorem, because the condition we place on the contingent derivative
of F−1 is not strong enough to imply subinvertibility of F , unless we impose other con-
ditions as well. For example, when F is maximal monotone then single-valuedness of the
contingent derivative of F−1 at 0 is enough to imply subinvertibility. Taking a different
tack, we note that when the multifunction N is polyhedral then the contingent derivative of
F coincides with the linearization employed by Robinson in his definition of strong regular-
ity , and thus under the assumptions of polyhedrality and strong regularity, we show that
F is subinvertible and that F−1 has a single-valued contingent derivative. This allows us
to weaken the differentiability requirements of Robinson’s implicit function theorem [17],
while retaining Lipschitz continuity and B-differentiability of solutions at p̄.

A full appreciation of the versatility of the simple formulas we obtain for the derivative
of the solution mapping will be attained, we fear, only by the rare reader who has absorbed
the implications of the new calculus of set-valued mappings as presented in the papers of
Aubin [1], Rockafellar [25] [26] [27], and Poliquin [15]. We try to convey something of
the flavor of this perspective in a brief discussion of second-order sensitivity analysis for
mathematical programs.

An important application of this theory arises in the field of stochastic programming
and statistical estimation in the process of determining the central limit properties of the
sequence of solutions to

(1.4) 0 ∈ 1
ν

∑
f(ξν , x) + N(x),

where {ξν} is an independent sequence of random observations. For recent treatments
of this problem in the stochastic programming literature, see Dupačová and Wets [3],
King [6] [7], and Shapiro [28]. Under easily satisfied assumptions, it can be shown that
the sequence pν(·) := Ef(ξ1, ·) − 1

ν

∑
f(ξν , ·) is an asymptotically normal sequence of

continuous functions. Our analysis of (1.2) together with the generalized delta theorem of
[7] then gives conditions under which the sequence {xν} satisfies a central limit property
determined by the asymptotics of the pν and the derivative of F . To do justice to this
example would require too great an excursion into technical details far from the main
theme of the present paper. This will appear in a separate work [8].



3

Earlier versions of the results in this paper are contained in King’s dissertation [6],
where strong monotonicity and Minty’s theorem were relied on to provide the required
subinvertibility. We are indebted to the associate editor and the referees for a careful and
thorough reading—in particular, to one referee for a useful refinement to our definition
of subinvertibility—and to Maijian Qian for a valuable discussion of our treatment of
second-order sensitivity analysis.

2. Contingent Derivatives and Semidifferentiability.

The notion of derivative of multifunction that we will use is based on the Painlevé–
Kuratowski convergence of sets. Letting {At : t ∈ T} be a net of sets in a topological
space, the limit superior and limit inferior are the sets:

lim sup At := {a = lim
n

atn

∣∣ atn ∈ Atn , n = 1, 2, . . .}

lim inf At := {a = lim
t

at

∣∣ at ∈ At, t ∈ T}.

These set-limits are possibly empty. If they are equal, then the net {At} has a limit equal
to their common value, denoted limt At.

Let P and X be normed linear spaces, and let H be a multifunction from P into X,
that is, H(p) is a subset, possibly empty, of X. Two important sets associated with a
multifunction are the domain,

dom H := {p
∣∣ H(p) 6= ∅},

and the graph,

gph H := {(p, x)
∣∣ x ∈ H(p)}.

A graphical derivative of H, modelled after the original tangency constructions of Fermat,
was recently introduced by Aubin [1]: the contingent derivative of H at a pair (p̄, x̄) ∈
gphH is the mapping, which we shall denote DH(p̄|x̄), whose graph is the contingent cone
to the graph of H at (p̄, x̄). This is summarized in the formula

(2.1) gphDH(p̄|x̄) = lim sup
t↓0

t−1[gphH − (p̄, x̄)].

The contingent derivative always exists, and its graph is a cone that includes the origin in
P ×X. The contingent derivative of the inverse of H is just the inverse of the contingent
derivative, and we will denote it DH−1(x̄|p̄).
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This perspective was extended by Rockafellar [26] in two directions, each a tightening
of the limiting behavior in (2.1). If the limit exists in (2.1), then we say that H is proto-
differentiable at (p̄, x̄). Proto-differentiation of subgradient mappings is related to second-
order epi-differentiability of objective functions, on which Rockafellar [25] [27] bases a
comprehensive study of necessity and sufficiency of second-order optimality conditions. A
stronger property is semi-differentiability, which requires that the limit

lim
t↓0

w′→w

(H(p̄ + tw′)− x̄)/t

exist for all w. When it does, it equals the contingent derivative DH(p̄|x̄)(w). Semi-
differentiability is closer to “Hadamard” directional differentiability, in the sense that the
derivative should not depend on how w′ approaches w. Because of this uniformity, semi-
differentiability is an extremely useful property in many applications (as discussed in the
introduction, for example).

King [6] showed that the single-valuedness of the contingent derivative acts like a reg-
ularity condition that can be used to prove the semi-differentiability of solution mappings
to generalized equations. The next two propositions elaborate this idea, and provide the
platform on which the sensitivity analysis of the generalized equations (1.1) and (1.2) will
be erected.

We recall the following definition from [16]. A multifunction H from a normed linear
space P into a normed linear space X is upper Lipschitzian at p̄ if there are a number
λ ≥ 0 and a neighborhood Ω of p̄ with

H(p) ⊂ H(p̄) + λ‖p− p̄‖B

for all p ∈ Ω, where here, as elsewhere in this paper, the set B is the unit ball of the space
in question. It should be noted that single-valued mappings that are upper Lipschitzian
are not necessarily locally Lipschitz continuous, but the converse always holds. In these
next propositions, we suppose that X is locally compact, i.e. X = lRn.

Proposition 2.1. Let H : P →→ lRn be such that at a point p̄ and a point x̄ ∈ H(p̄) the

set DH(p̄|x̄)(0) contains at most the single element 0. Then there is a neighborhood U of

x̄ such that U ∩H(p̄) = {x̄}, and U ∩H is upper Lipschitzian at p̄.

Proof. Apply arguments similar to [26, Theorem 4.1]. The idea is that if either of the
conclusions fails to hold then one can easily construct a nonzero element of DH(p̄|x̄).

Proposition 2.2. Let H : P →→ lRn be such that at a point p̄ and a point x̄ ∈ H(p̄)
one has for every w ∈ P the set DH(p̄|x̄)(w) contains at most a single element, and for



5

every neighborhood U ′ of x̄ the set H−1(U ′) is a neighborhood of p̄. Then, in addition

to satisfying the conclusions of Proposition 2.1, H is semi-differentiable at p̄ relative to x̄,

and for every w ∈ P one has

DH(p̄|x̄)(w) = lim sup
t↓0

[H(p̄ + tw)− x̄]/t.

In particular, DH(p̄|x̄) : P → lRn is a continuous function that is Lipschitz at 0. Further-

more, every selection x(p) ∈ H(p) ∩ U is upper Lipschitzian and semi-differentiable at p̄

with Dx(p̄|x̄) = DH(p̄|x̄).

Proof. Our single-valuedness assumption implies in particular that the only element of
DH(p̄|x̄)(0) is the single element 0, so Proposition 2.1 applies. Now let Dt be the difference
quotient multifunction

Dt(w) = t−1[U ∩H(p̄ + tw)− x̄], t > 0.

We want to show that

lim
t↓0

w′→w

Dt(w′) = DH(p̄|x̄)(w).

Since p̄ is in the interior of H−1(U) by assumption, it follows that Dtν (wν) is eventually
nonempty for any sequence tν ↓ 0 and wν → w. The upper Lipschitzian property of U ∩H

implies that eventually

Dtν (wν) ⊂ λ‖w‖B.

Thus any sequence uν ∈ Dtν (wν) is eventually bounded and has cluster points. These
cluster points must be in DH(p̄|x̄)(w), by definition of the contingent derivative, thus
DH(p̄|x̄)(w) is nonempty. Since, by our assumption, DH(p̄|x̄)(w) is at most a singleton,
say {u}, we have in fact shown that lim uν = u for all sequences uν ∈ Dtν (wν), all tν ↓ 0,
and all wν → w; so H is semi-differentiable at p̄ relative to x̄. Since DH(p̄|x̄) is everywhere
nonempty and single-valued, and has closed graph, it is therefore a continuous function.
DH(p̄|x̄) is Lipschitz at 0 because H is upper Lipschitzian at x̄. The final statement
concerning selections is trivial.

The reader may wonder whether the assumptions of Proposition 2.2 are sufficient to
imply that H itself is single-valued near p̄. This is false, even for maximal monotone mul-
tifunctions, as the following example shows. For p greater than π/4 let H(p) = 1. Set
p1 = π/4 and let H(p1) equal the closed interval [sin p1, tan p1]. Extend the graph of H

to the left of p1, with value identically equal to sin p1, until it touches the graph of the
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tangent curve, at the point p2 = tan−1(sin p1), and set H(p2) = [sin p2, tan p2]. Continue
in this way; the sequence {pν} converges to 0. Repeat the process, but with directions
reversed, beginning from −π/4. The multifunction H so constructed is a maximal mono-
tone multifunction satisfying the conditions of Proposition 2.2 (it is semi-differentiable at
0 with DH(0|0)(w) = w), but H is multiple-valued in any neighborhood of 0.

In preparation for the results of the next few sections, let us briefly consider the
connection between contingent derivatives and directional derivatives of functions. If a
continuous function h : P → lRn has a contingent derivative at p̄ that is single-valued
everywhere, then Proposition 2.2 states that the limit

lim
t↓0

w′→w

h(p̄ + tw′)− h(p̄)
t

exists for all w. This property has received a lot of attention in the literature, but is
known under a variety of names. Rockafellar [24] says that h is directionally differen-
tiable in the Hadamard sense at p̄, while Robinson [20] calls it Bouligand differentiability
(B-differentiability, for short) in honor of the man who introduced the contingent cone.
Since the latter definition is closer in spirit to our perspective here, we adopt Robinson’s
terminology. When P is finite-dimensional, it is well known that if h is directionally
differentiable in the ordinary sense, i.e.

lim
t↓0

h(p̄ + tw)− h(p̄)
t

= Dh(p̄)(u),

and Dh(p̄)(·) is continuous, then h is also B-differentiable. See Shapiro [30] for a review
of the equivalences between various definitions of directional differentiability.

3. The Basic Case.

To ensure that solutions exist for the perturbed generalized equation (1.2), we formulate
a condition that requires that the graph of F contains a subset that can be regarded as
the graph of a multifunction to which the von Neumann–Kakutani fixed point theorem
can be applied. (A similar condition appears in Kummer’s papers [9] and [10].) We say
that a multifunction F : lRn →→ lRm is subinvertible at (x̄, 0), if one has 0 ∈ F (x̄) and
there exist a compact convex neighborhood U of x̄ in lRn, a positive constant ε > 0, and
a nonempty convex-valued mapping G : εB →→ U such that: gph G is closed, the point
x̄ belongs to G(0), and G(y) is contained in F−1(y) for all y ∈ εB. For instance, F is
subinvertible at (x̄, 0) if there exists a selection x(y) of F−1(y) that is continuous on a
compact neighborhood of 0, with x(0) = x̄.
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For convenience of presentation, we call a multifunction Q : lRn →→ lRm a perturbation
multifunction on a set U in lRn if gphQ is a closed subset of U × lRn and for every x ∈ U

the set Q(x) is nonempty and convex. The width of Q relative to a bounded set U ⊂ lRn

is defined to be the quantity

‖Q‖U = sup
x∈U

sup
y∈Q(x)

|y|.

The definitions lead to the following proposition. In our applications, the perturbation
multifunctions will be continuous functions.

Proposition 3.1. Let F : lRn →→ lRm be a given multifunction that is subinvertible at

(x̄, 0) in lRn. Then there are a compact convex subset U ⊂ lRn and a real number ε > 0
such that for the solution mapping

J(Q) = {x ∈ lRn
∣∣ 0 ∈ F (x)−Q(x)}

one has that U ∩ J(Q) is nonempty for every perturbation multifunction Q : U →→ lRm

satisfying ‖Q‖U ≤ ε. If, moreover, the mapping U ∩ F−1 is U.L.(λ) at 0, then

U ∩ J(Q) ⊂ J(0) + λ‖Q‖UB

for all perturbation multifunctions Q with width ‖Q‖U sufficiently close to 0.

Proof. Let a compact convex neighborhood U of x̄, constant ε > 0, and multifunction
G : εB →→ U be such as are guaranteed by the subinvertibility assumption on F , and let
Q : lRn →→ lRm be any perturbation multifunction with ‖Q‖U less than ε. Apply the von
Neumann–Kakutani fixed point theorem [5, Theorem 2] to the sets gphG and gph Q and
conclude that there is at least one fixed point xQ ∈ G(Q(xQ)). Since G(y) ⊂ U∩F−1(y) for
all y ∈ εB, it follows that xQ ∈ U ∩ J(Q). This proves existence. The Lipschitz condition
for U ∩ J can easily be derived from the observation that

U ∩ J(Q) ⊂ U ∩ F−1(y), ∀y ∈ εB

and the proof is complete.

The two conditions, single-valuedness of the contingent derivative of F−1 and subin-
vertibility of F , combine to produce the main result of this section. In this theorem, and
elsewhere in the paper, we denote the space of continuous functions from a set U to the
space lRm as Cm(U).
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Theorem 3.2. In the generalized equation (1.2), let F : lRn →→ lRm be a multifunction

that is subinvertible at (x̄, 0). Then the following statements apply to this generalized

equation:

(a) If DF−1(0|x̄)(0) contains the single element 0, then there exists a neighborhood U of

x̄ in lRn such that for the solution mapping J : Cm(U) →→ lRn defined by

J(p) = {x ∈ lRn
∣∣ 0 ∈ F (x)− p(x)}

one has: U ∩ J(0) = {x̄}, U ∩ J is upper Lipschitzian at 0, and U ∩ J(p) is nonempty for

every p in a neighborhood of 0 in Cm(U).
(b) If for every y ∈ lRm the set DF−1(0|x̄)(y) is at most a singleton, then J is semi-

differentiable at (0, x̄) with derivative given by

DJ(0|x̄)(w) = {u ∈ lRn
∣∣ 0 ∈ DF (x̄|0)(u)− w(x̄)},

i.e. DJ(0|x̄)(w) = DF−1(0|x̄)(w(x̄)). Furthermore, all selections x(p) ∈ J(p) ∩ U are

upper Lipschitzian and B-differentiable at 0, with Dx(0) = DJ(0|x̄).

Proof. By Proposition 2.1 applied to F−1, there is a neighborhood U1 of x̄ such that
U1 ∩ F−1(0) = {x̄} and U1 ∩ F−1 is upper Lipschitzian at 0 in lRm. The subinvertibility
of F at (x̄, 0) and the upper Lipschitzian property of U1 ∩ F−1 at 0 together imply that
the restriction of F to U1 is subinvertible at (x̄, 0), with the mapping U1 ∩ G serving as
that required by the definition of subinvertibility, where G is the mapping guaranteed by
the subinvertibility of F . To see this, note that the only thing that could go wrong is
that there could be a sequence {yν} converging to 0 in lRm such that G(yν) ∩ U1 = ∅ for
all ν. Since G is nonempty-valued and has closed graph, there must exist points of G(0)
outside of U1. But G(0) is a convex set containing x̄, and furthermore, G(0) is contained
in F−1(0). This contradicts the single-valuedness of U1 ∩ F−1(0); hence, F restricted to
U1 must be subinvertible at (x̄, 0). Now apply Proposition 3.1 and conclude that there
is a neighborhood U ⊂ U1 of x̄ such that U ∩ J(p) is nonempty for every p sufficiently
near 0 in Cm(U) and U ∩ J is upper Lipschitzian at 0 in Cm(U). This argument proves
statement (a). It also proves that for every neighborhood U ′ ⊂ U of x̄ in lRn the set
(J)−1(U ′) is a neighborhood of 0 in Cm(U). By Proposition 2.2 applied to J and by the
single-valuedness of DF−1(0|x̄), to prove statement (b) it remains only to show that the
contingent derivative of J satisfies DJ(0|x̄)(w) ⊂ DF−1(0|x̄)(w(x̄)) for all w ∈ Cm(U). So,
let u ∈ DJ(0|x̄)(w). Then there must exist positive numbers tν → 0, n-vectors uν → u,
and lRm-valued continuous functions wν → w (uniformly on U), with

(3.2) wν(x̄ + tνuν) ∈ F (x̄ + tνuν)/tν .
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Since wν(x̄+ tνuν) → w(x̄), it follows from the definition of the contingent derivative that
w(x̄) ∈ DF (x̄|0)(u), which is what we set out to show.

This is a surprising result. It indicates that, in the situation described in the theorem,
the result of differentiating with respect to continuous perturbations is identical to that
of differentiating with respect to constant perturbations! As an illustration, consider the
trivial generalized equation

0 ∈ Ix,

where I is the identity mapping on lR. This equation obviously fulfills all of the conditions
of the theorem; hence the solution mapping

J(p) = {x ∈ lR
∣∣ 0 ∈ x− p(x)}

has a single-valued semi-derivative with respect to perturbations in C(U) for any neigh-
borhood U of 0, and

DJ(0|0)(w) = {u
∣∣ 0 ∈ u− w(0)} = w(0).

Now we know that every neighborhood of the identity mapping in C(U) contains continuous
functions that are as wild as an analyst’s nightmare, so J(p) must be multiple-valued at
some p in every neighborhood of 0 in C(U). But, how can a multivalued mapping have
a derivative that is everywhere single-valued? Because we are restricted to continuous
perturbations. In the present example, recall that by (3.2) a point (w(·), u) lies in the
graph of DJ(0|0) if and only if there is a net of points ut → u such that

0 ∈ 0 + tut − tw(0 + tut), t > 0.

So ut = w(tut) and since w is continuous at 0 there must by definition be only one cluster
point as t → 0.
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4. Sensitivity Analysis for Nonsmooth Generalized Equations.

With Theorem 3.3 as a prototype, we study in this section the sensitivity of the perturbed
generalized equation (1.1). A critical step in Theorem 3.3 is the convergence of the sequence
on the left side of the inclusion (3.2). This corresponds in the setting of (1.1) to ensuring
the existence of unique limits for sequences of the form

(4.1) [f(p̄ + tνwν , xν)− f(p̄, xν)]/tν ,

for any sequence of positive numbers {tν} converging to zero, any sequence {wν} converging
to w in P , and any sequence of vectors {xν} converging, no matter how slowly, to x̄.
Clearly, it is necessary that f(·, x̄) be B-differentiable at p̄. In this case we say that f

has a partial B-derivative in p at (p̄, x̄) and denote this B-derivative by Dpf(p̄, x̄). But
it is also necessary that (4.1) be uniformly close to Dpf(p̄, x̄). We will see the required
uniformity is a consequence of the following definition of Robinson [21]: the partial B-
derivative Dpf(p̄, x̄) is strong if for each ε > 0 there exist neighborhoods Ω of 0 in P and
U of x̄ in lRn such that for every x ∈ U the function

w 7→ f(p̄ + w, x)− f(p̄, x)−Dpf(p̄, x̄)(w)

is continuous with Lipschitz constant ε on Ω.
We are now ready to formulate the main result of this paper. In this theorem we

show that the imposition of subinvertibility and single-valuedness of the inverse of the
contingent derivative for the single multifunction F (·) = f(p̄, ·) + N(·) is sufficient to
imply semi-differentiability of the solution mapping at p̄. The only other assumptions
required are joint continuity of f and the existence of a strong partial B-derivative of f in
p at (p̄, x̄).

Theorem 4.1. In the generalized equation (1.1), let Ω be an open subset of a normed

linear space P , let N : lRn →→ lRm be a multifunction, and let f : Ω × lRn → lRm be a

continuous function that has a strong partial B-derivative in p at the pair (p̄, x̄), where x̄ is

a solution to (1.1) at p̄. Define the mapping F (x) = f(p̄, x)+N(x), and suppose that F is

subinvertible at (x̄, 0). Then the following statements apply to this generalized equation:

(a) If DF−1(0|x̄)(0) contains the single element 0, then there is a neighborhood U of x̄

such that for the solution mapping

J(p) = {x ∈ lRn
∣∣ 0 ∈ f(p, x) + N(x)}

one has: U ∩ J(p̄) is the singleton {x̄}, U ∩ J is upper Lipschitzian at p̄, and for all p in a

neighborhood of p̄ the set U ∩ J(p) is nonempty.
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(b) If for every y ∈ lRm the set DF−1(0|x̄)(y) consists of at most a single element, then J

is semi-differentiable at p̄ and

DJ(p̄|x̄)(w) = {u ∈ lRn
∣∣ 0 ∈ Dpf(p̄, x̄)(w) + DF (x̄|0)(u)}

i.e. DJ(p̄|x̄)(w) = DF−1(0|x̄)(−Dpf(p̄, x̄)(w)). Furthermore, every selection x(p) ∈ U ∩
J(p) is upper Lipschitzian and B-differentiable at p̄, with Dx(p̄) = DJ(p̄|x̄).

Proof. For statement (a), apply the argument of the first part of Theorem 3.3 to F

with perturbations f(p̄, ·) − f(p, ·). The continuity of f assures that the supremum of
|f(p̄, x) − f(p, x)| can be made small uniformly in x for all p sufficiently near p̄. For
statement (b), we proceed similarly as in Theorem 3.3: we prove that DJ(p̄|x̄)(w) is equal
to DF−1(0|x̄)(−Dpf(p̄, x̄)(w)), and the rest follows from Proposition 2.2 and the single-
valuedness of DF−1(0|x̄). Let u ∈ DJ(p̄|x̄)(w) for some w ∈ P . Then there must exist
sequences {tν} converging to 0, {wν} converging to w in P , and {uν} converging to u in
lRn such that

0 ∈ F (x̄ + tνuν)− [f(p̄, x̄ + tνuν)− f(p̄ + tνwν , x̄ + tνuν)]

for all ν. Let ε > 0. Since Dpf(p̄, x̄) is strong, it follows that for all ν sufficiently large one
has

−Dpf(p̄, x̄)(wν) ∈ F (x̄ + tνuν)/tν + ε‖wν‖B,

where B is the unit ball in lRm. Letting ν →∞ and observing that ε was arbitrary, finishes
the proof.

Remark 4.2. Theorem 4.1 applies to the situation covered in Theorem 3.3 by taking
f equal to the evaluation map f(p, x) = p(x). It is easy to see that f is strongly B-
differentiable in the first variable, with Dpf(p, x)(w) = w(x), so Theorem 3.3 follows from
4.1. This example generalizes to a large class of mappings. Let Q be a Banach space and
Q∗ the dual space of continuous linear functionals on Q. Define two functions r : P → Q

and s∗ : lRn → Q∗, and let

f(p, x) = 〈s∗(x), r(p)〉.

If the function r is B-differentiable at a point p̄ in P , then f is partially B-differentiable
in p at (p̄, x̄) for any x̄ in lRn with

Dpf(p̄, x̄)(w) = 〈s∗(x), Dpr(p̄)(w)〉.
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Furthermore, this derivative is strong if Dpr(p̄) is strong and x 7→ ‖s∗(x) − s∗(x̄)‖ is
continuous at x̄. In the case of the evaluation functional, r is the identity map on Q =
Cm(U) and s∗(x̄) the element of Q∗ that evaluates q ∈ Q at x̄.

Remark 4.3. By making further assumptions on f and N we can state a convenient form
for the derivative DF . Robinson [21] showed that if f is separately B-differentiable in both
variables at (p̄, x̄) and one of these partial B-derivatives is strong, then f is B-differentiable
as a function of both variables and we have the addition formula

Df(p̄, x̄)(w, u) = Dpf(p̄, x̄)(w) + Dxf(p̄, x̄)(u).

Furthermore, Rockafellar [26] showed, in effect, that if f is partially B-differentiable in x

at (p̄, x̄) and N is proto-differentiable at (x̄,−f(p̄, x̄)), then the multifunction F given by
F (x) = f(p̄, x) + N(x) is actually proto-differentiable at (x̄, 0) with

DF (x̄|0)(u) = Dxf(p̄, x̄)(u) + DN(x̄| − f(p̄, x̄))(u).

This formula can be substituted for DF in Theorem 4.1 whenever f(p̄, ·) is B-differentiable
at x̄ and N is proto-differentiable at (x̄,−f(p̄, x̄)).

Applying the above formula for DF in the case when P is finite-dimensional, f is
jointly differentiable at (p̄, x̄), and N is identically 0, we see that Theorem 4.1 contains the
statement of the classical implicit function theorem:

∇pJ = −(∇xf)−1∇pf.

But the comparison illustrates an important shortcoming of our theorem. In the classical
result, the assumption that (∇xf)−1 is single-valued at 0 implies the single-valuedness of
(∇xf)−1 and the invertibility of f . In our theorem, the single-valuedness of DF−1(0|x̄)
at zero, the single-valuedness of DF−1(0|x̄), and the subinvertibility of F are all distinct
notions. The source of the difficulty is the generality of the contingent derivative: there
are many multifunctions that are not subinvertible, but that have deceptively well-behaved
contingent derivatives. New research points to an implicit function theorem that would
involve conditions only on a certain adjoint derivative, replacing the assumption of subin-
vertibility and putting our theorem on an even footing with the classical statement. The
research on this topic is not ripe for publication at this writing; however, when F is max-
imal monotone or N has the special form of a polyhedral multifunction, then much more
can be said.
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5. Application to Maximal Monotone Multifunctions.

Maximal monotone multifunctions play an important role in the theory of generalized
equations, in the sense that one expects the best possible behavior from this class. And
we shall not be disappointed here either, since it turns out that we are able to determine
a very precise relationship between subinvertibility and single-valuedness of the inverse of
the contingent derivative at 0. For the definition of maximal monotonicity and important
motivating examples, we refer the reader to [23].

Theorem 5.1. Let F : lRn →→ lRn be a maximal monotone multifunction, and suppose

that at a point x̄ in lRn with 0 ∈ F (x̄) one has that the only element of DF−1(0|x̄)(0) is

0 itself. Then, in addition to all the conclusions of Proposition 2.1, F is subinvertible at

(x̄, 0).

Proof. We will show that the inverse F−1 is a closed, locally bounded, nonempty and
convex-valued multifunction, and thus fulfills the requirements of the definition of subin-
vertibility. Since F is maximal monotone, so is F−1; hence F−1 is convex-valued and
closed. It remains to show that F−1 is nonempty and locally bounded. An application of
Proposition 2.1 establishes that the set F−1(0) must consist of x̄ alone, and this in turn
implies that 0 is in the interior of the domain D of F−1, as can be seen by the following
argument. The closure of the domain D is a convex set, by Minty [13], hence if 0 is not
in the interior of D we can add to F−1(0) all the points in the normal cone to cl D at 0
without destroying the monotonicity of F−1. By maximality, all such points must already
belong to F−1(0), contradicting the proven single-valuedness of F−1 at 0. It follows that
F−1 is nonempty-valued on a neighborhood of 0. To finish the proof, we apply a theorem
of Rockafellar [22] which says that a maximal monotone multifunction is locally bounded
on the interior of its domain.

As a corollary to this theorem, one derives directly from Theorem 4.1 an implicit
function theorem for the generalized equation (1.1) when the perturbed multifunction F

is maximal monotone.

Corollary 5.2. For the generalized equation (1.1), let all the conditions of the preamble

in Theorem 4.1 hold (with m = n), except that instead of supposing that F is subinvertible

at (x̄, 0), suppose only that F is maximal monotone. Then the statements (a) and (b) of

Theorem 4.1 apply to this generalized equation.

For a maximal monotone multifunction F , is the single-valuedness of DF−1(0|x̄) at 0
sufficient to imply the single-valuedness of DF−1(0|x̄) at all points of lRn? The following
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example shows that this is not true. Let F be the subdifferential of the convex function

h(x1, x2) =
1
2
(|x1|+ |x2|)2.

Then
F (x1, x2) = [|x1|+ |x2|] (g(x1)× g(x2))

where g is the subdifferential of the absolute value function on lR. Moreover, F equals its
contingent derivative at (0, 0); that is, F = DF (0|0) since F (tx1, tx2) = tF (x1, x2) for all
t ≥ 0. Thus, we have indeed DF−1(0|0)(0) = {0}, but for example, for all t > 0 we have

DF−1(0|0)(t, t) = {(x1, x2)
∣∣ x1 ≥ 0, x2 ≥ 0, and x1 + x2 = t},

which is multiple-valued.

6. Polyhedral Multifunctions and Strong Regularity.

Many particular properties of mathematical programs and other applications modelled
by the generalized equation (1.1) may be attributed to the fact that the multifunction
N : lRn →→ lRm is a polyhedral multifunction, that is, one whose graph is the union of
finitely many convex polyhedra in lRn × lRm. For the uses of such multifunctions and a
review of their many pleasant properties, we refer the reader to Robinson [16] [18] [19].
More specifically, the first-order optimality conditions for optimization problems whose
objective can be represented by a smooth function composed with a piecewise linear-
quadratic convex function can be placed in the form (1.1) with polyhedral N , provided
a certain basic constraint qualification is satisfied; cf. Rockafellar [25] [27] and Poliquin
[15].

The general strategy reflected in the theorems of this section is to apply readily avail-
able implicit function theory to the generalized equation

(6.1) 0 ∈ f(p̄, x)− y + N(x),

which may be viewed as a generalized equation perturbed by the subtraction of y, in order
to verify, especially, the subinvertibility of the multifunction F (·) = f(p̄, ·) + N(·). With
the subinvertibility then assured, an appeal to Theorem 4.1 gives the desired behavior
of the solution mapping under only the additional and easily verified assumption of the
single-valuedness of the contingent derivative of the inverse of F . Our demonstration of
this technique employs the implicit function theory of Robinson in [17] and [21].

We give two results: one for general polyhedral multifunctions but differentiable f ,
and one for maximal monotone polyhedral multifunctions and B-differentiable f . The key
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property of polyhedral multifunctions that makes both theorems work is the trivial fact
(but one whose proof is unavoidably long) that a polyhedral multifunction N is proto-
differentiable at every pair (x̄, ȳ) in its graph, and to every such pair there correspond
neighborhoods U and V , respectively, such that

(6.2) gphN ∩ (U × V ) = [gph DN(x̄|ȳ) + (x̄, ȳ)] ∩ (U × V ).

This fact allows us to link contingent derivatives with the linearization employed by Robin-
son in the proof of the implicit function theorem in [17]. Assume that f is partially B-
differentiable in x at (p̄, x̄). Recall that in [17] the generalized equation (1.1) was termed
strongly regular at p̄ if there exist neighborhoods U0 of 0 in lRn and V0 of 0 in lRm such
that for the linearization

T (u) = Dxf(p̄, x̄)(u) + f(p̄, x̄) + N(x̄ + u)

one has that U0 ∩ T−1 is a Lipschitz continuous function on V0. By the polyhedrality
of N there is a neighborhood of the origin in the product space lRm × lRn such that for
the mapping F (x) = f(p̄, x) + N(x) one has that in this neighborhood the graph of the
contingent derivative of F at (x̄, 0) is equal to the graph of the linearization T ; that is,
there are neighborhoods U and V of 0 in lRn and lRm, respectively, such that

(6.3) gphDF (x̄|0) ∩ (U × V ) = gphT ∩ (U × V ).

The first consequence of this coincidence of the linearization and the contingent deriva-
tive is a demonstration of the equivalence between the assumption of strong regularity and
the single-valuedness of DF−1(0|x̄), for the case where f(p̄, ·) is continuously differen-
tiable. (Subinvertibility in this situation is a consequence of the fact that a polyhedral
multifunction that is everywhere single-valued is a Lipschitz continuous function.)

Theorem 6.1. In the generalized equation (1.1) let N : lRn →→ lRm be a polyhedral

multifunction, and let f : Ω× lRn → lRm be a continuous function such that as a function

of a single variable f(p̄, ·) is continuously differentiable on a neighborhood of x̄, where x̄

is a solution to (1.1) at p̄. Define the multifunction F (x) = f(p̄, x) + N(x). Then (1.1)

is strongly regular at p̄ if and only if DF−1(0|x̄) is everywhere single-valued. If either of

these equivalent conditions holds and f has a strong partial B-derivative in p at (p̄, x̄),
then the conclusions of statements (a) and (b) of Theorem 4.1 are true for the solution

mapping to this generalized equation.

Proof. Clearly, the subinvertibility of F and the single-valuedness of DF−1(0|x̄) are all
that is required, in addition to the differentiability assumptions on f , to invoke Theorem



16

4.1. Therefore, let us concentrate on proving the equivalence. If (1.1) is strongly regular,
then we know from the implicit function theorem in [17] that there is a neighborhood V

of 0 in lRm and a continuous function x : V → lRn such that x(y) is the unique solution to

y ∈ f(p̄, x(y)) + N(x(y)).

This implies that F is subinvertible. Furthermore, the strong regularity requires that the
inverse of the linearization T−1 is single-valued on a neighborhood of 0 in lRn, and by
(6.3), it follows that DF−1(0|x̄) is everywhere at most a singleton, as claimed. For the
other direction, we show that DF−1(0|x̄) is Lipschitz continuous on a neighborhood of the
origin; then strong regularity follows from (6.3), again. Since f(p̄, ·) is differentiable, it
follows that

u 7→ DF (x̄|0)(u) = ∇xf(p̄, x̄)u + DN(x̄| − f(p̄, x̄))(u)

is polyhedral. Hence DF−1(0|x̄) is also polyhedral, and a single-valued mapping that is
polyhedral is a Lipschitz continuous function.

A different implicit function theory allows us to weaken the assumption of continuous
differentiability of f(p̄, ·) near x̄ to an assumption of strong B-differentiability of f(p̄, ·) at
x̄. Here, we deploy the theorem of Robinson [21] and follow his suggestions in analyzing
(6.1) via a reformulation as a certain system of equations. Since strong regularity is
generally stronger than the twin assumptions of subinvertibility and single-valuedness of
the inverse of the contingent derivative of F , and since B-differentiability of f is such
a weak differentiability property, we cannot conclude the equivalence of these two sets of
assumptions. Just which additional properties of f would imply equivalence is an unsettled
question.

Theorem 6.2. In the generalized equation (1.1) suppose that N : lRn →→ lRn is a maximal

monotone polyhedral multifunction, and that f : Ω× lRn → lRn is a Lipschitz continuous

function such that as a function of a single variable f(p̄, ·) has a strong B-derivative at x̄,

where x̄ is a solution to (1.1) at p̄. Define the multifunction F (x) = f(p̄, x) + N(x). If

(1.1) is strongly regular at p̄ then F is subinvertible at (x̄, 0) and DF−1(0|x̄) is everywhere

at most a singleton. If, furthermore, f has a strong partial B-derivative in p at (p̄, x̄), then

the conclusions of statements (a) and (b) of Theorem 4.1 are true for the solution mapping

to this generalized equation.

Proof. We proceed exactly as in the first part of Theorem 6.1. The only new thing to show
is that strong regularity of (1.1) at p̄ implies that F is subinvertible at (x̄, 0). Consider the
simply perturbed problem

(6.4) y ∈ f(p̄, x) + N(x).
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For simplicity of notation in this proof, denote f(p̄, ·) by p̄(·). We are going to analyze
the behavior of the solution to this generalized equation by reformulating it as a system
of equations

(6.5) y = p̄(n(x)) + x− n(x),

where n(x) is the solution to the generalized equation: find u ∈ lRn to satisfy

(6.6) 0 ∈ u− x + N(u).

Since N is maximal monotone, then n(x) = (I + N)−1(x) is a single-valued Lipschitz
continuous function on all of lRn, by Minty’s theorem [14]. The system (6.4) is equivalent
to (6.5), since if x̂ solves (6.5), then n(x̂) solves (6.4), and conversely, if x̄ solves (6.4), then
x̄− p̄(x̄) solves (6.5).

The solution of (6.5) can be examined using the implicit function theorem [21, The-

orem 3.2] applied to the equation

g(m(x), y) = 0,

where

g((a, b), y) = p̄(a) + b− y

and the function m is the Minty map

m(x) = (n(x), x− n(x)).

The requirements of this theorem are that g have a partial B-derivative with respect to
v = (a, b) that is strong at v0 = (n(x̂0), x̂0 − n(x̂0)), where x̂0 solves (6.5) at y = 0, and
that the function

(6.7) u 7→ Dvg(v0, 0)[m(x̂0 + u)−m(x̂0)]

have an inverse that is a locally Lipschitz continuous function near 0. We now verify these
two conditions.

First, let us compute the partial B-derivative of g and verify that it is strong. We
apply [21, Proposition 2.2] and obtain

Dvg(v0, 0)(a, b) = Dp̄(n(x̂0))(a) + b,
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which is a strong B-derivative, since p̄ is assumed to be strongly B-differentiable at x̄ =
n(x̂0). Next we examine the inverse of the function (6.7), which we have just computed to
be

(6.8) u 7→ Dp̄(x̄)(n(x̂0 + u)− n(x̂0)) + u− (n(x̂0 + u)− n(x̂0)).

Note that the contingent derivative of n is

Dn(x)(u) = [I + DN(n(x)|x− n(x))]−1(u),

and thus the equality (6.2) implies that

Dn(x)(u) = n(x + u)− n(x).

The Lipschitz continuity of the inverse of (6.8) is thus equivalent, by reversing the Minty
map, to the Lipschitz continuity of the inverse of the multifunction

u 7→ Dp̄(x̄)(u) + DN(x̄| − p̄(x̄))(u),

and hence, the Lipschitz continuity follows from the assumption of strong regularity and
equation (6.3), as in Theorem 6.1.

The two conditions of the implicit function theorem being verified, we can now con-
clude the existence of neighborhoods U of x̂0 and V of 0 and a Lipschitz continuous function
x̂ : V → U such that x̂(0) = x̂0 and x̂(y) is the unique solution to the system (6.5). Then
n(x̂(·)) is a continuous function on V such that n(x̂(y)) is the unique solution to (6.4) for
all y ∈ V , with n(x̂(0)) = x̄. It follows that p̄ + N is subinvertible at x̄ and the proof is
complete.

7. Application to Sensitivity Analysis in Mathematical Programming.

Let us consider an optimization problem in the general form studied by Robinson in [19]:

(7.1) minimize h(p, x) subject to g(p, x) ∈ Qo and x ∈ C,

where C is a polyhedral set in lRn and Qo the polar of a polyhedral cone Q in lRm. We
assume throughout this section that h(p, ·) and g(p, ·) are once continuously differentiable
in x for all p in a neighborhood Ω of a point p̄ in a Banach space P , and that h(p̄, ·) and
g(p̄, ·) are twice continuously differentiable in x on a neighborhood of x̄.

To fit the pattern established in the previous sections, define the function f : Ω ×
lRn+m → lRn+m by

f(p, x, µ) = (∇xh(p, x) + µT∇xg(p, x),−g(p, x))
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and write down the first-order necessary conditions for (7.1) as

(7.2) 0 ∈ f(p, x, µ) + NC×Q(x, µ),

where NC×Q is the normal cone operator of convex analysis. Letting (x̄, µ̄) be a Kuhn-
Tucker point for (7.2) at p = p̄, we first examine how assumptions standard for such
optimization problems imply the subinvertibility of (7.2).

Proposition 7.1. Assume that the generalized equation (7.2), for p = p̄, is regular at x̄,

i.e.

0 ∈ int {g(p̄, x̄) +∇xg(p̄, x̄)[C − x̄]−Qo} ,

and that the second order sufficient condition is satisfied at the pair (x̄, µ̄), namely ∀u ∈
TC(x̄) with u nonzero and

∇xg(p̄, x̄)u ∈ TQo(g(p̄, x̄)) and ∇xh(p̄, x̄)u = 0

one has

〈u,∇2
xL(p̄, x̄, µ̄)u〉 > 0,

where TC is the tangent cone of convex analysis and L(p, x, µ) = h(p, x) + µT g(p, x) is

the Lagrangian function. Then the multifunction f(p̄, ·, ·) + NC×Q(·, ·) is subinvertible at

(x̄, µ̄).

Proof. Note that by Theorem 3.2 of [19] there exist neighborhoods V of 0 and U of x̄

such that the multifunction

SP (y) =
{
x ∈ U

∣∣ ∃µ ∈ lR with y ∈ f(p̄, x, µ) + NC×Q(x, µ)
}

is lower semicontinuous on V (here, the parameter y plays the role of the parameter “p”
of [19]). Michael’s selection theorem [12] now implies that there is a continuous selection
x(y) ∈ SP (y) on V . The multifunction

M(y) =
{
µ ∈ lRm

∣∣ y ∈ f(p̄, x(y), µ) + NC×Q(x(y), µ)
}

is closed by Theorem 2.3 of [19], is locally bounded (by regularity), and is nonempty
and convex-valued. The product mapping y 7→ G(y) = {x(y)} × M(y) thus fulfills the
requirement of the definition of subinvertibility.

Next, we establish B-differentiability properties of the solutions at p̄. It is convenient
to consolidate further the notation of (7.2): let z = (x, µ), let R = C ×Q, define F (z) =
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f(p̄, z) + NR(z), and let z̄ = (x̄, µ̄) be the Kuhn-Tucker point at p = p̄. By Remark 4.3,
we may compute the contingent derivative of F as

DF (z̄|0)(s) = Dzf(p̄, z̄)(s) + D(NR)(z̄| − f(p̄, z̄))(s).

Applying the formulas in Rockafellar [26] [27], or King [6], one finds that the contingent
derivative of the normal cone mapping NR at (z̄,−f(p̄, z̄)) is the normal cone operator to
the critical cone

R′(z̄|f(p̄, z̄)) = {s ∈ TR(z̄)
∣∣ s · f(p̄, z̄) = 0}.

Thus DF−1(0|z̄)(c) is the solution set to the generalized equation

c ∈ Dzf(p̄, z̄)(s) + NR′(z̄|f(p̄,z̄))(s).

Decoding this generalized equation yields objects that are very familiar to students of
sensitivity analysis. We obtain a pair of second-order generalized equations

(7.4) a ∈ ∇2
xL(p̄, x̄, µ̄)u + vT∇xg(p̄, x̄) + NC′(x̄|∇xL(p̄,x̄,µ̄))(u)

(7.5) b ∈ −∇xg(p̄, x̄)u + NQ′(µ̄|g(p̄,x̄))(v),

which may be interpreted as the first-order necessary conditions to a certain well-known
convex quadratic programming problem. According to the results of Section 6, the so-
lutions to this pair, if unique for all left-hand sides (a, b), yield the B-derivatives of the
solutions to (7.1) as p varies near p̄. The sensitivity analysis literature ([4] [11] [16–21]
[29]) describes many sorts of assumptions (linear independence, strong second-order suffi-
ciency, etc.) that yield unique solutions for (7.4) and (7.5). We shall not discuss particular
instances here—the main issue, as we have seen, is the existence of unique solutions to this
pair.

Theorem 7.2. In addition to the assumptions of Proposition 7.1, assume that the pair

of generalized equations (7.4) and (7.5) have unique solutions for all left-hand sides (a, b)
and that ∇xh, g, and ∇xg are continuous functions on Ω× lRn that have strong partial B-

derivatives in p at (p̄, x̄). Then there exists a neighborhood Ω of p̄ in P and neighborhoods

U and V of x̄ and µ̄, respectively, such that for all p ∈ Ω there exist Kuhn-Tucker selections

(x(p), µ(p)) ∈ U × V for the perturbed version of (7.1). Furthermore, these Kuhn-Tucker

selections are upper Lipschitzian and B-differentiable at p̄, with

Dx(p̄)(w) = u(−Dp∇xL(p̄, x̄, µ̄)(w), Dpg(p̄, x̄)(w)),
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and

Dµ(p̄)(w) = v(−Dp∇xL(p̄, x̄, µ̄)(w), Dpg(p̄, x̄)(w)),

where u(a, b) and v(a, b) are solutions to the second-order equations (7.4) and (7.5) with

left-hand sides a and b.

Proof. We shall apply Theorem 6.1 to the generalized equation (7.2). As above, let
z = (x, µ), R = C×Q, and define F (z) = f(p̄, z)+NR(z). The assumptions we have made
on h and g imply in particular that f is a continuous function on Ω×lRn+m such that f(p̄, ·)
is continuously differentiable on a neighborhood of z̄, and Proposition 7.1 implies that F

is subinvertible at (0, z̄). The above discussion and the assumption of unique solutions to
(7.4) and (7.5) show that DF−1(0|z̄) is everywhere single-valued. Finally, the existence
of strong partial B-derivatives of f in p at (p̄, z̄) allows us to apply, via Theorem 6.1, the
conclusions of statements (a) and (b) of Theorem 4.3.
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