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Abstract. A general optimization model is set up that includes standard non-
linear programming but also allows for max functions, penalties and constraint-
monitoring expressions. First-order necessary conditions are given in terms of
a Lagrangian function. It is shown that when the data elements in the prob-
lem depend smoothly on parameters, the set-valued mapping that gives for each
parameter vector the corresponding primal-dual vector pairs satisfying these first-
order conditions is proto-differentiable. Moreover the derivatives can be calculated
by solving an auxiliary problem in extended linear-quadratic programming.
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1. Introduction

A very large and versatile class of optimization problems can be posed in the form

(P) minimize f(x) + h(F (x)) over all x ∈ X,

where X is a nonempty polyhedral (convex) set in lRn, the mappings f : lRn → lR and
F : lRn → lRm are of class C2, and the function h : lRm → lR is convex and possibly
extended-real-valued, specifically of the form

h(u) = supy∈Y {y·u− g(y)} = (g + δY )∗(u) (1.1)

for a nonempty polyhedral (convex) set Y ⊂ lRm and a convex function g : lRm → lR of
class C2.

Example 1. If g ≡ 0 and Y is a cone, (P) is the classical problem of minimizing f(x)
subject to x ∈ X and F (x) ∈ K, where K is the cone polar to Y . This is true because
h(u) = 0 when u ∈ K but h(u) = ∞ when u /∈ K.

Example 2. If g ≡ 0 and Y is a box, consisting of the vectors y = (y1, . . . , ym) satisfying
ai ≤ yi ≤ bi for given bounds ai and bi with −∞ < ai ≤ 0 ≤ bi < ∞, the expression h(F (x))
gives linear penalties relative to F (x) = 0. One has in terms of F (x) = (f1(x), . . . , fm(x))
that

h(F (x)) = Σm
i=1(ai min{fi(x), 0}+ bi max{fi(x), 0}).

Example 3. If f ≡ 0, g ≡ 0 and Y is the unit simplex consisting of the vectors y =
(y1, . . . , ym) such that yi ≥ 0 and y1 + · · · ym = 1, the function being minimized in (P) is

ϕ(x) = max{f1(x), . . . , fm(x)}.

Example 4. When g does not necessarily vanish but is a quadratic function, g(y) = 1
2y·Qy

for a positive semidefinite symmetric matrix Q, one obtains as h a general “monitoring”
function of the form ρY,Q studied in Rockafellar [1]. This case subsumes the preceding three
as well as various mixtures, and it also allows for augmented Lagrangian expressions.

Example 5. The case of Example 4 where f is quadratic convex and F is affine gives
extended linear-quadratic programming, a subject developed in some detail in [1] for the
sake of applications to optimal control and also to stochastic programming, cf. Rockafellar
and Wets [2], [3], [4]. Then (P) consists of minimizing over X a function of the form

p·x + 1
2x·Px + ρY,Q(q −Rx), where ρY,Q(u) := supy∈Y {y·u−

1
2y·Qy}.

Our main interest here is the development of sensitivity analysis for “quasi-optimal”
solutions x to (P) and their associated multiplier vectors y. We say “quasi-optimal” because
instead of true optimality we shall be working with points that only satisfy first-order nec-
essary conditions for optimality. Such conditions are unlikely to be sufficient for optimality
unless (P) happens to be a convex type of problem, but they are of importance nonethe-
less in the development of computational procedures. We must begin by formulating the
conditions and establishing their validity. Afterward, we shall introduce parameterizations
with respect to which a new form of sensitivity analysis will be carried out.
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Definition 1. The Lagrangian function for problem (P) is

L(x, y) = f(x) + y·F (x)− g(y) for x ∈ X and y ∈ Y.

A generalized Kuhn-Tucker point is a pair (x, y) ∈ X × Y such that

−∇xL(x, y) ∈ NX(x) and ∇yL(x, y) ∈ NY (y), (1.2)

where NX(x) and NY (y) are the normal cones to X and Y at x and y in the sense of convex

analysis.

Definition 2. A point x is called a feasible solution to (P) if x ∈ X and F (x) ∈ U ,

where U = dom h = {u
∣∣ h(u) ≤ ∞} (a nonempty, convex set). The basic constraint

qualification will be said to be satisfied at such a point x if the only vector y ∈ NU (F (x))
with −y∇F (x) ∈ NX(x) is y = 0.

In classical nonlinear programming, this basic constraint qualification reduces to the
Mangasarian-Fromovitz constraint qualification. Indeed, in Example 1 the convex set U

is a polyhedral cone K such as the set of u = (u1, . . . , um) satisfying ui ≤ 0 for i =
1, . . . , s and ui = 0 for i = s + 1, . . . ,m. With X = lRn the condition says then that
the only y = (y1, . . . , ym) in Y (the polar of K) for which y1f1(x) + · · · ymfm(x) = 0 and
y1∇f1(x) + · · · ym∇fm(x) = 0 is y = (0, . . . , 0).

Theorem 1. If x is a locally optimal solution to (P) at which the basic constraint quali-

fication is satisfied, there is a vector y such that (x, y) is a generalized Kuhn-Tucker point.

Proof. We rely on methods of nonsmooth analysis and in particular the calculus of Clarke
subgradients in Rockafellar [5]. Let k0(x) = f(x) + h(F (x)) and k = k0 + δX (with δX the
indicator of x). The function h is lower semicontinuous, while f and F are smooth, so k0

and k are lower semicontinuous. The feasible solutions to (P) form the effective domain of
k, which we are taking to be nonempty, and the locally optimal solutions to (P) are the
points at which k has a local minimum. Such a point must in particular satisfy 0 ∈ ∂k(x).
We shall show from estimates of ∂k(x) that this implies the existence of a vector y such
that (x, y) is a generalized Kuhn-Tucker point.

A rule provided in [5, Corollary 8.1.2] tells us that for a point x in the effective domain
of k one has

∂k(x) ⊂ ∂k0(x) + NX(x) and ∂∞k(x) ⊂ ∂∞k0(x) + NX(x) (1.3)

when the only v ∈ ∂∞k0(x) satisfying −v ∈ NX(x) is v = 0. (Here ∂∞ indicates so-called
singular subgradients; see [5].) Further, from [5, Corollary 8.1.3] we have

∂k0(x) ⊂ ∂f(x) + ∂h(F (x))∇F (x) and ∂∞k0(x) ⊂ ∂∞f(x) + ∂∞h(F (x))∇F (x) (1.4)
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when the only y ∈ ∂∞h(F (x)) satisfying 0 ∈ ∂∞f(x) + y∇F (x) is y = 0. Inasmuch as
f is smooth, the set ∂∞f(x) is just {0}, while the set ∂f(x) is just {∇f(x)}. Because
h is convex with U as its effective domain, ∂∞h(F (x)) coincides with NU (F (x)). If the
basic constraint qualification holds at x, one has in particular that no y ∈ NU (F (x)) gives
y∇F (x) = 0, so the assumption required for (1.4) is fulfilled and in fact (1.4) takes the
form

∂k0(x) ⊂ ∇f(x) + ∂h(F (x))∇F (x) and ∂∞k0(x) ⊂ NU (F (x))∇F (x). (1.5)

Then the basic constraint qualification validates the assumption underlying (1.3) as well,
and we obtain

∂k(x) ⊂ ∇f(x) + ∂h(F (x))∇F (x) + NX(x) and ∂∞k(x) ⊂ NU (F (x))∇F (x) + NX(x).

Most importantly, the condition 0 ∈ ∂k(x) is seen to imply under our basic constraint
qualification the existence of a vector y satisfying

y ∈ ∂h(F (x)) and 0 ∈ ∇f(x) + y∇F (x) + NX(x) (1.6)

The convexity of h and its conjugacy with g + δY give us by [6, Theorems 23.5 and 23.8]
the calculation

y ∈ ∂h(F (x)) ⇔ F (x) ∈ ∂(g + δY )(y) = ∂g(y) + ∂δY (y) = ∇g(x) + NY (y).

Condition (1.6) is therefore equivalent to the generalized Kuhn-Tucker condition (1.2).

Theorem 2. Suppose (P) is of convex type in the sense that f is convex and y·F (·) is

convex for every y ∈ Y . If x is a feasible solution for which there exists a y such that (x, y)
is a generalized Kuhn-Tucker point, then x is a (globally) optimal solution to (P). (The

basic constraint qualification is not required.)

Proof. The convexity hypothesis implies that L(x, y) is convex in x for y ∈ Y as well
as concave in y for each x. In addition the sets X and Y are convex. The generalized
Kuhn-Tucker condition (1.2) is then the same as the condition that (x, y) be a saddle point
of L relative to X × Y . Since

f(x) + h(F (x)) = sup
y∈Y

L(x, y),

the saddle point condition is sufficient for the global minimum of f(x) + h(F (x)) relative
to x ∈ X, as is well known in convex optimization.

Under our assumption that X and Y are not just convex but polyhedral, which has
not yet been utilized really but will be important in our main result in the next section,
it would be possible to derive general second-order necessary and sufficient conditions for
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local optimality in (P). This could be accomplished by applying the theory of second-
order epi-differentiability in Rockafellar [7] to the essential objective function k for (P)
(as introduced in the proof of Theorem 1). We shall not carry this out here, however,
since it would sidetrack us from the main theme of analyzing the behavior of the first-
order conditions under perturbations. A more general approach to second-order optimality
conditions could be taken in the framework devised by Burke [8].

2. Parameterization and sensitivity.

Passing from a single problem to a whole family of problems, we consider

(P(u, v, w)) minimize f(w, x)− x·v + h(F (w, x)− u) over all x ∈ X

for parameter vectors u ∈ lRm, v ∈ lRn, and w ∈ lRd. The assumptions are the same as
before, except that f and F are now C2 in x and w jointly rather than just in x. The
Lagrangian for (P(u, v, w)) is obviously

L(w, x, y)− x·v − y·u, where L(w, x, y) = f(w, x) + y·F (w, x)− g(y), (2.1)

and the condition for a generalized Kuhn-Tucker point is

−∇xL(w, x, y) + v ∈ NX(x) and ∇yL(w, x, y)− u ∈ NY (y). (2.2)

The basic constraint qualification is satisfied at a feasible point x if and only if the sole
vector y ∈ NU (F (w, x)− u) such that v − y·∇xF (w, x) ∈ NX(x) is y = 0.

Our focus is on the set-valued mapping S : lRm × lRn × lRd →→ lRn × lRm defined by

S(u, v, w) = {(x, y)
∣∣ (x, y) is a Kuhn-Tucker point for (P(u, v, w))}.

The set S(u, v, w) could, of course, be empty for some choices of (u, v, w). The reason for
introducing perturbations in the format of (u, v, w) rather than merely w, which in principle
would suffice notationally to cover all the types of perturbations under consideration, is that
the perturbations must be sufficiently “rich” to allow us to obtain our strongest result in
Theorem 3 below.

Proposition 1. The set-valued mapping S is upper semicontinuous in the sense that its

graph

gph S = {(u, v, w, x, y)
∣∣ (x, y) ∈ S(u, v, w)} (2.3)

is a closed set.

Proof. This follows from the assumed continuity of the derivatives of L in (2.2) and the
fact that the graphs of the set-valued mappings x 7→ NX(x) = ∂δX(x) and y 7→ NY (y) =
∂δY (y) are closed. The latter is known from convex analysis [6, Theorem 24.4].
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The upper semicontinuity of S provides an underlying property of interest in the anal-
ysis of the sensitivity of the set of generalized Kuhn-Tucker points (x, y) in (P) with respect
to perturbations in the elements (u, v, w). If (xν , yν) is a generalized Kuhn-Tucker point for
(P(uν , vν , wν)) and (xν , yν) → (x, y) and (uν , vν , wν) → (u, v, w), then, by Proposition 1,
(x, y) is a generalized Kuhn-Tucker point for (P(u, v, w)) We wish to go much farther than
such semicontinuity, however, and establish a form of generalized differentiability—a quan-
titative estimate for directions and rates of change of (x, y) with respect to perturbations
in (u, v, w). For this we shall draw on concepts and results in Rockafellar [8], as specialized
to S.

Definition 3. The set-valued mapping S will be called proto-differentiable if for every

(u, v, w) and choice of (x, y) ∈ S(u, v, w) the following holds: the graph of the set-valued

difference quotient mapping

∆tS(u′, v′, w′) = [S(u + tu′, v + tv′, w + tw′)− (x, y)]/t for t > 0

converges as t ↓ 0 (in the topology of set convergence) to the graph of another set-valued

mapping from lRm × lRn × lRd to lRn × lRm. This limit mapping is then called the proto-
derivative of S at (u, v, w) for the pair (x, y) ∈ S(u, v, w) and is denoted by S′(u,v,w),(x,y).

Various characterizations of such generalized differentiability have been furnished in
[8], and we shall not review them here. It is worth mentioning one fact, however.

Proposition 2. In the case where S is proto-differentiable, one has that a pair (x̄′, ȳ′)
belongs to S′(ū,v̄,w̄),(x̄,ȳ)(ū

′, v̄′, w̄′) if and only if for all t in some interval (0, δ) there exist

(x(t), y(t)) ∈ S(u(t), v(t), w(t)) with (u(0), v(0), w(0)) = (ū, v̄, w̄), (x(0), y(0)) = (x̄, ȳ),
such that

(u′+(0), v′+(0), w′
+(0)) = (ū′, v̄′, w̄′) and (x′+(0), y′+(0)) = (x̄′, ȳ′) (right derivatives).

Proof. This specializes a property of proto-differentiability in [9, Prop. 2.3].

The principal result of this paper will involve the following auxiliary problem, symbol-
ized in a suggestive manner for reasons soon to be apparent. This problem, which falls into
the same category as the problems (P) we have been occupied with, depends on a choice
of (u, v, w) and (x, y) ∈ S(u, v, w), although for simplicity we have not tried to reflect this
fully in the notation (the subscript ∗ stands for all the missing parameters):

(P ′(u,v,w),(x,y)(u
′, v′, w′)) : minimize f∗(w′, x′)−v′·x′+h∗(F∗(w′, x′)−u′) over all x′ ∈ X∗,
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where

f∗(w′, x′) = x′·∇2
xwL(w, x, y)w′ + 1

2x′·∇2
xxL(w, x, y)x′,

F∗(w′, x′) = ∇2
ywL(w, x, y)w′ +∇2

yxL(w, x, y)x′ = ∇wF (w, x)w′ +∇xF (w, x)x′,

h∗(u′) = supy′∈Y∗
{y′·u′ − g∗(y′)} = (g∗ + δY∗)(y

′) for

g∗(y′) = − 1
2y′·∇2

yyL(w, x, y)y′ = 1
2y′·∇2g(y)y′,

Y∗ = {y′ ∈ TY (y)
∣∣ y′ ⊥ ∇yL(w, x, y)− u},

X∗ = {x′ ∈ TX(x)
∣∣ x′ ⊥ ∇xL(w, x, y)− v}.

The notation TX(x) and TY (y) gives the tangent cones to X at x and Y at y, which are
the polars of the cones NX(x) and NY (y).

Theorem 3. The set-valued mapping S is proto-differentiable. Furthermore, its derivative

set S′(u,v,w),(x,y)(u
′, v′, w′) at (u, v, w) for any (x, y) ∈ S(u, v, w) is the set of generalized

Kuhn-Tucker points (x′, y′) for the auxiliary problem (P ′(u,v,w),(x,y)(u
′, v′, w′)).

Proof. In terms of a change of notation to s = (v,−u), z = (x, y), Z = X × Y and
G(w, z) = (∇xL(w, x, y),−∇yL(w, x, y)), we can express the generalized Kuhn-Tucker con-
ditions (2.2) as the variational inequality

−G(w, z) + s ∈ NZ(z), z ∈ Z. (2.4)

In studying S we are studying the set-valued mapping T that associates with each pair
(w, s) the corresponding set of solutions z to this variational inequality. Here G is a map-
ping of class C1 (because L is of class C2), and Z is a polyhedral set (because X and Y are
polyhedral). We have proved in [9, Theorem 5.6] that in the presence of this degree of regu-
larity the mapping T is proto-differentiable. Furthermore its derivative set T ′

(w,s),z(w
′, s′) at

(w, s) for any z ∈ T (w, s) consists of the solutions z′ to the auxiliary variational inequality

−G∗(w′, z′) + s′ ∈ NZ∗(z
′), z′ ∈ Z∗, (2.5)

where
G∗(w′, z′) = ∇wG(w, z)w′ +∇zG(w, z)z′,

Z∗ = {z′ ∈ TZ(z)
∣∣ z′ ⊥ G(w, z)− s}.

(2.6)

Referring to the definition of G, we see that

G∗(w′, x′, y′) = (∇2
xwL(w, x, y)w′ +∇2

xxL(w, x, y)x′ +∇2
xyL(w, x, y)y′,

−∇2
ywL(w, x, y)w′ −∇2

yxL(w, x, y)x′ −∇2
yyL(w, x, y)y′).

This can be written in terms of the function

L∗(w′, x′, y′) = x′·∇2
xwL(w, x, y)w′ + y′·∇2

ywL(w, x, y)w′

+ 1
2x′·∇2

xxL(w, x, y)x′ + y′·∇2
yxL(w, x, y)x′ + 1

2y′·∇2
yyL(w, x, y)y′

(2.7)
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as the mapping

G∗(w′, x′, y′) = (∇x′L∗(w′, x′, y′),−∇y′L∗(w′, x′, y′)). (2.8)

Note that L∗ is closely tied to the auxiliary problem (P ′(u,v,w),(x,y)(u
′, v′, w′)). In fact the

Lagrangian for this problem, as determined from Definition 1 with the obvious twist of
notation, is

L∗(w′, x′, y′)− x′·v′ − y′·u′ for x′ ∈ X∗ and y′ ∈ Y∗. (2.9)

Next we determine Z∗, using the fact that Z = X × Y and therefore

TZ(x, y) = TX(x)× TY (y) and NZ(x, y) = NX(x)×NY (y).

Since G(w, z)− s = (∇xL(w, x, y)− v,−∇yL(w, x, y) + u) with

x′·[−∇xL(w, x, y) + v] ≤ 0 for all x′ ∈ X and y′·[∇yL(w, x, y)− u] ≤ 0 for all y′ ∈ Y

(by the definition of the normality relations in (2.2) that underlie the meaning of (x, y)
being a generalized Kuhn-Tucker point at (u, v, w)), a pair z′ = (x′, y′) in TZ(z) satisfies
the condition defining Z∗ in (2.6) if and only if x′ ∈ TX(x) with x′ ⊥ [−∇xL(w, x, y) + v]
and y′ ∈ TY (y) with y′ ⊥ [∇yL(w, x, y)− v]. In other words,

Z∗ = X∗ × Y∗ and NZ∗(z
′) = NX∗(x

′)×NY∗(y
′). (2.10)

It follows from this and (2.8) that the auxiliary variational inequality (2.5) takes the form

−∇x′L∗(w′, x′, y′) + v′ ∈ NX∗(x
′) and ∇y′L∗(w′, x′, y′)− u′ ∈ NY∗(y

′). (2.11)

We now observe from the Lagrangian expression (2.9) for (P ′(u,v,w),(x,y)(u
′, v′, w′)) that this

is the condition for (x′, y′) to be a generalized Kuhn-Tucker point in that problem. Thus
the set S′(u,v,w),(x,y)(u

′, v′, w′) consists of just such points, as claimed.

It is worth recording that the auxiliary problem (P ′(u,v,w),(x,y)(u
′, v′, w′)) is one of

extended linear-quadratic programming as mentioned in Example 5. Moreover it is of
convex type when f∗(w′, x′) is convex in x′, which of course is equivalent to the matrix
∇2

xxL(w, x, y) being positive semidefinite. In that case solutions x′ and multiplier vectors
y′ satisfying the generalized Kuhn-Tucker conditions for (P ′(u,v,w),(x,y)(u

′, v′, w′)) can be
found numerically, after a reformulation, by applying algorithms for standard quadratic
programming problems or linear complementarity problems.

Theorem 3 may be contrasted with results of Robinson and Shapiro. In Robinson [10]
and [11], variational inequalities (generalized equations) are considered that could include
the parameterized Kuhn-Tucker conditions (2.2) as a special case. The setting is broader in
some important respects (the sets X and Y would only need to be convex, and the spaces
in which they lie could be infinite-dimensional). The focus, however, is on assumptions
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under which the mapping that corresponds to S turns out not only to be single-valued in
a localized sense but also has a Lipschitz property. Theorem 3 yields no such conclusions
but requires no such assumptions, either. The form of differentiability is more general.

In Shapiro [12] the concern is not with Kuhn-Tucker points but with perturbations of
optimal solutions alone (i.e. not in combination with multiplier vectors). Again the aim
is to obtain single-valuedness and a Lipschitz property. To this end, certain second-order
sufficient conditions for optimality are assumed to hold. No abstract constraint x ∈ X is
admitted, and the treatment of the other constraints is conventional: Y is a cone as in
Example 1. The results are thus complementary to ours.
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