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Abstrrcl. Tbe melhods of conyex analysis are used to explore in greater depth the
nature of the evolulion equation in internal variable formulations of elastoplasticitl .

The evolution equation is considered in a form in whicb the thermodynamic force
belongs to a sel defined b1 a multi-valued map G. It is sho$r that the marimum
plastrc work inequalitl logether with the assumption thal G is maximal responsivc
(a term defined in Sec. 4), is necessary and sufrcient lo give a theoD' equivalenl
!o that proposed by Moreau. Further consequences are invesligated or elucidated.
including rhe relarionship betr'aeen thc yield funcrion and the dissipation function;
fiese functions are polars of each olher. Examples are given lo illustrate the theoD.

l. Inuoduction. It is now wideh accepted thar coDstilulive theories of inelastic
behaviour may be successfulll treated v.ithin the frame*ork of the modem theory of
continuum thermodynamics $'ith internal variables. Early invesrigations along these

lines have been those of Kestin and Rice [2] and Moreau [20]. rith Rict extending
his earlier work with Kestin to the finile-slrain case [23]. The work of Halphen and
Nguyen [9] has also proved rnfluentral. A sune) accoilnt ma] be found in the paper

by Germain, Nguven. and Suquet [6].
Central to tbe structure of an; internal-variable rheory of plaslicily is the elolrrton

equation, which provides information aboul lhe internal variable rate (, usuall-v in
the form

( = F(...) (!.r )

where the functron F and its arguments need 1o be specified.

There are two major issues of concern in an inlernal-variable approach to plas'

licity: one is the issue of rhe form whicb the evolution equalion ( I . I ) should take,

and the other concerns lhe construction of specific internal variable theories of stan-

dard models of plasticitl. Wirh regard to the fomet, most theories proceed on thc

assurnplion that the eYolution equalion can be expressed in terms of a polential {or
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more correctly, a pseudopolential): Eq. (l.l) is written in the form

I e av6) (t.2)

where X is the thermod.vnamic force conjugale to (, i7 is the potential function,
a d AV\X\ denotes its subdifferential al X. This formulation and its implications
have been discussed in detail by Moreau [20] and b], Halphen and Nguyen [9] using
the tools of convex anal.vsis. In particular, these authors choose as {r/ the indicator
function of a closed convex region K, the region of admissible values of ,1, whose

interior is the elastic region.
The conjugate ol ( 1.2), namely

X e A v/'G), (1.3)

where r4' is the Legendre-Fenchel conjugate of rg. has received comparatively scant
allention; Moreau [20]. Halphen and Ngu.ven [9], and Mandel 061 mention it. bul
do not explore it funher as an alternative approach (see also Germain. Nguyen, and
Suquet [6]). When rg is the indicalor function of a closed convex set K, y/' is the sup-
pon funclion of K. and in fact ue ha'e iz'(i) = .Y ( for any X e 39;1{r: thus rg' rs

the dissipation function. The formulation (l .3), with i/' as the dissipation function,
has been used extensively b.v Manin and co-workers [2. 17. 18, l9]. in the develop-
ment of constitutive equations and in the numerical solution of the corresponding
boundary-value problems.

Srmilar remarks appl.v to investigalions of the construction of specific internal
variable models: in contrast to other treatments (see [6] for a surv'e1) Manin and
Nappr [8]. in a recenl conlribution. hare taken as basic the formulation using a

dissipation function in their constructron of a formuiarion which yields as special
cases perfect plasticit_v. linear kin.'maric hardening. and linear isotropic hardening
*rth the ron Mrses lreld conditron.

ln recen! years there has been considerabie activitl rn the area of finite strain
plasticrty. *ith much of the argument rerolving around the question of how the
delormation should be decomposcd into clastic and plastic pans. This marrer is
some*hat penpheral to our aims herc. so rvr'do not altempl a full suner. and mcrell
menlion as examples of uork rn this rrca the contributions of Gret'n and Naghdi [7],
Lee u 5l. and N.mat-Nasser [] ll.

An lmponant depanure from the standard models has been the recent u'ork of
Krm and Oden 3. l4l *ho abandon conrexitl and consider. in the conte\t of the
finrte-strain rheor). an e\olutron equation ol the form j : lur I r *here L,y denotes
r,he generaltsed subCt.ftrennal of lhe nonconvex. nondifferentiat'le function ry'l (for
the derelopment of the theory of generahsed gradi!'nts, see Clarke [3];.

The purpose of this contribution is to unifv and ertend existing inremal variabJe

theones oi plastrcrtr. tsi cmbeddingour inresrigalion within the frame*ork ofcon-
vex anailsrs we are able to establish the conditions under r.r'hich different formulatjons
of the evolution equations are r'qur\ alent. and to explore a varlety' of consequences.
Rather than start *rth the formulalrons based on il.l) or iLJt. *e consider (l.l ) in
the form

.t'€ (;iir (1 4)



6r

where G is a multi-i"alued map. That is. (1.4) gives thc relationship belween ,l'
and ( (the X v. ( graph) drrectll', We then consrder the quesrion of the minimal
assumptions regarding G which, wben added to lhe maimum plasttr u'ork inequalitl .

gives a standard model of plasticil_v. Thts rnequalirl has the form

() - X't t20 forall \'€ A. (r 5)

and its imponance arises from the fact thal it embodies the essential structure ot
plastic constitutive behaviour (see Hill [0] and Rice [24]). The inequalitl- is a conse-
quence ol a formulation based on the use of the indicalor fun ctjon or support function
as pseudopotential. We will sho* that lhe maximum plastic work inequality logether
with two assumptions aboul the map G. made precisc in Sec. 4- are ntcessan and
sufr.cient for tb.e exislence of a disstpation .functton and l]eld sur.farc wtth the requisite
propenies. This result is given in Theorem 4.1.

It is worlh noting here that, despire the pivotal role of i I .5 ) in theories of plasricity.
ver_r fe$ authors have attempted to develop constituri\.e theories taking (l-5) as an
axiom. Recenl work by Simo [27] is an exception 10 this obsenalron.

We also clanfy the relalionship between the yield function and the dissipation
funclion in Sec. 5. First. we sho$ lhat it is al$avs possibie to construcl a positivell
homogeneous convex funclion whose level set at I coincides u'ith the yield surface:
this function is refened 1o as the canonical lieid function. We lhen sho\r'that the
canonical lield and dissipation functions are polars of each olher. The concept ofpo-
lar functions. and their place in solid mechanics, have also recentll been explored b1

Hill Il I l. who refers io pairs of funclions possessing this propert) as dual potentials.
We pursue this topic within rhe broader framework considered here.

The plan of this work is as follo*s. In Sec. 2 we gather togelher results from
conler analysis which *ill be central to our subsequent developments. Section l
summarises the framework of continuum thermod)namics witb internal variables.
within which we pose the probiem. The main result is presented in Sec. 4, as are

various consequences of rl,is resuit. In Sec. 5 *'e examine in detail the relationship
between the dissipation funclion and the -'-ield function. We conclude rn Sec. 6 uith
a selection of concrele examples 10 illuslrale lb€ ideas of Secs. 4 and 5.

Since we are primarily concerned *rth elucidatrng various features ofthe evolution
equation u,e confine our attention to smali-strain plasticitl. The extenston to finile-
strain plasticitl'wili be reponed elseuhere [5].

2. Some prelimina4 results from convex a.nallsis. In this section *'e collecl a

suinmarl of definitions and results from conver analysrs which are of relevance to

the rest of this work. Proofs are excluded, these. and other extensions ma1 be for.rnd.

for example. in the books bl Aubin []. Oden [22], and Rockafellar [25]
We will be concerned exclusivell \\'ilh fin ite-dimensional spaces (for example.

spaces of vectors or tensors a1 a point) and functions acling on them. \\'e denote

sucb a finite-dimensional space b-v I : E is isomorphic to iand mal be ide ntified u ith;
Rn for appropriate n. The dual space of .t is denoted b; f'. Ofcourse ,E' mal be

identified with t, but it will be convenienl lo mainlain this distinclion For 'r'' e E'
and r € -6, the action of x' on r is denoled by .x' -r.

AN INTERNAL VARIABLE THFOR} OF ELAST')Pi ASTI('IT\
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Let ,S be a subset of E. The interior, closure, and boundary of S are denoted by

intS, clS, and bdS, respectively. S is convex if, for any,r, rr € S and 0 < d < l,
A.r + (l - 0)y e .S. T}ie normal cone to a convex set S at x, denoted by lf5(x), is

defined by

N5(,r) = {x' € E : x' (y-x) ! 0 for ally eS} (2. 1)

(see Fig. 2.1). When x € intS we clearly have 1r'5(.r) = {0}, whereas for x e bdS,
N5(x) consists of the cone of normals al x.

Ns(x)

CONVEX NOI{CONVEX

FIo. 2.1. Examplc of conver ald:lonconvex scts irt R2. and tbe
oormal conc .rys(n) to a convcx sar S.

tet / be a function whose domain is E and whose values are real or *4. The

efective domain of /, denoted dom /, is defined by

dom/ = {.r e f,: /(x) < m}.

The eptgraph of /, denoted by epi/, is the set of ordered pain

epi/= {(x,o) €f xR: f(x) 3a}.

The function f is convex if

f(ox + (t - 0)y) S d-f(.r) +(l -0\f(y)
for all x,/ € t,0 < 0 < I

positivelv homoegenous if

f(ax\ = s11t1, forall x € E' 0<oe R'

and lower semicontinuous (wrilten lsc) if

(2.2)

(2.3 )

(2 4)

(2.5 )

(2.6)lim inf .f(.x,) > /(-t)

foranlsequence{,r"}converg,rngtox(seeFig.2.2forillustrationsofthesedefini-
tions). lt is well known that / is lsc if and onlv if epif is closed. and thal a convex
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(a) (b)

FIc. 2.2. (a) The epigraph epi.f of the positivelt homogenrous
funcrion.f(x) = x, x ) 0. /(xl = +cc,, .9,6o../ = [0.oo),
epr /= {ix.o):,r > 0;.r < o}. lb ) A lower semiconlinuous funclion
I.

function is continuous on any open subset of -E where its values are finite. A convex

function .f is proper if f(x) < +oc for at leasl one .r and .f(-,r) > -cc for every ;r.
For anl set .t c t, the indicator function,l5 o/ S is deflned on E by

^nd 
lhe support lunclion os o/ S is deflned on t' by

ds(r') = sup{r' x:x € si (2.8)

Ler ./ be a proper lsc convex function on E. The conjugate function .f' of -[ is
defined b1

f'(x'): sup{x' j( - f(x): x e E}. (2 9)

From the definition (2.8) we see thal the suppon funclion o5 is coniugate to the
indicator funcllon 1s:

/"i = os. (2.10)

We have the funher result thal i.f f is proper, convex and lsc then so is -f', and

furth ermore
t f \': f" - f\J J - J _ J. (2.r l)

In panicular. /5 is proper, convex and lsc whenever S is closed and convex, so for
such a set

(2.r2)

Given a convex function / on E, for any x € -6 the suhdiferential A.{(x) of f al
-r is tbe subset (possibl-v empty) of E' defined by

(2 7)

0.f:E-2E",
Af g.\ = {x' e E': f(y\> f(x)+ x' (y-,x) for all -r' e f}

(2.13)
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where 2E' denotes the class of subsels of E'. The memben of Af$) are called
subg.radients. According to the definition (2.8), AfG) = O if x ( dom/.

lf / is differentiable at x then clearly

afG)--{vf(x)} (2.t4)

(see Fig. 2.3).

t'@)

lG)+p

l(vt

(v-rj

f(t)

Ftc. :.3 The 5ubdifferenrial ,/1.(1.

We have the imponant result rhat

x' € 0 fix) if and only if x e 0 f'(x'). (2.151

For the special case of the indicaror function. it is evident from (2. I ) and i l. I 3 j thar

d15rr1 : 1i-1-r1. r2.r6)

We set

domid,/') = {.r e f : d _f i.\) + Z}

and conclude with the following result.

Levv,q. 2. l. (a) Let / be a proper. convex, Isc function on E. Then dotuA [\ + Z
and dom(<i /) is dense in dom./.

(bl Lel / and g be proper. convex, lsc funcrions on E. Then

0 .f tr) -- 0 e(.r) for all -r e .E

if and onlv if
/=g+consl .
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3. Thermodlnamics with internal variables. We develop our lheory using the gen-

eral frameu'ork of Coleman and Gurtin [4] (see also Cunin [8] for a good summar]
account). focussing on lh€ small slrain theor]' of rate-independent plasticity.

In local form the equations of balance of momenlum. of angular momentum and

of energl are, respeclively,
dito+ph:pa,

.T

pi--o i-dirq
Here o is the s'.ress lensor, € the strain lensor, p the mass densitl', b the specific bod)'

force, a lhe acceleration yeclor. e the specific internal energ). and 4 the heat flux
veclor. Superposed dots denotc derivatives \rith respect'lo lime. The local lorm of
the second lau of thermodynamics (the Clausius-Duhem inequalitl) is

p3) -dttq'0t (3.4 )

where s is the enlrop) densit-v and I the absolute lemperatute. By introducing the

free energl density r,z, defined by

tlr : e 9s. (1.5 i

and combinrng Eqs. (3.3) and (3.4). we obtain the reduced dissipation inequaliti

(3.r)

(3.2)

(3.3 )

P\0+sg) o i+0-)q ft) 1A.

We consider a class of cons'tituljve equations of the forn

V = tt/(t.0. Y0. {).
o: o te.0.f 4.3t.

.c = jie. 6. F d. i l.

q = Qit.0 .\ ii. ( t.

p =- i = rte .t.16.{l
Here i rs an internal variable *hich chataclerises the dissipative behar iour inherent

in piastrcitl. The number of such internal variables. as *'ell as their tensonal nature.

depends on the panicular mode) being construcled. but ue need not be specific aboul

these attributes here. Concrete examples uill. ho*ever. be given later'

It rs well kno\\'n ihat substilution of (3.1i in thr teduced dissipation inequalrt)
(3.61 -vields the fact that lt. o. and s are independent of I9. and that

(3.6 j

(3.7l

(3.8 l

(3.9l
and

aV A tt/o--pE. r: ,,a

oafi C*o-rq v65o
\,\'e norr'specialise. and consider hencefoflh onl) lsothermal behaviour' Consequentll

ff, = 0, q = S (see 14 or 8]) and we no longer displar 0 as a vanablt Furlhc:-more.

we define the rhemod)namic force ,X conJugale lc' thc inlemal Ianab)e { by

Iti) =Trr.Ct= I.t/i (.l.l0r
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The reduced set of constitutive equalions now becomes

V = ttlG,O,
ao

o - p---,
dt

_. AaX=-0*,
d<

p:C, p=F(e,O,

(3.1r)

and (3.9 ) reduces lo
X p>0. (3. r2)

While it is the first three of Eqs. (3.11) which encapsulare rhe elastic material
propenies and any hardening that may be present (see the examples in Sec. 6). it is
the so-called evolution law (3.1 I )a *hich derermines the real narure of the inelaslic
behaviour. Naturally it is desirable that the function F be as slmple as possjble. yet
it should contain the major learures of the kind of inelastic behaviour which rt is
supposed lo represent. For conventional, rate-independent models it is not unduly
testrictive to suppose that p depends on e and ( through .tr isee [6, 16. 20]). an
assumption which we adopt:

p = F(.Yj. (l Bl
We take t3.13) as basic, but will find ir more convenient lo work with its inverse.

\i'hatever the lensorial nalure of p. it belcrngs to a finite-dimensronal space E
isomorphic ro R'. lor suitable n. \4'e hence wrire f - R, and f'- R". rhe dual
space ofR'. Of course R" is also isomorphic ro R". but ir is useful 1o maintain rhis
distinction in what follows: the lnternal vanable rales belong ro E. and the con1ugate
forces to f '.

Consider a correspcrndence G: p - G:p' r'.hich associater q'lth each p a E a se

G(p) ipossibli empty for some p) in .E'. The reiarion inrerse ro il.llr is rhus of rhe
form

) 
= 

Gtp . ll.l.1i
fq. i3.14) reflects thc multi-r'aiuedness of G: Fig. 6.1 larer gives a srrr,ple onc-
drmensional illustration, as would occur rn perfecr piasticitr. Our firsr arm is to
constmc{ a theon of inelastic behaviour based on thr map Ci.

.1, Ila-rimal responsive relations.
DrntxlrloN 4.1. The map G is said to be responstve t{

0 € t;10 ,4.11

i.1 ll
and if for an.v p1. p1 € E ,

i X,: .{1 I p1, 2 0 and i.l'1 -.111 ;, > 0

whenever .\'r, € Gr prt\..Y, € G(pr).
Equation (4.I I simpl! implics rhar rhe ser of rhcrmodlrramic forccs corrcsp!)nding

to zero dissipatron contalns the zcro force Equair,.)n i4.l rs a gcnrralrsatron oi'
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lhe marimum plastic work inequality: indeed. in the case of perfect plasticil) ( =
er, the plastic slrain, I = d, and (4.2) is precisely this inequalit,v. Tbe maximum
plastic work inequalit-v contains the essential slructure of theories of plasticity in
that i1s adoption, together'\ 'ilh the assumplron of a dehnite elastic range, is sufficient
to deduce the major propenies of plasric conslitulive reialions (the normalily rule.
convexill' of the yield surface) (see [ 0, 24], for discussions of this vie*point). More
recently it has been poslulaled as an axiom in a finite-strain theory of plaslicily b)
Simo [2 7].

DEFIlirrroN 4.2. l*t G: E - 2E' be a responsive map. G is said to be maimal
responsit'e if rhere is no other responsive map whose graph properly includes the

Sraph of G.

The notion of maximality occurs in various branches of noniinear analysis, for
example. the theory of maximal monolone operalors (see. for example . 122- 26, 2.81.

In the presenl contexl maximal responsiveness is equivalenl to the propen)'1ha1 for
dn! po € E and X6 e E', the condilion

(Xo-Xr).p6>0 and (Xr - Xo) pr Z0 Vpr, Xt € G(pt)

implies that -.li e G(po).

Drrrxrrrox 4.3. .4 funcrion D' E - [0, c.] is said to be a gaige i{

DW)20 for all peE,
D(0) = 0.

D is convex, positivell homogeneous and lsc.

Rrltlnx. Rockafellar [25] defrnes a gauge 10 be a function *'ith tbe

erlies. exclud tng lower semicontinuitl.
From the results il Sec. 2 we have the follox'ing

LEMM^ 4.1. trt D be a gauge on E. De6ne the closed convex se1 r( bv

K={XeE':X p S D\p) vpeE}.

Then (a) .D is the suppo.{ function of K:

D@):i:?r p,

(b) the function D' conjugate to D is the indicator .function of K:

( 0. X eX.
D.1Xr_ .{ .' [ +o<. )'(f,:

(c) K = aD(0);
@l X e A Db).+ p € AD'6) : /Vx(x)

We now come to the main result of this section.

above prop-

(4.3)

(4.4)

(4.5)
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THronsrr 4.1. l*t G: E - 2E' be a multivalued mapping. The following are equiv_
alent

(a) G is maximal responsive;
(b) There exisrs a gauge D on t w-ith the propeny

CQ) = AD@) for all P e E.
Funhermore, when G is maximal responsive it delermines D uniquely and in terms
of the set dom C = {p e E: G(p .\ I o} sarisfies

(4 6)

RrvAnr. The above theorem is similar in nature to results which connect maximal
cyclic monotone maps with the subgradienls of convex lsc functions (see Rockafellar
[26], zeidler [28]).

Proof of Theorem 4.1.
(b)+(a). Assume thar rhe condirions of (b) hold. Ir foilows from Lemma 4.1(d)

thal
Gl,p) = lX e K: X p > Y. p YY e Kl (i)

since G: dD. where,( is defined by (4.4). In particular, t4.2) holds. propeny (4.1)
follows from the observarion thar 0 € X -- A DQ) (Lemma 4.1 (c)). To show that G
is marimal. consrder an] parr A. X. such rhar

(X -7i p >C and (T -.i-) t>0 (ii )

for all p e E. X < Glp). We musl verify lhat 7 e Gtpt. We have, lrom Lemma 4.1
(d).

F ptDtpt fotallpeE
so that I € rt. The second pan ofiii)rhen impiies bl li thar T a Gti). as required.

la;-ibt. We sho* that

Gt\) a) Cipt for all p 
= 

E.

Corsider an\ p and i e Gtp t. From i4.l .

.\.T p.0 and \ \ p..0
whenever .\ t G:p . Hence the parr 0. T has the propen_, rhat

\ T ny0 and f . f 0.0

ir)r l

*henever .l' € 6(p j. and so t0, T could be added ro lhe graph of 6 *irhout vrolatrng
r.1.li. Srnce ai is marrmal responsr\e. qe must ha\e Tt C'0). whence liiil.

The abore argument actually establishes thal Gi0) coincides *irh rhe set

(={{€ E' i.Y- Tr p>O forall pe E..y €Gtp)|. iiv )

Thrs set is closed and con\ex. and conrains 0. b1 propeni,i4. l). From tiii) and (ir.),

T-r, I -ti60 -A ,t..\'^ f (v)

Lei D be lhe suppon funcrion oi A. Since D is rhe suppon funcrion of a closed
con\er sel irr;rlarning rJ rt rs a gauge,see [25]. Ch. l5land

T e 0Dipi <. F € ,\'^1Tr.

O,rt __ I X p for all .Y e G{p). p € dom G.

[ +x forp e cldomc.
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Moreover 3D is a responsive map. Furtherrnore. (v) implies thar the graph of G is
included in the graph ofdD. lnasmuch as G is maximal responsive. *e may conclude
that G - 0D, \ahence pan {a).

To establish the uniqueness of l). wc recall (l-emma 2.1) that t\r'o Isc proper con\.ex
functions have the same subdifferential if and onll if thel differ bl an additire
constanl. \\'e fix lhrs conslanl b) the requirement thal 1)10) - 0. tbereb) defining D
uniquel).

To establish (4.6). we nole rhar D is the suppon funcrion of li. defined bl (4.4), so

thal from (i) D1p) = ,Y p when ,Y e G\p). Since cl dom G = cl dom 1,D = cl dom,
(Lemma 1.1) we also have t(pi= +x when p ( cldonra;. whence i4.6). n

\\'e recognise D ro be u'hat is kno*n in classical plasticitl as rhe "dissifrarion
func'tion-: D(p) gives the rale of plaslic (disslpati\et *ork. Th.' assumption of non-
negati\j1) in the definition is dictated b) the second lau of thermodYnamics isec
(3. r 2)).

We see that for a malrmal responsive map G. {3.14) mav be *ntren as

.\' e dDipt. t41t

which identifies D as a pseudctpo tent ial for.l isee Moreau [20]i. \\'hal is interesring
here. of course. is the equjralence of propenies ia) and lb) jn tbe theorem: maximal
responsiveness of G is zecessan and su,frtenr for tbe existence ofD \\'i1h the requisire
propeflres.

We also note thal lhe assumplion of marimal responsiveness intplies the exislerce
of a regron ,( in *hich all achjevable values -l will bc found. The inlerior of rhis
region is commonl] kno\r'n as the elastic region srnce

X€intA +,\1i,\ l = {0}.

so thar

p:0 for I €intA. (4.8 l

The boundar_r bd ( of ,\ rs knoun as the )idd sur.facc it is onl1-' those -X which ]ie
on bdX *hrch have associated q'irh them nonzero values of p. Indeed. we have

X € bd i + p e 
^'( 

(.r') / {0} (4.9)

which rs simp)1 lhe classical norntaliry rule.

Since D", rhe dual of the indjcator func-tion l)'. is equal to 1). *'e havc embod-
ied in Theorem 4.1 and Lrmma 4.1 threc equivalant formuialions of the e!olulion
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equation, summarised below:

G maximal responsive

X e G(p)

+

D convex, pos hom, lsc,

D(p) > 0, D(0) = 0

,x e aD@)

$

K closed. convex, conlains zero

D' = indicator function of K (III)
peaD'(x).

The formulation (lII) is well kno*n, and goes back to Moreau [20]. For,nulation (II)
is sometimes mentioned as a consequence of (lll) but is seldom grven prominence
in ils o*n right. An exception is the work by Martin [7], in which the evolulion
equation is assumed to be of the form (II). Formulation (I). whrch we have taken
as the starting poinl. is new. though there is some connection with the work of Rice

[2a] and of Hill [0]. wbo regard the maxinum plastic work inequaliry {4.2) as a

fundamental propeny of a plastic marerial.
These three formulations show clearly the minimal assumptions whrch need to be

made if an acceptable classical theory is lo emerge. In panicular, we see thar {l)
and tll) do not require the assumplion of an elastic reglon and yield surface: rhese

are (onsequen(es. Practrcal consideraticns would dictate which of these formularrons
would be most appropriate for the problem at hand. For example. illl) is most oflen
used, in one gulse or another: illt has been used rn [1, 5, 17, and l8]; (lt ma] trave

limitations in that il is not simple or natural to formulate evolution equations in
rhis form, excepr perhaps for one{rmensional problems. The major benefrt of (l),
thougi. is thal it resolves the issue of how much information needs to be added to
rhe assumption of the marimum plastic work inequalitl', in order that it form the
basis of an internal variable theory of plasticiry.

5. The yield function rnd its relation to the dissiprtion function, It is common in
engineering practice to identif! lhe region K by de6ning il to be a level set of a given
funct ion:

(r)

(II )

r( = {-Y:./(,1') < consr}. (5.1)

By a sliglrt abuse of terminologl we refer to / as the .vield function: generally it is

the functlon (/ - const) iwhere const is prescribcd) which is g.rven this namc We
show in this section that. grven ,( closed, convex. nonemply, it is always possible to
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construcl a yield funclion .f which is a garigc. Thus epi f is a closed convex cone
containing the origin.

We also in|estlgale lbe dual relarionship betl.reen ./ and D. So far we knorr 1har
D and the indicalor function D' of A are con1ugate. in the sense thal

(5.2)

A}.. II{TERNA.T YARIqSLf THEOR) OF ELASTOPLASTI('IT}

( s S D'l(l +D(q) for all (€E-, q€E,

with equalitl'when i is relared lo 4 throug.h

D'(i) = sup{i .t - D(a)
teI

=i.q-Dt.q\. ( 5.31

We will shou thal ./ and D are also dual in a differenr sensc: in rhe language of
convex ana)1sis thel are polar.s of each other. This r1'pe of relalionship berueen pairs
of functions has also been in\,estigaled b1 Hill I I ]. u'ho refen to such pairs as dral
potentials. Rather than rnvoke the theoD of polar funcrions [25]. ue develop these
ideas from first pnnciples. making use of ihe general frameuork established rn Secs.

2 and 4.

Given the closed convex ser.l, defined b) (4.41. *e define a function .f on E'.
called the canonical yteld.funcrior. b1

f tX) = inf \p > 0: ,l'e 4A ) (5.4 i

where gK = \pY: l' e X). From l5.4 t lt is evide nr thar .f isa nonntgative, positirelr
homogenectus canlcr function r+hose level sel at I is equal ro .K tsee Fig. 5.1). that ls.

f ts a gauge. Note that ./(.1'l can take the value +x twben .\' Q pK for an1' 4 > 01.

t*

FtG. 5 l. Th€ gar.rge functron o1 tlt. t 1 I = [4. l]

From lhe definitions (4.4). (5.a1of X and of .f. an alternative form for .f is

f(.1) = inf lp > o: 'f q < pD(q) tor alt ql. (5.51
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Now assume that D(q) = 0 if and only if q = 0 (this assumption is consistent with
lhe proposed application): then / and D are related by

flx)= 
orie r#).
elo

in other words, we have the inequaliry

X q 3 fG)D(q) for all XeE,q €domD (5.7 )

(we adopt the convention 0 oc = cc.0 = 0, thus avoiding ambiguiries in the event
that the righr-hand side of (5.7) takes one of these forms). Consider X e bd,(: then

X q -.
113 rtnr = '

4€dom D

(5.6)

(5 8)

and the supremum is achieved when q = p, say, and p is conjugate to X in the sense

of Lemma 4.1 (d). Thus. for X e K and .Y e AD@.). p *0.
x p = f(.YtD(p). (5. e)

Thus whereas D and D' are conjugate in the sense of (5.1). (5.1), D and 1'are
polar in the sense of (5.7), (5.9). Funhermore, just as D" = D. it can be sho*n [25]
thal if .f = D0. then DN = D (for this we nied rhe lower semicontinuit-v of D).

The introduction of the canonical yield function / allows us to express the nor-
malitl rule (4.9) in another form. For this we nee d

LEMMA 5.1. L€t 8' be nonnegatiye and convex. with gi0) = 0 and -x a point in the
interior of domg such that gr.rt > 0, Set C = .{:: gi:r< -si.y)|. Then.r' e.\r.{.rl
if and only if there exists i 2 0 such lhat .r- €;rgi.r).

Rrv,o'nr. Lemma 5 I appears in F5l as a Corollar_r rsee Cor lJ. r'.I l. We gire a

simple proof here.
Prooi-. Assume first ll'lat ,{' € i.a),gi-r r for some 1 2 0. Then .r' - i..r' for l' €

tSir i. and
g.i :)> 3l,rr+ l,' i-- Li.

For--eC'. g':. g r.sothat

.r' i:-.\; S0- t' i:--tl S0

for all : € C. hence.r'€ .\'(.(-{).
Nou assume that,r'€ -\',.{-rr. We \rart to sho* that there cxists; > 0 such that

-r'= i --' and

6:(.rI > -gr r)+:' (-r .() iil
for all r'. If .r' I 0 and r' r.l - -r) = 0 lhen .r e bd( and since (- is convex.

,r'€(inl()0.thccomplemcntofrntC.Hencesli)>gl{i.sothattilholds.Assumr
next that.r' (l -rj<0. Then for r'€ f- 1CwehareSi]i-g( \ 20sothat'il
holds lor any L ) 0. Finall) suppose rhat i { ('. Then for somr 4 > 0

81.l gi.{ rr.L' ,,1 -, - | 5! !'- s I Y ' - , I .' 
' 
, - -. ,{.r' I rl )
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which is nonnegalive provided rhal I > max{(g(r') - 8(_x))/(-r' h. - ,r.-)): t. € C},
The result folloq's with ), = p | . a

Various results follow from lhe lemma. First. b) setling g = ./ and .r' = ;l \+herc

.f(X) = I, so lhat C = K. it is found that

p e ).0 .f lX).

If -f is differentiable at X we recover the normalitl, rule in its classical form

af
P=^AX, /- Zv.

(5. 1 01

(5.1 I )

(5.r:i

It is also possible lo characterise 2 bl using rhe propenies of /. Indeed. from i 5. I 0;
*'e have

p -- ).p' nhere p' e 0 .f \X ).

thar is.

.f lr') - .f {}') - p' (.Y -.Y) > 0 for all } e E'.
Since.fil') = I and.f(01 :0. we hare .\ p'> l. Funhermore. selting )'= 2.r'.

since f(2X) = 2.flX) we obtain X p' < l. In olher words,

'Y P'=t

)- = ).X p' -- .\' p = D\pt.
Thus the scalar multiplier i associated uith p has the samc ralue as l)ip;.

l:mma 4.1 rnal' also be applied to lhe dissipation function: setrrng S'= D and
defining

C = Iq: D\q) : Dlp)]

for a given rr I 0. we have immediately. for .Y related lo p rhrough i4.?1.

X e itDt.p) +.l e .\'1.(pr. {5.1-lr

There is also the converse resull

X e .\'( (.p) = )' e ).0 Dr.pt for some i > 0

(we exclude the possibility i = 0 since .l' * 0).
This situation is illustrated in Fig. 5.2: rn f' rhe conjugate pair i.l .p) is such rhat

p lies in the normal cone to ,\ (lhr leYel set .f(f ) 5 I ) at .l'. uhile in f we find that
X lies in the normal cone to C (the level se1 l)(4) < Dur)) at p.

We conclude lhis seclion bl recovering the plastic constituli\e equations in their
convenlional classical form: lo do this it is necessary to add a funher axiom. the

consistencv condttion, which stares that al -l' e bd ,\ .

)..f = o (5. l4)

where / is the change in -f associated u ith the change in ,l' accompanS ing {. i.e.. p.

Tbus either 
). > o. r - o
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FIc. 5:. Conjugare pai6 (-Y.p) as noffnals ro 1( = iy: it'l , < 1I
and C = {q: Dtq): Dtpt\.

or

-f <0. 1=0

(,f > 0 is not permitted since we require X € K alwavs). Then one form of the
complete set of equations prescribing the evolurion of ( is

where

and

p €i-0ft.Y)

i.>0 rf ./{.Yr = l..f =0

2=0 rf .fi.l'r- 1.,t-<0
or _i1l i < i. ii.l5i

Furlhermore ). = Dt p :.

6. Eramples. \l'e first give some one-dimensional exampies in which formulation
lll ofSec. 4 is used to obrain a full descriprion of plaslic behaviour We theo in\es,
tigate the applrcation of the rhc'on of riro nontrir ial highe r-drmr:nsional examples.

6.1. Stngle slip plane or unr,litrm rod e.rtenston. A singJe internal variable ( is
introduced qhrch characterizes rhe rigid plastic extension of a uniform rod isee Fig.
6.1 {a)r. This same s}stem could be rnterpreted as the slip on a gr!.n piane []01. Ir
is assumed thal changes lo { take place onlr uhen the .on1ugale force .l' reachcs a

magnitude of .i1. This assumption is sufficrent io esrablrsh the set-\alued map Gipl.
This is illustrated rn Fig 61 tb The lorm of iht' drss:parron funcrion is easily
obtarned from 6tp = ODt pt znd is shown in Frg. 6. 1 Lcr.
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ryi'

0D(tlt= fi

15

b.

Fro. 6.1 Unifo.m rod ia! Gcomerric irrerpretalron ibl O(lr7) =
{,losenr}. p + 0. G\0 = t-.1;. )ol. {c) The drssrpation functron
Dlp ' = .Yot,

6.2. Constrained slip s1'stenr or rod. This example is very similar to to the previous
one, bul here negative forces,Y are unable to bring aboul an) change in {. A geometric
interprelation of this system is sho*'n in Fig. 6.2 (a).

Again rhe set-valued map G(p) is established directl-v-. This example is of panicular
interesr since lhe map is defined onl-v for nonnegalive values ofp, i.e., dom,D =
[0, cc).
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X

b.

,iD,tri= l f,,

Flc. 6:. Conslratnrd rod a ceomctrrc rnlcrprtlatlon br i;il] =z.p..UA il' =,-r..t.rl. rjr =l\,ri.p,0 cj The,Jrrs,parron
functron Dp = -Jc.p,t).D! = toi. i ? 0. domIJ = iU.-rci.

6.3. Ltnidirectional dissipation. This example is an interesling special case of a
rate-independent plasticity theory. Here we model a marerial which shows plastic.
dissipative behaviour only in one direcrion. under compression here. In this direcrion
changes in the internar variabres occur xhen rhe force x artains a rarue of magnitude
"l rJ < 0 ln the other direction. rhe mareriar offers no resislance ro change in intemar
variables' Such behaviour ma1 model matenals rike concrete or soil where there is
neglrgible tensile strength. The map G' p I and the dissipar ion function are shown in
Fig. 6 3.
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4 r--:-='--+ .\ o

r--._=,
b.

-\. ,.t I) | t.t = l\

Frc 6.J No-tensron example iai Geometflc inlerpretalton {b)

Ct,V: = ,10. p < 0: Gi0, = I ri.0l: 6ipr = 0 p > 0 icr

The drssipatron tunclro.,(Pl = \o\p p <0'Dip' = 6 pI6
dornD\I)=i-€.01.

6.4. The contacl problem. In this extreme example we have an internal variable

model for fnctionless contact. The internal variable ( measures disrance from a ngid

obstacle and so { > 0 The conjugale force X is the reaclion force experienced when

contact takes Place. We haYe

x s 0 if ( = 0

and
x:0 if { > 0.

This siluation and rhe resulting function 6 and dissipation function D are shown in

Fig.6.4.
i poinr *orttr emphasizing is that, in the complete set (3 1 l ) of equations charac-

terizng the material behaviour' the evolution equation {3 1 I )a descnbes the nalurc

of rhe irrer.ersible behaviour, bul effecls such as hardening are 1o be found in the free
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| -* x:o
F---'---""'- 6

{- ^'o

b.

,)1)1) = I\

Ftc. 6.1. { conracl problem al Ceomerrrc tnierprtrarron ,b
Gp =2.p.:0i(l,f ={0i.pl0 c Thedrssrpalron iunrLron
Drpt = *cc, ! .: C: I)tt, =0.p]0 dom D = [0. -:. .

energy function p. This contrasts with the methods and terminology of. lor example.
Simo [27] and Kim and Oden [13]. To clarify whar we mean consider the following
well known e xample.

6.5. Elastoplasticitj, ,t'ith th? v'on ,\lises yield criterion and linear kinr:ntatl. hord
ening. Let the internal variab)e ( be identrfied with the plastic slrain rensor €r. We
define the free energy funcrion rp by

nvle '(1 - \" iDt C(e - inr + f ll;n;t'

*here C' rs rhe founh-ordcr ,anr-u, ol 
"lrr,,a 

moduli. h :"0 ,, ,n. hardanrng consranl.
and q'o = { - llrri)1 denores thc deviator of q. The dt'nsity p is assumcd consranl.
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We obtain

o = p** _ Cre _ CD),

X, - e:t-lC\L-(tln. hCn

so the conjugate forle is

S=(6-h{.)D.
The von Mises canonical yield function is

.f(X) = k rlXl = k-r(/ x)rrr

where /< is a prescribed constanl so the l,teld surlace is a sphere of radius k. The flow
law in the form (5.I I ) is then

i -;.!! =;.!. ).> o. (6.r), ^ay .u 1.w.

(1he constanl k-l has been absorbed inlo l-) when -flx) = l. and from (6.1) we
find that tr { -- tr er = 0. so lhat no r,olume change accompanies plastic deformation
(indeed. this conslraint motivales the panicular choice of free energl invo)r'ing (D.1.

The dissiparion function D is found from

Dip)=i:?).p=ktp

and the function G from
(lr|in\ n+0.

Gs' - ED1P1- I 1' '"llt:t qSDtqlVq). p-0.
The example of a von Mises lield crirerion lrith linear isotropic hardening ma1 be

treated in a similar manner. thougl the corresponding delails are less straightfonrard
to derive (see Manin and Nappi [1 8] .

The relations (5.15) can be written in more conventional form if we se1

.fi,l = /..t,o.t t - .iro.t,.
Then for /. ) 0 we have

ai ai0-.f x)-i o -a; {

Bn AjlAt : -hk txl)x)and(= ia.f la\ = ).k-t 
^l,r'1. 

so rhar

.{ eto
de

Hence
itf).>0 i{r)'-) and * o>0.

Similarly,
2:0 if /(x) < r

iri
or f,.i l and - o.il
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.1:o,

d.

Frc. 6 5 1aJ A unrfofin rrgid,plasric beamt rnlemal forcas and dis-
piacements at an arbrtran cross seatlon arc shown. b, {n aabllran
cross-5eclron. ct Stratn drslnbutron ,d Stress drstnburron

6.6 Bending and etension o.f the bean. The rheon. of Secs. 4 and 5 applies in
general siiuarions. and rs not drcrared b1 an! ph)sicar assumplrons olhcr rhan those
embodied in rhe propenies possessed b1. the sets and funclrons appeaflng there. In
panicular. \ihile oui pnme moli\ation has been erolution la,,,s for continuous media,
there is no restricrron in applying lhe resurls to more specraliseri situations. such as
those a'sing fronr theories for panicuiar gecmetncal t)pes such as beams. plates and
shells For r'xample cons'der a ngrd-per1'ecrlr plasric beam of arbitrary cross-section
subject to bending and exrension. The Krrchhoffassunprion is imposed. and the lwo
internal ra'abies ar: lhe axrai extenslon i ar the neutral ari: and rhe cross_seclional
rotation ri lsee Fig. 6.5 ia)1. under these circumsrances it is a straighrforw,ard matrer
to show thar the region K of admissible forces consisrs of rhose valuc,s of bending
momenr .l/ and axial force _\ satisfl ing

*d.Y:br,V:-l (6 2)

where a and b are conslants depending on the cross-sectional geometry and yield
stress isee Fig. 6.6). The conJugale forces corresponding to r and ( are thus M and

According ro Sec 5 ir is possible to express rhe region r( as a level ser {.y: /(,y) Sl) *here / is a gauge and .\'= i,t|..Vl. To do this we re*.ritc t6.l) as
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Frc 6.6. \-reld funclro0 for beam exalhplr.

and complete the square 10 get

(1 i. aMf > ntr: + au'
whence lhe canonical lield function is

!r.r't- -lx - rb:.v: - 4vt,tt . t.:4
The dissrpation function is then found from

DrP) = st:P 'Y P
,I€ A

= sup (Mpt + Np:)
fl rt {rS I

= sup (Mpt + hpz).

Consider an),p satisfying p e )A.fQ') for X such that .f is differentiable, that is,

for the set r - -
ltM.i'J:lh't< llb. M =-^(l - brA'rtl.

a

For these values we have p: ).AliAX,from*'hichwe find after some manipulation.

D(k.<)= fttC't*l* 
!t
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[.b

-la Ia

F!c. 6.1. Ihe I'level set of lhe dissipalron funcllon for the beam
example.

When ./l.Yl = I and .ly' = 0. ,V = t I /4. .f is not differentiable. Ar these points

ort.:r= rli.h'
Tbe lerel set {4: Diql < Dipl} lsee Eq, i5.ll) and prcceding equarion) is shown in
Fig.6.7.
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