
A Simplex-active-set Algorithm for Piecewise Quadratic Programming †

R. T. Rockafellar* and J. Sun**

Abstract

An algorithm for monotropic piecewise quadratic programming is developed. It converges to an exact
solution in finitely many iterations and can be thought of as an extension of the simplex method for convex
programming and the active set method for quadratic programming. Computational results show that
solving a piecewise quadratic program is not much harder than solving a quadratic program of the same
number of variables. In other words, the computation time is not sensitive to the increase of ”pieces”.

Key words: Active Set Methods, Computational Experiment, Linear Constraints, Monotropic Pro-
gramming, Optimization, Piecewise Quadratic Programming, Simplex Methods.

Abbreviated title: Algorithm for Piecewise quadratic programming

† This research was supported in part by grants from the Air Force Office of Scientific Research and the
National Science Foundation at the University of Washington, Seattle.

* Department of Applied Mathemati c s, University of Washington, Seattle, WA 98195
** Department of Industrial Engineering and Management Sci e nces, Northwestern University, Evanston,

IL 60208

1

1. Introduction
In a previous paper [9] we studied the basic theory and some applications of monotropic piecewise quadratic
programming (PQP for short). This model has promising applications in such areas as stochastic program-
ming [8], optimal control [7], decomposition algorithms of quadratic programming and approximate methods
of monotropic programming, etc. [9]. In addition, it is worth mentioning that in general the dual of convex
quadratic programming can be reduced to this form. Due to the broad range of its applications, it is natural
to ask for the development of efficient algorithms. In this paper we would like to introduce a hybric algorithm
and present some initial computational results. The algorithm combines the features of simplex methods for
convex programming [2][6][10] and active set methods for quadratic programming ([1] and references therein)
and directly deals with the PQP model without reformulation.

The mathematical statement of the PQP problem is as follows:

(PQP)

 minimize F (x) =
∑n

j=1 fj(xj)
subject to Ax = b

c− ≤ x ≤ c+

where A ∈ Rm×n, b ∈ Rm, c−, c+ and x ∈ Rn. The vector inequality is understood coordinatewise. Each fj

is convex piecewise quadratic, i.e.

fj(xj) =

+∞, if xj < c−j := cj0
1
2pj1x

2
j + qj1xj + rj1, if cj0 ≤ xj ≤ cj1

· · ·
1
2pjkj x

2
j + qjkj xj + rjkj , if cjkj−1 ≤ xj ≤ cjkj

+∞, if xj > c+
j := cjkj

where for each j, we call the numbers cj0, cj1, . . . , cjkj
the breakpoints of f ; they satisfy

−∞ ≤ cj0 ≤ cj1 ≤ . . . ≤ cjkj
≤ +∞.

Notice that the (effective) domain of the objective in problem (PQP) is a box (hyperrectangle) in Rn

and is the union of finitely many smaller boxes on each of which the objective is quadratic (or linear). An
intuitive idea would be to find out suboptima in all such small boxes, which corresponds to solving a series
of quadratic programs, and then to choose the optimal solution among them. This is of course unrealistic
because of the possible huge number of these small boxes. Nevertheless, it suggests that if we can effectively
combine the two tasks — looking for the small box where the optimum resides and finding the optimum in
the small box — then the algorithm will be finitely convergent.

The algorithm to be introduced below is performed on the simplex tableaux and can take advantage if
most fj ’s in the objective are piecewise linear. The algorithm converges to an exact solution in finitely many
steps. In the following, the framework of a class of algorithms is presented in Section 2; its implementation
is discussed in Section 3; the degeneracy processing is the topic of Section 4 and some computational results
are reported in Section 5.

2. Framework of a Finitely Convergent Algorithm

In this section we introduce a model algorithm and clarify its convergence.

Definition (2.1) Let x̄ be a feasible solution of PQP. Denote by IM(x̄) the index set

{i ∈ {1, 2, · · · , n}|x̄i is a breakpoint of fi}.

Then x̄ is called a quasioptimal solution to PQP if it is the optimal solution to the following subproblem:

1

(SP1)

minimize F (x)
subject to Ax = b

c− ≤ x ≤ c+

xj = x̄j ∀ j ∈ IM(x̄).

If x̄ is a quasioptimal solution, then F (x̄) is called a quasioptimal value.

According to this definition, the optimal solutions to PQP must be quasioptimal. In addition there is
only a finite number of quasioptimal values. To see this point, notice that the total number of different sets
IM(x̄) is finite as x̄ ranges over all feasible solutions to the given problems. Hence there is only a finite
number of different subproblems (SP1). Hence if we can strictly descend from one quasioptimal solution to
another, then after finitely many steps we will end up with an optimal solution.

The framework of this type of algorithms consists of three steps:

Algorithm (2.2).
Step 0. Find a feasible solution or determine the infeasibility of the PQP problem.
Step 1. Move from a feasible solution to a quasioptimal solution without increasing the objective and go
to Step 2.
Step 2. Verify whether this quasioptimal solution is optimal. If not, find a descent direction , decrease the
objective function and go to Step 1.

If each step takes finitely many operations, then any algorithm which can be embedded in this framework
will have to converge in finitely many iterations.

3. Implementation
In this section we consider the question of how to realize the model algorithm by using simplex tableaux.

3.1 Initialization
Step 0 can be accomplished by any linear programming algorithm if we replace the objective function by
zero. Since some efficient algorithms for piecewise linear programming have been recently proposed (e.g.
[2][3][4]), a better idea is to use a piecewise linearized approximation of the objective function in order to
get a starting point closer to the optimum of (PQP). Actually in certain case a quantitative estimate can
be made about the distance between the optimal solutions of the piecewise linear approximation and the
optimal solutions of (PQP), as indicated by the following proposition.

Proposition (3.1.1). Suppose that c− > −∞ and c+ < ∞ for all j. Let f̄j(xj)(j = 1, ..., n) be defined as

f̄j(xj) =

+∞, if xj < c−j = gj0;
fj(gj0) + f ′j(

gj0+gj1
2)(xj − gj0), if gj0 ≤ xj ≤ gj1;

· · ·
fj(gj,mj−1) + f ′j(

gj,mj−1+gjmj

2)(xj − gj,mj−1), if gj,mj−1 ≤ xj ≤ gjmj

+∞, if xj > c+
j = gjmj

.

This is a piecewise linear approximation of fj(xj). Suppose that the function fj(xj) can be expressed as
1
2pjix

2
j + qjixj + rji(pji > 0) between the grid points gj,i−1 and gji for i = 1, ...,mj and j = 1, ..., n.

Then the distance between the optimal solution x∗ of F̄ (x) =
∑n

j=1 f̄j(xj) and the optimal solution x∗∗ of
F (x) =

∑n
j=1 fj(xj) on the set S = {x ∈ Rn|Ax = b, c− ≤ x ≤ c+} satisfies ||x∗ − x∗∗|| ≤ Md, where || · || is

the Euclidean norm of Rn, d = max{gji − gj,i−1|i = 1, ...,mj , j = 1, ..., n}, and M is a constant independent
from d.

2

Proof. Since S is a compact set, both x∗ and x∗∗ exist. Let

λ = min{pji|i = 1, ...,mj , j = 1, ..., n}.

By the assumption that fj is strictly quadratic we have λ > 0. It is not hard to see that geometrically the
graph of f̄j is the brokenline connecting (gj0, fj(gj0)), (gj1, fj(gj1)), · · · , and (gjm, fj(gjm)). Thus we have

F̄ (x∗)− F (x∗∗) ≥ F (x∗)− F (x∗∗)

=
n∑

j=1

(fj(x∗j)− fj(x∗∗j)) ≥
n∑

j=1

f ′j(x
∗∗
j , x∗j − x∗∗j) +

1
2
λ

n∑
j=1

(x∗j − x∗∗j)2

=F ′(x∗∗, x∗ − x∗∗) +
1
2
λ||x∗ − x∗∗||2

where f ′(·, ·) and F ′(·, ·) are the directional derivatives. Since x∗ − x∗∗ is an ascent direction of F at x∗∗,

F ′(x∗∗, x∗ − x∗∗) ≥ 0.

Therefore

F̄ (x∗)− F (x∗∗) ≥ λ

2
||x∗ − x∗∗||2.

On the other hand, we have

F̄ (x∗)− F (x∗∗) ≤ F̄ (x∗∗)− F (x∗∗) =
n∑

j=1

[f̄j(x∗∗j)− fj(x∗∗j)].

Assume that gj,ij−1 ≤ x∗∗j ≤ gjij
, for j = 1, ..., n. Then

n∑
j=1

[f̄j(x∗∗j)− fj(x∗∗j)]

=
n∑

j=1

{fj(gjij−1) + [pjij
(
gjij−1 + gjij

2
) + qjij](x

∗∗
j − gjij−1)

− [fj(gjij−1) + (pjij
gjij−1 + qjij

)(x∗∗j − gjij−1) + (
1
2
pjij

(x∗∗j − gjij−1)2]}

=
n∑

j=1

pjij
(x∗∗j − gjij−1)(

gjij−1 + gjij

2
− x∗∗j) ≤

n∑
j=1

pjij
(qjij−1 − gji)2/16

≤ µ

16
d2(µ > 0)

where µ = max{
∑n

j=1 pji|ij = 1, ...,mj , j = 1, ..., n}.
Thus

λ

2
||x∗ − x∗∗||2 ≤ µ

16
d2

i.e.,
||x∗ − x∗∗|| ≤ (

µ

8λ
)1/2d.

(Q.E .D.)
Proposition (3.1.1) says by choosing relatively fine grid points one can solve (PQP) approximately. The

trade-off is that we will have to solve a piecewise linear program with many pieces. However, if we just want
a good initial point for (PQP), then using the breakpoints of fj as the breakpoints of f̄j is often a good
compromise.

3

3.2 Algorithm for Finding a Quasioptimal Solution
Now we discuss Step 1. Suppose that x̄ is a feasible solution. In order to get a quasioptimal solution, we
need to solve

(SP1)

minimize F (x)
subject to Ax = b

c− ≤ x ≤ c+

xj = x̄j , ∀ j ∈ IM(x̄).

This is an PQP problem. Let c̄−(x̄) and c̄+(x̄) be the closest lower and upper breakpoint vectors for x̄, that
is

c̄−(x̄) = [c̄−1 (x̄), · · · , c̄−n (x̄)]T , c̄+(x̄) = [c̄+
1 (x̄), · · · , c̄+

n (x̄)]T ,

where for j = 1, · · · , n,
c̄−j (x̄) = max{cjl|cjl ≤ x̄j l = 0, 1, · · · , kj}
c̄+
j (x̄) = min{cjl|cjl ≥ x̄j l = 0, 1, · · · , kj}

(Recall that the cjl’s are the breakpoints of fj ; cj0 is c−j and cjkj
is c+

j .) Both c̄−(x̄) and c̄+(x̄) depend on
x̄. Then we have the following.

Proposition (3.2.1). Any optimal solution x∗ to

(SP2)

 minimize F (x)
subject to Ax = b

c̄−(x̄) ≤ x ≤ c̄+(x̄)

is a quasioptimal solution to (PQP) and satisfies F (x∗) ≤ F (x̄), where x̄ is any fixed feasible solution.

Proof. Since x∗ is optimal to (SP2) but x̄ is merely feasible, we trivially have F (x∗) ≤ F (x̄). Observe that
x∗ is a local minimizer of the problem

(SP3)

minimize F (x)
subject to Ax = b

c− ≤ x ≤ c+

xj = x∗j , ∀ j ∈ IM(x∗),

so by convexity it is also a global minimizer of (SP3), and hence it is quasioptimal by definition.
(Q.E .D.)

Proposition (3.2.1) says we can get a quasioptimal solution by solving a quadratic program. Yet we can
make the procedure even simpler if we have a simplex tableau of Ax = b on hand. To simplify the statement
of algorithms, let us first introduce some terminology.

Suppose that c̃− = [c̃−1 , · · · , c̃−n]T and c̃+ = [c̃+
1 , · · · , c̃+

n]T are two vectors whose jth components are
certain breakpoints of fj . They satisfy c̃− ≤ c̃+. Call the set

[c̃−, c̃+] = {x|c̃− ≤ x ≤ c̃+}

a piece if for j = 1, · · · , n there is no other breakpoint of fj between c̃−j and c̃+
j . Given a feasible solution x̄

and a feasible direction vector ȳ at x̄(i.e. x̄ + εȳ is feasible for some ε > 0), we say that the piece [c̃−, c̃+] is
associated with (x̄, ȳ) if there exists a positive number ε̄ such that for all ε in [0, ε̄], x̄ + εȳ is in [c̃−, c̃+].

Notice that c̃− and c̃+ depend on x̄ and ȳ, and once x̄ and ȳ are given, it is not hard to determine the
unique piece that is associated with them, if we adopt the regulation that ȳj = 0 and x̄j = cjk ⇒ c̃−j = c̃+

j =
cjk.

Definition (3.2.2). Given x̄ and ȳ, the procedure for finding a minimizer of F (x̄+εȳ) in the piece associated
with (x̄, ȳ) is called one-piece line search from x̄ in the direction of ȳ, or is simply called “the one-piece line

4

search with (x̄, ȳ)”. The procedure of finding the global minimizer of F (x̄ + εȳ) is called multi-piece line
search from x̄ in the direction of ȳ, or “the multi-piece line search with (x̄, ȳ)”.

For any x̄ and ȳ, F (x̄+εȳ) is a piecewise quadratic function of ε. Suppose F (x) is
∑n

j=1
1
2 (pjx

2
j +qjxj+rj)

on [c̃−, c̃+] (if c̃−j = c̃+
j , simply take pj = qj = 0, rj = fj(c̃−j)). We make the following convention: our one-

piece line search always ends up at a relative boundary point of [c̃−, c̃+] if this point is one of the minimizers.
Namely, if ȳ is an ascent vector (i.e. F ′(x̄, ȳ) > 0), then the one-piece line search stops at x̄; otherwise the
one-piece line search will give x̄ + ε0ȳ, where

ε0 = min

c̃+

j
−x̄j

ȳj
for j with ȳj > 0;

c̃−
j
−x̄j

ȳj
for j with ȳj < 0;

−
∑n

j=1
ȳj(pj x̄j+qj)∑n

j=1
ȳjp2

j

(or +∞, if all ȳjp
2
j = 0).

If ε0 = +∞ and F ′(x̄, ȳ) < 0, this means that piec e [c̃−, c̃+] contains the half line x̄ + εȳ (ε ≥ 0) and
along this half line, F (x) is linear and decreasing. In this case, the one-piece line search halts.

The algorithm for multi-piece line search consists of repeated use of the one-piece line search. Specifically
we can express this as follows, where inf(SP4) stands for the infimum of problem (SP4).

Algorithm (3.2.3).
Step 1. Do one-piece line search starting with a feasible x̄ and a vector ȳ. If ε0 is +∞ , then inf(SP4) = −∞;
stop. Otherwise go to Step 2.
Step 2. If ε0 > 0 but x̄+ε0ȳ is not on the relative boundary of [c̃−, c̃+], replace x̄ by x̄+ε0ȳ; stop. Otherwise
replace x̄ by x̄ + ε0ȳ; go to Step 3.
Step 3. Check if ȳ is a descent vector at x̄. If yes, go to Step 1; if no, stop.

The Algorithm for Finding Quasistationary Solutions
Now we are ready to state our algorithm for finding quasistationary solutions. The basic idea is, instead

of solving the quadratic program (SP2) that corresponds to a given x̄, we first make a series of pivoting steps
and one-piece line searches to reduce the dimension of (SP2) until (SP2) becomes a strictly convex quadratic
program with minimal dimension. Then we treat (SP2) as if it is an unconstrained quadratic program with
respect to the variables xj , j /∈ IM(x̄). We take the Newton direction vector as ȳ and do one-piece line
search with (x̄, ȳ). The whole procedure (reduction of dimension and one-piece line search) will be repeated
until the one-piece line search no longer ends up with a point on the relative boundary of [c̃−, c̃+]. This is
much like the first step of the classical “active set method” of quadratic programming, with the concept of
“active constraints” being replaced by that of “breakpoints”. To be sure that the algorithm can choose one
quasistationary solution when there are infinitely many of them, we need the following convention.

Breakpoint Convention: If fj(xj) is linear on (−∞,+∞nfty), then zero is regarded as a breakpoint of
fj .

Algorithm (3.2.4).

Step 0. Suppose that x̄ is a feasible solution and that xB = TxN + d is a simplex tableau of the system
Ax = b. Partition the set B into FB∪IB, where FB(the set of free basic indices)= B\IM(x̄) and IB(the set
of imprisoned basic indices) = B ∩ IM(x̄). Likewise partition N = FN ∪ IN(the sets of free and imprisoned
nonbasic indices). Let TFI be the submatrix of T consisting of tij with i ∈ FB and j ∈ IN . Similarly define
TIF , TII and TFF . (See Figure 1.)
Step 1. If there is a nonzero tij ∈ TIF , pivot on tij and repeat this until either TIF = ∅ or TIF = 0 (see
Figure 1). Go to Step 2.

Step 2. If FN = ∅, stop; x̄ is a quasistationary solution. Otherwise partition FN into LFN ∪QFN (the
sets of linear free nonbasic indices and quadratic free nonbasic indices), where

LFN ={j ∈ FN |fj is linear on the interval which includes x̄j},
QFN =FN\LFN.

5

Similarly partition FB into LFB ∪QFB. Let TLL be the submatrix of TFF consisting of tij with i ∈ LFB
and j ∈ LFN. Similarly define TLQ, TQL and TQQ. (See Figure 2.) Pivot on nonzero entries tij ∈ TQL until
either TQL = ∅ or TQL = 0. Go to Step 3.

Step 3. If LFN = ∅, go to Step 4. Otherwise for each j ∈ LFN calculate

δj = f ′j(x̄j) +
∑

i∈LFB

tijf
′
i(x̄j).

Let ȳ be the elementary vector corresponding to j. That is, its jth element is 1 and its basic variables are
given by the jth column of T ; all other components are zero. If δj < 0, do one-piece line search with (x̄, ȳ);
if δj > 0, do one-piece line search with (x̄,−ȳ); if δj = 0 and ε0 6= +∞, do one-piece line search with (x̄, ȳ);
if δj = 0 and ε0 = +∞, do one piece line search with (x̄,−ȳ). Repeat Step 3 until either the one-piece
line search indicates that inf(SP4)=−∞ or until LFN = ∅. In the former case, stop; in the latter case(see
Figure 2), go to Step 4.

Step 4. At this point, LFN = ∅. If QFN = ∅, stop; x̄ is a quasistationary solution. Otherwise solve the
following unconstrained quadratic program:

minimize
1
2
yFN · PFNyFN + qFN · yFN +

1
2
yFB · PFByFB + qFB · yFB

subject to TFF yFN = yFB

where yFN = {yj |j ∈ FN} yFB = {yi|i ∈ FB}
PFN = diag[f ′′j (xj)]j∈FN PFB = diag[f ′′i (xi)]i∈FB

qFN = [f ′j(xj)]Tj∈FN qFB = [f ′i(xi)]Ti∈FB

Calculate yFB = TFF yFN , then set

ȳ = [ȳ1, · · · , ȳk, · · · , ȳn]T , where ȳk =
{

yk if k ∈ FB ∪ FN ,
0 otherwise.

Go to Step 5.

Step 5. Do a one-piece line search with (xk, yk). If the line search ends up with a point that is not on the
relative boundary of the piece, stop; the point reached by the line search is a quasioptimal solution. If the
line search shows the infimum of (PQP) is −∞, stop; otherwise go to Step 1.

6

Figure 1. The Partition of the Simplex Tableaux

7

Figure 2. Further partition of the Simplex Tableaux

8

Justification of the algorithm
The algorithm starts with a feasible x̄. After Step 1, we get the following simplex tableau:(

xFB

xIB

)
=

(
TFI TFF

TII 0 or ∅

) (
xIN

xFN

)
+ d.

Thus if FN = ∅, the values of all basic variables are uniquely determined by those of the imprisoned nonbasic
variables. Then x is the unique feasible solution of (SP1), so it is quasistationary.

After Step 2 we get the simplex tableau xLFB

xQFB

xIB

 =

 (TFI)
(

TLQ TLL

TQQ 0 or ∅

)
(TII) (0 or ∅)

 xIN

xQFN

xLFN

 + d

Therefore in Step 3 we have F ′(x̄,±ȳ) = ±δj (cf. Proposition(3.3.2)). Since only linear functions are
involved in the one-piece line search procedures in Step 3, if ε0 6= +∞ and δj 6= 0, the line search must
finish at some relative boundary point of [c̃−, c̃+] and thus decrease the size of LFB ∪LFN by at least 1. In
this case we go back to Step 3 to repeat the procedure. The iteration can happen only finitely many times
before we go to Step 4. If ε0 = +∞ and δj 6= 0, we have inf (PQP) = inf (SP4) = −∞ (cf. the statement
of one-piece line search); if δj = 0, then by the breakpoint convention, either along ȳ or along −ȳ we will
find a relative boundary point. Therefore Step 3 will produce a feasible solution whose simplex tableau has
LFN = ∅ and whose objective value is not greater than F (x̄).

If QFN = ∅ in Step 4, then FN = ∅ and x̄ is quas i station ary. Otherwise the simplex tableau will
look like (

xFB

xIB

)
=

(
TFI TFF

TII 0 or ∅

) (
xIN

xFN

)
+ d,

where for each j ∈ FN, fj is quadratic around x̄j . The one-piece line search along ȳ in Step 5 will give the
minimi z er of problem (SP1) if it does not stop at a relative boundary point of [c̃−, c̃+], because ȳ is the
Newton direction for problem (SP1). If the line search ends at a relative boundary point of [c̃−, c̃+], then by
going back to Step 1, we will move at least one index from FB ∪ FN to IB ∪ IN. Thu s after finitely many
iterations, we will find that either the set FN is empty or line search along ȳ does not stop at any relative
boundary points of [c̃−, c̃+]. Both cases yield a quasistationary solution where corresponding objective value
is not greater than the value at the starting point.

(Q.E .D.)

3.3 Algorithm for Finding a Descent Vector
Now we turn to Step 3 of the model algorithm. The question is how to descend from a given feasible solution
x. Obviously, either a one-piece or multi-piece line search in a descent direction will reach another feasible
solution with lower objective value. Hence the problem reduces to getting a descent vector. The accurate
definition of a descent vector is:

Definition (3.3.1). Suppose x is a feasible solution to (PQP), y satisfies Ay = 0 and F ′(x, y) < 0. Then y
is a descent vector at x.

Now suppose we have a simplex tableau xB = TxN + d on hand. For simplicity of notation, suppose
B = {1, ...,m} and N = {m + 1, ..., n}. The j-th column of T, denoted by [t1j , ..., tmj]T , corresponds to the
nonbasic variable xm+j , while the i-th row of T, denoted by [ti1, ..., ti,n−m], corresponds to basic variable xi.

Proposition (3.3.2). A necessary and sufficient condition for the elementary vector

[t1j , ..., tmj , 0, ..., 0, 1, 0, ..., 0]T

↑
(m + j)− th component

9

to be a descent vector is

δ+
j = f+

m+j(xm+j) +
m∑

i=1

max{tijf−i (xi), tijf+
i (xi)} < 0.

Similarly, the elementary vector [−tij , ...,−tmj , 0, ..., 0,−1, 0, ..., 0]T is a descent vector if and only if

δ−j = f−m+j(xm+j) +
m∑

i=1

min{tijf−i (xi), tijf+
i (xi)} > 0.

Proof. All the elementary vectors satisfy the system Ay = 0. Let the first elementary vector be z. Then by
the definition of directional derivatives we have

F ′(x, z) = lim
t↓0

∑n
j=1 fj(xj + tzj)−

∑n
j=1 fj(xj)

t

=
n∑

j=1

lim
t↓0

fj(xj + tzj)− fj(xj)
t

(Note : No limit in this sum can be −∞.)

=
n∑

j=1

f ′j(xj , zj) =
∑
zj>0

zjf
+
j (xj)−

∑
zj<0

zjf
−
j (xj)

=
n∑

j=1

max{zjf
−
j (xj), zjf

+
j (xj)} = δ+

j .

The similar calculation gives

F ′(x,−z) = f−m+j(xm+j) +
m∑

i=1

min{tijf+
i (xi), tijf−i (xi)} = δ−j .

The conclusion of the proposition follows.
(Q.E .D.)

According to Proposition (3.3.2), the determination of an elementary descent vector seems to be a quite
simple issue. The complication comes from the so-called degeneracy. This will be discussed in the next
section.

4. Degeneracy Processing
There is a problem left in Section 3. What if we have δ−j ≤ 0 ≤ δ+

j for all j ∈ N in a given simplex
tableau at a given point x? Can we find a descent direction by pivoting to another simplex tableau or can
we declare the present x is an optimal solution?

To answer these questions, let us define the degeneracy of a simplex tableau at a given point x and look
at the optimality condition of PQP, as stated in the following.

Definition (4.1). A simplex tableau is degenerate at x if there exists an index i0 ∈ B such that the
subdifferential ∂fi0(xi0) is not a singleton.

In other words, if one of the basic variables xi0 happens to be at a breakpoint of fi0 and fi0 is first order
discontinuous at this point, then the corresponding simplex tableau is degenerate at x.

Proposition (4.2). Suppose that xB = TXN + d is a simplex tableau of Ax = b. Then x is optimal to
(PQP) if and only if there exist vi ∈ ∂fi(xi) for all i ∈ B such that

−
∑
i∈B

tijvi ∈ ∂fj(xj) for all j ∈ N.

10

Proof. Since any vector (vB , vN) in the range space of AT satisfies vN = −TvB and vice versa, the condition
of the proposition is equivalent to that of the vector v = (vi, i ∈ B,−

∑
i∈B tijvi, j ∈ N) which is in the

range space of AT and satisfies vk ∈ ∂fk(xk) for all k, or v ∈ ∂F. This means there exists a vector u such
that −AT u ∈ ∂F (x), or 0 ∈ ∂F (x) + AT u, so the Kuhn-Tucker optimality condition is satisfied and x is an
optimal solution to the (PQP) (see Theorem 28.3 of [5]).

(Q.E .D.)

Corollary (4.3). If the simplex tableau is nondegenerate at x and δ−j ≤ 0 ≤ δ+
j for all j ∈ N, then x is

optimal.

Proof. The nondegeneracy indicates that there exist {vi} = ∂fi(xi) for all i ∈ B. Now the condition
δ−j ≤ 0 ≤ δ+

j , for all j ∈ N can be written as

f−j (xj) +
∑
i∈B

tijvi ≤ 0 ≤ f+
j (xj) +

∑
i∈B

tijvi

for all j ∈ N. Hence the condition of Proposition (4.2) is satisfied.
(Q.E .D.)

When the simplex tableau xB = TxN + d is degenerate at x, the following algorithm will determine if
x is optimal. If x is not optimal, it then finds an elementary descent direction. Thus our model algorithm
can go on even if degeneracy is present.

Algorithm (4.4). Start with a feasible solution x and a simplex tableau which is degenerate at x.
Step 0. Arbitrarily choose vi = f−i (xi) > −∞ or vi = f+

i (xi) < +∞ for all i ∈ B. For the exceptional case
that f−i (xi) = −∞ and f+

i (xi) = +∞, variable xi can be actually disregarded from the beginning of our
consideration, so we assume this case does not arise.
Step 1. Check for all j ∈ N if δ−j ≤ 0 ≤ δ+

j . If not, then a descent direction is found; return to main
algorithm. Otherwise go to Step 2.
Step 2. Check for all j ∈ N if −

∑
i∈B tijvi ∈ ∂fj(xj). If yes, then x is optimal; stop. Otherwise choose the

smallest index j0 such that the above inclusion is not valid. This xj0 will be the entering variable. Go to
Step 3.
Step 3. If

(∗) f−j0(xj0) +
∑
i∈B

tijvi > 0

in Step 2, then find the smallest index i0 such that

f+
j0

(xj0) +
∑

i∈B,i<i0

max{tijf−i (xi), tijf+
i (xi)}+

∑
i∈B,i≥i0

vitij0 ≤ 0;

if
(∗∗) f+

j0(xj0) +
∑
i∈B

tijvi < 0

in Step 2, then find the smallest index i0 such that

f−j0 +
∑

i∈B,i<i0

min{tijf−i (xi), tijf+
i (xi)}+

∑
i∈B,i≥i0

vitij0 ≥ 0.

The variable xi0 will be the leaving variable. Pivot on (i0, j0), set vj0 = f−j0(xj0) or f+
j0

(xj0) depending on
the former or latter case and go to Step 1.

Justification of the Algorithm
The descent direction in Step 1 and the optimality in Step 2 can be justified by Propositions (3.3.2) and
(4.2), respectively. Hence what we need to show is the non-cycling property of the pivoting operation in
Step 3.

11

Imagine our objective function fj is replaced by a piecewise linear function:

f̄j(yj) =
{

fj(xj) + f+
j (xj)(yj − xj) if yj ≥ xj ;

fj(xj) + f−j (xj)(yj − xj) if yj ≤ xj .

then the algorithm (4.4) will identify to a non-cyclic algorithm for the piecewise linear programming problem
with the objective function

∑
f̄j .(See section 5 of [3] for detail.) Hence cycling is impossible. Another thing

that needs to be mentioned is the choice of vj0 is always possible in Step 3 because the conditions (*) or (**)
ensures the value f+

j0
(xj0) or f−j0(xj0) is finite when it is chosen.

(Q.E .D.)

5. Computational Experiment

In this section we describe the computational program and the results of our numerical experiments.
5.1 Experiment Design and Program
Since there seems to be no algorithm previously reported in the literature for PQP problems that are not
reformulated as quadratic programming problems, the primary goal of the experimental work has not been
to compare the effectiveness of our algorithm with others. Instead, we have mostly been interested in the
following comparison: If the numbers of variables and constraints are fixed, will the increase in the number
of pieces of fj substantially increase the computing time?

Let n, m and kj be the number of variables, the number of constraints and the number of pieces of the
j-th variable, respectively. We refer to n as the dimension of the problem. Since a good program package
usually needs years to develop and should be the topic of future research, we do not think our program
code would be superior in solving purely quadratic problems, especially when the dimension is high. For
our purpose, it is sufficient just to test the problems of small dimension, so as to avoid possible numerical
difficulties such as the accumulation of round-off errors and ill-conditioned linear equations. On the other
hand, we need to drive the numbers kj high enough to get meaningful information. For simplicity, in our test
all the kj ’s are equal, and m = bn

2 c. Let k be the common number of pieces. Then the pair (n, k) completely
specifies the size of a tested problem. Let T (n, k) denote the CPU time.

Roughly speaking, our program consists of two parts: the calculation of quasistationary solutions and
multi-piece line search (including the determination of optimality and otherwise a descent direction) as we
described in Section 3. Within this framework we find that if a quasistationary solution is calculated after
several multi-piece line searches instead of after every such search, then considerable computation time can
be saved. This is likely because the procedure of computing a quasistationary solution, which includes
finding several Newton directions and making several pivotings, needs much more time than the procedure
of multi-piece line searches. In our tested program code, the number of multi-piece line searches between
two consecutive quasistationary solutions is taken to be 5. In computing the quasistationary solutions we
strictly follow the steps described on Algorithm(3.2.4), i.e.

[making TIF = 0 or ∅] → [making TQL = 0 or ∅] → [making LFN = ∅] →
[calculating M = PFN + TT

FF PFBTFF] → [calculating the Newton direction y].

If for any reason a variable xj is changed after one iteration, a subroutine named LOCATE determines
the piece (or breakpoint) xj where is located; then a subroutine SUBDIF is called to find ∂fj(xj) for next
iteration. Figure 3 is the flow chart of the program.

5.2 Tested Problems

12

Figure 3. The Flow Chart of the Program

13

All tested problems were generated randomly by a program called PQPGEN. We input the values of m,n
and k. PQPGEN then generates k breakpoints and a characteristic curve for each xj such that 0 ∈ dom F.
(Recall that F denotes the objective function of PQP.) After this, PQPGEN produces an initial simplex
tableau xB = TxN , where B = {1, · · · ,m} and N = {m + 1, · · · , n}. Since all entries in T come from
a pseudo-random number subroutine, T is usually dense. Because all breakpoints are finite numbers, the
generated problems always have optimal solutions.

The feasibility of the zero vector and the homogeneity of the Tucker representation are not restrictions,
since a simple transformation will make any PQP (if feasible) satisfy these conditions. In contrast, the
suppression of the initial step (finding a feasible so l ution) makes the experimental results more accurately
reflect the computation time that we wish to know.

5.3 Computational Results
The computational experiments ware conducted on VAX750/ UNIX System. The numerical results are listed
in Table 1.

Although the code is written in a nonprofessional way, all the tested problems were still solved in
reasonable time. The iterative sequence approaches an optimal solution in the following pattern: The
simplex descent step first moves the initial solution to a point closer to the minimum. The first multi-piece
line search usually crosses fairly many pieces. Then the algorithm spends lots of time locating the first
quasistationary solution. For example, if the number of variables is 100 and the number of constraints
is 50, then Algorithm (3.2.4) (the subprogram of finding quasistationary solutions) starts usually with a
feasible solution with 50 free nonbasic variables. This leads to solving a linear equation system with 50
unknowns. After this a one-piece line search, probably including a pivoting operation in a 50× 100 matrix,
is performed and typically ends up with a new feasible solution having 49 free nonbasic variables. This
procedure is subsequently repeated up to 49 times, each time with a problem of dimension one less, until a
quasistationary solution is obtained. The algorithm then needs much less time to make one iteration because
most of the nonbasic variables stay imprisoned and consequently the linear equation systems encountered
in the calculation of the Newton directions have very small dimension (1 or 2, likely). Finally, when the
solution sequence comes to the pieces where the optimal solution resides, a reverse mode of operation is
experienced: The line search along the Newton direction almost always ends up with a relative interior point
of a certain piece. Then the simplex descent step moves more and more imprisoned nonbasic variables out
of breakpoints, and therefore the linear equation systems solved for finding Newton directions get larger and
larger until an optimal solution is reached. Another phenomenon observed is that the amount of pivoting is
low, although pivoting theoretically can happen after each one-piece line search.

The computational results show no sharp increase in T (n, k) when k increases drastically. In fact, the
quantity T (n, k) increases roughly linearly with k. One can see that

2T (n, k) ≤ T (n, 10k) ≤ 10T (n, k) for all tested n, k.

On the other hand, this result appearently indicates that solving a piecewise quadratic problem is somewhat
like solving a quadratic program of the same dimension. This point is supported by comparing all the
tested pairs T (n, k) with T (n, 1). The computational efficiency so demonstrated should at least encourage
more research in dual methods of quadratic programming because, as we mentioned before, the dual of a
quadratic program is in general piecewise quadratic. Besides, the insensitivity of computational time versus
the number of pieces is good news, since some practical models generate PQP problems with a large number
of pieces [9].

5.4 Conclusions
We offer a framework of a class of finitely convergent algorithms for PQP problems. One of them is described
in detail. It is an extension of simplex methods of convex programming and active set methods of quadratic
programming. A computational experiment is conducted based on this algorithm and randomly generated
dense problems. The results of the experiment show that solving such a PQP problem is not much harder

14

n m k T (n, k)(sec.) n m k T (n, k)(sec.)

5 2 1 0.3 15 7 1 2.3
5 2 10 0.7 15 7 10 4.1
5 2 20 1.3 15 7 20 5.9
5 2 30 1.4 15 7 30 6.4
5 2 40 2.2 15 7 40 7.8
5 2 50 2.2 15 7 50 8.6
5 2 60 2.8 15 7 60 10.9
5 2 70 3.0 15 7 70 12.1
5 2 80 3.8 15 7 80 16.1
5 2 90 3.7 15 7 90 13.7
5 2 100 4.1 15 7 100 14.2
5 2 200 9.1 15 7 200 26.0
5 2 300 12.8 15 7 300 37.3
5 2 400 15.5 30 15 1 16.0
5 2 500 19.7 30 15 5 19.6
5 2 600 24.2 30 15 10 23.2
5 2 700 28.1 30 15 15 18.7
5 2 800 32.0 30 15 30 21.1
5 2 900 36.5 30 15 50 28.9
5 2 1000 39.0 30 15 70 32.3
10 5 1 0.9 30 15 100 49.3
10 5 10 1.9 30 15 150 59.6
10 5 20 2.6 50 25 1 81.1
10 5 30 4.9 50 25 10 79.9
10 5 40 5.5 50 25 20 68.5
10 5 50 5.6 50 25 30 71.3
10 5 60 6.7 50 25 40 83.7
10 5 70 7.6 50 25 50 131.4
10 5 80 7.4 50 25 60 100.2
10 5 90 9.0 50 25 70 99.5
10 5 100 9.2 50 25 80 80.9
10 5 200 17.4 50 25 90 94.1
10 5 300 24.6 50 25 100 99.9
10 5 400 33.7 100 50 1 734.2
10 5 500 43.1 100 50 10 1420.3

Table 1. The Computational Time T (n, k)

15

than solving a QP problem of the same number of variables. This, we wish, will stimulate more research in
the theory, application and software of PQP.

References
[1]. R. Fletcher, Practical Methods of Optimization, Vol. 2, John Wi l ey and Sons, New York and Toronto
(1980).
[2]. R. Fourer, “A simplex algorithm for piecewise linear programming I: derivation and proof,” Mathematical
Programming 33 (1985), 204-233.
[3]. R. Fourer, “A simplex algorithm for piecewise linear programming II:

finiteness, feasibility and degeneracy,” Technical Report 85-03, Department of Industrial Engineering
and Management Sciences, Northwestern University (1985).
[4]. A. Premoli, “Piecewise linear programming:the compact (CPLP) algorithm,” Mathematical Program-
ming 36 (1986) 210-227.
[5]. R. T. Rockafellar, Convex Analysis, Princeton University Press (1970).
[6]. R. T. Rockafellar, Network Flow and Monotropic Optimization, Jo h n Wiley and Sons, New York
(1984).
[7]. R. T. Rockafellar, “Linear-quadratic programming and optimal control,” SIAM Journal of Control and
Optimization 25 (1987) 781-814.
[8]. R. T. Rockafellar and R. J.-B. Wets, “Linear-quadratic programming problems with stochastic penalties:
the finite generation algorithm,” in Stochastic Optimization, V. I. Arkin, A. Shiraev and R.J-B. Wets (eds.),
Springer-Verlag Lecture Notes in Control and Information Sciences No. 81 (1987).
[9]. J. Sun, “Basic theories and selected applications of monotropic piecewise quadratic programming,”
Technical Report 86-09, Department of Industrial Engineering and Management Sciences, Northwestern
University (1986).
[10]. W. Zangwill, Nonlinear Programming—A Unified Approach, Prentice Hall, Englewood Cliffs, NJ(1969).

16

