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Abstract. Proto-differentiability of a set-valued mapping (multifunction) from
one Euclidean space to another is defined in terms of graphical convergence of
associated difference quotient multifunctions. The nature and consequences of
the property are investigated in considerable detail to provide a basis for applica-
tions. Applications are demonstrated for the theory of optimization by verifying
the proto-differentiability of some of the most important multifunctions in that
theory, specifically multifunctions giving the set of solutions to a parameterized
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of optimality conditions. The fact that such multifunctions are actually differen-
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1. Introduction

Set-valued mappings, or multifunctions as we shall call them here, arise in several ways in
connection with problems of optimization. In a typical situation one has a problem (P (u))
in lRn that depends on a parameter vector u ∈ lRd. A multifunction G : lRd →→ lRn can be
defined by letting G(u) denote the set of all points x satisfying the constraints of (P (u)),
which could be equations and inequalities involving certain functions with both x and u
as arguments. Alternatively G(u) could be the set of optimal solutions to (P (u)) or the
set of points x satisfying a collection of necessary conditions for optimality, and so forth.
Multiplier vectors could also be involved: G(u) could consist of the pairs (x, y) ∈ lRn× lRm

satisfying something like the Kuhn-Tucker conditions for problem (P (u)), for instance.
In all these cases the multivaluedness of G is an inherent feature, or at least a strong
possibility. Even when G(u) is the optimal solution set, it may contain more than one
element for certain choices of u that cannot realistically be left out of consideration.

Such circumstances raise serious difficulties for the study of how G(u) can change
relative to changes in u. Classical notions of continuity and differentiability, developed for
functions rather than multifunctions, obviously do not apply.

The goal of this paper is to demonstrate that a wide class of multifunctions impor-
tant in optimization nonetheless enjoys a property that we call proto-differentiability. To
help with understanding the consequences of this fact, it is essential that the nature of
proto-differentiability be illuminated at the same time. This we do from several angles,
exploring in particular the relationship of proto-differentiability to true differentiability
and an attractive concept of semi-differentiability.

From a geometric point of view, proto-differentiation of a multifunction corresponds
to looking at certain tangent cones to the graph of the multifunction. Such a pattern
of analysis has been pioneered by Aubin [1], [2], [3], [4]. It has already been shown to
yield much information of use in connection with optimization and allied subjects. Aubin
has focused chiefly on the contingent cone and the Clarke tangent cone, while Frankowska
[5], [7], [8] has made potent use of an intermediate type of tangent cone (first treated by
Ursescu [20]), which in this paper is called the derivative cone. The distinguishing feature
of proto-differentiability is its requirement that the contingent cone and derivative cone
coincide. In this it may be compared, as far as the geometry of graphs of multifunctions is
concerned, with the study of tangential regularity in the sense of Clarke [8], [9]. Tangential
regularity requires the contingent cone to coincide with the Clarke tangent cone rather than
merely with the derivative cone. This is a stronger property which corresponds, in the case
of multifunctions, to a concept we refer to as strict proto-differentiability.

All this tangent cone terminology could be bewildering to someone not accustomed
to it, so the reader may be glad to know that proto-differentiability can be defined in a
relatively simple and natural way without it. The fact that this property is commonly
present for the multifunctions of interest in optimization has not previously been applied
or even recognized. Roughly speaking, multifunctions expressing feasibility turn out to
be proto-differentiable when an appropriate constraint qualification is satisfied, whereas
those expressing optimality or the like, such as subgradient multifunctions, are proto-
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differentiable when the parameterization is sufficiently rich. The first fact, although not
previously demonstrated in the generality furnished here, is not very surprising in view
of the studies in the framework of nonsmooth analysis that have already been made of
tangential regularity of sets defined by constraints [9, pp. 55–57], [10, Prop. 4.4]. The
second fact is less expected.

Multifunctions of the second type have indeed been investigated previously for certain
differential properties connected with tangent cones to their graphs, but the results, in
concentrating on the Clarke tangent cone, have primarily been somewhat negative. The
case of subgradient multifunctions illustrates this well. Results in Rockafellar [11] establish
that for multifunctions ∂f associated with convex functions and saddle functions, or more
generally for any maximal monotone multifunction, the Clarke tangent cone to the graph
at any point is always a subspace and thus is incapable of reflecting anything other than
“two-sided” aspects of differentiation. To the extent that a “corner” of the graph of ∂f
may be involved, the Clarke tangent cone has to be degenerate. For such multifunctions,
therefore, strict proto-differentiability is a property that has very powerful consequences
when it is present—and theorems can be stated about it being present almost everywhere
on the graph (cf. Rockafellar [11])—but which is unusable in characterizing local one-sided
behavior. It cannot be invoked at every point of the graph of ∂f unless the graph happens
to be smooth and f itself is correspondingly a generalized sort of C2 function.

Sensitivity analysis of the kind carried out by Aubin [2] in convex programming, which
in effect assumes strict proto-differentiability at the point under scrutiny, as pointed out in
Rockafellar [11], suffers a serious limitation therefore in its applicability. This limitation
is removed if strict proto-differentiability can be replaced by proto-differentiability.

Although we leave to another paper [12] the full study of proto-differentiability in
the case of subgradient multifunctions in convex analysis, we do cover in §6 of the present
paper a related case with equal claim to importance in sensitivity analysis. This concerns
the multifunction which gives the Kuhn-Tucker points in a smooth (not necessarily convex)
programming problem.

2. Proto-differentiability.

The convergence of sets in lRn will be a key ingredient in our definitions of generalized
differentiability of multifunctions. A family of sets St ⊂ lRn parameterized by t > 0 is said
to converge to a set S ⊂ lRn as t ↓ 0, written

(2.1) S = lim
t↓0

St,

if S is closed and

(2.2) lim
t↓0

dist(w,St) = dist(w,S) for all w ∈ lRn,

where “dist” denotes Euclidean distance. It is often convenient to view this property as
the equation

(2.3) S = lim inf
t↓0

St = lim sup
t↓0

St,
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where

(2.4) lim inf
t↓0

St := {w
∣∣ lim sup

t↓0
dist(w,St) = 0},

(2.5) lim sup
t↓0

St := {w
∣∣ lim inf

t↓0
dist(w,St) = 0}.

Note that the points w belonging to the “lim inf” in (2.4) are the ones expressible as the
limit of a family of elements wt ∈ St defined for all t in some interval (0, τ), whereas the
ones belonging to the “lim sup” in (2.5) need only be expressible as the limit of some
sequence wν ∈ Stν corresponding to a sequence tν ↓ 0. (We use superscript ν in this paper
as the universal index for sequences: ν = 1, 2, . . .). Both of the sets (2.4) and (2.5) are
necessarily closed.

Yet another way of characterizing the concept of set convergence is the following: (2.1)
holds if and only if S is a closed set such that for arbitrarily large ρ > 0 and arbitrarily
small ε > 0, there exists τ > 0 for which

(2.6) St ∩ ρB ⊂ S + εB and S ∩ ρB ⊂ St + εB when t ∈ (0, τ).

Here B denotes the closed unit ball in the Euclidean norm but could be replaced by any
bounded neighborhood of the origin. This characterization results from the fact that the
distance functions in (2.2) are uniformly Lipschitzian in w (with modulus 1). Therefore,
if they converge pointwise on lRn as asserted in (2.2), they actually converge uniformly on
all bounded subsets of lRn.

The sets to which we shall want to apply such convergence in order to define proto-
differentiability are the graphs of multifunctions. Recall that the graph of a multifunction
G : lRd →→ lRn is the set

(2.7) gph G = {(u, x)
∣∣ x ∈ G(u)}.

The effective domain of G, on the other hand, is

(2.8) domG = {u
∣∣ G(u) 6= ∅},

while the effective range of G is

(2.9) rge G = {x
∣∣ ∃u with x ∈ G(u)}.

In terms of the inverse G−1 of G, defined by

(2.10) u ∈ G−1(x) ⇐⇒ x ∈ G(u),

one obviously has

(2.11) rge G = dom G−1 and dom G = rge G−1.

One says that G has closed graph if the gphG is closed as a subset of lRd × lRn. Clearly
G is of closed graph if and only if G−1 is of closed graph.
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Definition 2.1. Let G : lRd →→ lRn be any multifunction, not necessarily of closed graph,
and let u ∈ dom G and x ∈ G(u). Let Dt : lRd →→ lRn be the difference quotient multifunc-
tion at u relative to x, defined by

(2.12) Dt(ω) = [G(u + tω)− x]/t for t > 0.

We shall say that G is proto-differentiable at u relative to x if there is a multifunction
D : lRd →→ lRn such that Dt converges in graph to D, i.e. the set St = gphDt converges in
lRd × lRn to the set S = gphD as t ↓ 0. In this event we shall call D the proto-derivative
of G at u relative to x and employ the notation D = G′u,x.

The relationship between proto-differentiability and other ideas of differentiability
will be examined in §3. For now we develop the concept along its own natural lines,
beginning with the geometry of epigraphs and the connection between Definition 2.1 and
the definitions of generalized differentiability proposed by Aubin [1], [2].

It will help us if we return temporarily to the study of a set C ⊂ lRn and a point
x ∈ C. The set

(2.13) lim sup
t↓0

t−1(C − x)

is known as the contingent cone to C at x, having first been given that name by Bouligand
[13] in 1932. It is generated by all the directions from which x can be approached by a
sequence in C. Specifically, a vector ξ belongs to the “lim sup” in (2.13) if and only if there
exists a sequence of points xν ∈ C and scalars tν ↓ 0 such that (xν −x)/tν → ξ. The word
cone in this context refers to a set that can be expressed as a union of rays emanating from
the origin, i.e. a set that is closed under the operation of nonnegative scalar multiplication.
The contingent cone (2.13) is characterized as the smallest cone containing 0 and all the
(direction) vectors ξ with |ξ| = 1 expressible as in the form

ξ = lim
ν→∞

(xν − x)/|xν − x|

where xν ∈ C, xν 6= x, and the limit in question exists. (The sequence {xν}∞ν=1 is said to
converge to x in the direction of ξ in this case.)

The set

(2.14) lim inf
t↓0

t−1(C − x)

will be called here the derivative cone of C at x. It is less well known but has been
employed by a number of authors, expecially by Frankowska [5], [6], [7], who refers to
it as the “intermediate cone” because it lies between the contingent cone and the Clarke
tangent cone to C at x. Our calling it the derivative cone is suggested by the following
characterization, which ties in with a long tradition in mathematical programming.
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Let us say that y : [0, τ) → lRn is an emanating arc in C at x if y(t) ∈ C for all
t ∈ [0, τ), y(0) = x, y(t) → x as t ↓ 0, and the limit

(2.15) y′+(0) := lim
t↓0

[y(t)− y(0)]/t

exists. Then y′+(0) is the (right) derivative of y at x. The set (2.14) turns out to consist
of all the vectors ξ ∈ lRn expressible in ξ = y′+(0) for the various emanating arcs y in C
at x. This is apparent from the description given earlier to the “lim inf” of St as t ↓ 0
when applied to St = t−1[C − x]. The idea of forming a cone that consists of derivative
vectors like ξ has been followed in mathematical programming since the early days in the
development of optimality conditions, except that the arcs y have usually been considered
to be differentiable on an interval [0, τ) rather than just “right differentiable” at t = 0.

Both the contingent cone (2.13) and the derivative cone (2.14) are always closed cones
containing the origin. The second is obviously contained within the first. We shall say
that C is approximable at x if the two cones coincide, i.e. if the limit set

(2.16) lim
t↓0

t−1[C − x]

exists. This property dictates that the functions

dt(ξ) = dist(ξ, t−1[C − x])(2.17)

= [dist(x + tξ, C)− dist(x, C)]/t

converge as t ↓ 0 to a function

(2.18) d(ξ) = dist(ξ, K),

where K is a certain closed set, necessarily containing the origin. Shapiro [14] has called
the set K, when it exists, the approximating cone to C at x. He did not connect it up
with the theory of set convergence, however.

Proposition 2.2. The multifunction G : lRd →→ lRn is proto-differentiable at u relative
to a point x ∈ G(u) if and only if the set gphG is approximable at (u, x). The graph of
the proto-derivative multifunction G′u,x then equals the approximating cone to gphG at
(u, x), which is simultaneously the derivative cone and the contingent cone.

Proof. To establish this on the basis of what has just been explained, all one needs is the
observation that for C = gphG the set t−1[C − (u, x)] is just gphDt.

Some elementary consequences of the definition of proto-differentiability will be recorded
next.

Proposition 2.3. Suppose that the proto-derivative G′u,x exists. Then for every ω ∈ lRd

one has

(2.19) G′u,x(ω) = lim sup
ω′→ω

t↓0

[G(u + tω′)− x]/t

5



6

and at the same time

G′u,x(ω) = {ξ
∣∣ for some arc v : [0, τ) → lRd with v(0) = u,(2.20)

v′+(0) = ω, one can select y(t) ∈ G(v(t))

for all t ∈ [0, τ) so that y(0) = x, y′+(0) = ξ}.

Conversely, if for every ω ∈ lRd the set defined by the right side of (2.19) coincides with
the set defined by the right side of (2.20), then the proto-derivative G′u,x exists.

Proof. The right side of (2.19) defines the set D+(ω), where D+ is the multifunction
whose graph is the contingent cone to gphG at (x, u),

(2.21) gph D+ = lim sup
t↓0

gphDt.

The right side of (2.20), on the other hand, defines the st D−(ω), where D− is the multi-
function whose graph is the derivative cone to gphG at (u, x),

(2.22) gph D− = lim inf
t↓0

gphDt.

The proposition comes down then again to the definition of proto-differentiability: G′x,u

exists if and only if D+ = D−, in which event G′x,u = D+ = D−.

Proposition 2.4. Let G : lRd →→ lRn be proto-differentiable at u relative to x, where
x ∈ G(u). Then the derivative multifunction G′x,u : lRd →→ lRn has closed graph and
satisfies

(2.23) 0 ∈ G′u,x(0), and G′u,x(λω) = λG′u,x(ω) for all ω ∈ lRd and λ > 0.

Moreover G′u,x(0) is a closed cone which includes the contingent cone to G(u) at x and
therefore contains more than just 0 when x is not an isolated point of G(u).

Proof. From Proposition 2.2 we know that the graph of G′x,u is a certain closed cone
containing (0, 0). In particular it equals the contingent cone to gph G at (u, x). Everything
follows at once from this.

.

Next we obtain a simple characterization of proto-differentiability by elaborating the
meaning of graphical convergence for the difference quotient multifunctions Dt. We use
the notation that the image of a set U under a multifunction G is the set

(2.24) G(U) :=
⋃

u∈U

G(u).

Proposition 2.5. Let G : lRd →→ lRn be any multifunction and let u ∈ dom G, x ∈ G(u).
In order that G be proto-differentiable at u relative to x, it is necessary and sufficient that
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there exist a closed-graph multifunction D : lRd →→ lRn (which will be G′u,x) for which the
following holds. For every ε > 0 (no matter how small) and ρ > 0 (no matter how large)
one can find τ > 0 such that

(2.25) Dt(ω) ∩ ρB ⊂ D(ω + εB) + εB for all ω ∈ ρB, t ∈ (0, τ),

(2.26) D(ω) ∩ ρB ⊂ Dt(ω + εB) + εB for all ω ∈ ρB, t ∈ (0, τ).

Proof. For St = gphDt and S = gphD we invoke the characterization that St → S if
and only if S is closed and for every ε > 0 and ρ > 0 there exists τ > 0 such that

(2.27) St ∩ ρ(B ×B) ⊂ S + ε(B ×B) and S ∩ ρ(B ×B) ⊂ St + ε(B ×B).

This is just a restatement of the property described in (2.6) in a form suitable for the
product space lRd × lRn. The two inclusions in (2.27) are equivalent to the ones in (2.25)
and (2.26).

For the sake of maintaining ties with other areas of nonsmooth analysis, where the
Clarke tangent cone is fundamental, the following concept needs to be mentioned in com-
parison with proto-differentiability.

Definition 2.6. Let G : lRd →→ lRn be any multifunction, and let u ∈ dom G and x ∈
G(u). We shall say that G is strictly proto-differentiable at u relative to x if it is proto-
differentiable in the sense already defined and actually has the following, stronger property
in place of formula (2.20) of Proposition 2.3. Consider any ω ∈ dom G′u,x and ξ ∈ G′u,x(ω).
Then there exist ε > 0 and τ > 0 such that for each u′ ∈ dom G with |u′ − u| ≤ ε
and x′ ∈ G(u′) with |x′ − x| ≤ ε (if any), and for each t ∈ [0, τ), it is possible to select
v(t, u′, x′) ∈ dom G and y(t, u′, x′) ∈ G(v(t, u′, x′)) in such a way that

v(0, u′, x′) = u′ and y(0, u′, x′) = x′,

lim
(u′,x′)→(u,x)

t↓0

v(t, u′, x′)− v(0, u′, x′)
t

= ω,

lim
(u′,x′)→(u,x)

t↓0

y(t, u′, x′)− y(0, u′, x′)
t

= ξ.

This concept certainly is much more complicated than plain proto-differentiability
and indeed is not as easy to motivate in the present context. For such reasons along with
considerations of space, we shall not devote attention to it here, except in stating the next
proposition.
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Proposition 2.7. The multifunction G : lRd →→ lRn is strictly proto-differentiable at u
relative to x, where x ∈ G(u), if and only if the graph of G is tangentially regular at (u, x)
in the sense of nonsmooth analysis, i.e. the contingent cone at (u, x) coincides with the
Clarke tangent cone at (u, x). In this event G′u,x has convex graph, hence is a convex
process.

Proof. The Clarke tangent cone to gphG at (u, x) is the set

(2.28) lim inf
(u′,x′)→(u,x)

t↓0

t−1[(gphG)− (u′, x′)],

where the “lim inf” is restricted to elements (u′, x′) of gph G. A pair (ω, ξ) belongs to
this set if and only if it can be expressed in the manner described in Definition 2.6, as
the reader can easily verify. Strict proto-differentiability thus requires the Clarke tangent
cone, rather than just the derivative cone

lim inf t−1[(gphG)− (u, x)],

to agree with the contingent cone

lim sup
t↓0

t−1[(gphG)− (u, x)].

The Clarke tangent cone is known always to be convex.

Proposition 2.7 does make it possible to verify the strict proto-differentiability of
various multifunctions (and thus their proto-differentiability) by applying known criteria
for tangential regularity to their graphs.

3. Semi-differentiability and Differentiability.

To elucidate further the meaning of proto-differentiability, we explore connections with
another concept that bridges the way toward the classical pattern of differentiability.

Definition 3.1. Let G : lRd →→ lRn be any multifunction, and let u ∈ dom G, x ∈ G(u).
We shall say that G is semi-differentiable at u relative to x if there is a multifunction
D : lRd →→ lRn such that the difference quotients Dt(ω) in (2.12) satisfy

(3.1) lim
ω′→ω

t↓0

Dt(ω′) = D(ω) for all ω ∈ lRd.

We shall say that G is differentiable at u if, in addition, G(u) = {x}, i.e. G is single-valued
at u itself, and D is a linear transformation.

When G is single-valued everywhere, i.e. a function, differentiability in the sense of
Definition 3.1 reduces to the classical notion.
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Theorem 3.2. If G is semidifferentiable at u relative to x, then in particular G is
proto-differentiable at u relative to x, and the multifunction D in the definition of semi-
differentiability coincides with the proto-derivative G′u,x.

Proof. We stand on Proposition 2.3 as the characterization of proto-differentiability and
also on the notation introduced in the proof of Proposition 2.3, namely the multifunctions
D+ and D−. Since D+(ω) denotes the right side of (2.19), it is clear from (3.1) that
D+ = D. We need only show that also D− = D, where D−(ω) is given by the right side
of (2.20). Inasmuch as D+(ω) ⊃ D−(ω) always, it is only the inclusion D−(ω) ⊃ D(ω)
that needs justification. Consider any ω ∈ dom D and ξ ∈ D(ω) in the case where D(ω) is
given by (3.1). In particular we have

lim inf
t↓0

Dt(ω) = D(ω)

by (3.1), so there must exist ξt ∈ Dt(ω) for all t in some interval (0, τ) such that ξt → ξ
as t ↓ 0. Let v(t) = u + tω, y(t) = x + tξt. Then v(0) = 0 and v′+(0) = ω, while y(0) = x
and y′+(0) = ξ. The condition ξt ∈ Dt(ω) can be written as

[y(t)− y(0)]/t ∈ [G(u + tω)− x]/t,

or equivalently as y(t) ∈ G(v(t)). Therefore ξ ∈ D−(ω), and our goal has been achieved.

A condition under which proto-differentiability conversely implies the stronger prop-
erty of semi-differentiability will be presented in Theorem 4.3. Our attention at the moment
turns instead toward the characteristics of semi-differentiability itself. We aim at identify-
ing the domain in which this type of generalization might be viable. A notion of continuity
will be used.

Definition 3.3. A multifunction G : lRd →→ lRn is continuous at u if

(3.2) lim
u′→u

G(u′) = G(u).

It is locally bounded at u if there exist ρ > 0 and δ > 0 such that

(3.3) G(u′) ⊂ ρB for all u′ satisfying |u′ − u| ≤ δ.

This concept of continuity reduces to the ordinary one in the case where G happens to
be single-valued, i.e. a function rather than merely a multifunction. One must be cautious
about its interpretation, however, in the multivalued case. The following example, where
u is just a real variable, points out the pitfall:

(3.4) G(u) =
{
{0, 1/u} when u 6= 0,
{0} when u = 0.
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In this instance G is continuous at u = 0 and has G(0) = {0}. As a matter of fact, G is
proto-differentiable at u = 0 relative to x = 0 and has G′0,0 ≡ 0. But G is not even locally
bounded at u = 0. The discrepancy comes, of course, from the fact that set convergence
only makes demands relative to an arbitrarily large bounded region at any one time. In
the example one does have the property that for every ρ > 0 and ε > 0 there exists δ > 0
such that

G(u) ∩ ρB ⊂ G(0) + εB and G(0) ∩ ρB ⊂ G(u) + εB

when |u| ≤ δ. (Here B = [−1, 1].)

Theorem 3.4. If the multifunction G : lRd →→ lRn is semi-differentiable at u relative
to x, then G′u,x is continuous everywhere on lRd with dom G′u,x = lRd. Furthermore
u ∈ int dom G and

(3.5) x ∈ lim inf
u′→u

G(u′).

Proof. Fix any ω ∈ lRd. Let D = G′u,x. Property (3.1) in the definition of semi-
differentiability requires that for every ρ > 0 and ε > 0 there exist δ > 0 and τ > 0
such that

(3.6) Dt(ω′) ∩ ρB ⊂ D(ω) + εB and D(ω) ∩ ρB ⊂ Dt(ω′) + εB

when |ω′ − ω| < δ and t ∈ (0, τ). It follows then, as seen through consideration of what
happens as t ↓ 0 with ω′ fixed, that for every ρ > 0 and ε > 0 there exists δ > 0 such that

(3.7) D(ω′) ∩ ρB ⊂ D(ω) + εB and D(ω) ∩ ρB ⊂ D(ω′) + εB

when |ω′ −ω| < δ. This means that D is continuous at ω. Applying the second inequality
in (3.7) to the case where ω = 0, we deduce that D(ω′) 6= ∅ for all ω′ satisfying |ω′| < δ.
(Recall here that 0 ∈ D(0), so D(0) ∩ ρB 6= ∅.) The positive homogeneity of D = G′u,x

in (2.23) then gives us D(ω′) 6= ∅ for all ω′. Thus dom D = lRd. The second inclusion in
(3.6) when applied to ω = 0 tells us in like manner that for any ε > 0 there exist δ > 0
and τ > 0 such that

0 ∈ Dt(ω′) + εB when |ω′| < δ and t ∈ (0, τ).

We can write this equivalently as

G(u + tω′) ∩ (x + εB) 6= ∅ when |ω′| < δ and t ∈ (0, τ).

Therefore u is an interior point of dom G and (3.5) is correct.

The conclusions of Theorem 3.4 may be interpreted negatively as well as positively.
They say that the concept of semi-differentiability, despite its natural appeal, is not suit-
able for the treatment for a multifunction G at a boundary point of the effective domain
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of G. Inasmuch as boundary points do play a crucial role in the case of some of the im-
portant multifunctions associated with problems of optimization, this observation provides
motivation for why the more general concept of proto-differentiability is definitely needed.

Theorem 3.4 informs us likewise that semi-differentiability is inadequate for handling
pairs (u, x) ∈ gphG for which (3.5) fails. However, in cases such as G = ∂f , where f is a
closed proper convex function, (3.5) fails for every x ∈ G(u) unless G(u) happens to be a
singleton! (See [15, Thm. 24.6].)

True differentiability is a special type of semi-differentiability by Definition 3.1. There-
fore, according to Theorem 3.2, it falls within the larger realm of proto-differentiability.
When G is actually a function, one can sensibly inquire further about the circumstances in
which proto-differentiability will be the same as differentiability. An immediate conjecture
is that this holds whenever the proto-derivative is a linear transformation. The conjecture
is false, however.

The kind of situation to be wary of is demonstrated by an example closely related to
the one in (3.4). Let u be a real variable and define

(3.8) G(u) =
{

1/u if u is irrational,
0 if u is rational.

There is no multivaluedness here, and G is not even continuous at u = 0, much less
differentiable there. Nonetheless G is proto-differentiable at u = 0 relative to x = 0 = G(0),
and the proto-derivative G′0,0 is linear (the constant 0).

When discontinuities such as seen in this example are excluded, everything does fall
into place, however.

Theorem 3.5. Suppose G : lRd → lRn is actually a function (single-valued). Then G
is differentiable at u if and only if G is continuous at u and at the same time proto-
differentiable at u relative to x = G(u), with G′u,x linear.

The proof of Theorem 3.5 is postponed until §4, just after the proof of Theorem 4.1,
because it will then be much easier to carry out.

A comment at this stage may head off some possible confusion in the treatment of
the special case of a function g : lRd → lR. One could consider such a function as a
multifunction that happens to be single-valued: in present notation with

(3.9) G(u) = {g(u)}.

But one could also handle it in terms of

(3.10) G(u) = {x ∈ lR
∣∣ x ≥ g(u)} (epigraphical framework)

or instead

(3.11) G(u) = {x ∈ lR
∣∣ x ≤ g(u)} (hypographical framework)

All three choices lead to useful concepts of generalized differentiation. In the case of (3.10),
for instance, one can speak of epigraphical proto-derivatives in order to keep matters

11



12

straight. An important advantage of (3.10) and (3.11) is that they are not limited to real-
valued functions. They furnish viable approaches even when g can take on ±∞ as values,
as often turns out to be convenient in optimization theory. There is a natural tie-in with
first-order (epigraphical) epi-differentiation of extended-real-valued functions as developed
in Rockafellar [10], but we shall not look at this further here.

4. Derivative Bounds and Lipschitz Properties.

The proto-derivative multifunction G′u,x, when it exists, is always positively homogeneous
in the sense of (2.23). One can therefore define its (outer ) norm by

(4.1) |G′u,x| := min{µ ∈ [0,∞)
∣∣ ξ ∈ G′u,x(ω) ⇒ |ξ| ≤ µ|ω|},

with the convention that |G′u,x| = ∞ if no such µ ∈ [0,∞) exists. The first result in this
section is a characterization of the case where |G′u,x| < ∞ in terms of a kind of pointwise
Lipschitz growth property holding for G at u relative to x. The property in question will
be used subsequently in the verification of Theorem 3.5.

Theorem 4.1. Suppose G : lRd →→ lRn is proto-differentiable at u relative to x. Then the
following conditions are equivalent:
(a) |G′u,x| < ∞;
(b) the cone G′u,x(0) consists only of 0;
(c) there exist µ > 0, ρ > 0 and τ > 0 such that

(4.2) G(u + tω) ∩ (x + ρB) ⊂ x + tµ|ω|B for all ω ∈ B, t ∈ (0, τ).

If these properties are present, x must be an isolated point of G(u). Moreover |G′u,x|
is then the infimum of the values µ for which (c) holds.

Proof. We begin with condition (c) and observe by taking ω = 0 in (4.2) that it implies
G(u) ∩ (x + ρB) = {x}. Then x is an isolated point of G(u). If we write (4.2) next in the
equivalent form

(4.3) Dt(ω) ∩ (ρ/t)B ⊂ µ|ω|B for all ω ∈ B, t ∈ (0, τ),

where Dt is as before the difference quotient multifunction in (2.12), we see that

(4.4) G′u,x(ω) ⊂ µ|ω|B for all ω ∈ B.

This follows from the formula

(4.5) G′u,x(ω) = lim sup
ω′→ω

t↓0

Dt(ω′)

in (2.19). We deduce from (4.4) and the positive homogeneity of G′u,x in (2.23) that
|G′u,x| ≤ µ. In particular, (a) holds.

12
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We assume next that (a) holds and that µ is a number satisfying

(4.6) |G′u,x| < µ < ∞.

We need to show that (c) holds, i.e. that (4.3) is valid for µ = µ and some choice of ρ > 0
and τ > 0. This will also establish that |G′u,x| is the infimum of the values for which (c)
holds.

In the contrary case, where (4.6) is satisfied and yet (4.3) fails to hold for any choice
of ρ > 0 or τ > 0, we can take arbitrary sequences ρν ↓ 0 and τν ↓ 0 and somehow select
ων ∈ B, tν ∈ (0, τν), and

ξν ∈ Dtν (ων) ∩ (ρν/tν) with ξν 6∈ µ|ων |B.

Then ξν 6= 0. If we set

ξ
ν

= ξν/|ξν |, ων = ων/|ξν |, t
ν = tν |ξν |,

so that tνξν = t
ν
ξ

ν
, tνων = t

ν
ων , we get

ξ
ν ∈ Dt

ν (ων) with ξ
ν 6∈ µ|ων |B,

where |ξν | = 1 and t
ν ≤ ρν . Then t

ν → 0 and |ων | < |ξν |/µ = 1/µ. Passing to subse-
quences if necessary we can suppose that ξ

ν
converges to some ξ and ων to some ω. Then

ξ ∈ G′u,x(ω) by (4.5), and yet |ξ| = 1, |ω| ≤ 1/µ, so that µ|ω| ≤ |ξ| 6= 0. This contradicts
the strict inequality in (4.6): there could not be a number µ ∈ [0, µ) for which

(4.7) |ξ| ≤ µ|ω| whenever ξ ∈ G′u,x(ω).

So far we have verified the equivalence between (a) and (c) as well as the correspond-
ing assertions about x and |G′u,x|. To finish the proof of Theorem 4.1 it will suffice to
demonstrate the equivalence between (a) and (b). The implication from (a) to (b) is quite
trivial: under (4.7), the set G′u,x(0) cannot contain any ξ 6= 0. The implication from (b)
to (a) is not much harder. If (a) is untrue, we can take any sequence µν ↑ ∞ and select
vectors ων ∈ dom G′u,x and ξν ∈ G′u,x(ων) such that |ξν | > µν |ων |. By setting ξ

ν
= ξν/|ξν |

and ων = ων/|ξν |, we can transform this (in view of (2.23)) into

ξ
ν ∈ G′u,x(ων) with |ξν | = 1 and |ων | < 1/µν → 0.

Passing to subsequences if necessary, we can obtain ξ
ν → ξ and ων → 0. Then ξ ∈ G′u,x(0)

by the closed graph property in Proposition 2.4, but |ξ| = 1, so ξ 6= 0. This contradicts
(b).

Proof of Theorem 3.5. If G, which is now just a function, is differentiable at u, then from
Definition 3.1 it is in particular semi-differentiable and we may conclude using Theorem
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3.2 that G is proto-differentiable with G′u,x linear. The continuity of G at u follows then
from property (3.5) in Theorem 3.4; of course this is also known classically.

Assume next, on the other hand, that G is continuous at u and proto-differentiable
relative to x = G(u) with G′u,x linear. Then for D = G′u,x we have |D| < ∞, so the
properties in Theorem 4.1 hold. In particular there exist ρ0 > 0 and τ0 > 0 such that

G(u + tω) ∈x + t(1 + |D|)|ω|B for all

ω ∈ B and t ∈ (0, τ0) such that G(u + tω) ∈ ρ0B.

Since G(u′) → G(u) = x as u′ → u, we can replace τ0 by a smaller value if necessary and
write this as

Dt(ω) ∈ (1 + |D|)|ω|B for all ω ∈ B and t ∈ (0, τ0).

Let ρ = (1 + |D|). Then in particular

Dt(ω) ∈ ρB for all ω ∈ B and t ∈ (0, τ0).

Because of proto-differentiability, we can obtain from Proposition 2.5 for any ε > 0 a τ > 0
such that

Dt(ω) ∈ D(ω + εB) + εB for all ω ∈ B and t ∈ (0, τ).

But
D(ω + εB) + εB ⊂ D(ω) + (ε|D|+ ε)B = D(ω) + ερB.

Thus we are able to find for any ε > 0 a τ > 0 such that

|Dt(ω)−D(ω)| ≤ ερ for all ω ∈ B, t ∈ (0, τ).

This means that G is differentiable at u with derivative D.

A sufficient condition for proto-differentiability to imply semi-differentiability will be
developed next in terms of a generalized Lipschitz property that was first introduced by
Aubin [2].

Definition 4.2. A multifunction G : lRd →→ lRn with closed graph is said to be pseudo-
Lipschitzian at u relative to x ∈ G(u) if there exist ε > 0, δ > 0 and µ > 0 such that

G(u′) ∩ [x + εB] ⊂ G(u′′) + µ|u′ − u′′|B
for all u′, u′′ ∈ [u + δB].

Sufficient conditions for G to be pseudo-Lipschitzian in this sense have been provided
in many forms in Rockafellar [16] through the apparatus of subdifferential calculus.
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Theorem 4.3. Suppose G : lRd →→ lRn has closed graph and is pseudo-Lipschitzian at u
relative to x, where x ∈ G(u). Then G is proto-differentiable at u relative to x if and only
if the limit

(4.9) D(ω) = lim
t↓o

Dt(ω) = lim
t↓0

[G(u + tω)− x]/t

exists for every ω, in which event the multifunction D that is defined in this manner is
G′u,x. Then, moreover, G turns out to be semi-differentiable at u relative to x, and G′u,x

is itself globally Lipschitzian in the sense that

(4.10) G′u,x(ω′) ⊂ G′u,x(ω′′) + µ|ω′ − ω′′|B for all ω′, ω′′ ∈ lRd,

where µ is the modulus of pseudo-Lipschitz continuity for G in Definition 4.2.

Proof. Let ε, δ and µ be as in Definition 4.2. For t > 0 we have

G(u + tω′) ∩ [x + εB] ⊂ G(u + tω′′) + µt|ω′′ − ω′|B

as long as u + tω′ and u + tω′′ both lie in the ball u + δB. In other words,

(4.11) Dt(ω′) ∩ (ε/t)B ⊂ Dt(ω′′) + µ|ω′′ − ω′|B when ω′, ω′′ ∈ (δ/t)B.

Suppose G is proto-differentiable at u relative to x. For any ρ > 0 and ε′ > 0 there exists
by Proposition 2.5 a τ > 0 such that for ρ = 2ρ(1 + µ) one has

(4.12) Dt(ω) ∩ ρB ⊂ G′u,x(ω + ε′B) + ε′B for ω ∈ ρB, t ∈ (0, τ),

(4.13) G′u,x(ω) ∩ ρB ⊂ Dt(ω + ε′B) + ε′B for ω ∈ ρB, t ∈ (0, τ).

Require ε′ < ρ, so that ρ + ε′ < ρ in particular. Take τ ′ ∈ (0, τ) such that ε/t ≥ ρ and
δ/t ≥ ρ when t ∈ (0, τ ′). Then for ω′, ω′′ ∈ ρB and t ∈ (0, τ ′) one has by (4.13) that

G′u,x(ω′) ∩ ρB ⊂ [Dt(ω′ + ε′B) + ε′B] ∩ ρB

⊂ [Dt(ω′ + ε′B) ∩ (ρ + ε′)B] + ε′B.

But also for ω′, ω′′ ∈ ρB and t ∈ (0, τ ′) one has by (4.11) that

Dt(ω′ + ε′ζ) ∩ (ρ + ε′)B ⊂ Dt(ω′′ + ε′ζ) + µ|ω′′ − ω′|B for all ζ ∈ B,

because ω′ + εζ and ω′′ + ε′ζ belong to (ρ + ε′)B, and

(ρ + ε′)B ⊂ ρB ⊂ (ε/t)B ∩ (δ/t)B.

Thus for ω′, ω′′ ∈ ρB and t ∈ (0, τ ′) one has

Dt(ω′ + εB) ∩ (ρ + ε′)B ⊂ Dt(ω′′ + ε′B) + µ|ω′′ − ω′|B

15
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and therefore

G′u,x(ω′) ∩ ρB ⊂ [Dt(ω′′ + ε′B) + (µ|ω′′ − ω′|+ ε′)B] ∩ ρB

⊂ [Dt(ω′′ + ε′B) ∩ (ρ + µ|ω′′ − ω′|+ ε′)B] + (µ|ω′′ − ω′|+ ε′)B.

Here ρ− µ|+ ε′ω′′ + ω′| ≤ ρ + µ(2ρ) + ρ = ρ by the definition of ρ, so that

Dt(ω′′ + ε′B) ∩ (ρ + µ|ω′′ − ω′|+ ε′)B

⊂
⋃

ω∈[ω′′+ε′B]

Dt(ω) ∩ ρB ⊂
⋃

ω∈[ω′′+ε′B]

[G′u,x(ω + ε′B) + ε′B]

by (4.12). It follows that for ω′, ω′′ ∈ ρB one has

G′u,x(ω′) ∩ ρB ⊂ G′u,x(ω′′ + 2ε′B) + 2ε′B + µ|ω′′ − ω′|B.

We have demonstrated this for arbitrary ρ > 0 and ε′ ∈ (0, ρ), and we so may conclude (be-
cause G′u,x has closed graph according to Proposition 2.4) that G′u,x is globally Lipschitzian
with modulus µ in the sense of (4.10).

Using this fact we argue by (4.12) that when ω′ ∈ ρB, τ ∈ (0, τ ′), one has by (4.10)

Dt(ω′) ∩ ρB ⊂ G′u,x(ω′) + µε′B + ε′B

and consequently also by (4.10) for arbitrary ω ∈ lRd that

(4.14) Dt(ω′) ∩ ρB ⊂ G′u,x(ω) + (µε′ + ε′ + µ|ω′ − ω|)B for all ω′ ∈ ρB, t ∈ (0, τ ′).

By (4.13), on the other hand, one has (since ρ < ρ− ε′) that

G′u,x(ω) ∩ ρB ⊂ [Dt(ω + ε′B) + ε′B] ∩ ρB(4.15)

⊂ [Dt(ω + ε′B) ∩ (ρ + ε′)B] + ε′B

⊂ [Dt(ω′ + [ε′ + |ω′ − ω|]B) ∩ ρB] + ε′B

when |ω| ≤ ρ, t ∈ (0, τ).

Here ρB ⊂ (ε/t)B when actually t ∈ (0, τ ′), and in that case by (4.11) one has

Dt(ω′ + [ε′ + |ω′ − ω|]B) ∩ ρB ⊂ Dt(ω′) + µ[ε′ + |ω′ − ω|]B(4.16)

when |ω′|+ ε′ + |ω′ − ω| ≤ δ/t.

Choose τ ′′ ∈ (0, τ ′) small enough that

|ω′|+ ε + |ω′ − ω| ≤ δ/t when |ω| ≤ ρ, |ω′| ≤ ρ, t ∈ (0, τ ′′.
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We then obtain from the combination of (4.15) and (4.16) the result that as long as |ω| ≤ ρ,
one has

G′u,x(ω) ∩ ρB ⊂ Dt(ω′) + (µε′ + ε′ + |ω′ − ω|)B(4.17)

for all ω′ ∈ ρB, t ∈ (0, τ ′′).

In summary, for any fixed ω we can take arbitrary ρ ≥ |ω| and ε′ ∈ (0, ρ) and then have
both (4.14) and (4.17) holding over sufficiently small intervals (0, τ ′) and (0, τ ′′). This
means that

lim
ω′→ω

t↓0

Dt(ω′) = G′u,x(ω) for all ω.

In other words G is semi-differentiable at u relative to x, as claimed. In particular the
limit multifunction D in (4.9) does exist and equals G′u,x.

For the final part of the proof of Theorem 4.3, we start merely from the assumption
that the limits (4.9) exist and demonstrate that this implies proto-differentiability. We
rely this time on the characterization of proto-differentiability in Proposition 2.3, as well
as on property (4.11), which represents in this context our hypothesis of pseudo-Lipschitz
continuity. Let D+(ω) denote, as earlier in this paper, the set defined by the right side
of (2.19). Let D−(ω) be the corresponding set on the right side of (2.20). Our task is to
verify that D+(ω) ⊂ D(ω) ⊂ D−(ω) when D(ω) is defined by (4.9).

The inclusion D+(ω) ⊂ D(ω) can be seen from the expression

D+(ω) = lim sup
ω′→ω

t↓0

Dt(ω′)

together with (4.11) as an estimate for Dt(ω′) in terms of Dt(ω). For the inclusion D(ω) ⊂
D−(ω), we consider an arbitrary pair (ω, ξ) with ξ ∈ D(ω). Because

D(ω) = lim inf
t↓0

Dt(ω)

in particular, there is an interval [0, τ) such that for each t ∈ (0, τ) we can choose ξt ∈ Dt(ω)
and do so in such a way that ξt → ξ as t ↓ 0. The arcs v(t) = u + tω and y(t) = x + tξt

over [0, τ) then meet the requirement on the right side of (3.20) and establish for us that
ξ ∈ D−(ω). This was the last thing to prove.

An auxiliary result which is complementary to Theorem 4.3 will be obtained next. It
merely assumes a Lipschitz property for G′u,x.

Theorem 4.4. Let G : lRd →→ lRn be proto-differentiable at u relative to x, where x ∈
G(u). If the multifunction G′u,x is pseudo-Lipschitzian at 0 relative to the pont 0 ∈ G′u,x(0),
then it actually has the global Lipschitzian property in (4.10) for some µ > 0. In this case
there exists for every ρ > 0 and ε > 0 a τ > 0 such that

(4.18) G(u + tω) ∩ [x + tρB] ⊂ x + tG′u,x(ω) + tεB for all ω ∈ ρB, t ∈ (0, τ).
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If in addition G′u,x(0) = {0}, this conclusion holds in a stronger form: for some ρ > 0, one
can find for every ρ > 0 and ε > 0 a τ > 0 such that

(4.19) G(u + tω) ∩ [x + ρB] ⊂ x + tG′u,x(ω) + tεB for all ω ∈ ρB, t ∈ (0, τ).

Proof. The pseudo-Lipschitzian property for G′u,x at 0 relative to 0 means the existence
of µ > 0 such that for some ε > 0 and δ > 0 one has

G′u,x(ω′) ∩ εB ⊂ G′u,x(ω′′) + µ|ω′ − ω′′|B when ω′, ω′′ ∈ δB.

When this holds, it can be applied for arbitrary ω′, ω′′ ∈ lRn and ρ ≥ max{|ω′|, |ω′′|} to
the vectors

ω′ = (δ/ρ)ω′ and ω′′ = (δ/ρ)ω′′.

These are in δB and therefore give

G′u,x(ω′) ∩ εB ⊂ G′u,x(ω′′) + µ|ω′ − ω′′|B,

which because of the positive homogeneity of G′u,x in (2.23) is equivalent to

G′u,x(ω′) ∩ (ρε/δ)B ⊂ G′u,x(ω′′) + µ|ω′ − ω′′|B.

Inasmuch as this holds for arbitrary ρ ≥ max{|ω′|, |ω′′|}, the global Lipschitz property in
(4.10) is valid for G′u,x.

Continuing now from property (4.10) for D = G′u,x, we invoke the proto-differentia-
bility of G at u relative to x and draw from Proposition 2.5 the conclusion that for arbitrary
ρ > 0 and ε′ > 0 we can find τ > 0 with

Dt(ω) ∩ ρ′B ⊂ D(ω + ε′B) + ε′B for all ω ∈ ρB, t ∈ (0, τ),

where
D(ω + ε′B) + ε′B ⊂ D(ω) + (µε′ + ε′)B.

Starting with an arbitrary ε > 0 and choosing ε′ ≤ ε/(1 + µ), we obtain in this way the
inclusion

(4.20) Dt(ω) ∩ ρB ⊂ D(ω) + εB for all ω ∈ ρB, t ∈ (0, τ),

which is equivalent to (4.18).

When G′u,x(0) = {0} we can make use of condition (c) in Theorem 4.1: there exist
ρ > 0, µ > 0 and τ > 0, such that

(4.21) G(u + tω) ∩ [x + ρB] ⊂ x + tµ|ω|B for all ω ∈ B, t ∈ (0, τ).
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Again we consider arbitrary ρ > 0 and ε > 0. With the change of variables t′ = ρt,
ω′ = ω/ρ we can write (4.21) instead as

(4.22) G(u + t′ω′) ∩ [x + ρB] ⊂ x + t′µ|ω′|B for all ω′ ∈ ρB, t′ ∈ (0, ρτ).

This being true, we can just as well convert notation from t′ and ω′ back to t and ω and
express (4.22) in terms of Dt as

(4.23) Dt(ω) ∩ (ρ/t)B ⊂ µ|ω|B for all ω ∈ ρB, t ∈ (0, ρτ).

Taking ρ′ = (1 + µ)ρ we call forth the property of G that has already been established
in our proof, specifically that for this value ρ′ and the given ε the corresponding version
of (4.18) holds, or more conveniently for the moment, the equivalent statement in (4.20):
there exists τ ′ > 0 such that

(4.24) Dt(ω) ∩ ρ′B ⊂ D(ω) + εB for all ω ∈ ρ′B, t ∈ (0, τ ′).

Since µ|ω| ≤ µρ < ρ′ when ω ∈ ρB by the choice of ρ, we have from (4.23) the estimate

Dt(ω) ∩ (ρ/t)B ⊂Dt(ω) ∩ µ|ω|B ⊂ Dt(ω) ∩ ρ′B

for all ω ∈ ρB, t ∈ (0, ρτ),

Applying (4.24) and remembering that ρ < ρ′, we get for τ1 = min(τ ′, ρτ) that

Dt(ω) ∩ (ρ/t)B ⊂ D(ω) + εB for all ω ∈ ρB, t ∈ (0, τ1).

But this is exactly the assertion of (4.19), except for the notation τ1 in place of τ .

5. Applications in Optimization.

The proto-differentiability of a number of multifunctions that are of central importance in
the theory of optimization will be proved in this section. We do not try to cover the territory
with thoroughness, but content ourselves for the purposes of this paper with presenting
cases that demonstrate the depth and variety of the applications without getting us into
further technical developments.

Three elementary results will help in verifying proto-differentiability.

Proposition 5.1. A multifunction G : lRd →→ lRn is proto-differentiable at u relative to
the element x ∈ G(u) if and only if its inverse G−1 is proto-differentiable at x relative
to the element u ∈ G−1(x), in which case (G′u,x)−1 = (G−1

x,u)′. The same holds for strict
proto-differentiability.

Proof. This is obvious because proto-differentiability is a property of the graph of a
multifunction, cf. Proposition 2.2.

Proposition 5.2. Suppose G = G + g, where G : lRd →→ lRn is proto-differentiable
at u relative to the element x ∈ G(u) and g : lRd → lRn is a function (single-valued)
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that is differentiable at u. Then G is proto-differentiable at u relative to the element
x = x + g(u) ∈ G(u) with G′u,x = G

′
u,x + g′u.

Proof. The characterization of proto-differentiability in Proposition 3.3 serves quickly to
verify this.

Proposition 5.3. Suppose that G : lRd →→ lRn is both proto-differentiable and pseudo-
Lipschitzian at u relative to the element x ∈ G(u). Write lRd = lRd1× lRd2 and accordingly
u = (u1, u2), and let G1 : lRd1 →→ lRn be the multifunction defined by G1(·) = G(·, u2).
Then G1 is both proto-differentiable and pseudo-Lipschitzian at u1 relative to x.

Proof. The combination of pseudo-Lipschitzian plus proto-differentiable is equivalent by
Theorems 3.2 and 4.3 to pseudo-Lipschitzian plus the special property that

lim
t↓0

[G(u + tω)− x]/t exists for all ω.

This second combination is obviously preserved when forming G1 as a restriction of G.

In the remainder of this section we use the notion that NC(z) and TC(z) denote for a
convex set C the normal cone and tangent cone to C at z in the sense of convex analysis.
We also denote by ∇F (z) for a differentiable mapping F : lRr → lRm the m× r Jacobian
matrix at z.

Theorem 5.4. Let G : lRd →→ lRn have the form

(5.1) G(u) = {x ∈ D
∣∣ F (u, x) ∈ C},

where F : lRd × lRn → lRm is a mapping (single-valued) of class C′ and the sets C ⊂ lRm

and D ⊂ lRn are closed and convex. Suppose for a particular u and element x ∈ G(u) that
the following constraint qualification holds:

(5.2) The only vector y ∈ NC(F (u, x)) satisfying − y∇xF (u, x) ∈ ND(x) is y = 0.

Then G is both proto-differentiable and pseudo-Lipschitzian at u relative to x, in fact
semi-differentiable there. The proto-derivative is given by

(5.3) G′u,x(ω) = {ξ ∈ TD(x)
∣∣∇uF (u, x)ω +∇xF (u, x)ξ ∈ TC(F (x, u))}.

Proof. Our strategy will be to use an alternative representation of G. Temporarily con-
sider u and x again as variables rather than fixed, and let

(5.4) H(u, z) = {(u, x) ∈ lRd ×D
∣∣ F (u, x)− z ∈ C}

and

(5.5) A(u) = H(u, 0) + h(u) where h(u) = (−u, 0).
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Then A is virtually another copy of G: one has

(5.6) A(u) = {(0, x) ∈ lRd × lRn
∣∣ x ∈ G(u)}

and also
A′u,(0,x)(ω) = {(0, ξ)

∣∣ ξ ∈ G′u,x(ω)}

if such proto-derivatives exist. It will suffice therefore to prove that, under our hypotheses,
A is proto-differentiable and pseudo-Lipschitzian at u relative to (0, x) with

(5.7) A′u,(0,x)(ω) = {(0, ξ) ∈ lRd × TD(x)
∣∣∇uF (u, x)ω +∇xF (u, x)ξ ∈ TC(F (x, u))}.

(Semi-differentiability then follows from Theorem 4.3.) In fact by Propositions 5.2 and 5.3
we can reduce this to showing that H itself is proto-differentiable and pseudo-Lipschitzian
at (u, 0) relative to (u, x), with

(5.8)
H ′

(u,0),(u,x)(ω, ζ)

= {(ω, ξ) ∈ lRd × TD(x)
∣∣∇uF (u, x)ω +∇xF (u, x)ξ − ζ ∈ TC(F (u, x))}.

Consider now the mapping

(5.9) F̃ (v, x) = (v, F (v, x)) ∈ lRd × lRm for (v, x) ∈ lRd × lRn

and translate (5.1) into

(5.10) H(u, z) = {(v, x) ∈ D̃
∣∣ F̃ (v, x)− (u, z) ∈ C̃},

where

(5.11) D̃ = lRd ×D and C̃ = {0} × C.

This gives us

(5.12) H−1 = F̃ + S,

where S is the multifunction defined by

(5.13) S(v, x) =
{
−C̃ if (v, x) ∈ D̃,
∅ if (v, x) 6∈ D̃.

The sets C̃ and D̃ are obviously closed and convex, and so also is the set gphS = D̃×(−C̃).
A convex set is tangentially regular everywhere (the Clarke tangent cone coinciding with
the contingent cone, cf. [8]) and in particular therefore is approximable everywhere. Thus
by Proposition 2.2, S is proto-differentiable everywhere. Furthermore F̃ is a mapping

21



22

which is differentiable everywhere. Proposition 5.2 tells us that H−1 is in this case proto-
differentiable everywhere. Specifically, the proto-derivative of H−1 at (u, x) relative to the
element (u, 0) ∈ H−1(u, x) is

(5.14) (H−1)′(u,x),(u,0)(θ, ξ) = ∇F̃ (u, x)(θ, ξ) + S′(u,x),(0,−w)(θ, ξ),

where w = F (u, x) and

gphS′(u,x),(0,−w) = Tgph S((u, x), (0,−w))(5.15)

= TD̃(u, x)× T−C̃(0,−w) = TD̃(u, x)× (−TC̃(0, w)).

It follows then from Proposition 5.1 that H is proto-differentiable at (u, 0) relative to the
element (u, x) ∈ H(u, 0) with

(5.16) H ′
(u,0),(u,x)(ω, ζ) = {(θ, ξ) ∈ TD̃(u, x)

∣∣∇F̃ (u, x)(θ, ζ)− (ω, ζ) ∈ TC̃(0, w)}.

We calculate now that

(5.17) TD̃(u, x) = lRd × TD(x) and TC̃(0, w) = {0} × TC(F (u, x)),

(5.18) ∇F̃ (u, x) = (I,∇F (u, x)).

Formula (5.16) reduces therefore to (5.8).
At this stage we have taken care of the proto-differentiability properties of H but still

have to establish the pseudo-Lipschitzian property. Let us rewrite the formula for H one
more time, starting from (5.10), as

(5.19) H(u, z) = {(v, x)
∣∣ Φ(u, z, v, x) ∈ C̃, (v, x) ∈ D̃},

where

(5.20) Φ(u, z, v, x) = F̃ (v, x)− (u, z) = (v − u, F (v, x)− z).

This representation fits the general pattern in the studies of pseudo-Lipschitz continuity in
Rockafellar [16]. The sufficient condition given by [16, Theorem 3.2] for H to be pseudo-
Lipschitzian at (u, 0) relative to the element (u, x) is the following constraint qualification:
There should be no nonzero multiplier element ỹ satisfying

(5.21) ỹ ∈ NC̃(Φ(u, 0, u, x)), −ỹ∇v,xΦ(u, 0, u, x) ∈ ND̃(u, x).

All we have to do is translate this back into our original notation using (5.20), (5.21), and
(5.11). Obviously

Φ(u, 0, u, x) = (0, F (u, x)),

∇(v,x)Φ(u, 0, u, x) =
[

I 0
∇uF (u, x) ∇xF (u, x)

]
ND̃(u, x) = {0} ×ND(x),

NC̃(Φ(u, 0, u, x)) = lRd ×NC(F (u, x)).

22



23

A vector ỹ satisfying (5.21) is a pair (y′, y) such that

y′ ∈ lRd, y ∈ NC(F (u, x)), −y′ − y∇uF (u, x) = 0, −y∇xF (u, x) ∈ ND(x).

Assumption (5.2) clearly ensures that the only such pair is (y′, y) = (0, 0). This completes
the proof.

Example 5.5. Here is the version of Theorem 5.4 that corresponds to the standard for-
mulation of a system of smooth constraints dependent on a parameter vector u. Let G(u)
denote the set of all x ∈ lRn satisfying

(5.22) fi(u, x)
{
≤ 0 for i = 1, . . . , s
= 0 for i = s + 1, . . . ,m,

where fi : lRd × lRn → lR is continuously differentiable for i = 1, . . . ,m. This corresponds
to the case of (5.1) where D = lRn, C = lRs

− × lRm−s, and

F (u, x) = (f1(u, x), . . . , fm(u, x)).

For a given u, the vectors x for which condition (5.2) is fulfilled are precisely the ones at
which the constraint system satisfies the Mangasarian-Fromovitz constraint qualification.
For such u and x, Theorem 5.4 tells us in particular that

(5.23) lim
ω′→ω

t↓0

[G(u + tω′)− x]/t = D(ω) for all ω ∈ lRd,

where D(ω) is the set of all ξ ∈ lRn satisfying the linearized system

∇ufi(u, x)ω +∇xfi(u, x)ξ ≤ 0 for all i ∈ I(u, x),

= 0 for i = s + 1, . . . ,m,

in which I(u, x) denotes the indices of the inequality constraints in (5.22) that are active
at x, i.e. the indices i ∈ {1, . . . , s} such that fi(u, x) = 0.

We turn now to the type of multifunction that corresponds to optimality conditions
and the like. For motivation, let us recall that the relation

(5.24) x ∈ D, −F (x) ∈ ND(x),

where D is a closed convex set in lRn and F a mapping from lRn into itself, is a so-called
variational inequality, or in the terminology of Robinson, a generalized equation. First-
order optimality conditions of all sorts in convex and nonconvex programming can be put
into this form, usually with F smooth and D polyhedral. Here x could stand for a vector
of primal variables or it could be comprised of both primal and dual variables. In the
latter case, F would be obtained from the gradient mapping associated with a certain
Lagrangian function, and (5.24) would represent “Kuhn-Tucker conditions”. There is too
much to say here for the confines of this paper. We refer the reader to the representations
described in Robinson [17], [18].
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Theorem 5.6. Let G : lRd × lRn →→ lRn have the form

(5.25) G(u, z) = {x ∈ D
∣∣ − F (u, x) + z ∈ ND(x)},

where D is a polyhedral convex set in lRn and F : lRd × lRn → lRn is a differentiable
mapping. Consider any (u, z) ∈ dom G and x ∈ G(u, z). Then G is proto-differentiable at
(u, z) relative to x with

(5.26) G′(u,z),x(ω, ζ) = {ξ ∈ D′(u, z, x)
∣∣ −∇uF (x, u)ω−∇xF (u, x)ξ +ζ ∈ ND′(u,z,x)(ξ)},

where

(5.27) D′(u, z, x) = {ξ ∈ TD(x)
∣∣ ξ· [z − F (u, x)] = 0}.

Proof. We make a notational maneuver similar to the one in the proof of Theorem 5.4
and introduce

(5.28) H(u, z) = {(v, x) ∈ D̃
∣∣ (u, z)− F̃ (v, x) ∈ ND̃(v, x)},

where F̃ and D̃ again are given by (5.9) and (5.11). Then in terms of

(5.29) A(u, z) = H(u, z) + g(u, z), with g(u, z) = (−u, 0)

we have

(5.30) A(u, z) = {(0, x)
∣∣ x ∈ G(u, z)}.

In order to demonstrate that G is proto-differentiable with the formula (5.26), it is enough
to demonstrate that A is proto-differentiable with the obviously corresponding formula.
By applying Proposition 5.2 to (5.29), we see this amounts to showing that H is proto-
differentiable with

H ′
(u,z),(u,x)(ω, ζ) = {(ω, ζ) ∈ lRd ×D′(u, z, x)(5.31)

−∇uF (u, x)ω −∇xF (u, x)ξ + ζ ∈ ND′(u,z,x)(ξ)}.

Define the multifunction S : lRd × lRn →→ lRd × lRn by

(5.33) S(v, x) =
{

ND̃(v, x) if (v, x) ∈ D̃,

∅ if (v, x) 6∈ D̃.

Formula (5.28) is equivalent to

(5.34) H−1 = F̃ + S.
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We wish to apply Proposition 5.2 to F̃ + S and then return to H by Proposition 5.1. The
crucial task is the verification of the proto-differentiability of S. We shall accomplish this
through the graphical approach in Proposition 2.2.

From the formula D̃ = lRd ×D, it is clear that

(5.35) gphS = {(v, x, w, p)
∣∣ v ∈ lRd, x ∈ D, w = 0, p ∈ ND(x)}.

We must show that this set is approximable everywhere, i.e. that

lim
t↓0

t−1[(gphS)− (v, x, w, p)] exists for all (v, x, w, p) ∈ gphS.

The description in (5.35) reveals that the set

(5.36) M = {(x, p) ∈ lRn × lRn|x ∈ D, p ∈ ND(x)}

is the key. We need to establish that at each (x, p) ∈ M the contingent cone and derivative
cone coincide, and we further need eventually, for the sake of the calculation of the proto-
derivative of H, an expression for this common cone.

The set M is the graph of ∂δD, the subdifferential of the indicator function δD for
the polyhedral convex set D ⊂ lRn. Robinson has shown in [19, Proposition 3] that such
a subdifferential is polyhedral, which means that M is the union of a finite collection of
polyhedral convex sets in lRn × lRn. Any polyhedral convex set is, of course, everywhere
approximable, the tangent cone in the sense of convex analysis serving both as the contin-
gent cone and the derivative cone. Let M be expressed as the union of polyhedral convex
sets Mj , j = 1, . . . , q. For any (x, p) ∈ M , let J(x, p) denote the set of indices j such that
(x, p) ∈ Mj . Then

lim
t↓0

t−1[M − (x, p)] =
⋃

j∈J(x,p)

lim
t↓0

t−1[Mj − (x, p)](5.37)

=
⋃

j∈J(x,p)

TMj
(x, p).

The pairs (ξ, π) belonging to this set are the ones such that for some τ > 0, one has
(x, p) + t(ξ, π) ∈ M for all t ∈ [0, τ). Thus M is approximable at (x, p) for any x ∈ D and
p ∈ ND(x), and the corresponding cone is

(5.38) {(ξ, π)
∣∣ ∃τ > 0 with x + tξ ∈ D and p + tπ ∈ ND(x + tξ) for all t ∈ [0, τ)}.

The polyhedral nature of D implies that no matter what the choice of x ∈ D and
ξ ∈ lRn, the cone ND(x + tξ) will be constant relative to t in some sufficiently small
interval (0, τ). In fact ND(x + tξ) = K(x, ξ) for small t > 0, where

K(x, ξ) := {q ∈ ND(x)
∣∣ q· ξ = 0}, where ξ ∈ TD(x).
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This set is a polyhedral convex cone. If we have p + tπ ∈ K(x, ξ) for all sufficiently small
t > 0 as in (5.38), this means that

(5.39) p ∈ K(x, ξ) and π ∈ TK(x,ξ)(p) = TND(x)(p) ∩ ξ⊥,

where ξ⊥ is the set of all vectors orthogonal to ξ. Using the fact that ND(x) is a polyhedral
convex cone containing p, we obtain

(5.40) TND(x)(p) = {q + λp
∣∣ q ∈ ND(x), λ ∈ lR}.

Since ND(x) and TD(x) are polar to each other, the polyhedral convex cone in (5.40) is
polar to

(5.41) C(x, p) := {ξ′ ∈ TD(x)
∣∣ p· ξ′ = 0}.

It follows that the conditions (5.39) are equivalent to

ξ ∈ C(x, p), π· ξ = 0, and π· ξ′ ≤ 0 for all ξ′ ∈ C(x, p),

or in other words
ξ ∈ C(x, p) and π ∈ NC(x,p)(ξ).

This shows that the cone (5.38) is identical to

(5.42) {(ξ, π)
∣∣ ξ ∈ C(x, p), π ∈ NC(x,p)(ξ)}.

Recalling that this was the cone

lim
t↓0

t−1[M − (x, p)],

where M is given by (5.36), we are able to conclude in the notation of the multifunction
S in (5.33) and (5.35), given by

S(v, x) =
{
{0} ×ND(x) if x ∈ D,
∅ if x 6∈ D,

that S is proto-differentiable at any (v, x) ∈ dom S relative to any element of S(v, x), and

(5.43) S′(v,x),(0,p)(θ, ξ) =
{
{(0, π)

∣∣ π ∈ NC(x,p)(ξ)} if ξ ∈ C(x, p),
∅ if ξ 6∈ C(x, p).

We are prepared now to return to the calculation of proto-derivatives of H−1 in (5.34).
We want to do this for (u, z) and (v, x) satisfying (u, z) ∈ H−1(v, x), which in terms of
(5.34) requires

(5.44). (v, x) ∈ dom S and (u, z)− F̃ (v, x) ∈ S(v, x).
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These conditions reduce by (5.43) and (5.9) to

x ∈ D, v = u, (u, z)− F̃ (v, x) = (0, p),

where

(5.45) p = z − F (u, x) ∈ ND(x).

For such elements Proposition 5.2 conveys the information that H−1 is proto-differentiable
at (u, x) relative to (u, z) with

(5.46) (H−1)′(u,x),(u,z)(θ, ξ) = ∇F̃ (u, x)(θ, ξ) + S′(u,x),(0,p)(θ, ξ).

Here
∇F̃ (u, x)(θ, ξ) = (θ,∇uF (u, x)θ +∇xF (u, x)ξ),

while the proto-derivative of S is given by (5.43). When p has the form given by (5.45),
the set C(x, p) in (5.43), which was defined in (5.41), becomes the set D′(u, z, x) in (5.27).
Thus from (5.46) we have

(ω, ζ) ∈ (H−1)′(u,x),(u,z)(θ, ξ) ⇔
ω = θ, ξ ∈ D′(u, z, x), and ζ −∇uF (u, x)θ −∇xF (u, x)ξ ∈ ND′(u,z,x)(ξ).

Invoking Proposition 5.1 we conclude that H ′
(u,z),(u,x) exists and is given by (5.31). This

was all we needed to show to wind up the proof.

In comparing Theorems 5.4 and 5.5, the reader may be struck by the fact that 5.4
gets away with a general parameterization in terms of u, while 5.5 has z as well as u. The
introduction of z does not, of course, add new possibilities for parameterization in (5.25)
than could already be handled by u. Rather this is a sort of restriction in the formulation:
we are requiring at the minimum that all the perturbations of the form z are present,
in addition to which we allow arbitrary perturbations of the form u. The result we then
obtain in terms of G(u, z) is in truth more special than a result simply for

(5.47) G0(u) = G(u, 0),

which we do not know how to establish at present in such a framework without severe
restrictions of other kinds.

The difficulty, of course, is that G(u, z) is not necessarily pseudo-Lipschitzian. If it
were, we could apply Proposition 5.3, pass to the context of (5.47) and obtain a better
result. To make G be pseudo-Lipschitzian at (u, 0), we would in particular (because of the
nature of variational inequalities/generalized equations) have to make G be single-valued
at (u, 0), which we prefer to avoid. See Rockafellar [16, p. 876–877], however, for more on
this possible approach.
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Theorem 4.5 can be compared with the various results of Robinson [16], [17] on
multifunctions of the form (5.25) or (5.47). These results are complementary. Robinson
assumes only the continuity of F in u (he is able to avoid the introduction of z) and
works with the linearization of F in x alone. He aims at deducing bounds for the behavior
of G relative to this linearization, especially bounds of Lipschitz type that are based on
verifiable assumptions about the properties of the linearization. There is no attempt in
his work to perform any kind of differentiation of G with respect to u.

Theorem 4.5 does concern differentiation, for which it provides exact formulas. In this
way one also obtains estimates and approximations for G, by way of Propositions 2.5, 4.1
and 4.4. But these are generally different in nature from Robinson’s. The closest is the
estimate in condition (c) of Theorem 4.1, which is an upper Lipschitz property of the sort
Robinson treats, but Theorem 4.1 can not come into play unless x is an isolated point of
G(u), which is something Robinson does not need to suppose.

This subject is, of course, still in the making. One can hope in the future for a better
understanding of how bounds on proto-derivatives might provide other kinds of estimates.
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