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I. Problem Models with Convexity . N

This paper is concerned with the inferface between discrete-time optimal
control and convex programming, which encompasses linear and quadratic
programming in particular. Despite the frequent presence of convexity,
problems in optimal control have seldom in the past been viewed in a
framework of convex programming. This is partly because the control
literature, with its traditional emphasis on engineering applications, has not
focused particularly on convexity and its consequences. Another reason has
been attractiveness of working with concepts specific to control, like the
maxtmum principle.

Problems in convex programming, on the other hand, even when they
involve the management of discrete-time dynamical systems through a multi-

* This rescarch was supported in part by a grant from the National Science Foundation
at the University of Washington, Scattle
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stage decision process, have seldom been seen as instances of optimal
control. To some extent this could be due to unfamiliarity of the users
of multistage models in operations rescarch with the mathematics of optimal
control, typically thought of as infinite-dimensional. In any case, multistage
convex programming and discrete-time optimal control have been devetoped
along separate lines by rather separate communities of rescarchers. A potential
now exists for a useful exchange of ideas.

The goal we set here is the introduction of new problem models in
discrete-time optimal control that exhibit convexity and promote its role.
These modecls are designed to appeal to mathematical programmers and to
open the way to solution techniques in optimal control like some of those
in the literature on large-scale convex programming. Our main results are
duality relations and the characterization of optimality in terms of a
“minimaximum principle”.

The guidelines we follow are those of general duality theory {1]. [2]. and
the piecewise linear-quadratic programming models in optimal contro! that
we have developed in [3] for continuous time and in [4] for discrete time.
A connection with the discrete-time Bolza problems in [5] may also be
noted, although these do not explicitly involve controls and appear rather
as analogues of problems in the calculus of variations.

The basic problem we propose to investigate has N 1 | stages represented

by state vectors
x,eR™ for t=0.1,.,Ni x=(x.X1. . Xs) (1.1)

The dynamical system is taken to be linear, as a prerequisite to convexity
in the problem (actually this is not as restrictive as it may seem), and is

placed in the pattern of
X, = A, Xt Bou tb, for t=1..0N, (1.2)
Xg = B, u,+ B,, (1.3)
which involves “temporal™ control vectors

weRY  for  t=1,. Nt u={(u, .. u. (1.4)

and a “terminal” control vector u, € R*. The vector u, represents supplementary
parameters which may be adjusted in the problem in connection with
endopoints. (The subscript ¢ will consistently be used to mark endopoint
clements). The nonstandard condition (1.3) allows of course for simple
cases like x, = b, (fixed initial state). One can always triviakize u,, il it is
not needed in the model, by taking it to be O-dimensional

The reader should note well that the dimensions n, in (1.1 and k, in
(1.4) are allowed to depend on t. In a typical problem arising from the
discretization of a continuous-time problem in optimal control, one would
not have such variability: the vectors v,. x;. ... xy, would all be in a certain
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R", and u,,..,uy in R* The equation (1.2) would arise frox;;” a difference
equation

X=Xy =A, <, +B.ut+bh, (1.5)
by setting
A=A 41 (1.6)

Such cases are obviously covered by our formulation in particular, but the
pmvision for varying dimensionality enlarges the scope of the model quite
significantly. In fact it enables the model in principle to encompass the
dynamical structures of all multistage decision processes that can be expressed
deterministically in terms of finitely many real variables. For if such a process
requires the choice of a vector u,e R* for t =0, 1, .., N (subject presumably
to constraints, which for the moment need not concern us), it is possible
alwgys to define the “history” (ug,u,,..,u,) of the process as the state x,
at time 1, so that

X ={x,_q,u),  Xg = Ug.

These relations can be written in the form of (1.2), (1.3), with

for identity matrices I and zero matrices 0 of appropriate sizes, and with
b, and b, taken to be zero vectors; u, is interpreted in this case as u,.

This observation makes clear at the same time that the assumption of
linearity in the dynamical system is, in itself, no real -restriction but merely
a convenient normalization for the purposes at hand. The true restrictions
enter the model separately in the specifiation of what additional constraints
one is aliowed to impose on the relationship between x,_, and u,.

We are now ready to state our optimization problem in its general form,
where any additional constraints on x,_, and u, beyond the dynamical
relations are notationally supressed from view through the use of infinite
penalities. The problem is
(#)  minimize the expression

A
7w, u) - X‘ [1AC X you)—co-xo )+ (Cp xpou)—c.-xx]1,

over all u = (u,.uy)e R* x . x R* and u, e R*,
where x == (xq. Xy, ... Xy) is given by (1.2)1.3).
Here f,:R'"x R* - R and f,:R'x R* - R are extended-real-valued functions
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which are assumed to be convex, proper and lower semicontinuous, while
C, and C, are matrices of appropriate size, and ¢, and ¢, are vectors.
Implicit in (7) arc general constraints of the form

(Cox,qouel, for r=1, N, and (C,~xy. u)elk,, (L7)

where
l‘.r = :(Srv ll‘)E R" X Rk' I’! ('\.r’ “r) L 4 : & (18)

I

€

Indeed, # (u,u,) < oo if and only if (1.7) is satisfied. The sets F. and F,
are nonempty and convex by virtue of the assumptions of convexity and
properness placed on f, and f,. They do not have to be closed, however;
in some cases one could have f, (s,.u,) approach oc as (s, u,) nears certain
boundary points of F., for instance, and similarly with f, and F,. The
matrices C, and C, can be identity matrices in particuliar, but more generally
they allow wus to deal in a convenient, specific way with the fact that
in some models the constraints and objective terms may not fully depend
on all the state components.

Represented in (1.7) are a great many possible cases involving restrictions
on control vectors and/or state vectors. For the sake of illustration we
shall focus here on the following case, which corresponds to an “ordinary™
approach to convex programming.

Exameie 11 Problem (#) contains as a special case the problem of

minimizing

= (5., t,)ER" x R¥|f (5., u,) < 7r | (19)

v
_Zl [foo W) —=cro X, 1+ foo )= p X .

in the context of (1.2) (1.3), subject to
fitu) <cg-x, y lori=1,. 1. and e U, (1tn
i u,) < ¢ Xy, for i=1,..,1,, and u,cU,, (1.12)

where the functions f,;:R* —» R and f,;: R* - R are convex and finite, and
the sets U, < R* and U, < R* are nonempty, convex and closed. This

corresponds notationally (0 ¢, = ¢, €, = Cpp»

C, = [l x k, matrix with rows ¢,], (1.13)
C, = [l, x k, matrix with rows ¢,]. (1.14)

and in terms of
se=10(., S, )€ R"’and Se = () Spir JER™, (1.15)

the definitions
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o) ifu el and ¢, (1) <s,; for i Ly
[y (5. 1) = { Peo P (1 ©(116)
1 for all other u,,
. u il u,eU, and ¢,; (u,) < s, for i=1, .
/e (“ 'ly' — {(pe() ( l" ll’ v (pl’l ( lf) \Cl ri ’ » It (1,17)
o for all other u,.
The functions f; and /, are indeed convex, proper and lower semicontinuous
in this case.
Exampre 120 Problem (%) contains as a special case the problem of
minimizing
Y
zl [pt'“!_('(' Xy - I]+ [pe'ue_('e'xN]'
{5
subject to (1.2), (1.3) and
Coxg D ug > g and w20 for t=1,. N,
Coxg t Do, 22 poand a2 0.
All one has to do is to specialize Example 1.1 to
."r() (“x) =P U and ./;'0 (“v) = Pe Ue.
foi(u) =q;—dy-u, for i=1,..1, and U, = R%,

foilu) =q;—d,;-u, fori=1,..1, and U, = R%,

where d,; is the i" row of D, and d,; is the i" row of D,. Other forms
of the constraints involving equalities as well as inequalities, or even piece-
wise linear penalties can be set up in this way; also quadratic and piecewise
quadratic programming models. For this we refer the reader to [3], [4]
TuroreM 1.3, The essential objective function # being minimized in (#) is
convex and lower-semicontinuous (nowhere — o). Thus (#) is a convex pro-
gramming problem in the general sense. and its optimal solutions (u,u,),
if any. form a closed convex set

Proofl. These properties arc elementary consequences of our assumptions
of f. and 7,. o

2. Minimax Representation and the Dual Problem

Problem ( 7) can be given a minimax representation in terms of multiplier
vectors
ve=Rfor t=1,.,N: v=(ry,..,0), 2n

and v,e R". These will turn out later to be the control vectors in a dual
dynamical system. To achieve such a representation we must introduce
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Jo(u, v) = \‘i'n'gl' U Gseoud+ s, vt (2.2)
Jelttguv) = il {1, (5 )45, 0} 23
Both formulas merely involve taking conjugates of the lower semicontinuous

convex functions f, (-, 1) and f, (-, u,) along with certain changes of sign.
They are invertible as

Selseou) =sup [J (u, v)—s. v, (24)
0 RY

e (Se ) = sup [ J (g, v) =5, 0,0 (2.5)
¢ R%

by the rules of convex analysis [1, §12].

Prorosimion 2.1. The function J is convex-concave, proper and “upper-closed”
on R"x R"; likewise for J, on R* x R".

Proof These are fundamental facts about the correspondence between

convex functions and convex-concave functions. For the definitions and
details, we refer to [1, §§34-35]. u

Exampie 2.2 In the case described in Example 1.1 one has

I
,KO (“t)+ Z Uri /u (ur) If ure Ur! l"ER’; ’
i1
Jo(u,v)=3 —0 if ueU,, v ¢R", (2.6)
0 if u ¢ U,.
and analogously
1.
Seo (12,)+ .'; O foi () il u,eU,, r e RY

Jou v) =7 — o if u,el,. v,¢ R, 27
N ifu ¢ U,

Incidentally, something like the structure in this example can be shown
to hold for J, and J, in general. There always exist nonemply convex sets
U, and }; (uniquely determined) such that J, is finite on U, x I, and

Jou, v)= —> when uelU,, vécl V,, or when werill,, r ¢V, (2.8)
Jolug, v) = o0 when vel, ug¢c U, or when veri b, u ¢ U, (2.9}

(Here “ri” denotes the relative interior of a convex sel (1, §6]). The
set U xV, is called the effective domain of J.; see [1. §34] Similarly,
J. has an cffective domain U, x V.

DeFmvimon 2.3 The Lagrangian function associated with problem (#) is

N
Sluugeoe) =Y Jo(u,v) v J (g v) - [, w) (e, )], (2.10)
- A |
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where

N
[, ), (0, 0 )] = Y Xeoy [CF v+ ]+ x0 [CE v ] @1
=1

(The convention oo —ov = o0 is used to resolve conflicts in the extended
arithmetic in (2.10). The asterisk * in (2.11) marks the transpose of a
matrix).
ProrosimoN 24. The Lagrangian function § is convex-concave, proper and
“upper closed”.
Proof. This is immediate from the corresponding properties in Proposition
2.1, since the term [(u,u,),(v,v,)] is merely affine separately in (u,u,)
and in (v, r,). [
Turorem 25 The essential objective # in (#) can be expressed by

F (U, u,) = sup ¥ (u,u,; v, v,).

(r,r)

Thus (#) is the primal problem associated with J.

Proof Formulas (2.10) and (2.11) allow us to write

N

](U, U, U, Ue) = Z [Jr (uu v,)—(C‘ .\‘,_1)'!7,—(','X'..|]+
=1
+[J¢ (u¢9 Ue)"(ce XN)'vc_'Ct'xN]'
It follows that
N
sup # (u,u; 0,0 =Y [sup {J, (u, 0)—(Cox,_ ) v} =Co Xy 1+
., t=1 reR"

+[ sup {J, (u,, 1!,)-(C,,x,§)- v,} ~(',ax~],
i+ R'*

and this reduces by (2.4) and (2.5) to the given definition of .# (u,u,). W

Theorem 2.5 points the way towards setting up as dual to (#) the
problem of maximizing in (v, v,) the infimum of .# (u, u,; v, v,) with respect
to (u,u,). As the first step in that direction we show that the form
[(u, u,), (v. v,)] has an alternative expression in terms of the dual dynamical

system
Ve= Wy +Crotc, for t=1,..,N, (2.12)
Wner = CEo +c,, (2.13)
which involves the state vectors
yeR" for t=1, . N, N+1; y=(1 . ¥n+Vne1) (2.14)

This system can be integrated backward in time. The transformation
(v, v)r»y is affine.
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PrROPOSITION 2.6. The expression (2.11) can be written equivalently in terms
of the dual dynamical system as

N .
(e u) (0.0 =Y veoy (Biugt bty [Bou +b] (2.15)
t=1
Prool The right side of (2.11) can be written by way of (2.12) (2.13) as

Y
Z X o= AF v TNy

t=1
while the right side of (2.15) can be written by way of (1.2} (1.3) as
N
Z Verd '[xr_ Ar Xe— l]+.‘,l '[-\.0]'
=1

These expressions both reduce to
v
Xo Y1+ Nyt o H Xy PNy — Z Verr Aoy,
=1

and are therefore equal. n
Next in constructing the dual of (#) we need functions g, and ¢, whose
relationship to J, and J, is dual to that of f, and f, in (24)+2.5):

go(rev) = inf U, (. v)=reud, (2.16)
g, (r,.v,) = |nR( o, v)=r, ) 2.17)

Provosition 2.7, The function g R*xR" - R for t=1.. . N and ¢, R* x
x R'* > R are concave, proper und upper semicontinuous. They are paired
directly with the functions f, and f, by the formulus

g.(rp.v) = \i‘q[ V(s —ro g teg s, (2.18)
g,(r,. v,) = m"f o Spott)—r, - u, v, 58,1, 2.19)
and
FA LR ES sup e lre, v =s- v 4u,rt, {(2.20)
(s, u,) = sup 1, (res v,) =5, 0,471, 1,}. (2.21)

Proof. The first pair of formulas is obtained by substituting (2.2) and (2.3)
into (2.16) and (2.17). In terms of the conjugate functions f* and f*,

these say that
e (rr' 'Y() = —A/;‘(—‘Pt' rr) and e (re' "r) = _./.f‘(”l‘r' rv)'

Inasmuch as (f*)* =/, and (f*)* = [, (because f, and [, are convex,
proper and lower semicontinuous), we then have (220) and (2.21). n
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We are able now to formulate the problem that in relation to the
Lagrangian function .# will be shown to be dual to (#), namely
() maximize the expression

N
plece)= Y Lac(BEyey o vd=bove I+ [0, (BE vy u)=h,-y,]

=1
o, 1
over all v =(r,, ,r)eR"x . xR"™ and r.eR",

where v= (1, . Iv. ¥y ) B8 given by (2.12) (2.13).
The nature of this problem will be elucidated in a moment, but first
we record a crucial Tact.
Tueorem 28. The essential objective 4 in (7) can be expressed by

G (v.v,) = ..,i']f, Y(u u v v,).

Thus (/) is the dual problem associated with .

Proof. Using (2.15) as the alternative expression for (2.11) in the definition
(2.10) for ¢, we obtain

X
S (“' U v, Ue) = —Zl [Jr (ur' U,)—'(B: Vet l)'ut—bx'yt+l]+
+ [‘It (“ev lye)—(B: yl)' ue_bt'yl]’
This yields

Al
nf 7 (o v.e)= Z | S"R[? g, )= (B yey ) ug ‘hr."snl’f

(e ) t=1 -

l'| SURP :‘,e (“w ”:“(3: yl)' “e: —be‘yl]'

The definitions (2.16) and (2.17) of ¢, and ¢, turn this into 4 (v, ¢,) L]
Tueorem 29, The objective function 4 being maximized in (&) is concave
and upper semicontinuous (nowhere + 00). Thus (&) is a convex programming
problem in the general sense, and its optimal solutions (v, v,), if any, form
a closed convex set.

Proof. This follows at once from the properties of ¢, and ¢, in Proposi-
tion 2.7. . 8
Problem (), like (4, implicitly involves constraints of the form

(B¥vi . v)eG for t=1,. . N, and (B*y,.0,)€G,, (2.22)

where G, and G, are the effective domains of the concave functions g,
and g,:
G,.=(r,,v0)e R x R"|g, {r,, v,) > —oc}, (2.23)

G, = l(r..v)eR x R |g (r,.v,) > —a ). (2.24)
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One has ¢ (v, t,) > — oo il and only if (2.22) is satisfied. The sets G, and G,
are convex and nonempty, but they need not be closed (even though g,
and g, are upper semicontinuous).

Exameti 2.10. In the case of the convex programming model in Examples
1.1 and 2.2, one has

ll
mlllj'l :er (H') + Z vri.fri (“r)—rri ’ “r: if Ue 20,
ue U, =1

"""'""’zl — o if 1, # 0.

1,

mi(n {’e() (ll¢)+ Z Uei [j;i (ue)‘rei]: il Ue 20,
u,e U, i1

gz(revve)=| — o if l";o.

Thus in (D) one seeks to maximize the expression

v

ll
Y inf {(fot+ 3 v fu) @)= yerrBoud +
=1 wel, =1

‘f
+ in[f’ 'l(f,o + Z Vi fei) ()= ¥y B, e} s
well, i

subject to v, 2 0fort=1,...Nand v, 20 This corresponds to the ordinary
Lagrangian duality scheme in convex programming and suffers from.the
drawback that unless further assumptions are made about the functions
involved, one cannot proceed to a level where the “inl" terms can be. made
more explicit. The linear case is an exception. as demonstrated in the
example that follows. Other cases can be worked out too, but lhe rgul
point is that the duality scheme plugs in at this stage to everything in
the convex programming literature on ordinary duality.

ExampLe 2.11. In the linear programming case in Example 1.2, the dual
problem consists of maximizing

N

Z [q\""r—br'yt#l]+[qe've—be'.vl]'

=1
subject to (2.12), (2.13) and

B*y,,,+Dtv. <p and v, 20 for 1= l,...N,
B*y,+D*v, <p, and v, 2> 0.

This can be seen by first calculating the Lagrangian terms

pettg gy te—vDou, w20, 0,2 0,
Jt (“n Ul) = — 0 lf U, = 0, v, ? 0,
20 if u, 20,
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A

Pe-ti,+dqo v,—0,-Dou, ifu 20,020,
J (u,, v,)= l - ifu,z20, v,20,
g if u, 20,

from (2.2). (2.3), and then using the definitions (2.16), (2.17) to obtain

- H * S
golre vd = {q, te il rkDE oS pe
—ou i+ Dye £ pe

g, (r..v)) = {(’f"" il r, 4+ D0, S p,.
He e v _‘1 ir ""+D: "' g p!.

See [4] for extensions of this pattern to piecewise linear and quadratic
programming.

3. Duality Relations

Theorems relating the optimal values in (#) and (¥), namely the quantities

inf(#) = (infl F (u, )., sup(7/)=sup4(v,r,),
u.u, .,
are the key to deriving optimality conditions for these problems, because
of convexity. They also furnish criteria for the existence of optimal solutions.
The inequality

inf (7} > sup (7).,

always holds by virtue of the formulas for # and 4 in terms of the
Lagrangian 7 as demonstrated in Theorems 2.5 and 2.9:
inf¢ ) = inf sup - (. ue e > sup inf 7 (uous e e)=sup (/)

TR T ]
o v
"

Our interest lies in the circumstances under which inf(#) = sup (/) holds
and one or both of these extrema is attained. We use the convention
of writing min(7) in place of inf(”), or max(~) in place of sup (),
to indicate attainment. In the general convex case we are dealing "with,
additional assumptions in the form of “constraint qualifications” are needed
for the results we want

Derinmmon 3.1 We shall say that the primal constraint qualification holds
if for some choice of (v, u,) and the corresponding primal trajectory x
determined from (1.2) (1.3) one has

(C, x4y u)eri By for t=1,.. N, and (C,xy,u)erik,, 3.1

where F, and F,_ are the convex sets in (1.8) (19) and “ri” denotes relative
interior. (See [1, §6] for a discussion of relative interiors and how they
can be calculated in various situations). Similarly, we shall say that the
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dual constraint  qualification holds f for some choice of (r,r,) and the
corresponding dual trajectory y determined from (2.12) (2.13) one has
Bryesy . v)eriG, for t=1,.,N, and (B*y,.v)eriG,. 3.2)

TueortM 32, If the primal constraint qualification holds, one has

o> nf(2) = max (/) 2 - o, 3.3)
while if the dual constraint qualification holds one hus

0 2 min(#)=sup(¥/)> — (3.4)
If both hold. one therefore has

o0 > min(#) = max (¥)> — . (3.5)

Proof The general duality theory for optimization problems of convex
type will be applied as in [2] and more specifically [1, §30]. This requires
the introduction of primal perturbations w = (wy, ... wy) and w, with

w.eR"  for t=1,.,N, and w,eR",

and the function

O (u uw,ow)=sup |y (u,u: e, e)—vow)- (e, 0)), (3.6)
(rory

as well as dual perturbations = = (z,, .., zy) and z, with
z, e R" for t=1,., N, and zeR*,

and the function
Yo, 0,2, 2,)= ‘mf) 17 (u,u; e, 0)—(2, 2,) (u, u,)}. 3.7

Clearly from Theorems 2.5 and 2.9 one has
Fu,u)=®w,u,;0,00 and G(v.v)=Y¥(r, v,;0,0). (3.8)
In fact the calculations in these theorems give
N
@ (u,u,w,w,)= Z [fA(Cox oyt w u)—c-x, ]+
=1
H{ [ (Coxvtwo u)—c.-xv].  (39)

Al
14 (“w Uel Z, Ze) = Z ((’x (B:‘ Xet +:(' l’() "br'.“ro ll+
=1
+9e (B yv+ 2. v)=be- 1], (3.10)

where uas always, x is determined from (u,u,) by the primal dynamics
(1.2)1.3) and y from (v, v,) by the dual dynamical (2.16) (2.17). The functions
@ and ¢. the latter defined by

@ (w,w,)= 'jrlf,d’ (u,u;w,w,) [ (0,0)=inl(7)], 3.11)
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are convex, while the functions ¥ and ¢, the latter defined by
vz, z,)=sup ¥(v,v,;2,2) [¢(0,0)=sup(2)], (3.12)
tr.e)

are concave.
Duality theory centers on the properties of these perturbation functions,
in particular their effective domains, which are the convex sets

dom ¢ = {(w,w,)|¢ (w,w,) < o0} = {(w,w,n)|3 (u,u,) such that
(Cox,y+w,u)eF, for t=1, . N, and (C, xy+w,.,u,)eF,}, (3.13)
domy = {(z, z )Y (z,z,) > — o0} = {(z, z.]3 (v, v,) such that
(Efy‘+l+z,.v,)e6, for t=1,.,N, and (B¥y,+z.,0,)€eG,}. (3.14)
These are important because of the conjugacy relations

G, v,)= —@*(v,0,) = ‘“i_n[" o (w,w,)—(v, 0,) (W, w,)], (3.15)
F(u,u) = —Y*(u,u,)=sup Y (z, z,)—(u, u,)-(z, z,)} . (3.16)
. (z.z}

These relations can readily be verified directly from our formulas, but they
also hold by the general duality scheme being employed [1, Thm. 30.2].
One knows from conjugate function theory that

oo >@(0,0)=max [—¢*} if (0,0)eridom g, 3.17)
(because ¢ is convex), and
-0 <Y (0,0)=min{-y*} if (0,0)eridomy, (3.18)

(because ¢ is concave) {1, Thm. 27.1]. The equation in (3.17) corresponds
to the duality assertion (3.3), and the equation in (3.18) to (3.4). The proof
we are faced with reduces then to the verification that »

(0, 0)eri dom @ <> the primal constraint qualification is satisfied,  (3.19)
(0,0 eri dom ¢ = the dual constraint qualification is satisfied. (3.20)
To calculate the set ridom ¢ we define the convex sct
F=Fx. xFyxF,,
the affine transformation
T:iw,owest, u )= (Cy xg+wi,ty, o, Cy Xy + Wy, Uy Co xy+w,, 1),
and the linear transformation
S:iw,wu,u)—(w,w,).
These allow us to write (3.13) in the form
dom ¢ = S(T'(F).
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The calculus rules for relative interiors of convex sets in {1, Thms. 6.6, 6.7]
then yield

ridomeo = S(T '(1i F),
where '
ri b= (ri By ox(ri Fy) < {ri 1)
This is precisely what (319) means. The verification of (3.20) follows the
same lines. .

Remark 3.3 The proof of Theorem 3.2 provides a basis for interpreting
the optimal solutions to (¥) relative to (7). It shows through (3.15) and
(3.19) that under the primal constramt qualification one has

O (0,0) = arg max (), (3.2

@ (0,0, w,w,) = sup Hw,w)-(e,e)e, v e arg max (7)), (3.22)

[L, Thms. 23.4, 23.5]. Similarly it shows through (3.16) and (3.20) that under
the dual constraint qualification one has

AP (0,0) = arg min (7)), (3.23)

Y'(0.0.z,z,)= inf Wz, z)(u, w,) (. w)earg min (#)}. (3.24)

Although the significance of the primal and dual constraint qualifications
can be brought into sharper detail in a particular instance of problem (#)
by the use of the calculus of relative interiors, both conditions can also
be stated in another form that in some situations could be easier to verily.
This other form involves the recession functions

(5, 01) = [illn [foso VAS w4 A= f, (s cud] A for (s, ugel,,  (3.25)

[ (5., 01) = liTm [ fods, v AS g v Ay fo(s, ud) A for (s, udel.. (3.26)

g, (Fe. 1)) = Ii‘m lgcry VAP e b AT) g (r e A for (e e)e G, (3.27)
JoAfe, 0 = im [y, (ro ¥ A v b AR =g (ro v d) A for (r 00eG,. (3.28)

AN
(These formulas are instensitive to the choice ol the base point, as long
as it belongs to the effective domain in question. Thus in (3.25), for instance,

one gets the same function f, regardless of the particular choice of
(se,u)eFy; see [1, Thm, 85]) In terms of these functions we define

N
F (@, i) = y L€, %y i) =~ Xy JH [ (C, Sy )= ¢ 5], (3.29)
11

where T is the state trajectory generated from (i, i) by the “homogenized
primal dynamics™:
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Re=A, %, +B.a, for t=1,..N, with X,=8B.i, (330)

(where h, and b, have been suppressed). We also define
N
Y (f~ Fe) = Z [(jr (B:{;r+ 1 f'r)w br‘fr# l]f [ée (B: .i"l* ﬁe)—bv'j\'l]v (33])
t=1

where § is the state trajectory generated from (9, ,) by the “homogenized
dual dynamics™:
Vo= A¥P 4+ C*p, for t=1,. . N, with §yv,,=Cto,. (332
Provosinon 34
(@) The dual constraint qualification holds if and only if every (@, ,) satisfying
# (i, 0,) <0 actually satisfies # (@, 0,)=0=# (-, —1i,).
(b) The primal constraint qualification holds if and only if every (8,1,) satisfying
G (v, 0,) = 0 actually satisfies 5 (5, 8,) =0 =4 (-1, -7,

Proof. We shall demonstrate that # is the support function of the convex
set dom ),

(a, a,) = sup {(a,a,) (z. z)|(z, z,)edom ¢}, (3.33)

A\

and similarly for 4, with a change of signs for the sake of concavity:
G (@, t,) = inf {(B, 1,)- (W, w)(w, w,)edom ¢}. (3.34)

The desired conclusions will then be immediate from (3.19), (3.20), and the

basic theory of support functions [, Cor. 13.3.4].
The conjugacy between f, and g, as expressed by (2.18) and (2.20} yields
by [1. Thm. 13.5] the support function formulas

f5, ) = sup lig-re—5,-v,)(re. }r,)é G}, (3.35)
G Fo ) =inf 10 s = F o u (s, v)EF,).
Likewise from (2.19) and (2.21): .
foGo.iy = sup {i - r,~ 3, vl(r,. v )€G,}, (3.37)
Je (Fo, ) = inl (D5, = Fp 11, |(s,. v)E ). (3.38)
Working first toward (3.33), we usc the description of dom ¥ in (3.14) with
re=B¥y.,,+z, and r,=B*y +2z,

to wrile
N

sup (@, i) (z, z Mz, z.)edom ¢} = sup | Y @b, [r.—B¥y oy 1+

r=1
i, [r.—B¥*v,]l(r,, v)e G, for some v, (r,, v,}eG, for some v,}. (3.39)

The equation
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N
t+l'Bt ut+yl'B¢ Ue = Z i«—l'[C:"r"'(t]*'iO'[(‘: U¢+(‘¢],
t=1

™M=z

t=1

is true as a special case of the one in Proposition 2.6, namely where
the b, and b, terms are omitted so that' the primal dynamics is given
by (3.30). The value in (3.39) can therefore be written also as

N
sup b Y (lore—=%  [Creove i (i, -Sh[Cho e . r)eG,

t=1

for t=1._,N, and (r,.1,)€G,} - Z | sup {d,r,-

0,000 G

(C xrvl) Upf = ¢ !—l] l sup {ae'rz_(ce EN)"‘r}“‘e'f‘tNJv (340)

{r,.rJ)eC,
which by (3.35) and (3.37) turns out to be ¥ (u,a,), as defined in (3.29).
Thus (3.33) is true. The verification of (3.34) follows the same pattern. |

Prorosition 3.5. If (#) has at least one feasible solution, ie. there exists
(u, u,) such that the implicit constraints (1.7) are satisfied, then for any such
(u, u,) one has the formula

Z (4,0, = lim [# (u+Aid, u,+ i) — 7 (u, u,))/A. (341)

In other words, # is the recession function associated with #. Duality,
if (&) has at least one (v,v,) satisfying the implicit constraints (2.22), then

7(0,0,)= lim [4 (v + 28, 0, +A8,)~ % (v, v ))/A. (3.42)

Proof. These expressions can be calculated directly from the definitions of
# and 9 those of the functions /: Jer fon and g, |
CoOROLLARY 3.6. The dual constraint qualification is satisfied in particular if
Jor some number o the level set u,uw)|.# (u,u)<al is nonempty and
bounded, as for instance when the set of optimal solutions to (#) is nonempty
and bounded (the case of o = inf (#)).

Similarly, the primal constraint qualification is satisfied in particular if for

some number B the level set {(v,v,)|¢ (v, v,) = B} is nonempty and bounded,
as for instance when the set of optimal solutions to () is nonempty and
bounded (the case of = sup(2)).
Proof. The first of the level set properties corresponds to # being a proper
convex function whose recession function is positive except at the origin;
of. [1, Thm. 87] Similarty for the second property. »
Exampte 37 In the ordinary convex programming case described in
Examples 1.1 and 2.2, the primal constraint qualification holds in particular
if there exists (u, 1) satisfying (with the corresponding x):
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filw)<cy-x..y for i=1,.,1, and wuel, (3.43)
fuluy<cy-xy for i=1,.,1, and ue€l,. 344

This can be seen right from Definition 3.2 and the fact that U, < cl[ri U]
and U, < cl[riU,]. (Actually the primal constraint qualification is more
subtle than (3.43)43.45) and nicely covers cases where linear equations have
been represented by pairs of inequalities). The dual constraint qualification,
on the other hand. can be analyzed in the form provided by Proposition 3.4(a).
L.et us introduce the recesssion functions

it = Nime{ £ G 4 20 = S ()4,

and similarly /,, (i1,). (These functions might be extended-real- valued even
though f,; and f,; are finite everywhere). Let us also denote by U, and U
the recession cones of U, and U, [1, §8). Then
fo @) if ﬁ,eAU, and

Ju@)yScyx,_y fori=1,..,1,
0 otherwise,

f: ((‘! o1 “r) = l

fo @) ifi,e0, and
fcl (ae) < Cei :GN fOl' i= 1, wwisy l',
Y otherwise.

i: (Ce XN, ur) = l

The dual constraint qualification is therefore satisfied in particular if the
only choice of (i, #,) such that

N
L U @) =c S i T4 oo () = o 3] < 0

foli)<cu X, for i=1,.1, and ﬁ,e\U,,

*

faa)<c,-%y for " i=1, .1, and a,eU,,

is (i, 1,)=(0,0). This is trivially true, for instance, if the sets U, and U,
are bounded (because then U, = {0} and U, = {0}), and this case is also
obvious from Corollary 3.6. More generally, however, the functions f,,
and f,; express the growth properties of f,; and f,;, which can lead to the
dual constraint qualification being easily verifiable in cases where U, and
U, are not necessarily bounded.

4. Saddle Point Conditions and Decomposition

The Lagrangian y which we have introduced in representing problem
(7) and constructing its dual (&) has the important property that
¢ (u,u,; v, v,) is separable in the u, and u, components for fixed (v, v,)
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but also separable in the », and v, components for fixed (u,u,). This is
true because of the alternative formulas for the term [(u, u,). (v, v,)] provided
in (2.11) and (2.15). We shall demonstrate in this section that such separability
leads to a primal-dual decomposition scheme in the form of a “minimaximum”
principle like the one recently derived for the special case of piccewise
linear-quadratic optimal control in [3], [4]. This principle gives a joint
decomposition of (#) and (2) with respect to time A predecessor in

“continuous-time programming” can be seen in the work of Grinold [6, p. 46]

and another in a context of optimal control and the calculus of variations

in Rockafellar [7, Thm. 6]. .

To set the stage, we begin with a fundamental fact about the relationship

between (#) and (2).

TueoreM 4.1, One has min (#) = max () if and only if g has a saddle

point, in which event the saddle points of ¢ are precisely the elements

(t,u,;v,v,) such that (u,u,) is an optimal solution 1o (#) and (¥, 70,) is an

optimal solution to (2). Then

min (2)=max (¥)= ¢ (., u,.r.v,) [ finite]

Proof. We get this immediately from the representations established in

Theorems 2.5 and 29. We need only invoke clementary and well known

facts of general duality theory (cf. [2, Thm. 2] for instance). a2

COROLLARY 4.2,

(a) If the primal constraint qudalification holds, then a necessary as well as
sufficient condition for (u,u,) to be an optimal solution to (#) is the
existence of some (v, v,) such that (u,u,;v,v,) is a saddle point of 5.

(b) If the dual constraint qualification holds, then a necessary as well as
sufficient condition for (v,v,) to be an optimal solution to (7) is the
existence of some (u,u,) such that (u,a,;v,v,) is a saddle point of §.

Proof. This combines Theorem 4.1 with Theorem 3.2. u

Tueorem 4.3, (“Minimaximum Principle™). In order that (u,u,,v.v,) be a

saddle point of ¢, it is necessary and sufficient that the following conditions

in terms of the corresponding state trajectories X and v hold at each time t:

(w,, r,) is a saddle point of
) Jouer) = J vy w BYE o oo Co Xy, (A1)
and
(u,, v,) is a saddle point of
Jeltte, v) = Jo (e v) =t BEF =1, Co %y (42)
Proof. The saddle point condition for (i, i,; v, t,) consists of the two

relations
(i, i,)eargmin ¢ (u.u,;r,r,). 4.3)

(. u)
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(r, b )eargmax ¢ (i, u,: 0, r,). 44)
(r.r,)

Expressing ¥ (u.u,, F.7,) first in terms of (211), we see that (4.3) is equi-
vilent 1o
doeargmin W (e ) g BEFL -0 Co Xy, 4.5)
for = 1. N, and
ii,eargmin \J, (u. ) —u, B¥y, —v,-C, Xn}. 4.6)
Expressing # (u, u,; v, r,) then in terms of (2.15), we see on the other hand
that (4.4) is equivalent to

toeargmax V(. v) — it B ooy — 00 Co X2y} 4.7)
for t=1... N, and
r.eargmin {J (i, v,)—i,- B¥y - v, C.Nal. 4.8)

The combination of (4.5) and (4.7) is equivalent to (4.1). while the combination
of (4.0) and (4.8) is cquivalent to (4.2). [ |
Cororrary 44 Consider relative 1o a given (i, 1i,: v, v.) and the corresponding
trajectories ¥ and v the following subproblems:

(7) minimize fAC, X, u)—u By oy oinu,,
) maximize g, (B¥*v,,y,v)—v, C X2y in vy,
for t=1,...N and also

(%) minimize f,(C, Xy, u,)—u,-B¥y, in u,,

(7, maximize g, (B¥fy. v)= v CX Xy in Uy )

Then in order that (. ut,;T,t,) be d saddle point of ¢ the following
conditions are necessary and sufficient :

i, is optimal for ( 7). T, is optimal for (7). and inf( 7)) = sup (/) 4.9)
for T=1._ N and

i, iy optimal for (2.), ©, is optimal for (7). and inf (7)) = sup (7,1 (410)

Prool lor the convex-concave function .f, in (4.1) we have by (24) that
’r ((‘( (\' A R T Bl‘ .;:4 1 = sup 'l_t (U,. rt)v
and by (2.16) that
[Ip (B? Fornatd =0 CoXp oy = inf J.x (., v).
L3

Therefore ( '7’,) and ('},) are the primal and dual problems associafed with J.
The saddle point condition (4.1) can thus be written equivalently as (4.9).
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By a parallel argument, the saddle point condition (4.2) is equivalent
to (4.10). L
Examrir 4.5 In the ordinary convex programming model in Examples 1.1
and 22, the saddle point conditions in Theorem 4.3 reduce to the following.
The pair (i, ) is a saddle point of the expression

h

{, /;() ("r) 7”1'8: .FrO I] ! Z Ui [ ,n (“r)' Coi ;( I]v

=1

relative to w, e U, and v, > 0, while the pair (u,, r,) is a saddle point of the
expression
1,

[ foo ) - u,-BE¥y ] Z Ui [ foi () =i X4 T,

relative to e U, and v, > 0. These conditions mean that i, s an optimal
solution to, and r. a Kuhn-Tucker vector for, the problem

(7)  minimize fio (v)—u,- B¥ v, ., subject to
uelU, and f () <cy X, fori=1,.1,

while @, is an optimal solution to, and 7, a Kuhn-Tucker vector for,
the problem
(72) minimize f,, (1,)—u,- B¥y, subject to

uelU, and f,(u,)<c,-xyfori=1, 1,
Examprie 4.6. The linear programming model in Examples 1.2 and 2.11 gives
the subproblems
(#) minimize [p,—B* v, ] u, subject to u, y Do 2 g, —Co x4,
(/) maximize [¢q.—C,X,_,] r, subject to v, > 0, D¥ v < [[,(, B¥voi].
and
(#) minimize [p, - B*ii,] u, subject to u, > 0, Dou, = [qo—-C,. 4]
(7)  maximize {q,- C, Xy] v, subject to v,, D¥u, < [p.-—-B¥v )
For such problems the linear programming duality theorem tells us that
the equations inf( /’) = sup ('/ ) in (4.9) and inf( / J=sup(’ % W) (4 10) are
redundant. Corollary 4.4 thus characterizes the opllmdl solutions (#) in
terms ol optimal solutions to certain temporal linear programming problems

M’) and (’/’) and their duals.
This pattern extends to problem models in piecewise linear-quadratic

programming. See [4] for details.
RemArk 4.7, The patterns developed here show that not just lincar-quadratic

programming or ordinary convex programming fit this situation. Any primal-
-dual pair of problems in the literature of finite-dimensional convex optimi-
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zation can be set up (o appear as the subproblems of Corollary 4.4 and
yield a corresponding version of (#) and (/).
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Wieloetapowe programowanie wypukle
a sterowanie optymalne z czasem dyskretnym

W pracy przedstawiono nowe sformulowanie zadania optymalizacji wypukiej na skon-
croneg liczbie ctapow. Pozwala ono na  potraktowanie zadania jako zadanie sterowania
optymalnego a takze wprowadza pewne cechy istotne dla pmgramow.un.l matematycznego.
Warunki optymalnosci wyprowadzono 7z rezwazan dotyczycych zadania Judlncgu Ze wzgledu
na \AIISLI“()\(I sformulowania warunki optymalnosci przyjmujg postaé zasady .minimaksi-
mum”, ktora prowadszi do dekomporzycii wzgledem czasu zardwno zadania pierwotnego jak

1 dualnego

Muorortanmoe BLuyRI0C 1POI paMMBpoBanKe
H /IHCKPCTHOE ONTHMAJILIOE YHPAB/ICHHC

B pabore npeacraniens nosas  opay niposka sacaan BLHYK 1O OB TUMISEIuI g
Konewnoro apca arnon. O nossaaser socnpiinih npoGiueMy »onite it ot-
M ILHOTO Y IPABICHIA, & TAKAKC BHOJIMT HOBBIC  CYIICCIRCHUBIC (DAK1OPBI JUIA MaTeMaTH-
MCCKOTO POEPANMMUPOIUNIA. V10118 O TIMIBLHOC T BHBOJASICS 1Y PaccAMoTpeitii. Ka-
CHOIUXCH SV ILHOI s Yaimisinas: cnoficina hopay imponki Yo 1osas o1 Mastbinoc i
VPHITAGHO T UL PTG MIHIMAKCE . KOTOPLEE BEICT K JICKOMITOIHIUNE 110 BpEMen
KOK HCPHITIONR 1aK 0 iya ibnoit s,



