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FrRsr- AND sECoND-oRDpR bpI-oTFFERENTIABTLTTY
IN NONLINEAR PROGRAMUING. .

R. T. ROCKAFELLAR

ABSTRACT. Problems a^re considered in which an objective function express-

ibie as a ma< of finitely many C2 functlons, or more g.enerally as the composi-

tion of a piecewise linea,r-quadratic function with a C2 mapping, is minimized

subject to finitely many C2 constraints. The essential objective function in

such a problem, which is the sum of the given objective and the indicator

of the constraints, is shown to be twice epi-differentiable at any point where
' the active coDs6aints (if any) satisfy the Mangasarian-Flomovitz qualification.

The epi-derivatives are defined by taking epigraphical limits of classicai first-

and second-order difference quotients instead of pointwise limits' and they re'

veai properties of local geometric approcimatiou that have not previousiy been

observed.

1. Introduction. Nonlinear progralnming used to be viewed, at least for com-

putational purposes, as the minimization of a smooth (i'e. contiuuously differen-

ii"Ut"; objective function subject to finitely many equality or inequality constraints

given by other smooth functions. Many applications of optimization. however'

aorr""rn objective functions that are not necessarily smooth but of "ma)<" type'

expressible as the pointwise maJdmum of certain other functions which are them-

selves smooth. Penalty representations of constraints' whether in terms of 11 or

12 penalty functions or augmented Lagrangians, Iikewise have focused attention on

nonsmoothness. Such representations are now the rule of the day in the develop

ment of numerical methods and can be used even in mathematical modeling itself.

A problem form that is becomin$ recognized as fundamental for theory and

comp;tation in nonlinear programming and for its much greater versatility than

the traditional form is:

--(P) minimize g(.F(r)) subject to F(r) e D'

where g is a convex function on Rd with nonempty effective domain D (a convex

subset lf mo;. and .F is a smooth mapping from R' to Rm. The present paper focuses

on the case where F is actually of class c2 and g is "piecewise linear-quadratic"

(see Definition 1.1). This case is broad enough to cover all of the most eorrmon

iypes of problems seen in practice, as will be clear from examples.
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Problem (P) can be identified abstractly with minimizing the firnction f (r) :
s(r'(r)) over all r € R'. (Since D is the effective domain of 9, one has 9(u) =
oo when u e G and consequently /(z) : oo when F(r) # D.) Wu call / the
essential objectiue lunction for (P). Our aim is to study / by mCthbds of nonsmooth
analysis. introducing certain first and second derivatives called "epi-derivatives"
and developing formulas for them in terms of g and F. The idea is that by doing
this in a "neoclassical" manner. with close parailels to the example of smooth

unconstrained optimization where / is itself a C2 function, a unified foundation
can be laid for the treatment of many qirestions of tbeoretical and computational
interest in optimization.

The main difference between our work and that of others who have explored such

an approach is in the choice of concepts and their level of generality. A number of
authors have defined first and second derivatives in the framework of nonsmooth
anaiysis that are viabie for various kinds of functions / outsicl.e the class considered

here. for instance Lipschitz continuous functions. and have used them to formulate
necessary or sufficient conditions for a local minimum or in sensitivity analysis.

Especially to be cited in this respect are Clarke [1, 2] (first derivatives only). Ioffe

[3-5], Hiriart-Urruty [6-8]. Chaney [9-rZ], Auslender [13]. Aubin Ir4]. and Seeger

[15]. We forego such breadth and concentrate instead on notions that oniy are

appropriate in a more limited context-although it should be noted that we do,

on the other hand. allow for extended-real-vaiuedness. in contrast to most of the
authors cited.

From the technical standpoint, the use of epi-convergence of difference quo-

tients in defining the "epi-derivatives" introduced in this paper deserves emphasis.

Epiconvergence of functions, which refers to convergence of the epigraphs of the
functions as sets. is coming to the fore as the correct concept for many situations
in optimization. Untii now, however. the only instance of epi-convergence being
invoked in connection with derivatives was in a special analysis of "two-sided" sec-

ond derivatives of convex functions iri Rockafellar [16]. The strong feature of epi-

convergence is that it corresponds to a geometric concept of approximation much

like the one used in classical differential analysis. Derivatives defined in terms of it
therefore have a certain "robustness" that can be advantageous. One of the princi-
pal objectives here may be seen as the identification of a centrai class of functions
for which such derivatives do always exist.

In the context of mathematical programming the project we take on may best

be compared with the efforts of Ben-Tal and Zowe in [17-20]. Those authors too
introduce a kind of second derivative and investigate special classes of functions for
which it exists. They use it to derive necessary and sufficient conditions for some

of the most common types of problems in smooth and nonsmooth programming. A
major difference between our results and theirs is that their second derivative does

not correspond to a geometric notion of "uniform" approximation and therefore

cannot be the basis of a truly abstract sufficient condition for optiruality. They

oniy get sufficiency by introducing a very particular structure for /. (Without such

structure they have to assume that / is continuously differentiable with Lipschitz
continuous gradient [20].) Our second-order "epi-derivative", when it exists (as

for the functions / of the type in this paper) does support an abstract theory of
sufficiency, as we shall demonstrate in [21].
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Actually. as part of our work on ''epi-derivatives"- we aiso investigate certain

"parabolic derivatives'' that resembie the'Ortes of Ben-Tal and Zowe, but involve

epi-convergeirce. These reveal further connections betrreen our apploach and theirs.

To elucidate the nature of probiem (P) under our assumptions, the foilowing

concept is required.
DEFINITIoN 1.1. A function 9: Rd * R with effective domain p: {ulg(u) <

m) will be called piecewise linear-.quadratic rf. D car be expressed as the ulion
of finitely many sets D, (for i e J , a filite index set), such that Di is a convex

polyhedron and the resiriction of g to D,'is a quadratic (or affine) function. (Then

in particular g must be continuous relative to the sets Di, which are all closed' and

consequentil, continuous relative to D.) If the restriction of g to Di is affine for

every f. then g will be called, piecewise linear.
Note that when g is convex, as assumed in (P). the set D must itself be a

convex polyhedron according to this definition. The class of piecewise linear convex

functions is identical to the class of polyhedral convex functions defined in convex

analysis [22]. Incidentally, a function representable as a maximum of finitely many

quadratic (or affine) functions need not be piecewise linear-quadratic in the sense

of Definition 1.1. because the joins between different "pieces" could be quadratic

surfaces not subject to a polyhedral representation.
EXAMPLE-1.2. LeI

(1.1) ,F(") : 1r,fs(r),J/l5....,f^(r))€R' xR-+1

where each fi is of class C2.

(r.2) D : Xx R x Is x "' x /* c fil', gm*l

where X is a convex polyhedron in R' and each I is a closed interval in R (bounded

or unbounded),

(1.3)

where u - (r.o0,o1.... .o*) € 6n * 6m+1. The condition F(r) € D corresponds

then to the general constraint system

(1.4) s € X and i(s) e /, for i : L... '.m,
and for points c satisfuing this system one has S(r'(r)) :.fo(s). Thus (P) is the

problem

( 1.5) minimize /o(s) subject to (1.4).

which is a traditionai nonlinear programming problem with several refinements:

the condition s € X is available for representing some underiying linear constraints

(such as nonnegativity or bounds on variables) that are not conveniently expressed

by constraint functions. and the conditions h@) e.I; allow for general upper and/or

lower bounds on the constraint functions f . (Obviously an inequality f;(x) < ct

corresponds to I" - (-oc,crl, while an equation fi(x) = c1 corr€sponds to .I. -
1"i,"t7, the degenerate interval consisting of the single number c1')- 

EXAMPLE 1.3. This extends the preceding example of (P) to the case where the

objective in (1.5) is of max type:

lo(x) = max{/sl(c)'. .. ,,f0"(r)}'

g(u) : g(r,ao,el:..,.. "-l : {3 ii:e'r,

(1.6)
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The component /s(r) in (1.1) is replaced.by the vector (/or(r).'..."f0"(z)) and the

component R in (1.2) by R". (It is assumdd that fox e C2.) instead of (1'3) one

takes

(1.7) g(u) :g(r.a)0r....,os-c'o1....,(t*) :t :*'"tt'"''oos) ;iie'b
Here u - (t.o0r,..., ogs.o1... .. q*) g Rt x R" x. R-.

Exeuple 1.4. The general l1-penalty, representation of the traditional problem

(1.5) in Example 1.2 is to

(1.8) minimize /o(s) + irna,,(/,(t)) over all t € X.
. z=I

where the coefficients p, ) 0 are penalty parameters and

(1.9) dr,@"): fdistance of o, from the interval l].
(If /i = [0.0]. then dr,@") = larl. If .I,(-m,0]. then dt,(a;) = [or]+.) This penaltv
problem is the case of (P) where F is given by (1-1).

(1.10) D:XxR-*1.

(2
(r.u) g(u) : s(t.ao.&r.... .a^) : { "o 

* lndr'@t) if c e X'

I m otherwise.

Each of the functions d7, is piecewise linear on R. so I is pibcewise linear.

Exlrrlpr,r 1.5. The basic l2-penalty representation of problem (1.5) is the simple

modification of Example 1.4 where d1, is replaced by dl, in (1.8) and (1.1i). Then g

is piecewise linear-quadratic (and convex), not just piecewise linear. More generally

one can Iook at representations of the form

- 
(1.12) minimize Io@) +i o,@,,(/.(t))) over s € X.

r=l

where pr: R+ - R.. is a nondecreasing! convex. piecewise linear-quadratic penalty

function. Then the termpidl,(c,) is repiaced by pt(dr,(c,)) in (1.11). and 9 is again

piecewise linear-quadratic and convex. In stochastic programming, for instance.

the case where p; is quadratic initiaily but affine for high values is of interest: see

Rockafellar and Wets [23].
Exeurlp 1.6. Augmented Lagrangians of the standard quadratic-based kind

lead to further cases of (P) that are important in computation. The general aug-

mented Lagrangian expression associated with problem (1.5) can be written as

(r.r3) ,ro(z) + iir,to?,(Ii@) + \;lr;) - (A,lr)'1,
i=1

where r, ) 0 and ,\, € R are parameters' In [ : [0' 0] one has

lr;fd.fi,U,k\ + A"lr,) - (\;lr")21: )r,f'(r) + ir;llr)2
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(the term introduced by Hestenes [2a] and Powell [25] for equality constraintsl.
whereas \f Ii : (-*.01 one has

*,nla?,(/,(e) + \tlr,) - ()t1,,)21: 
{^!+':/i,i"fn@)' ;ill f [:] ? -]',',i',

(the term introduced by Rockafellar [26] for inequality constraints). Minimizing
the expression (1.13) over r e X is.the case of (P) where F is given by (t.t), D is
given by (1.f0), and
(1.14) ;

s{s,ao,el,... ,a,) :{ "'* ,i:ri'^0,,(a' 
+ )'ilr') - (\;l')'1 if z e X'

( * otherwise.

Clearly g is a piecewise linear-quadratic convex function in this case also'

Exeupln 1.7. Unconstrained problems (P) where the objective function / has

the following form have been expiored by Ben-Tal and Zowe [rZ, ra]:

I @) : i n,rrrOr. where fr(r) :r-jl:", fr1 @).

The functions hi: R - R and /'r: R' - Fl are assumed to be of class C2, and

differential properties of / are studied at a point i such that h!nff,@)) > O for
i = 1,. . . ,m. If the slightly stronger assumption is made Lhat hlt is nonnegative on

a neighborhood of f;(i) for every i, the situation fits the'framework in the present

paper. because / can then be written locally around z as f (r): g(F(c)) with

F(c) : (...,h,(ht@)),... ),

17t,

S@):I f"o uit foru:(...,utj,...).
r= I -

Clearly F is a C2 mapping from R' to R'' x "'x R"-. and g is a piecewise linear
convex function from R"' x "' x Rs- to R.

Generalized second derivatives of functions / of type (1.15) have specifically been

treated also by Chaney [12] as examples within his theory for classes of Lipschitz
nonsmooth continuous functions. Such results will be important to us later in
putting the results of this paper in perspective.

We would like to point out that the general problem (P) can be seen as arising

from Lagrangian

( 1.18) L(r,a): y. F(r) - h(y) and y e Y,

where h is the convex function conjugate to g and Y is its effective domain:

(1.16)

( 1.17)

(1.1e)

(1.20)

h(s): sup {s 'u - s@)),
u€Rd

Y={a€Rdlh(y) <m}.
Since g is in turn the conjugate of h. i'e.

(1.21) g(u) : sup {y '" - h(v)\ = sup{s 'u - h(v)},
y€R' YeY
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f (r): s(f(")) - sup L(r,a) " for all r.
seY

Sun [22] in his recent dissertation has demonstrated that g is piecewise linear-
quadratic if and only if h is piecewise linear-quadratic (the set Y then being. of
course. a polyhedron). Our problems (P) are therefore precisely the ones that con-

cern the minimization of a function / expressibie as in (1.22) by a Lagrangian (1.18)

where F € C2 and h is a piecewise linear-quadratic convex function with dom h: Y .

This Lagrangian representation of (P) is a uatural'one for computational purposes

and can also play a useful roie in the statement of optimality conditions. It may be

used alternatively as the basis for developing such conditions. For a complementary
theory along such iines, in the more general setting where the convex function h
need not be piecewise linear-quadratic (and epi-derivatives are not applicable), we

refer to Burke [28].
The plan of the paper is first to define epi-derivatives in $2 and look at some of

their elementary properties. The next task is to anaiyze in $3 the epi-derivatives of
piecewise linear-quadratic convex functions and relate them to parabolic derivatives
similar to the derivatives of Ben-Tal and Zowe. A constraint qualification is devised

in $4 to handle the condition F(r) € D in (P) when r might be such that F'(c) is

a boundary point of D. This is invoked along with the results in $3 to establish
the existence of first- and second-order epi-derivatives of functions f (r) = S(,F(c))
with g piecewise linear-quadratic convex, as in (P). (The centerpiece is Theorem
4.5.) Finally, a duality between second-order epi-derivatives and parabolic second

derivatives is demonstrated.

2. Epi-derivatives. Our basic problem (P) corresponds to the essential objec-

tive function

(2.1) /(c) = s(r(r)) (: oo when F{x) ( D),

under our stated assumptions about F, g and, D. Although the specific structure
_ inherent in any given case, such as illustrated by Examples 1.2-1.6, rnust ultimately

be accommodated in analyzing (P) or computing its solutions, the viewpoint of the

essential objective function enables us to draw parallels betweel different cases and

to focus on the aspects that are the most fundamental. For the purposes of this
section therefore, we do not assume that / is necessarily given bV (2.1) but proceed

more generally.

A brief mention of the classical ideas when / happens itself to be a function of

class C2 will put us in the right frame of mind for taking a "neoclassical" approach

when / is not of such type. Classical first-order differentiability of f at t means

the existence of a vector o € Rn (which will be the gradient v/(")) such that

(2.2) f(r +t€') - f(r) :e.u forall(eR'.
rlo
€'-€

Second-order differentiability, in the sense of a Taylor expansion of degree 2. means

further the existence of a symmetric matrix fI (which will be the hessian V2 f (r))
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These concepts can be interpreted geometrically in terms of the graph of /. The
limits in (2.2) and (2.3) describe local approximations to this graph at the point
(r,l@)) by the graphs of other funetions, namely the ones giving the first- and
second-order Taylor expansions of / around c.

Such ideas are not adequate to the task of handling more general functions / like
the essential objective in (2.1). A lesson which has been learned in convex.anaiy-
sis and carried over to other forms of nonsmooth analysis is that the geometrical
thinking that used to be directed towards the graph of / needs, for the sake of
achieving a more versatile theory, to be directed instead towards the epigraph of f ,

which is the set

(2.4) epi/: {(r,o) € Rn x Rlo 2 /(r)}.
This is closed in R' x R if and only if f is lower semicontinuous on Fln, a property
that holds certainiy for the essentiai objective function (2.1) and is more appropriate
anyway for many contexts in optimization than ordinary continuity.

A "neociassical" approach to the local study of / can be characterized as an
attempt to foliow the classical approach, even when / is not differentiable, by
working systematicaliy with epigraphs instead of graphs. Such an approach calls
for the replacement of the "graphical" limits (2.2) aud (2.3) by ''epigraphical" limits
that yield first- and second-order approximations to f at x in a more general sense.

What we refer to here as "epigraphical" limits are limits expressed by the notion
of "epi-convergence". which was first introduced for convex functions by Wijsman

[29, 30] (although not under that designation) and has in recent years come to be

recognized as an analytical tool of grea,t promise. We mention in particular the
work as Mosco [31], DeGiorgi [32], Attouch 133], Wets [34]. Attouch and Wets

[35]. An exposition of some of the main ideas and their motivation is contained in
Rockafellar and Wets [36].

The notion of epi-convergence of functions, which we explain in a manner attuned
to our purposes. depends on the notion of set convergence that has often been

associated with Kuratowski [37] but really has a much longer history starting with
Painiev6 and his students. Rather than focusing on sequences. let us look at a

family of subsets & c R' parameterized (or indexed) by t > 0. One says that 
^91

conuerges to a subset S as I | 0. written

,. f(x + t€') - f(t) - tet ' o'

fffi ffi:€'He rorall€qmi'

S: limSt.
r10

S = limsupsr - liminf 51,
rto tIO

such that

(2.3)

(2.5)

if
(2.6)

where

(2.7) limsupSs :: {{13 sequences t' 10,
tl0

("-€,

with (" €Sr" for allu= 1,2,...),
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iirninf S1 :: {{lV sequences.l".J 0,)€" -: { with €' e Sr"
rl0

" for all./ sufficiently highi.

An equivaient statement of (2.5) is this: S is a closed set such that for every e > 0

and bounded set .,{ there exists r > 0 for which

(2.e) &nAc S+eB and -cnA c St*eB. Vl e(0.r).

(Here B denotes the ciosed unit ball .in R'with respect to the euclidean norm')

Still another way of expressing the coircept is in terms of the distance functions

(2.10) ds,(€) = dist((.S,): ri!t,l€ - €'l

One has (2.5) if and oniy if S is a closed set such that

(2.11)
f itrr,(€) 

: ds(t), v€ € R'.

Consider now a family of functions Pr: fi!' * R. where R = [-_@.m] (extended

real line). One says that gi epi-conuerges to a function rp : R' - frl as t I 0, written

(2.r2) e: epi-ljffier.

if the sets epi p1 converge to epi,p in R" x R as I I 0. Note that tp must in this

case be a lower semicontinuous function. because the limit set epi rp is necessarily'

closed. This concept is in general distinct from classical pointwise convergence.

where rp1({) - p({) for each fixed {. The latter may or may not hold in a particuiar

instance of epi-convergence. For exampie. when p1 and rp are the indicators of sets

St and S in R' (vanishing on these sets but taking the value oo outside). the

notion of epi-convergence in (2.12) is equivalent to that of set convergence (2.5):

but depending on the way the sets Ss "move". the values of the functions p1 can pop

back and forth between 0 and oo at any fixed { and therefore will not necessariiy

converge to p(€).
One way of expressing the epi-convergence t2.L2), in parallel with (2.6). is to

user "semi-limits" of various kinds such as may be seen in the original papers of

Wijsman [gO. 31]" In the notation introduced by Rockafellar [38] one can write
(2.12) equivalently as

(2.r3)

where

(2.t4)

p(€) = lim sup inf - r, (€') : lim inl -inf . pt (€').
t,6€'-€'- " tlo€'-€

limsrrp i.tf p,(€') := limlim sup .,)yl -ptif-')'tt6 €,-e ' -' ' elO zlo tee.tJ e'ei+eB

(2.r5) liminf i;nr e1(( ) ': ljiTljl6,.t,tf,,.,.'l{,, pl€'): tim i1[ 
ptG')'

tl €,*€' '- €10 rl0 t€(O.r)€'€€+6I' 
€,_€

We turn now to the study of a function /: R" - R and a point r where / is

finite. By applying epi-convergence to the usual difference quotients for / at z.

in place of pointwise (or locally uniform pointwise) convergence, we obtain new

concepts of "epi-differentiation" that will provide us with tools we need for a more

general analysis of optimality.
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DEFTNITION 2.1. The function f \s epi-difsrentioble.at r if the first-order dif-
ference quotient functions

(2.16)

have the property that the limit function

(2.t7) ft, := epl- 
lrr3 

r".t

(2.18) #(€) > (.u for all ( e Rh.

DEFTNITISN 2.2. The function / is twice epi-difierentiable at r relatiue to a

uector u if it is (once) epi-differentiable at r in the sense of the preceding definition

and the second-order difference quotient functions

(2.1e) p,.,,t(€) : lf @+ t€) - f (r) - t(' ullltz

have the property that the limit function

(2.20) f'|.,,: epi - lim rp'.,.1

exists and fi.,@) > -oc. Then the values fi,"G) are called second-order (direc'

tional) epi-deriuatiues of f at r relative to u. A symmetric matrix .FI € fil'"' is

called a epi-hessian of / at c relative to u if

(2.2r) . t,"(€)>€ H€ forall(eR'
Some elementary properties entailed by these definitions are explored in the

following propositions

PROIOSITION 2.3 . The first-order epi-deriuatiue function fL, { it exists, is

lower semicontinuous and positively homogeneous:

(2.22) /;()€) :.\#(€) for all l > o, ( € R"'

The property /l(0) > -oo is equiualent to

(2.23) /1(€) > -m lor all (, #(0) :0.
PnOOr. A1y function expressible as an epi-iimit is lower semicontinuous. as

aiready noted. The positive homogeneity of fl is immediate from the form of the

functions px.t in (2.16). Lower semicontinuity and positive homogeneity imply that

if /;(€) : -oo for any {, then /;(}€) = -oo for all ) > 0 and /1(0) = -oo' On

the other hand one has /i(0) ( 0 trivially from the definition. so the property

/;(0) > -oo must be equivalent to (2.23) as claimed' tr

PROPOSTTTON 2.4 . The lunction f is epi-diSerentiable at x it and only il the

contingent cone to ep\ f at (t, -f (r)), which is defined as the set

(2.24) limsup[epi I - @, f (x))]lt.
,lo

exists and /;(0) > -oo. Then the values /l(€) are called frst-order (di,rectional)

epi-d.eriuatiies of / at e. A vector u € Rn ii a epi'gradient of. I at r if

ex,ists actually as a limit and does not eontain the "d'ownward pointing'' aector

(0, -1). This cone is then the epigraph ol the function f'":

(2.25) epifi =lim[epi I -@.f@))llt'
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PRooF. This is immediate from the relatibn

(2.26) epie,.t = [epi'/'- @,f@D)lt ;

and the definition of epiconvergence. tr

PRoPosITIoN 2.5 . Suppose that f is epi-differentia,ble at x. Then the epi-
grodients of f at u, i! any, are the uectors u such that

(2.27) I@') > ftr) + u . (r' - r) + o(lx' - xl).

PROoF. Under epi-differentiability r,re have in particular from the epi-conver-
gence expressions (2.13)-(2.15). as applied to the functions 9,,1 that

f(r +t€t) - f(r)lim inf
rl0

The defining inequality (2.18) for u to be a epi-gradient can therefore be written as

lim inf
ti0

f(r + t{') - f(r) - t€' .u

which is the same as {2.27) according to the meaning of the notation. tr

PRoposITIoN 2.6. The function f is epi-difrerentiable atr inparticular when

it is subdifferentially regular at x (in the sense ol Clarke) and the subgradient set

7f(x) (in the sense ol Clarke) is nonempty. Then }f(x) consists eroctly of the

epi-gradients u of f at r, and f'. is a conuer function satisfying

(2.28) /l(€) = ' tlrP ('u for all (.
ued | (t)

PRooF. Subdifferential regularity is the case where the contingent cone to
epi / at (t, f(t)) coincides with the Clarke tangent cone at (", f(x)); see Clarke

[f]. The Clarke tangent cone is by definition the set

lim inf
rlo

(t',a\-(x,J@l)
(c',a)eepi ,f

which is always contained in

epi/-(z'.a)

= f '"(€).

>0,

(2.2e)

Subdifferentiai regularity thus guarantees the equality of the sets (2.24) and

(2.29) and gives us the existence of the limit (2.25), as required. The Clarke tangent
cone is moreover convex always, so that fl is then a conYex function. The remaining
assertions merely restate well.known facts of nonsmooth analysis in this case, but
in the terminology and notation of Definition 2.1. D

The significance of Proposition 2.6 lies in our ability to identify, by means of the
well-developed subdifferential calculus for nonsmooth functions, a large number of
instances where the property of subdifferential regularity does hold; cf. Clarke [1]'
Convex functions in particular are subdifferentially regular. as are general "max"
functions.

epi.f - (r./(c))
rlo t
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PROPOSITION 2.7. The second-order epiy',eiiuatiae,function f'|,u, if it etists,

is lower semicontinuous and positiuely homogeneous of degtee 2:

(2.30) #1,()€) = t2fi.,G) lor att.\ > 0, € € R"' ''

The property Ii."(0) > -oo imPlies

(2.31) fi.,G) > -oo lor all (, /l',,(O) = O'

PROOF. As with Proposition 2.3, these properties are immediate from the form

of the difference quotient functions involved in the definltion' tr

pRopOstrtoN 2.8. Suppose that f is truice epi-difrerentiable att relotiue to a

uector u. Then f,,(O Z € ), lor atl €, i.e. .u is a epi-gradient of I at r,'and in
addition

(2.32) {€l/i."(€) < oo} c {€l/i(€) = €'u}'
Furthermore there ezists at least one epi-hessian of f at x relatiae to u ' Indeed, H
is auch a epi-hessian iJ and only if H is a symmetric motrix satislying

(2.33) f(r')> f(")+u. (r' - x)+l(x' - x)' H(t' -r)+ o(lt' - rl2).

Pnoor. The assumption of twice epi-differentiability implies by Proposition 2.7

that the function fi., \t lower semicontinuous on tl' and nowhere -oo' The value

(2.34) a ,= 
1!]!n, 

f ;,"(€)

therefore exists and is not -oo. Properties (2.30) and (2.31) yield for any real

p, < P that
l:,,(€) > p]€12 for all € € R'.

In particular this inequality says that the matrix H = pI is a epi-hessian' i'e'

satisfies (2.21).
Recall now from the definition of I':," and the epi-convergence expression (2.13)-

(2.15) as applied to the functions qz,a,t that

(2.35) Iim inf I@ + t€') -!-(x) - t€' 'u 
= I':.,G)-

.1f, ;t'
The epi-hessian property (2.21) can therefore be written as

rim in" I@ + t€) - I@) - t€' 'a - +*e' ' He', > a.,gT :
€'*€

which is the meaning of (2.33). of course (2.33) implies (2.27) and consequently

by Proposition 2.5 that u must be a epi-gradient of / at c. The definition of fi,,
also asserts together with (2'35) that

(2.36) r,-.,li8 r$rw=!i."(e),
and if /i,,({) < m this implies the existence oI g eR and (1 * ( satisfying

t@ + t€t) -. I_@) - t€t .zt . U for r € (o, r)
it,
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(somer>0). Then

lf@ +t€,) - f(r))lr i €;. u + ltp for r e (0,r)

and accordingly

iimsup n f@+t€'.)-Ib) <(.u.
tio €'-€ t

where the left side i. /1(€) by the definition of first-order epi-differentiability. Thus

fL,"G) < { .u when fl',(O < ii. This property in combination with u being a

epi-gradient of / at z yields (2.32). D
The fact in Proposition 2.8 that u must be a epi-gradient leads us to the following

simplifi ed terminology.
DEFINITIoN 2.9. The function / will be called tuice epi-d,ifferentiable at r

(without mention of any particular vector a) it I is (once) epi-differentiable at c,
at least one epi-gradient exists, and relative to euery such eplgradient u one has /
twice epi-differentiable at r relative to u.

PRoPoSITIoN 2.10. Suppose that f is twice epi-differentioble at x. Let lc be

any C2 function. Then the function h: f * k is tutice epi-d,ifrerentiable at x. The
epi-gradients oth atr are the uectors of the lormu=u* V/c(r) suehthotu is a

epi-gradient of f at r, and for any such u one hos

R, T. ROCKAFELLAR

(2.37)

PRooF. Clearly

f(x + t€') - f(x) - t€' .u

(2.38)

where

lim
rl0

It is evident because of the strict convergence of the k quotient that equality is
preserved in (2.38) when one takes either "limsupinf" or "liminfinf" on both
sides of (2.38). This immediately gives the result. tr

To expiore comparisons with other derivative concepts, we need another defini
tion. which will anyway turn out to be of importance later in this paper.

DnrlNtrtox 2.11. Suppose that / is (first-order) epi-differentiable at r, and let

{ be a vector such that IrG) < m. If the difference quotients

h':.,(€): fi,,(€) + €.v2lc(r)€.

h(x +t(') - h(r) - t€' 'u
L+2

h(r + t(') - k(r) - t€' .V/c(c)
= (.v2k(3)€.

it,

(2.3e)

epi-converge as t | 0, then the limit function will be denoted bV /f(€,'), and the
value /i({.a) will be called the parabolic second deriaatiae of / at r relative to {
and 4. (Thus

(2.40) fiG,rt):,t*?tEri4" !t,,e,t(r'): timrljni{n t!,,e,t(n'),
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wheretheassumptionbehindthesymbolf,JG,,iisthatthetwosemi-Iimits''are
indeed equal.)

The paraboiic second derivative /i is closely relateQ to the- secold derivative of

e.o-i"i and Zowe 1ri-zoi. rire firJt derivative of those authgrs (in an auxil,iary

notation we shall 
"mpioy 

here in order to avoid confusion with the symbolism

already introduced) is

: . ^, .. f(r + t€) - f(x)
J"r(r = Ti8----- r(2.4r)

and their second derivative is

/"(€, a) : ljyot
f (r + t€ + it'il - /(r) - t/"(€)

t
(2.42)

(3.2)

The difference between I and /i is. of course, that i, is defined by pointwise

,onorrgrrg.rof the differerice q,-,oiilnt functions instead of epi-conleroencl'.a-n!the

same for /"((, ) versus fi(-,')'In consequence' the functions /" and /"(€'') are

not necessarily lower r.*i"o"ti"*us, and they do not have the "local uniformity"

properties of fl and fi(e ,').
The relationship uJt*een the parabolic derivatives .fi({,4) and the eplderiva-

tives /i,r(O is noi toially ciear fir general funcrions. but a kind of duality will be

demonstrated in Proposiiion 3.2 in the case of piecewise linear-quadratic functions

and more generally in Theorem 4'7' Such duality may be compared with results of

Chaney[12]andSeeger[15].lnalrycase,neithertheseauthors.norBen.Taland
Zowe have considered. as'here, funciions / that are extended-real-valued'

3. Piecewise linear-quadratic functions. A prerequisite to the study of

epi-derivatives in the.u"u of the essential objective f ('): s(r(t)) in (P)' which

is our real goai. is an understanding of such derivatives in the case of the proper

convex function g: Rd - R, which is piecewise linear-quadratic in the sense of as

in Definition 1.1. We turn to this next'
In analyzing g the ordinary subgradient set of convex analysis' given by

(3.1) ils(u) : {y e Rdlg(u') Z s(u) * a'(u'- u) for all 3r'}'

Titt t"tp us out. We shall also flnd useful the normal cones to D: domg in the

sense of convex analYsis:

/{o(u) :{aeR'lg'(u'-u) S0forall u'eD}' u€D'

The polar of Np(u) is the tangent cone To@)'which has a particularly simple

form because D is polyhedral, namely

To(u)- {.,r € Rdlfr > 0 with ul tu€ D for all t e (0't)i'

Both Np(u) and ?p(u) are polyhedral [22, $19]'

Note that since g'is continuous relaiive to b uy nature oJ the definition of it

being piecewise linear-quadratic, it is a closedp'op"' convex function on Rd'

THEoREMS.L.AtanyueD,thefunctiongistwiceepi-difierentiable.Its
first epi-d,eriuatiue lunctioi g'u is erpressed simply by taking limits along rays:



R. T. ROCKAF'ELLAR

The function g'u is conver and piecewise linear with efectiue domain

(3.3) domsf '- To(u).

It is the support tunction ol 7g(u), which is a nonempty"coh,uec polyhedron and
coincides with the set of all epi-gradients y of g at u.

For any y e \g(u) the second epi-deriuatiue function O',|,u is likewise erpressed
simply by taking limits along rays:

(3.4) tt t \ ,. g(V*tu)-g(u)-tu.y
9",y\n)=ttTU

The function O',j,n is conaez and piecewise linear-quodratic with effectiie domain

(3.5) domg'l,o - {,^, € R"lsl,(") - e.y): Nas(,)(y).

Thus for y e }g(u) one has

(3.6) oi*@)= {},", 
,i: 

ialil:)i,
where lor o e domgl one defines

(r.21 1u(u)=tgffi.*
| = 0 if g is actualty piecewise linearl.

PRoor. Consider a representation of g as in Definition I.l in terms of polyhedral
sets Dr(7 e J). Fix u e D and let

(3.8) J" = {j e Jlu e D1\.

For each 1 € J, write

(3.9) s(u') = c@) + Qt .(u'- u) + i@' - u).e1fu' - u) for u' e D,

for some qi € Ro and symmetric Q, e Rd"d. Because Di is polyhedral. there exists
for each j e J" an r, > 0 such that [D, -u]n €iB =To@)n€jB. In particular
one has

(3.10) Tn("|= U. To,(u).
ItJu

Let e = min{erl7 E J"). Then for arbitrary p > 0 one has for all u e pB and
t e (0,e1fi:

/? rr\ gfu+tu)-g(u) _ Iq,.u+ltw.Qp wheno €Tp,(u). ie Ju.
t -l* wheno.rtTo@).

Let puy(u) and o.,,1(u.r) denote the left and right sides of (3.f f ), respectively; (3.11)
asserts Lhat gu.l and o,,,1 agree on the ball pB when t € (0, elfl. The epi-limit of
ou,t (as t | 0) obviously exists and equals

(g.12) a(c,,) - [ q, '' when r''r 1!o,,(7)' i € Ju'
"'-l* wheno4To'@).
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since o,,1 differs from a only by a function on To(u) that converges to zero uniformly
on bounded sets as t J 0. The epi-limit of.tp,,,, (as t j 0) therefore exists and equals
o too. This means that gtu exists and | 

.

(3.13) gL@): o(w) for all ar.

In particular then by formuia (3.1f ), g', \s a piecewise linear firnction, and by (3.12)
its vaiues satisfy (3.2). Thus 9i agrees with the ordinary directional derivative
function for g at u, which therefdre must be a polyhedral convex function, in par-
ticular closed. In general the closure oflthe ordinary.directional derivative function
is conjugate to the indicator of dg(u) [22, Theorem 23.2], and polyhedral convexity
is preserved under conjugacy 122. Theorem 19.2]. Therefore dg(u) is a nonempty
polyhedral convex set whose support function (the conjugate of its indicator) is 91.
Then too do(u) consists of the vectors y satisfying C'"@) > w . y f.or ali or, which
are by definition the epi-gradients of g at u.

Passing now to second-order concerns. we transform (3.11) into the assertion
that

s(u + tu) - s@) - tu 'a

(3.14) it,
: [ , .Q1a +21q, - y]..ult when u.r €Tst,(u), j € Ju,

I oc when ur (To(u),
this being true for all u.r € pB when t € (0, ple). Let

(3.15) rl,(u) : {''Qt" Yh""-? 
€Tp,(u)' i e Ju'

' Im lf.uSTp(u),

and observe that

$(u)=+nff foraua,€Rd(3.16)

by virtue of (3.11)-(3.13). Denote the difference quotient in (3.14) by p,,,v,r(r^r).
Recalling that (3.12) gives gi(o). we can write (3.14) as

(3.17) pu*,t(u) = rlt(r) + zlg'"(u) - u . yll t,

an equation that holds for all o € pB as long as t € (0,e/p). Under the assumption
that g is a epi-gradient of g at U,we have SL@) - ur. y > 0 for all c,.r, and the right
side of (3.17) therefore eplconverges as t I 0 to

,,o(,,) = {9", iilii:l _i, ill:
It follows that gu.r,2 epi-converges likewise to ry's as t ] 0. Thus 911,, exists and
equals ry'0. We can therefore write

(3.18) 9'1,,o=r!*6x,
where 66 is the indicator of K : {wlg'"(w) - e.V).The fact already established,
nameiy thaf gtu is the support function )Cfu), i.e. satisfies

s'.@) = sup u'y"
u'€Eg(u)



and consequently that K is a polyhedral convex cone. becaus e 7g'(u) is a polyhedral
convex set. When (3.18) is combined with (3.16) and (3.19). we obtain justification
for the claim that (3.5) holds, and that on the set in (3.5), formuia {3.4) holds.

The fact that gi.o is piecewise linear-quadratic foliows from (3.18) and (3.15)
because the cones To,(u) and K'are polyhedral: one can write

doms'j,u: U to nTp,(u)).
JEJ;

The convexity of gi.rfollows from its definition as an epi-limit of firnctioffi gu,y,tt
each of which is convex: in the context of epigraphs one observes that the limit of
convex sets 51 as t | 0, if it exists, must be convex. tr

Next on our agenda are some results about the parabolic second derivative in
Definition 2.11 and its relationship to second-order epi-derivatives of g.

PRopostttoN 3.2. For any u e D and u € Tp(u) the parabolic second-
deriuatiue function gi@,.) erists and has the lormula

si@,e) : si@.0)+ (s{,)i"(e ) fo, o// e € Rd,

90

impiies

(3.1e)

(3.20)

with

(3.21)

(3.23)

(3.24)

(3.25)

so that

(3.26)

el(r,0) : ljrT
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i.

6 : {ulu. (A' -y) < 0 foratl y' e Ag@)} : Naorut(a)

g(u+ta)-s@)-tsl@)
it,

Furthermore, g',|(u,E) is a proper conues piecewise linear function of g with effectiue
domain equal to

(3.22) T'p(u,w) :: ltangent cone to Tp(u) at ul.

PnOor. We continue with the notation and setting that led in the proof of the
preceding theorem to (3.11): we have for any p ) 0 that

s(u * tu + it's) : s(u) * q,(ta + it' ) + l(tu + it's) . Qi(t, + it"e)
when r,.r + ltg eTo,fu) fl pB and t e (0,eld.

Here o is fixed as well as u. and our concern is centered on behavior with respect
to g. Accordingly we take p > lc.rl and define

Ju., : {j e J"la €Ty4(u)},

Tb,@,ur) : [tangent cone toTp,(u) at r,,,],

T'p(u.w): U T'p,(u,u).
j€J"''

The cone Tb,(u,c.,.r) agrees with ftrr(u) - 0, on some neighborhood of 0 because

To,(u) is polyhedral. The condition u + ltg e T7t,(u) t\ pB in (3.23) is therefore
equivalent to |t9 aTb,(u,u.') n (pB - c,,,) when ltgl is smaller than some 6i ) 0.

Take 6 € (0, 1) to be smaller than these 6r's and e. Then as long as p > 
lc^.,1 +1, say,
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the assumptions in (3.23) will be satisfied,w\en'g € Tb,@,u)npB and t € (0,''61fi:

one will have

(3.27) s(u+ta+it's):s@)ltQt' (cu+ |te) +tt2(a+lts):Q1@ + ite)
when g € Tb,fu,w) n pB and i € (O,6 l P)

as iong as p is suficiently high. Remembering at the same time that

(3.28) g',(w) : g, 'a for anY i € Ju,'

we can write (3.27) in terms of the difference quotients

(3.2e)

as saying that the formula
(3.30)

,-, - lQ:'9* (o+|tE) 'Q,@ +ite) wheng €T'p,(u'w), jeJu,''
t/z.o.r\\,- 

\* wheng (.T,p(u,w),

holdswhen e epB andt€ (0,61d, aslongasp> lr,rl+1. Thefunctionof ggiven

by the right side of (3.30) obviously epi-converges to

(3.31) t s, 's * a 'Qru when g eT'o,(u,a), j e Ju,r,

I oc when Tf,(u. ir).

and therefore Uu.uJ epi-converges to this too as t J 0. Thus gfl(ar,'), which is

defined to be rhe epi-limit of $u,.,t, exists and is given as a function of 9 by (3.31).

From the formula for 9l derived in the proof of Theorem 3.1 as (3'19), applied in

turn to the function gl in place of 9 so as to get (SL)',,*e obtain

t^, \, (.\ - lqi'E when 9 e Tl,(u'u), j €Ju,r,
(9zio\S,- \* wheng (f,r-(u,u).(3.32)

From (3.28) and (3.29), on the other hand, we have

(3.33)

when (3.32) and (3.33) are plugged into formula (3.30) for g"1@,E), the result is

-(3.20)-(3.21). 
Finally we observe that the functions lfiv,g),1 &re convex because g

is convex. and their epilimit S',1@,') is therefore convex also. The formula (3.21)

obtained f.or g'l(a,g) shows that this expression is piecewise linear in I with effective

domain T'r{u.u). tr
To help in stating the next result. we introduce some minor notation and termi

noiogy.
DertNtrtox 3'3 For a mapping 0: [0'r) - Rd' we shall write

(3.34) rilo; = lts 
ryI,99 {if the limit exlsts),

(3.35) a1o1 : t',t @#4 (if the limit exists).

If at least the first limit exists, we shall call d a first-ord,er orc emanating from the

point u : d(0). If both limits exist, 0 is a second-order arc from z : d(0). The

notation (3.44) and (3.35) will also be used for real-valued functions of t. despite

the one-sided nature of the limits.

,. sfu -t tw) - s@) - t%(") 
= u .Q ju for any j € Ju,..'JI8----;t,
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PRoposttIoN 3.4 . For any u € D. the ubctor pairs (u,g) such that gtj{w,g) <
& &re the ones lor which there erists a beeond-order arc 0: [0, r) - D (in the sense
ol Def.nition 3.3) with

(3.36) d(0) : u. 6101 : r, a1o; : t.

For any such arc 0 the function 1(t): g(0(t)) satisfies

(3.37) 1(0) = e(u), i(0) = sL@), i(0) : si@,e).

Pnoor. Any second-order arc d: [0,i] * Rn satisfying (3.36) can be expressed
by

(3.38)

namely by taking

(3.3e)

0(t) : u*tu + it's, with limfr = f,

0(t)-0(0)-t0'(0)
sr- rt2

The anaiysis in the proof of Proposition 3.2 shows that if 0(t) e D for t € [0, r)
then i,.r e Tofu) and g € T'o@,u) (the tangent cone to Tp(u) at t.r), which are
the conditions in Proposition 3.2 for having S',:@.e) ( oc. Conversely. if o; and 9

satisfy these conditions. then for I sufficiently small one has w + |tE € ?p(u) and
then also. for still smaller I if necessary. one has u* t(u -l ite) e D. Thus by taking
0(t): u+t'r+|t2g over a small enough interval [0,r) ope will have a second-order
arc satisfuing (3.36) with d(l) € D. This proves our first assertion.

In turning to the second assertion we use the fact developed in the proof of
Theorem 3.1 that (3.11) holds when c,.r € pB and t € (0, ef p),except we apply it to
tit = tt + |t91 in place of c,r, obtaining

[r(t) - 1!)]lt: 9j .ut + ltu1.Qtu, when c,.r1 e Tyt,(u), j e J,.
The iimit of this expression \s qi . w for any j € Ju, which we know from the proof
of Proposition 3.1 to be 9i(cr). Thus 1(0) = sL@).

The argument proceeds next with the formulas (3,27)-(3.28) in the proof of
Proposition 3.2, which we apply to gs instead of 9. (The formula holds when t is
sufrciently small.) This yields

1(t)-1(0) -li(O)
---ll- = Qt 'e + Qt'QlQt when 9 eT'p,(u,u). j e Ju.,'

The limit this time as t | 0 is

f(0) : qi .e t aQiu for any j € Ju,, with 9 €T'p,(u,w)

and this expression has been shown in Proposition 3.2 to be gf(r,r,9). o
Proposition 3.4 tells us in particular that for piecewise linear-quadratic convex

functions the parabolic second derivative in Definition 2.11 agrees with the second
derivative of Ben-Tal and Zowe defined by (2.42): S',:(a,e) : 0u(u,9) (and also

CL@) = S"(u,)). (But for more general functions they need not agree.)
The final result of this section reveals a duality between second-order epi-deriva-

tives and parabolic second derivatives that will lead later (Theorem 4.7) to a deeper
one for our general functions /.
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PRoPosITIoN 3.5 . Let u € D and w fTe@), and define

(3.40) |s(u)' = la e 7s(u\lw e Naot"l(s))' 
:

: {y e As@)ls'"(w) - u'a),

Then

(3.41) sup {s',:,o@) + r's} - s':,(u,i for all c € Rd.

aeOg(u)'

and duatly ,

(3.42),,gj,{ol1(,.e) -s r} = { 
t'!'*' wienv e 

.,s(u)''

PRoor. Let

(3.43) p(il: { n;"t'l for E € Bs(u)"'
Y\et- | -oo otherwise.

Our claim is that rp and the function Si@,') are conjugate to each other' Theorem

3.1 tells us in fact that gi,r(u.,) is constant in y € 7g(u)r, the constant having the

value 1,(cr) there. as aenn6a by (3.7). This value is the same re g',i(u,0) by (3'21)

in Proposition 3.2. Thus

(3.44) p: -c * 6c where c = g',J(t,O) and G :}g(u),'

on the other hand the function (s). i" Proposition 3.2 is by Theorem 3.1 the

support function of \g,,(u), and since gl is in turn by Theorem 3.1 the support

function of dg(u), the set ASL@) is just 0S@),. Thus (3.20).can be written as

(3.45) S':,(",') : c * 6E where c = g'J(u,0) and G -- }g(u).'

The conjugacy between (3.44) and (3.45) is apparent. tr

4. Constraint qualification and the general derivative formulas. We

pass now to the setiing of problem (P) itself, where l@) : s(r'(s)) fot a C2

mapping F: R' * Rd and a piecewise linear-quadratic proper convex function

g: Rd * n. tne effective domain of / is

(4.1) C:{re R'lF(e) eD},

where D is the effective domain of g and is a nonempty convex polyhedron in Rd'

The condition F(r) € D represents the constraint system in (P). so it will come

as no surprise that a constraint qualification must be introduced before we can

proceed.
The d x n matrix of first derivatives of F at z will be denoted by V.F(o); the

rows of V,lr(z) are thus the gradients of the components of the vector F(r). For

any g € R'one then has (In writing yvF(r) we think of y as a row vector.) For

any first-order arc

(4.3) ry': [0,r) - fin with r/(0) : ", 'r(0) = €

in the sense of Definition 3.3, one has

(4.4) d(0) = p1t; and O1o; : Vf(r)€ for 0: [0,r) - f(/(t))'
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The d x nx n array of second derivatives df F at z will be denoted by V2F'(c).
This three-dimensional array can be viewed as a stack of n x n hessian matrices.
one for each of the d components of the vector F'(z)., In parallel $/ith (4.2) we write

(4.5) V21gf;1r; : gV2F(r) for the function yF: x t- a.F(r).
Thus yV2F(c) denotes for us the n x n matrix obtained by multiplying each of
the Hessians in the stack V2F(r).by the corresponding scalar component of y and
adding them up. On the other hand we introduce the notation €V2l. (r)( to denote
the vector in Rd obtained by multiplyin! each of the-hessians both on the left and
the right by { (as a row vector and as 5 column vector, respectively). Then

(4.6) y . ((Yz F(r)€) = € .yvz r@)9.

(Inasrnuch as g € Rd but € € R'. this notation ought not to lead to any confusion.)
When u in (4.3) is a second-order arc with d(0) - 4. then 0 in $.$ is a second-
order arc with

(4.7) o1o; : €v2r(u)€ +YF(x)r1.

DnrtNttIoN 4.1. At a point x € C \n (a.1) the basic constraint qualificatfon will
be said to hold if the only vector A e No(F(z)) satisf"ving yY F(x) = 0 is y : 0.

ExAMPLE 4.2. Let F and D have the form specified in Example 1.2. which
corresponds to the constraint system

r e X (poiyhedron) and l(r) € /, (closed interval) for i = I,.. .,ffi.

The basic constraint qualification at a point r satisfying this system is then the
following: the only vector a : (Ar,. . . ,A^) satisfying

(4.8) e, € Ar, U,@)) for i : r,...,ffiand - iu"v fnk)€ N26(c)
i=l

is y : (0....,0). To elucidate this further. let us note that if we write

(4.e) I, = lcn ,c!) for i = L,. .. ,m

(a slight abuse of notation when cf : oo or c.- : -oo. since 1, c R). we have

f,(x)eI,+cn Sf,@)Sci
and
(4.10)

if /r(r) = ,! > c, (active inequality constraint).
if /,(r) - "f, < cn+ (active inequality constraint),
if fi@) - cf, = cn+ (eQuality constraint),
if c, < fi(") < cf (inactive inequality constraint).

The first conditions in (a.8) are therefore just sign requirements on y in the classical
mode. If c € intX (as when X : R', for instance), the normal cone Nx(r)
reduces to the vector 0. and (4.8) turns into the well known dual statement of the
Mangasarian-Fromovitz constraint qualification [40].

In Example 1.3, where the objective of Example 1.2 is replaced by a function of
mo< type. the basic constraint qualification reduces to exactly the same condition

( [0.*)
N,"(/,(r)) : 

| [_X.3,
t [0,0]
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as just stated.. In Examples 1.4-L7 the basie ,coirstraint qualification trivializes and

is always satisfied.
A second-order generalization of the classical theorem on the Tepresentation of

tangent cones to sets defined by smooth constraints can now be stbted. In proving

this theorem we rely at a cruciai point on an argument of Ben-Tal [41] concern-

ing the existence of second-order arcs under the Mangasarian-Fromovitz constraint

quaiification

THE6REM 4.3. Suppose that the baoic constraint qualification is satisfied at

the point r e C . Then iie uectors ( sucht that there.eiists a first-order arc

(4.11) 4t: lO.r) - 6 with rlt(o) = z, Ty'(O) : (,

are precisely the ones such that

(4.12) V.F(z)( e Tp(r(z)).

Moreouer the uector pairs ((,r) such that there ecists a second-ord,er arc

(4.13) (t: l0.r) - Q with $(0): r. r/(0) : {' ry'(0) = 4,

are precisely the ones such that

(4.r4) VF(z){ e 
"o(F(e)) 

and €V2r(t)€ +Y F(x)n eT'p(F(t),Vr(r)€)'

whereTI(F(r), vr(r){) denotes the tangent cone to the coneTp(F(x)) ot VF(r){.

PRooF. An arc r/: [0. r) * C has associated with it an arc 0: [0, r) - D' where

0(t) : F.(rl)(t)). From the observations preceding Definition 4.1, we know that

(4.15) d(0) : p1r;, a1o; : r(c)(, O1o; = €Vr(r)€ +YF(t)rt.

Propositions 3.2 and 3.4 convey the information that an arc d: [0.r) * D has

ri(o) e 
"D(d(0)) 

ana a(o) erb{o(0).0(o)). rle necessity of (4.12) in the first-order

case is therefore clear, regardless of any constraint qualification. and likewise for

(4.14) in the second-order case.

The sufficiency of (4.12) and (4.14) in the respective cases will be established by

-converting our situation to the ciassical one. where our basic constraint qualification

can be identified with the Mangasarian-Fromovitz constraint qualification' Let

u: F(r).The set D being a convex polyhedron. it coincides in some neighborhood

u with the set u*Te@). The poiyhedrai cone To@) can be represented in the

form

(4.16) To@) : {ula,'c,.r ( 0 for f : 1....'q: ax' u) :0 for i : q*1""'r}

for some choice of vectors o, € f!d. and then from some e ) 0 we will have

Dfi(u+ €B) - {u'lo"' u' 1 a;for i = 1..-.,q; a,' tr' =4, for i : q* 1,"',r}'

where a1 : ai "tt. This implies that for some 6 ) 0 we will have

(4.17)'C 
il 6+6.8) :{/ll,(x') (0for i:l'...,q; f,(t'):0for i:Q* 1"",r},

where

(4.18) h@') : ai' F(xt) - ai for i = 1' "' , f'
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in selecting the representation (4.16), it is always possible to choose the o;'s in
such a way that .. :.

(4.re) g::tlI 
all::,;)l^')with), 

) 0rori : 1,''''"qandDi=,Anon

To see this, let M : Nofu) n (-No(u)) (a subspace of Rd) and let K : No(u) n
Mt (u polyhedral cone with l( n (-K) : {0}). Then

(4.20) Np(u) :K+M aud Tn(u)-KoflML,
where Ko is the polar of K. Let &t,.,,,4o be nonzerovectors that generate K as

the set of all their nonnegative linear combinations, and let eq1-Lt....o' be a basis
for M. Then (a.19) holds as desired, and the representation (4.f6) is obtained from
the seeond part of (4.18).

With this refinement we have in (4.17)-(a.18) a local constraint representation of
C around r in terms of C2 constraint functions /, that are all active at z and satisfy,
we claim, the dual statement of the Mangasarian-Fromovitz constraint qualification:

(4.21)
the only vector l: ()r,...,)") satisfying,\r > 0 for i = 1,...,8
md Dl=, );Vl(r) : 0 is .\ : (0,...,0).

Indeed, the gradients in (4.18) are

(4.22) Yl,@) =atYF(r) for i = 1,...,r
so that if .l were a vector satisfying the conditions in (4.19) the vector A : Di=r \pt
would belong to Ap(r) (because ai e No(r) for i = 1,...,Q and ta; € Np(r) for
i : Q * 1,...,r) and give us

yYF(x)= f ,l,onv F(x) :; 
^,o;1'j 

: o.
r-l r=l

Then g : 0 by our basic constraint qualification, and this implies )r : 0 for
i = 1,. .. , r by (4.19).

The original statement of the Mangasarian-Fromovitz constraint qualification.
equivalent to the property we have just derived, is that the gradients Vfi(c) for
i = Q* 1,...,r are iinearly independent and there exists at least one vector { with
(4.23)
Yf,(c) €<O fori= L....,Q and 9f;(t) '€:O fori: q*!,...,r.

It is well known (see [ O]) that when this holds there exists for every vector (
satisfying
(4.24)

Vf;(r) '(<0 fori: I,...,e
a first-order arc

and VI;@)'€ =0 f.or i : q1.L,...,r,

(4.25) ry': [0,rs) - fiz with r/(0) : x, rh(Q) = €,

(4.26) /,(/(t))S0 fori: r,...,Q, Iik!{t))=O forf: q*r,...,r.
In view of (a.15) we have 1r(t) eC for t sufficiently small, say for t € [0,r). In our
local representation the condition VF(r){ eTyt(F(x)) is equivalent to

or.VF(c)€ < 0 fori : 1,...,Q, and a;.VF(r){:Q for f : q*1,'..,r,
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which is the same as (a.2a) by $.22).It follows therefore that if (a.12) is satisfied,
an arc ry' as in (4.11) does exist. Sufficiency in the first-order case is thereby
demonstrated.

For the second-order case we make use of the fact established by Ben-Tal

[41, proof of Theorem 3.1]: if ( and g satisfy @.2 ) and'

e.2r e.v,r,(,)€+yr,(r)rt{ :S if ;tit;ti, l,n":*t"*er'(") 
€<0'

andifthegradientsYf{x)fori:g+l...j,rarelinearJyindependent,thenthere
exists a second-order arc

(4.28) Ty': 
[0, rs) * ffia with r/(0) = ,, iQ) : 1, $(OS : rt

and such that (4.26) holds. (The argument of Ben-Tal essentially uses the implicit
function theorem to change the coordinate system and convert the equality con-

straints into simple linear constraints where everything is easy.) In preparation for
applying this fact we need to see what condition (4.14) means in our local represen-

tation. The first part of ( .l ) has already been translated into (4.24). Observing
from (4.16) that the tangent cone Tf (u. u) to Tp(u) at u is expressed by

T'e@,u): iSla..( S 0 for i = l,....Qhaving Q1 'Q:0,
and o; . f : 0 for i = g* 1....,r).

we see that the second condition in (4.14) is

a" tqy2F(r)€ + Vr(e)qr { :3 i:: ; = },* i, L:':: "' 
vr(z)( < 0,

But

ai. l1Y2 F(z)( + Vr(o)al : €' V2(aiF)(r)( + V(a;.F)(c)a
: €.v2 fi{I)€ + v/,(c)€.

Therefore (a.la) is equivalent to the combination of (4.24) and

(4.2g) €.v/.(r)( +Y f,(z\n { s 9 for i : L' "''Q with v/'(r)€ = 0'
, , 'rrr*r,r | _0 fori=q*1,....r.

What we must do to establish the sufficiency in the second-order part of the theorem

is to show that for any pair ((,4) satisfying (a.2a) and (a.29) there is an arc ry'

satisfying (a.28) and (4.26).

Consider therefore a pair (f,4) satisfying (4.24) and (4.29). For k = 1,2'"' let

qk = rt + Olk)€, where ( is a vecror satisfying (4.23), which we have shown to

exist because of the constraint qualification. The pair (€,ttt) then satisfies (a.2a)

and (4.27), so by the cited result of Ben-Tal there exists

{x: l},rx) - C with l*(0) = r, dr(0) : 6, $n(0): r14.

Then for all ,t

,.*/t(t) -r-, and li tb*ft)-r-t€'
rio t -\ '#-7t, :nr'
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Lowering the values 16 consecutively if necdssary, we can arrange that ri ) 12 )
. . . > 0 ira lrlrn(r)-r]ft aine.. from (by at most I/k on (0, 

"r), blr\)-n-teiltt'
differs from 4p by at most llk on (0, "t)' Define

$(t) : $r(t) on lrx+r,rx) for k = 1,2, . .:, and tf(O) : c'

Then r/(t) € D for all I e [0,rr), and one has

,. ttt(t) - rtiilt ---:- : (:rl0 ,t
,,* d(t) :1 - t{ : lim nk = n.
tJO ;tt /c*e

Thus r/ is a second-order arc satisfying (4.13), which is what we had to come up

with. tr
The proof of Theorem 4.3 reveals another fact about first-order properties of

the set C. Recall that C is said to be tangentially regular if the Clarke tan-

gent cone ?6(e) coincides with the contingent cone Kc@) to C at r (see Clarke

P, p. 55]). This is a property of considerable interest in nonsmooth analysis' be-

cause it is known to imply for instance that

Kc@): tt* 
"i11, 

Kc@').
z,€C

PRopostrroN 4.4 . Suppose that the basic constraint qualification is satisfied

ot the point r e C. Then C is tangentially regular at rwith its Clarke tangent cone

expressed bg

(4.30) T6@): {€ e R"lvF(e)€ e To@@))1.

PROOF. As in the proof of Theorem 4.3, give C a local representation at z of

the form (4.17)-(4.18) in such a way that the Mangasarian-Fromovitz constraint

qualification is satisfied and the set on the right side of (a.30) is characterized by

the linear system (4.24). Use the linear independence of the equality constraint

gradients V/,(r), r = Q* 1,...,m, to pass by way of the implicit function theorem

to a lower dimensional lormat in which C is identified with a set represented by

inequality constraints only. still with the Mangasarian-Fromovitz constraint qual-

ification satisfied. For this set one has tangential regularity. as proved by Clarke

[2, Corollary 2 to Theorem 2. .7]. The tangential reguiarity of C then follows, the

cone To(r) being given by @.2$ and therefore by (a'33). tr
The next theorem is our main result on epi-derivatives of first and second order.

It demonstrates their existence for a large and significant class of functions'

THEOREM 4.5. Letr be apoint of c: dom f where the bosic constraint quali-

fication is satisfied. Then f is twice epi-differentiobte ot x and, also subdifierentiolly

regular at s in the sense of Ctarke. The first epi-deriuatiue lunction is giuen by

(4.31) fLG) = ei,"1(VF(c)€),

(4.32) dom l', = {{lvr(r) ( eTe(F(x))i : 
"c(t)'

It is the su.pport lunction ol the generalized subgrad'ient set

(4.33) 0f (r) = as@@))vF(r): {yYF(x)ly e agg@))\,
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which is therelore the same as the set of all epi-gradients of I at u this eet is a

nonernpty conuer polyhed,ron. The second epi-deriaatiie funetion relatiue to any

u e 0f (x) is giuen by

(4.34) fi.,G)= {3,"i!YiEL?,;:Mv€y.(c.v 
[(v'?r(r){] tt ( ez"(;t)'

(4.35) dom'/;, : E,(c),

(4.36) Yu(x) :: {a e Agf(x))lsVr(c) = p1

is a nonempty. bound,ed, potyhedrat conuet s'et,

(4.82) E'(c) := Nart'i(') = i€14(€) : u'€)
: {€loi1"y(Vr(r)€) : u' €\

is a polyhedral conuer cone. and,1r1")(VF(z)€) is the ezpression defi,ned from g by

(3.7).

PROOF. Our first task is to show that the difference quotient functions

(4.38) p,,te):lf@+t€) - f(r)llt = [e(F(z+t€)) - s(F(t))]lt

eplconverge as t i 0 to the function given by the right side of (4.31), or in other

words to show that

(4.39) lim inf 9".t(€')) s'r@) (vr(r){)'
€'- €

(4.40) limsup rilf, r",r(€') 5 s'"1"y(Vr{€))'

Let u = F(c). We can write

p,.r(€') : lgfu * tut) - s@)llt for u' : [r' (r + t(') - F(t)]lt

and note that r,;' - VF(r){ when (' - {. This makes it clear that

lim inf p".r(€') > lim inf gfu + t'r'-) - g(u)

€'-€ tr'*VF(s)€

since g is known to be epi-differentiable at u (Theorem 3.1), the limit on the right

is si(Vr(u)(). This proves (4'39).

To obtain the complementary inequality (4.40), it is enough to consider a ( with

gl(vr(r)€) < m, i.e. € belonfu,,g ro the ser on the right side of (4.32). For any

,".f, g iheie exists by Theorem 4.3 a first-order arc tp as in (4.11). Then

(4.41) limsuprilj,r",r(€') I limsup g".t(€t)

where {s = hr(t) - rb$)llt so that

e,.t(€)= [/(d(t)) - f$h@)llt: [e(d(t)) - g(0(o))]lt
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for d(t) : FAh(t)), d(t) e C for t e [0, r).,.Then

iim p.,.,(€,) : gi(o)id(0)) : l'FG) (vr(d€)
tlo

by Proposition 3.4. This and (a.al) yieid (4.40) and finish the justification of (a.31)

(and therefore (4.32)).
The subdifferentiai regularity of / at r will be tackled next. The function 9. being

piecewise linear-quadratic. is iocaily Lipschitzian relative to its effective domain C.

Let p,) 0 be a Lipschitz constant that works for a neighborhood of u,: l7(z), and

define

(4.42) i@'):.p$^{o(tu) + rtlu'- ul}. where ! > pr'

This formuia says that I is the infimal convolute of 9 and !l 'l: since I is convex.

so is | 122. Theorem 5.4]. Because of the choice of ! one will have

(4.43) g(u') : g(u') for all u' in some neighborhood of u

(namely any neighborhood where pr acts as a Lipschitz constant). In particular ! is

finite at certain points. but also 0(u') S g(u)+ itlu'-ul ( oo for all u/ from (4'42).

so by convexity 9 is finite everywhere on Rd 122. Theorem 7.4]. Hence ! is localiy
Lipschitzian [22. Theoerm 10.4] and everywhere subdifferentially regular (Clarke

[3e]).
In vierv of (4.a3) we have

(4.44) Ik') :9(r'(r')) * 69(r') for ail r' near r.

The function f (r') : j(F(z')) is subdifferentially regu.lar, because composition
of a subdifferentially regular locally Lipschitzian function with a smooth mapping
preserves subdifferential regularity (Clarke [39]). The set C is tangentially regular
at r by Proposition 4.4. The indicator function 66: is thus subdifferentially regular
at c. Appiying Rockat'ellar 142. Corollary 2 of Theorem 2] we are able to conclude

that the sum function in {a.a\ is subdifferentialll' regular at r and consequentially
that / has this asserted propert-v.

Because / is subdifferentially regular. fl is the support function of the set d/(z)
(Proposition 2.6). But g'rt"l i. the support function of 0g(F(r)) (Theorem 3.1). so

formula (-{.31) says
(4.45)

f',G) = sup v 'vF(r){ : sup (vVr(z)) 6 : , -sup u' {'
aeag(F@)) veas(F(z)) u€de(r(c))vF(o)

Thus /j is the support function ag(r(r))vr(c). The latter is nonempty convex

polyhedron. because it is the image under the linear transformation y r-t yVF(r)
of the set ag@@)). which is a nonempty convex polyhedron by Theorem 3.1. (The

image of a convex polyhedron under a linear transformation is a convex polyhedron

[22, Theorem 19.3].) In particular dg(F(c))vF(r) is a closed convex set. The

correspondence between closed convex sets and their support functions is one-to-

one, so the fact that f', is the support function of both d/(r) and ag(.F(r))V.F(c)
implies these two sets are the same, as ciaimed in (a.33).

We pass now to the second-order formula in the theorem, where { is fixed as well

as s. Let u: VF(c)€. Select u e0f(x): dS(F(s))VF(c) and consider Y"(r) as
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in (a.36). It must be shown that the differen.ee Quotient functions

,, ,?\ - t.\ I@+t€)- f(")-tt..a'_ s(F(r +t€)) - s@@))-tu.€
\+.4oj pr,u,t\et=@:--

epfconverge at t | 0 to the function given by the right side of (4.34). For this it
wiil suffice by the formulas for g'J,r@) in Theorem 3.1 that we prove two facts: first
that

(4.47)

lim inf e,.u.t(€') ) lim infrl0 tlO
€'-€ u'-u

and second that for any { in the set Eo(r),

(4.48) 3g eY,(r), t"".,t3 
ri!f, r",,,,(€') S oi,o@) + t . [€v2r(")€] < -.

The inclusion c in (4.35) is already known to hold from Proposition 2.8, so, this
second property will also serve to establish the equality in (a.35). (For ( such

that /;(€) > {. t' one has for all a € Yu that gtrr,r(V.F(z)€) > g. VF(r)€ and

consequently 9'|6,u(YF(c)€) : oo by Theorem 3.1. Then the ma>rimum in (4.3a)

is attained trivially at every y eY"(z).)
We begin with the verification of (a.a7). For any g eY"(x) we can write gVF (z)

in place of u in (4.46). Then if we take ,';t :lF(r+t€')- F(r)llt, which converges

to r,.r = Vf.(z)€ as t I 0 and (' - (, we have

g".u.t(€') : g(u + tut) - g(u) - ty 'w'

+

Lt,
@F)(x + t€') - (yr)(") - tV(y.F)(r) '('

it,
where the second term converges as t I 0 and €'+ € to

e .v2(aF)(r)€ = y.[€V2r(')€].
It follows that

s(u + tw') - sfu) - ty 'u'
+ s . [€v2r(r)€],Lt2

where the "liminf'on the right is O'.,J,o@) since gl,, exists by Theorem 3.1. Thus
(4.46) is true.

The argument that (4.48) holds. under the assumption that fL{€) = u ' {, is

more involved. Let us observe that the set Yr(r) is a (nonempty) polyhedron by

its definition in (4.36), inasmuch as the set dg(F(c)) : }g(u) is a polyhedron
(Theorem 3.1). It is bounded (hence compact), because if it were not it would have

a recession vector n * 0:

(4.4e) g + tq eY"(r) for any V eh@) and t > 0

[22, Theorem 8.41. such a vector 4 would belong to the recession cone of dg(u) and

satisfy qVF(x):0. To say that 4 belongs to the recession cone of dg(u) means

that for any g € dg(u) one has y * q e }g(u) for all t ) 0, so that

g(u') >s(u) + (a +tri' fu' - u) for all I ) 0, u' € Rd.
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Then in particular one must have 4 '(r' * u) < 0 for ail u' e D : domg, so

that 4 € ,Vo(u). Thus if Yr(r) were net bounded there would exist a nonzero
vector q e No@(r)) such that 4VF(c) = 0, which would be sontrary to the basic
constraint qualifi cation

For any y eY,(r) the assumption { € !,(c) implies /;(€) : y'VF(r)(: a.u).
The supremum in (4.45), which equals gL@), must therefore be attained at y: one
has gi(cr) : A.u and in consequence y belongs to the set dg(u), defined in (3.40).
which is a convex polyhedron included in 0g(u). This allows us to write

(4.50) Yo(r) : {a e t},s(u).lyVF(r) = si.

For each y e }g(u). we have oi*@) < oo by formula (3.5) in Theorem 3.1: in fact
the function U * O',,i,u@) is constant on }g(u), with the constant being given the
value 1.,(r,,,) defined by (3.7). Denote this constant for the moment by 1 and let
o - (Y2F(r)€. With (4.50) being the same as (4.36) we can express the right side
of (4.34) as

(4.51) sup {l + y.o), where G = }g(u),.
veG

yVF(c)=o

This maximum can be viewed as the optimal value in a certain linear programming
probiem, since dg(u). is polyhedral. Hence it is attained by some 9. By duality
theory (either linear programming duality in terms of a constraint representation
for G or the more general polyhedral convex programming duality in 122, Theorem
29.2]) there is a Kuhn-T\rcker multiplier vector for the constraint yYF(x): o in
(4.51). i.e. a vector 4 such that

(4.52) sup {t+a 'o}: sup{'l +a'o +[vvr(r) -u|'rt].yeu geu
yY F (x)=u

The left side of (4.52) is attained at the vector A eY"(x) and equals

(4.53) ^t + g . o : 1u(a)+ t . [€V2r(r)€] < *.
The right side can be worked out from formula (3.41) of Proposition 3.5 as
(4.54)

sup {s',:,(") + y .l(Y2F(")€ + v F(t)rtl - u-q]; : s',1(''),) - u .n
v€ds\u1.

for 9: €V2r(r)€ +YF(r)q.
Because of the equality between (a.53) and (4.54), our task in demonstrating (4.48)
is reduced now to the verification that

(4.55) limsup -\nf -p.,o,t(€') < g'|,@,s) - u 'rt
ti0 c'-c

for u = F(x).u = VF(r)€, f = €V2F'(s)€+Vr'(r)q, when Sij(,r,f) < oo.

The condition g',j(u,f) < oo has been shown in Proposition 3.2 to mean a, €
To(u), g eT'p(u,or). Applying Theorem 4.3 we get the existence of a second-order
arc ry' as in (4.13) whose correspondingarc 0: [0,r) - D given by A(t) = F(Ib$))
satisfies 

d(o) : u. d1o; : ,, aloy = ,.
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Then for f(r) = f kb@) = g(r(u(t))) we have by Proposition 3.4 that ^/(0) =
s(u)=f(x), . :

i(0) :sL@)=ob1,y(r(z)€) =/,i(€) =€'u,' '

and i(0) = S',:(u,q). It follows that

f kb@) - I@) - t€'ug;\u,S):1lffif

This in turn yields in terms of (1 = bb|) -?r(O)l/t that

si",,il %
where

ri*#='ix:{Ii-p:'irl)-'t'
r to ;t' t to it'

Thus

S',:(r,q) - u 'tl = h;;1.r",,,t(€t), where 
115 

€t = €'

This gives us 4.55 and finishes the proof of the theorem' o

Some complementary results will now be obtained for the parabolic second-

derivative in Definition 2.12.

THEOREM 4.6. At any pointz eC = dom f where the basic constraint qual-

ification is satisfied, and lor any ( € Ts(x) : dom/i Ql. $.32)), the parabolic

second-d,eriuatiue function f:(€,') is well defined ond giaen by

(4.56) fi\,ri : e'i1,1(V^F(r)(, €V2F(c)€ + Vr(r)a) lor otl q'

One has fiG,d < 6 il and only if there enists a second'order arc

(4.57) 4t: l0,r) - Q unth $(0) = r, ,h(O) = C, lit}) = rt

(cl. Theorem 4.3), in which case the function f(t) = f (!@) satisfies

(4.58) 1(0) = /(r), i(0) : fl(€), 'i'(0) = il(€',t)'

Moreouer fti\,ri as a function of 11 is proper, conues and pieceuise linear'

.%#)



I@+t€+Lt'd- fk)-tfLG)
Trtl*\'t t :

The first question is whether gs,eJ epi-converges to something as , l 0. In terms

of u = F(i). u = VF(s)€ and f - {V2F(c){*V.F(c)4, we have IlJe) = sL@)bv
Theorem 4.5 and can express

q(u +- tu,-r *t'er@)) - s(u) - tgL@)
(4.60) gx.,t',t\4)

, \ F(z+t(+ lt2q) - F(c)-tvr(r)€
st(4) = ,

lj15 sr(z') : s

n'-n

11[ r',e,,(n') > lim ltt
q' -q S'-S

104
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with

(4.61)

(4.62)

Therefore

iim

where the limit on the right is 9f (c.r,g) because s':@,.) exists by Proposition 3'2.

The compiementary inequalitY

(4.63) limsup inf 9".q.1Q1') < slj(r,()
tLo q''n

must be argued next". Only the case where Si@,g) < oo needs to be addressed'

In this case rll e Tofu) and g € Tp(u,u) by Proposition 3.2, so the condition in

Theorem 4.3 is satisfied and there exists an arc ry' as in (4.57). Then d(l) : r(tr(t))
is a second-order arc

0: l0,r) * P with d(0) =,. B(O) = ', d(0) = f

and 1(t) : g(0(t)). Proposition 3.4 asserts that

(4.64) 1(0) = e(u). i(0) = s',@),

If we substitute
1bU) - r/(0)- tlr(o) -nt=_____{_

for 4 in (4.60)-(4.61) we get

r(o) = gi@,s).

d(t)-r-t€
lt2

r(t)-r(0)-ti(O)
?r,€,tl4t) = --- tV-

1

It follows that

limsup \nI pr,e.t(n') < Iimsup 94e,t0lt)
tlo q' 14 t io

:6* r(t) - r(o)- ti(o) 
= .i(o).

;io itt '
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This gives (4.63) by the last equation in (a.6a)'and brings us to the point where

only the final assertion of the ih"or"* is-lpfi to prove. In fact {i"@,').is-known
from Proposition 3.2 to be a proper convex' piecewise..linear funetion with effective

domaini;1u,,1,sothisassertionisimmediatefrom(4.56).tr
A funJamental duality between second-order epi-derivatives and parabolic

second-order derivatives exists for functions / of the class we have been treating,

as can now be stated.

THEOREM 4.7. At any point r e c 
= 

dom/ where the basic constraint qual-

ification is satisfi'ed, and fii ony ( € fci") - doT fL, one hos in terms of the

set

af @)e - iu € af @)lf "G) = €'u)
- {o € A/(t)l{ € N6y1"1(t'')i

the lollowing duatity between the two kinds of second deriuatiues:

fi4,ri : sup {/i,,(€) + u'r* for atl4 € Rd'
oe? | (a) a

"pd^{#(€, 
ri - u n} = { 

fL"G)'!riof,lo'ld''

Moreouer the supremum and the infimum are attained when finite'

PROOT. Recall that /j is the support function of |f(r) (Theorem 4.5), and

gft,l is the support f,rnciion of dg(;' (r)) (Theorem 3.1). In view of the formulas

roiTi *a d/(c) in (4.3r) and (4.33), one has.u.€ aI(* if q'd only if there exists

" 
u..rot y e bg\f1"1)vr(")e satisfying gYF(a) = u' The right side of (4'66) can

be written using (4.34) as

sup {o'i1,1,r(vF(r)€)+s'[6v'?F(r){+vr(r)a]i'
v€80( F(c))e 

'.,',,
But this is gilr,l(VF(r){, fl2r'(c)( +YF(r)a) by Proposition 3.5 and equals

fi6,rt) by Theorem 4.6. Equation (a.66) is therefore correct. It can be interpreted

;;;yi;g irrat 1i(6,.) is the convex function conjugate to the funcrion

(4.65)

(4.66)

(4.67)

(4.6e)

(4.68) h{v) = - li..G) * 661i";. (u).

We shall argue that h is a closed convex function and therefore is in turn the

conjugare ol li4,.). i.e. (a.67) holds. certainly the indicator term in (4.68) is a

closed convex function, because 0f (r)e is a closed convex set. we have observed in

the second-order part of the prooioi Th.ot.* 4.5 that the formula (4'6) for Ii,,G)
takes the alternative form (4.51), namely

il.,G): sup {t+y '[€V2r'(t)€]]' where G:0g(F(t))vrt'te'
!eG

YVF(c)=u

The constant 1 does not depend on u. Thus for a certain polyhedral convex function

k one has

-l:,"(€) = inf{/c(u)lyVF(c) = u} when u e 0f (r)a'



106 R. T. ROCKAFELLAR

Let h6(u) denote the infimum in this formula. The function h6 is the so-called
image of k under the linear transformbtion g F+ yVF(r). and it inherits from
k the property of polyhedral convexity [22. Corollary 19.3:1i:and in particular
closedness. i.e. lower semicontinuity. We may conclude from 14.69) that ff,r({) is

lower semicontinuous as a function of u e0f (z)6. Hence h is closed, as we needed

to show.
It has been verified that the functions fiG.) and h are conjugate to each other.

Also, though, -fi(€,') is polyhedral convex by Theorem 4.6. This property is pre-

served under conjugation. so h is polyhedral convex..The supremum in (4.66) and

the infimum in (4.67) both involve polyhedral functions. therefore. and are attained
when finite. D

The duaiity in Theorem 4.7 can be compared with a similar duality discovered by
Chaney [f2] for finite functions / of the type (1.15) in Example 1.7. For functions
of this type the parabolic second derivatives fi(€,rt) given by (4.56) coincide with
the ones of Ben-Tal and Zowe [17] (except for a factor of ]). as can readily be
verified. Chaney demonstrates in effect in [12. Theorem 4.4] that in terms of such

a formula for f'l((,g) the expression infn6s"{fiG,q)-u' 4} gives his own second-

order derivative (except for a factor of |): Iet us denote it by ii,,(€): Iike fl,,({),
this is oo when u $ 0f (r)E. It foliows then from Theorem 4.7 that f'J,": f'j., for
this class of functions.

We shail not go into the details of Chaney's derivative here. but we note that it
is applicable to other functions beyond the ones in Example 1.7 and even beyond
the class f(r): S(.F(z)) chosen in the present paper. Whether it coincides with
our derivative in other situations is an open question. Chaney's derivative is in any
case only defined for finite functions of certain kinds. whereas ours allows / to be
extended-real-valued as a way of incorporating constraints.

The following consequence of Theorem 4.7 deserves to be recorded.

CoRol,l.env 4.8. II the basic constraint qualification is satisfi.ed at the point
z€C then f'Jc,rl) is lower semicontinuous jointly in ( and.q relatiue toT6@)x
Rr.

PRoor. Since d/(r) is a convex polyhedron. there are only finitely many sets

|F(r)a that arise as { varies over ?6'(r). the ciosures of the faces of 0 f(r). Denote
the faces of 0f (r)byVr. k e K (afinite indexset). These are relatively open convex
sets (cf. [22. 918]). and the normal cone N611r1(t') is the same for all o e Vr; denote
it by lVr. Then

(4.70) U "* = {61/;(€) < m} - rc(r).
keK

In (a.66) we have

(4'7r) fi\,,t): €lP {/J.,(€) + o ' q} when € € Nt'

Since fl'r({) is lower semicontinuous in { (by virtue of the definition of f'1,, as

an epi-limit), the supremum in (4.71) gives a lower semicontinuous function of
({,rl) e N; x Rn. Since K is a finite index set and (a.70) holds, this implies

fiG,rt) is lower semicontinuous on ?6(c) x R".
A final observation is that the basic constraint qualification is a stable condition

that yields more than just properties at the particular r where it is assumed.
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PRopostrIoN 4'9' If the basic constraint Qualification holds at a point s'€C'
then it also holds at aII points t' e C ii .some neighborhood of x- The preceding

theorems are thus applicable at such points z' as welL . t.

PRooF. If this were false. we could find a sequence of points rv e c (u =
1,2.. . .) and vectors A" e Np(F(r")) with y"VF(r") :0' such that x'4 ' r'' The

vectors y" couid be normaiized so that la"l:1' and by passing to a subsequence

if necessary they could be assumed to converge to some y with lgl' : f. Then

yYF(r):0 by the continuity of VF. and g e Ap(I'(r)) by the closedness of the

muitifunctiorytt + Np(u) : 06o(u) (since D is convo<) [22' Theorem 24'4]' The

basic constraint qualification at r would then be violated by g' tr
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