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Abstract. Basic duaiity theory associates primal and dual problems of optimization with any
saddlepoint problem for a convex- concave function on a product of convex seis. When the function
is at most quadratic and the sets are polyhedral, a natural class of optimizatioo problems is obtained
that appropriaiely generalizes traditional quadratic programming. This paper discusses the theory
ol such problems, ihe kinds of situatioos where they arise, and the current approaches to solving
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1. Introduction.

The customary description of a quadratic programming problem is ihai ii consists of minimizing a

quadratic convex function subject to linear constraints, or in other words, an expression p' r + | z'P z

(where P is symmetric and positive semidefinite) over a coovex polyhedron. There are two flaws

in such a definiiion, however. First, the dual of such a problem will usually not belong to the same

class. Thus ihe adoption of this defrnition poses a serious conceptual and practical obstacle to the

use of dualiiy-based methods and results. Second, the possibility of peualty terms of a piecewise

Iinear or quadratic nature is excluded.

What should really be identified as quadratic programming, at least in a generalized sense, is

the widest class of problems whose opiimality condiiions can be written down in terms of linear

complementarity. Such probiems can be solved, at least in principle, by some kind of ffnitely

terminating algorithm that pivots in a system of linear equations. Ii is not hard to see whai the

appropriate class is, afier briefly considering ihe relaiionship between optimality conditions and

duality.

Let us recall thai saddlep oiats and minimax problems provide a foundation for all discussion of

optimality and dualiiy in convex programming. Given a pair of convex sets X c lR" ancl I c R.M

and an expression ft{c, y) thatisconvexinr €Xforeachg€Y,andalsoconcaYeingl€Yfor
each r € X, one also has an associated prirnol problem

minimize /(e) over all r € X,

where /(z) : suP ,t(", Y),
YeY

and an associated dual problem

maximize g(g) over all g e Y,

(a)
where g(s)= JClo(r,o).

In ihese problems / is convex and g is concave' so thai (P) and (Q) are convex programming

problems in the general sense of convex analysis (.f. 11]). However, J and g might be extended-

real-valued, since the "sup" and "inf" defining them could be infinite.

The set of feasjb.le solutions to (P) is deffned not io be X, necessarily but rather the set of all

o € X such that /(r) < co. Similarly, the set of feasible solutions to (Q) is defined to be ihe set

of y €Y such ihai g(y) > -*. The nature of these sets, and the possible expressions for / and g

relative to them, must be investigated in particular cases. Whatever the details, it is always true

that the optimal values in the two problems satisfy

inf (p) ) sup(e),

and thai in the cases where actually inf(P) : sup(Q), a pair (z,y) is a saddle point of k(r,g)

relative to z € X and y €. Y \t and only if 7 is an opiimal solution to (P) and / is an optimal

solution to (Q). A Iull discussion of this kind of duality is provided in [2]-

(P)



The traditional dualiiy scheme in linear programming serves as a good illustration. Suppose

X:R'l .Y:R?.and

(1)

Then

k(z,y) -c.x*b-n-V.Ax.

( u., if. At ) c,l(r)=t_ ,ter*",
so that (P) amounts to minimizing b. z subject to z ) 0 and ,4c ) c. At the same time

(".a if.A*y<b,sty]:t_co if.A.sgb

(where,4.* is the transpose of ,4), so (9) amounts to ma-ximizing c.z subject io g ) 0 and,4*y ( b.

In the general case the condition ihat (t,t) be a saddlepoint of fr relative to X x lt serves

as a joini optimality condition for (P) and (Q), as already mentioned. Ii ft is diferentiable on a

neighborhood of X x Y, as will be assumed for simplicity, ihis condition can be written as

v,k(r,g) € lrx(t) and,Yok(t.,y) e Nv(T),

where lft(r) and l[y(g) are normal cones to X and )/ as defined in convex analysis. When can

(2) be viewed as a "complemeniarity problem" in 7 and d In the strict sense ihis is irue only

when X = Ri and f - RT, in which case the normal cone relations describe "complementary

slackness". As a matter of faci, though, whenever X and Y arc polyh,edral ii is fair to say that

one has a complementarity problem, because the introduciion of explicii constraint represeniations

for X and Y (involving finitely many linear inequaliiies) and corresponding vectors of Lagrange

multipliers leads immediaiely in that case to a re-expression of (2) along the siricter lines. Of

course, the complementarity problem 1s linear if and only if the veciors V rk(i,g) and Vr,t(a g)

depend in an affine way on 7 and /, and this is obviously equivalent to ,k being a function that is

{no worse than) quadratic.

We are led by this rouie to a very natural class of problems.

Deflnition 1. Problems (,4) and (Q) are problems of generalized linear-quadtatic programming

if X and Y are polyhedral convex sets, and k(r,g) \s quadratic in (4, g), convex iu I and concave

in gr:

(3) k(y,r) -c.n+f,z.Cr*b.y-iu.By-y'Ar,
where C and B are symmetric and positive semidefinite.

What exactly is the nature of (P) and (Q) in the case described in ihis definition, and does it
justify the name? In answering this question, some notation is helpful. Let us associate with the

polyhedral sets Y and matrlx B the expression

pv,a(s) : sup {s' s - lu' nu}
YeY



and likewise with X and C the expression

The two problems

(P)

Px,c(r) - sup,{r' c - lz' C t}.
2€x

can then be written as follows,

minimize c. z + f;n. C r * py,6(b - Ar) over t € X,

@) maximize b.v + ia. By - px,c(A* gr - c) over gr e Y.

Here py,p and, py,s are convex functions that could have *co as a value. We have proved in general

in f3l ihat each ofthese functions in piecewise lineat-quadratic in the sense ihai its efeciive domain

can be expressed as a union of finitely many polyhedral convex sets, relative to each of which the

function value is given by a quadratic (or linear) formula. Thm (P) consists of minimizing a

piecewise linear-quadratic convex function over a certain convex polyhedron, whereas (Q) consists

of maximizing a piecewise linear-quadratic concave function over a convex polyhedron.

Linear programming is the case where k(r,g) has the form (1) and X - Ri, f - R?,
as already observed. General piecewise linear programmirg is obtained by keeping this form for

&(c, y) bui allowing X and, Y to be arbitrary convex polyhedra. Many other cases, corresponding

for instance to having X and Y be boxes (preducts of iniervals) and C and B be diagonal, are

discussed in detail in 13]. In particular, an interesting correspondence between bounded 'variables

and penalty terms is revealed. In all cases, however, the following duality theorem-as strong as

the familiar one for linear programming-applies.

Theorem 7. If either (P ) or P) has finite optimal value, or it both (P ) and (Q) have optimal

solutions, then both have optimal solutions, and min(P) - max(Q).

A proof of this theorem has been given in 14].



2. Solution Methods and Applications.

Any generalized linear-quadratic programming problem can be reformulaied as a quadratic pro-

gramming problem in the iraditional sense and solved ihai way, if it is not too large. The re-

formulation tends to introduce numerical instabilities, however, as well as destroy the symmetry

between primal and dual.

For problem (P) as in Definition 1, the dual constraint representation

Y-{yeF'^lDa<d}

leads, for instance, to (P) being'reformulated as the problem of minimizing

c. n-t f,n.Cr * u.d + f,u 
. Bu

over all (r, a, u) ihat saiisfy

re X,u )0, and At * Bv I D+ u.=b.

(The optimality conditions for this encompass the ones for (P).)

Here u is a sort of vecior of "dummy variables" that causes some trouble. If (t, u, t, solves the

reformulated problem, then 7 solves (P); a Lagrange multiplier vector for the constraint Ar *
Bu * D*u - b gives at the same time an opiimal solution to (Q). The difrculty is thai in this

case any triple (2, u, r'r) wiih B-u' - 87 also solves the reformulated problem, so there is an

inherent degeneracy or indeterminancy (as long as B is not positive definite). In fact (z,4gr)

solves the reformulated problem in particular, so the constrainis -Do ( d couid be added wiihout

changing the optimal lalue; but this only serves to narrow the choice of 7 and is no real remedy.

The indeterminancy in t can cause failure in computating solutions even when one is using an

otherwise reliable and highly refined code for quadratic programming, as has been learned from

hard experience.

A direct approach to solving (P) and (Q) wiihoui reformulation oughi io be possible. For

the case where the sets X and Y are boxes and the matrices B and C arc diagonal (which is less

of a restriction in practice ihan ii may seem), the problems fall in the category of "monotropic

programming", as developed in l5]. This case has been invesiigated by J. Sun in his recent

dissertation [O]. Sun has found a meihod that combines the "active sei" approach to quadratic

programming with subgradient iechniques of convex analysis so as to solve (P) and (Q) in ffnitely

many steps. This method has many appealing features and ceriainly illustrates that the subject

of quadratic programming is by no means finished!

Obviously, one cannot expect to solve any generalized linear-quadratic programming problem

by a finitely terminaiing algorithm if the number of variables is very large. Yet it is just in

connection with such large-scale problems that ihis class of problems takes on a special appeal.

A prime moiivating example occurs in two-stage siochasiic programming. There it is valuable

io set up modeis thai can be viewed as generalized linear-quadratic programming where the dual



of very high dimension, but the primal vector e is still low dimensional.
a discussion of such stochastic programming problems; see [a] and [Z].optimal conirol l3l and its discretizaiion; there both c and y are high

The beauty of rarge-scale rinear-quadraiic programming problems along such rines is thatihey can be reduced to solving a sequence of smalr-scare problems of the same sori. one suchtechnique, introduced in [a] and now under sharp investigation, is calred the finite generationmethod' It focuses on solving "approximaie" subproblems (p,) and (er) tuat correspond.torestricting &(e,9) from x x y to ( co X") x ( co y'), where x, and rzl are finite subsets of xand Y, and "co" denotes convex hu'. (The superscrip t u = 7,2,... counts ihe iterations of theprocedure.)

vector gr belongs to a space
There is no space here for
Another example occurs in
dimensional.

The dimensionality of. (p,) and (e')
rather than on the spaces Rt and R- in
representation of apoint t€ co Xv as

depends only on the number of points in Xu and y, 
,

which these points are given. To see this, consider the

n!
wiihfl>0,!Cr*r,

't=1

nv
, -l€rri

,t=1

and similarly the represeDtation of a poini g € co yu as

r'4)

(s)

(Here xl for & = L,,. . ., n, are the poinis that make up X,, while ar1 for (.: 1, . .. , mv ane thepoints that make up )'"') The crucial observation is that when (4) and (s) are substiiuted intothe expression (S) for ,t(r, g), one obtains another quadratic form

k'(€,,1) == c, .€*!€.c"€*b, .q _ f,n.B,n _q, .A,€,

with exp/icit coefficients- problems (p') and. (g") correspond to this form reraiive to { € soz and
4 € s^", the unit simplexes of dimensions nu and m, . Thus they are generalized linear-quadraticprogramming problems of dirnensions nu and m,, respectively.

Techniques such as have already been described in this section could be used iherefore tosolve (P") and (Q") as long as n' and nz'are kept relaiively small. The quesiion then is howto pass from xu and IZ" to sets x"*r and I/"+r, within this rimitation, and be assured thatfrom the sequence of saddrepoints (7,y-u) generated by the method one w r be able to construct
"approximaie" sorutions to ihe original problems (,a) and (a). Tne answer, as it has emerged sofar' seems to involve taking advantage of separate decomposabiliiy properties of ,t(r, y).

Suppose it is possible in a practicar sense to solve for fixed z, the quadratic programming
problem

mu n1t)

u -lntu', with 42 ) 0,Dnz = t.l=t t=t

(6) ma-ximize A(2", 3r) over all e € -lf.



I

f

(7)

and likewise to solve for ffxed / the quadraiic program problem

minimize ft(r, y') over all a € X.

This can be true despite the poientially large dimensions oI X and I if X and Y are boxes and
ft(z,y) is separable in z and separable in y (but noi jointly). The optimal value in (6) is the
primal objective mlue /(7) in (P), and in calculating it one obtains a certain nerv poiut A' € Y .

Likervise, the opiimal value in (7) is the objective .rai,:ue g(g") in (Q"), and in calculating it one

obtai-ns a new point t" €. X.
The difference e" = !(7) - g(f ) is a measure of how close to optimality f and { are.

(They come within ez of giving the optimal values in (P') and (Q,), because l(7') > min(P) -
ma-..(Q) >- g(9").) The new points r" and. y' are obvious candidates lor use along with 7u ar,.d, /
in forming Xu+r and Yu+r.

There are too many details to enter inio here. A considerable discussion in the case of two-
stage stochastic programming is given in [a]. Let it suffice to say that this is now alr active new

area of research in which we may soon see progress towards the solution of large-scale problems

that until aow have been beyond our capability.
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