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Abstract. Basic duality theory associates primal and dual problems of optimization with any
saddlepoint problem for a convex- concave function on a product of convex sets. When the function
13 at most quadratic and the sets are polyhedral, a natural class of optimization problems is obtained
that appropriately generalizes traditional quadratic programming. This paper discusses the theory
of such problems, the kinds of situations where they arise, and the current approaches to solving

them.
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1. Introduction.

The customary description of a quadratic programming problem is that it consists of minimizing a
quadratic convex function subject to linear constraints, or in other words, an expression p-z—e—%z-Pz
(where P is symmetric and positive semidefinite) over a convex polyhedron. There are two flaws
in such a definition, however. First, the dual of such a problem will usually not belong to the same
class. Thus the adoption of this definition poses a serious conceptual and practical obstacle to the
use of duality-based methods and results. Second, the possibility of penalty terms of a piecewise
linear or quadratic nature is excluded. '

What should really be identified as quadratic programming, at least in a generalized sense, 1s
the widest class of problems whose optimality conditions can be written down in terms of linear
complementarity. Such problems can be solved, at least in principle, by some kind of finitely
terminating algorithm that pivots in a system of linear equations. It is not hard to see what the
appropriate class is, after briefly considering the relationship between optimality conditions and
duality.

Let us recall that saddlepoints and minimax problems provide a foundation for all discussion of
optimality and duality in convex programming. Given a pair of convex sets X CR" and ¥ C RM
and an expression k(z,y) that is convex in z € X for each y € ¥, and also concave in y € ¥ for

each z € X, one also has an associated prémal problem

minimize f(z) over all z € X,
(%) where f(z) = sup k(z,y),
yEeY

and an associated dual problem

maximize g(y) over all y € Y,
(Q) .
= inf" & ;
where g(y) Jof (z,y)
In these problems f is convex and g is concave, so that (P) and (Q) are convex programming
problems in the general sense of convex analysis (cf. [1]). However, f and g might be extended-
real-valued, since the “sup” and “inf” defining them could be infinite.
The set of feasible solutions to () is defined not to be X, necessarily, but rather the set of all
z € X such that f{z) < co. Similarly, the set of feasible solutions to (Q) is defined to be the set
of y € Y such that g(y) > —co. The nature of these sets, and the possible expressions for f and g
relative to them, must be investigated in particular cases. Whatever the details, it is always true

that the optimal values in the two problems satisfy
inf(P) > sup(Q),

and that in the cases where actually inf(P) = sup(Q), a pair (7,7) is a saddle point of E(z,y)
relative to z € X and y € YV if and only if 7 is an optimal solution to (P) and 7 is an optimal

solution to (Q). A full discussion of this kind of duality is provided in [2].



The traditional duality scheme in linear programming serves as a good illustration. Suppose
X =R}, Y=R], and

(1) k(z,y) =c-z+b-y—y- Az.

Then
{b-z if Az > ¢,

J(z) = o ifAzZe

so that {P) amounts to minimizing b z subject to 2 > 0 and Az > ¢. At the same time

_fery LAY <,

9W) =19 _o it Ay b
(where A* is the transpose of A), so (Q) amounts to maximizing ¢-z subject toy > 0 and A*y < b.
In the general case the condition that (Z,7) be a saddlepoint of k relative to X X ¥ serves
as a joint optimality condition for (P) and (@), as already mentioned. If k is differentiable on a

neighborhood of X X Y, as will be assumed for simplicity, this condition can be written as
——ka(ff, —) € Nx (f) and vyk(f, _) € Ny (?j),

where Nx(Z) and Ny (7) are normal cones to X and Y as defined in convex analysis. When can
(2) be viewed as a “complementarity problem” in 7 and 7? In the strict sense this is true only
when X = Rﬁ_ and ¥ = RY, in which case the normal cone relations describe “complementary
slackness”. As a matter of fact, though, whenever X and Y are polyhedral it is fair to say that
one has a complementarity problem, because the introduction of explicit constraint representations
for X and Y (involving finitely many linear inequalities) and corresponding vectors of Lagrange
multipliers leads immediately in that case to a re-expression of (2) along the stricter lines. Of
course, the complementarity problem is linear if and only if the vectors V k(Z,7) and V k(% 7)
depend in an affine way on 7 and 7, and this is obviously equivalent to & being a function that is
(no worse than) quadratic.
We are led by this route to a very natural class of problems.

Definition 1. Problems (P) and (Q) are problems of generalized linear-quadratic programming
if X and ¥ are polyhedral convex sets, and %(z, y) is quadratic in (z,y), convex in z and concave

in y:
(3) k(y,z)=c-z+32-Ca+b-y— gy -By—y- Az,

where C' and B are symmetric and positive semidefinite.

What exactly is the nature of () and (Q) in the case described in this definition, and does it
justify the name? In answering this question, some notation is helpful. Let us associate with the
polyhedral sets ¥ and matrix B the expression

pv.5(s) = sup {s-y — Ly - By}
yeY



and likewise with X and C the expression
px,c(r)=sup{r-z - ;z-Cz}.
zeX
The two problems can then be written as follows,

P minimize ¢+ 2 + 2z - Cz + py p(b — Az) over z € X,
2 1

(@) maximize b-y + 3y - By — px,c(A"y —c) over y € 7.

Here py p and px, ¢ are convex functions that could have +cc as a value. We have proved in general
in [3] that each of these functions in piecewise linear-quadratic in the sense that its effective domain
can be expressed as a union of finitely many polyhedral convex sets, relative to each of which the
function value is given by a quadratic (or linear) formula. Thus (P) consists of minimizing a
piecewise linear-quadratic convex function over a certain convex polyhedron, whereas { Q) consists
of maximizing a piecewise linear-quadratic concave function over a convex polyhedron.

Linear programming is the case where k(z,y) has the form (1) and X = R}, ¥ = R,
as already observed. General piecewise linear programming is obtained by keeping this form for
k(z,y) but allowing X and ¥ to be arbitrary convex polyhedra. Many other cases, corresponding
for instance to having X and ¥ be boxes (preducts of intervals) and C and B be diagonal, are
discussed in detail in [3]. In particular, an interesting correspondence between bounded variables
and penalty terms is revealed. In all cases, however, the following duality theorem-as strong as

the familiar one for linear programming-applies.

Theorem 1. If either (P) or (@) has finite optimal value, or if both (P) and (@) have optimal

solutions, then both have optimal solutions, and min(P) = max(Q).

A proof of this theorem has been given in [4].



2. Solution Methods and Applications.

Any generalized linear-quadratic programming problem can be reformulated as a quadratic pro-
gramming problem in the traditional sense and solved that way, if it is not too large. The re-
formulation tends to introduce numerical instabilities, however, as well as destroy the symmetry
between primal and dual.

For problem (P) as in Definition 1, the dual constraint representation
Y={yeR™|Dy<d}
leads, for instance, to (P) being reformulated as the problem of minimizing
c-z+iz-Cz+u-d+ iv-Bv
over all (z, u,v) that satisfy
z€X,u>0, and Az+ Bv+ D*u=b.

(The optimality conditions for this encompass the ones for (P).)

Here v is a sort of vector of “dummy variables” that causes some trouble. If (Z,%,7) solves the
reformulated problem, then % solves (P); a Lagrange multiplier vector for the constraint Az +
Bv + D*u = b gives at the same time an optimal solution to (Q). The difficulty is that in this
case any triple (Z,w,7') with BU' = B7 also solves the reformulated problem, so there is an
inherent degeneracy or indeterminancy (as long as B is not positive definite). In fact (Z,%,7)
solves the reformulated problem in particular, so the constraints Dv < d could be added without
changing the optimal value; but this only serves to narrow the choice of 7 and is no real remedy.
The indeterminancy in ¥ can cause failure in computating solutions even when one is using an
otherwise reliable and highly refined code for quadratic programming, as has been learned from
hard experience.

A direct approach to solving (P) and (@) without reformulation ought to be possible. For
the case where the sets X and Y are boxes and the matrices B and C are diagonal (which is less
of a restriction in practice than it may seem), the problems fall in the category of “monotropic
programming”, as developed in [5]. This case has been investigated by J. Sun in his recent
dissertation [6]. Sun has found a method that combines the “active set” approach to quadratic
programming with subgradient techniques of convex analysis so as to solve (P) and (Q) in finitely
many steps. This method has many appealing features and certainly illustrates that the subject
of quadratic programming is by no means finished!

Obviously, one cannot expect to solve any generalized linear-quadratic programming problem
by a finitely terminating algorithm if the number of variables is very large. Yet it is just In
connection with such large-scale problems that this class of problems takes on a special appeal.

A prime motivating example occurs in two-stage stochastic programming. There it is valuable

to set up models that can be viewed as generalized linear-quadratic programming where the dual



vector y belongs to a space of very high dimension, but the primal vector z is still low dimensional.
There is no space here for a discussion of such stochastic programming problems; see [4] and [7].
Another example oceurs in optimal control [3] and its discretization; there both z and y are high
dimensional.

The beauty of large-scale linear-quadratic programming problems along such lines is that
they can be reduced to solving a sequence of small-scale problems of the same sort. One such
technique, introduced in [4] and now under sharp investigation, is called the finite generation
method. It focuses on solving “approximate” subproblems (P¥) and (Q¥) that correspond’ to
restricting k(z, y) from X x ¥ to (co X¥) x (co Y¥), where X” and V* are finite subsets of X
and Y, and “co” denotes convex hull. (The superscript v = 1,2,... counts the iterations of the
procedure.) |

The dimensionality of (P¥) and (Q¥) depends only on the number of points in X¥ and YV,
rather than on the spaces R and R™ in which these points are given. To see this, consider the

representation of a point z € co X¥ as

v

n nu
(4) IZkaﬂﬁz with & ZO,ZSk =1,
R=s].

k=1

and similarly the representation of g point y € co YV as

v v

m m
(5) y= Z ney; with n, > 0, Zm 1§
=1 =1
(Here zy for k = 1,...,n" are the points that make up X”, while y/ for £ = 1,..., m" are the °

points that make up ¥Y'.) The crucial observation is that when (4) and (5) are substituted into

the expression (3) for k(z, ), one obtains another quadratic form
P(6n) =o' €4 10641 =y 5y g e

with explicit coefficients. Problems (P¥) and (Q) correspond to this form relative to § € Spv and
1 € Smy, the unit simplexes of dimensions n” and m”. Thus they are generalized linear-quadratic
programming problems of dimensions n” and m", respectively.

Techniques such as haye already been described in this section could be used therefore to
solve (P¥) and (Q¥) as long as n” and m¥ are kept relatively small. The question then is how
to pass from X” and Y to sets X**! and Y¥*+1 within this limitation, and be assured that
from the sequence of saddlepoints (Z“,7") generated by the method one will be able to construct
“approximate” solutions to the original problems (P) and (Q). The answer, as it has emerged so
far, seems to involve taking advantage of separate decomposability properties of k(z,y).

Suppose it is possible in a practical sense to solve for fixed Z¥ the quadratic programming

problem

(6) maximize k(Z”, y) over all z € X.



&

and likewise to solve for fixed 7” the quadratic program problem
(7) minimize k(z,7") over all z € X.

This can be true despite the potentially large dimensions of X and Y if X and ¥ are boxes and
k(z,y) is separable in z and separable in y (but not jointly). The optimal value in (6) is the
primal objective value f(z") in (P), and in calculating it one obtains a certain new point y* € Y.
Likewise, the optimal value in (7) is the objective value g(7*) in (@), and in calculating it one
obtains a new point z¥ € X.

The difference ¢¥ = f(7") — g(7”) is a measure of how close to optimality
(They come within e” of giving the optimal values in (P¥) and (Q¥), because f(z*) > min(P) =
max(Q) > g(7¥).) The new points z” and y” are obvious candidates for use along with Z¥ and 7*
in forming X¥*1 and Y¥+!,

There are too many details to enter into here. A considerable discussion in the case of two-

7¥ and 7¥ are.

stage stochastic programming is given in [4]. Let it suffice to say that this is now an active new
area of research in which we may soon see progress towards the solution of large-scale problems

that until now have been beyond our capability.
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