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LINEAR-QUADRATIC PROGRAMMING
AND OPTIMAL CONTROL*

R.T. ROCKAFELLARY

.batract. A generalized approach is taken to linear and quadratic programming in whih
di - s well as primal variables may be subjected to bounds, and constraints may b represented
. penalties. Corresponding problem maodels in optimal control related to continuous-lime
vmoaming are then set up and theorems on duality and the existence of solutions are derived,
C oo lity conditions are obtained in the form of a global saddle point property which decomposes
in .+~ instantaneous saddle point condition on the primal and dual control vectors at each time,

al +y; +ith an endpoint condition.
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1. Introduction. In finite-dimensional optimization a great importance is at-
tz i1 to problems of linear and quadratic programming. Such problems serve as
m i b natical models for a large number of applications. They are relatively casy Lo
w ¢ vrith and possess duality properties that yield valuable insights and are the basis
fu .1y special algorithms. They are useful in methods of solving more general prob-

le .. or instance, in connection with sequential approximation or direction-finding
g1 hitines. For such purposes they can be extended beyond traditional formula-
ti e -0 admit piecewise linear-quadratic objectives and penalty repiesentations of
¢ i ints, although this possibility has not yet fully been utilized.

sis on a Clincar-

« optimal control there has not been a comparable empha
@ ' atic” class of problems. The linear-quadratic regulator problem lits the picture

tc = e degree but is virtually unconstrained. The continuous-time linear program-
m i .roblems first introduced as “bottleneck” problems by Bellman [1] include certain
ty »++ of control problems with constraints on states and controls (possibly mixed),

In i« ey carry no provision for quadratic terms in the objective and are very narrow
in i hoar treatment of initial and terminal conditions. Continuous-time linear program-
m v problems do enjoy a strong duality theory, thanks to efforts of Tyndall 12], 3]
L¢ - 1son [4], Grinold [5], [6], Schecter (7], Reiland [8], Meidan and Perold [9], and oth-
ers. Continuous-time nonlinear programming has also been investigated, chiefly for
dv s ty; of. Hanson [10], Hanson and Mond [L1], Grinold [12], Farr and Hanson [13],
R % nd and Hanson (4], Reiland [15]. This nonlinear literature covers certain classes
of «++.mal control problems with quadratic terms, subject to the same lin:itations on
th - ceatment of initial and terminal states. However, the quadratic case his not been
w1 ked out to take advantage of its special nature, and, in any case, the results are
bi -=d on a Lagrange multiplier approach that does not yield even in finite dimensions
a tuality theory as broad and flexible as may currently be needed.

*Received by the editors December 16, 1985; accepted for publication (in revised form) June
24 . 986. This work was supported in part by a grant from the National Science Foundation at the
Un + . ity of Washington, Seattle.

* Department of Mathematics, University of Washington, Seattle, Washington Us195

781
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Ounr goal in this paper is to develop a theory of linear-quadratic programining-ty pe
problems specifically adapted to the optimal control setting and capable eventually of
being nsed in new computational schemes, as well as directly.

Some of the motivation comes from mathematical modeling.  Linear-quadratic
models do not appear to have been used so far to their full potential. An obstacle
may lie in the format in which linite-dimensional problems in linear programming and
quadratic programming are ordinarily presented. In this format it is hard to deal
with piecewise linear or piccewise quadratic functions, such as often are important
in penalty representations, except by reformulations that disrupt the fundamental
relationships, especially duality.

An alternative approach in finite dimensions, which we have followed recently
in work on algorithms in stochastic programming [16], [L7], [18], is to give primacy
to an underlying saddle point problem (minimax problem). Thus we think of finite-
dimensional linear-quadratic programming in a more general sense than usual as cor-
responding to finding a saddle point of a convex-concave quadratic (or linear) function
on a product of polyhedral convex sets. Any such saddle point problem generates a
primal problem of minimization and a dual problem of maximization. The classical
case of linear and quadratic programming duality is the one where the polyhedral
convex sets are orthants.

The problems in the general case could be reduced individually to the classical
case, but by working directly in the broader format one gains several advantages. The
most significant is the perception that bounds can reasonably be introduced for dual
variables as well as primal variables, and moreover that this amounts to passing from
exacl representations of certain constraints to penalty representations.

We begin in §2 and §3 by explaining this unconventional approach to finite-
dimensional lincar-quadratic programming and the kinds of problem forms it handles.
A particular aim is the elucidation of circumstances under which a model involving
bounds on both primal and dual variables is appropriate, at least for computation.
Then in §4 and §5 we introduce corresponding problems in optimal control, of a sort
we call intertemporal linear-quadratic programming. The main results are obtained in
§6. They consist of theorems on existence, duality, and the characterization of optimal
controls. They are tied to an infinite-dimensional saddle point representation in terms
of a convex-concave quadratic functional on a product of generalized polyhedral sets.

Our problems in optimal control have dynamics that are essentially linear, al-
though “polyhedral differential inclusions” are also encompassed by the formulation.
The expression of the objective and constraints involves, in general, terms that may
be piecewise linear-quadratic. To clarify the nature of such terms in this introduction
would take us too far. A brief description of one of the basic linear models covered
by our theory is feasible, however, and may help to put the approach and results in
perspective.

Over a fixed time interval |tg, {;] we consider a dynamical system
(1.1) (1) = A()z(t) + B(t)u(t) + b(t), z(to) = Beu + b,
where z(t) ¢ R™ is the state, u(t) € R¥ is the instantaneous control and u, € R*« is
an additional vector to be chosen, an “endpoint control.” The incorporation of such
a vector u, may seem odd relative to the customary patterns in control theory, but
it greatly aids in dualizing various conditions. Of course u, could be trivialized by
taking the dimension k. to be 0 (then z(fp) = b, in (1.1)). Another case to note is the
one of a free initial point: B, = I, b, = 0 (then z(ty) = u. in (1.1)). The subscript e
will consistently be used in our notation for elements connected with endpoints.
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Por the basic linear case in guestion, the problem we associate with the system
(', cakes the form

i
minimize / [pCt) - u(t)  clt) ()bt | pe - ue eoa(ty}]
Sg

subject to (1.1) with Cltar(t) + Dty = qlt), ult) =0,

Coaelle) F Batte 2 oy i, = ).

Ulseussion of the exact technical assumptions is postponed until §14. Observe,
bowovor, that the formulation allows for constraints only on the controls (rows of ('(1)
cnss ing of 0's), constraints only on the states (rows of D(1) consisting of 0's), and
rxec constraints. The endpoint conditions allow for any system of finitely many
L i:ea equations or inequalities to be imposed on the pair x(ty), x(t;) (as explained in
cetan in Examples 5.1 and 5.2 in §5).

Ui dualizing (P) we pass to the dynamical system
(1.2) y(t) = AT(Ey(t) + C (t)v(t) + e(t), w(t) = Cove + c,

viieray(t) € R is the state, o(t) € R®is the instantaneous control, and v, ¢ R is the
eaddpoint control; the asterisk = denotes the transpose of a matrix. The dual problem
cver he system (1.2) is

ity
maximize / [q(t) - o(t) — ble) - y(t)]dt 4 |q. - v, b, ylt)]

to
subject to (1.2) with B2 (6)y(t) + D (t)v(t) < plt). v(t) >0,

Uwy(fn] + [):I‘,‘ Doy i, > (),

Although (P ) and (@) have been written with inequality constraints only, there
i w0 diffieulty about extending the formulation to include equations in the manner
fzmyliar in linear programming. Thus, for example, the condition C({)z(t) + D(¢)u(t) >
n (P) can be converted to C(t)x(t) + D(t)u(t) = q(t) by dropping the condition
vit) >0 (21).

In contrast to (F) and (21) the continuous-time linear progranuing problems
iwentioned earlier take the primal form

oty
minimize / plt) - ult)dt
[}

¥
sihject 1o / K(t,r)u(r)dr + Dt u(t) = g(1), wl(t) -0,
Jto
cnd the dual form

1
maximize / qt) - olt)dt
S

o

it
subject to / Ko(r, t)e(r)dr + DT (e(t) < plt), vt} =4),
St

hete the matrix W(4,7) is some “kernel”™ with transpose K°(f, 7). These are not
weosarily problems of optimal control but become so in choosing

Kit,r) - c(OAMA " Bi7)
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with A(t) the fundamental matrix corresponding to the differential equation (1.1) (i.e.,
A(t)zg is the unique solution to £(t) = A(t)z(t), z(to) = zo), and setting

-t to
x(l) = .4{:!)/r A(r) 7 B(r)u(r)dr, y(t) = ﬂ'(t)'*/ A (r)C (r)v(r)dr.

Then one gets the case of (Py) and (@) where b(t) = 0, ¢(t) = 0, and all the e terms
trivialize: the primal has z{ty) = 0 but =(t;) free, whereas the dual has y(t;) = 0 but
y(t”) free.

In the work that has been done on special computational methods in continuous-
time linear programming, e.g. Perold [19], [20], Anstreicher [21], attention has typically
been limited further to the case where the kernel K is a constant matrix. In optimal
contral this corresponds not merely to having A(t), B{t) and C(t) constant, but A(t) =
0, a severe restriction.

Because of these distinctions and the desirability of being able to treat discrete-
time analogues under the same heading, we shall refer to (P;) and (Q,) as problems
of “intertemporal linear programming” (in continuous time) rather than “continuous-
time linear programming.”

The possiblity of mixed constraints on states and controls is important in accom-
modating many applications of an economic nature, involving planned activities with
cumulative effects. But it also puts problems like (P) and (21) beyond the range
of the Pontryagin maximum principle. Mixed constraints can be readily handled,
however, in the versions of optimal control and variational calculus that have been
developed over the years in the conceptual framework of convex analysis and, more
recently, nonsmooth analysis in the sense of Clarke [22].

The theory of convex problems of Bolza type, developed by the author in [23]-
[29], is specifically applicable to problems (P), (1) and their quadratic programming
counterparts after a transformation which expresses everything through the trajecto-
ries z and y, as outlined in [30]. By this route it would be possible, with a degree
of technical elaboration, to derive sharp duality theorems that characterize solutions
and the circumstances in which they exist. Full justice to constraints involving states
would, however, require us in the context of such duality to pass beyond the formu-
lation of our primal and dual problems in terms of control functions u and v to one
in which “impulse controls” may occur. An extension along those lines is indeed ap-
propriate, and for the basic linear programming case in (P ), (@), it has been carried
out by Murray [31] under a somewhat different choice of endpoint expressions.

For the present purpose we are able to postpone working with such an extension.
We follow a different path and sidestep the difficulties posed by state constraints
by appealing instead to alternative problem formulations where the constraints may
be enforced by linear or piecewise linear-quadratic penalty expressions. We argue
that as a practical matter of mathematical modeling and computation this is an often
reasonable tactic which can be served by a much simpler theory where solutions always
exist and strong duality always holds. The supporting results in finite-dimensional
linear-quadratic programming provided in §§2 and 3 are critical in understanding
this.

The saddle point representation furnished in §6 for the duality between our two
infinite-dimensional problems of intertemporal linear-quadratic programming is of a
kind not previously seen in optimal control. Moreover the representation has a sepa-
rate decomposition property in each argument that may open the way to new saddle
point techniques for computation such as extensions of the finite generation method
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d vise d by R.J.-B. Wets and the author in a similar setting in stochastic programming
[ 71 Decomposition of the intertemporal saddle point condition leads to a character-
i 2:11 of optimality in terms of a “instantancous” saddle point condition satistied at
e ot tane ¢ and an “endpoint” saddle point condition. This is a sort of “minimaximum
[ i1 3le” which has some precedent in continuous-time linear prograruming (Grinold
[ v 46]) and the theory of Bolza problems (Rockafellar [23, Thm. 8]) but is new in
t s Context of optimal control.

. Linear-quadratic programming in finite dimensions. The infinite-
d mersional control problems that are the subject of this paper, and our approach
t . tihom, will better be understood after a brief treatment of the formulation and
d-1:liy properties of finite-dimensional linear-quadratic programming problems in the
gonoalized sense, Such a treatment will also introduce facts and concepts that will
Lo weded in later sections.

A simple foundation for almost all kinds of duality theory in optimization starts
vitl a function J(u,v) on a product set I/ x V', where J is real-valued or possibly
e ¢t nded-real-valued. Regardless of the nature of J and the sets U and V' (as long as
tire latter are nonempty), there is an associated primal problem

(%) minimize f(u) over U where f(u) = sup J(u,v),
vel

ard 4 dual problem

(+'o) maximize g(v) over V. where g(v) = inffl J{u, v).

uel)
The relationship between these problems is tied to the saddle pomt, or minimaz prob-
lin for J on U x V, a saddle point being by definition a pair (u,7) & U x V' such
t 1at

(#1) J(w,v) > J(u,v) = J(i,v) forallueUwvel.

T e following facts are well known (cf. [32, Thin. 2], for example).

PROPOSITION 2.1. It is always true that inf(Fy) > sup(Qp). Furthermore a
§ v L, T) 18 6 saddlepoint of J on U x V of and only if @ solves (Ry), v solves (Qu),
(et cain(Py) = max(Qq).

ilere we use the notation that inf(Fy) is the optimal value in (F). namely the
i fiinam of f over 1. We allow ourselves to write min(Fy) in place of inf(Fy) 1f the
1 fimum is actually attained at some T. Similarly for sup{Qq), max( 2y}

By finite-dimensional (ptecewise) linear-quadratic programmang in the general
¢ 150 we shall mean the case of problems (F) and (2y) where U is a nonempty
¢ mvix polyhedron in a space R®, V is a nonempty convex polyhedron in space R¢,
aned J is a convex-concave function of the form

(22} Juwv)=p-utv-g+ %u o P %U'Ql.-‘ v D,

vihere pe RE g e R, P e RF¥F Qe R and D e REF with P and ) symmetric
tud positive semidefinite. When P = 0 and @ = 0, we speak of (piecewrse) linear
progrimming in the general sense.  This includes classical linear programming, of
¢oura2 (cf. Example 3.1 below).

t1 the linear-quadratic programming case the objective functions in (7)) and (2q)
t +ko the form

(4.3} flu) =p-uwt du-Pui pyglyg - Du),
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(2.4) g(v) =g v~ 3v-Qv - pyp(D'v —p),

where

(2.5) pvo(s) = sup{s v - tv Qu},
veV

(2.6) pu.p(r) = sup{r-u - ju- Pu}.
uel/

When P = 0 and @ = 0, the functions py g and py p reduce to the support functions

(2.7) oy(s) =sups- v, oy(r) =supr-u.
veV uell
The specific nature of these various expressions will be explored in the examples in
§3. The central fact is that strong duality always holds for such problems.
THEOREM 2.2. In the case where (Fy) and (Qq) are finite-dimensional linear-
quadratic programming problems in the general sense just described, one has

oo > min(Fy) = max(Qq) > oo,

unless the optimal values inf(Ry) and sup(Qq) are both infinite. In particular, any
finite-dimensional linear-quadratic programming problem with finite optimal value has
an optimal solution.

Theorem 2.2 can easily be derived from known results about quadratic program-
ming in the standard sense, specifically the duality theorem of Dorn [33] and Cottle
[34] and the existence criterion of Frank and Wolfe [35]. We have given the argument
in full in [17, Thm. 2].

Incidentally, the suprema in (2.5) and (2.6) must be attained also, when finite.
Indeed, these formulas give the optimal values in certain quadratic programming prob-
lems and are covered by the result just cited.

The sense in which the terminology “linear-quadratic programming in the general
sense” is appropriate for the problems in Theorem 2.2 is elucidated by our next result.

PROPOSITION 2.3. The function pyv g 15 lower semicontinuous, conver, and
precewtse linear-quadratic: its effective domain

(2.8) L={seR|pvqls) < oo}

13 a nonempty convez polyhedron that can be decomposed into finitely many polyhedral
conver sets, on each of which py g 13 quadratic (or linear).
The same holds of course for py p and its effective domain

19) K = {reR*| pup(r) < co}.
Proof. Define

lv-Qu whenwveV,
o0 when v &€ V

ol = {
= Jalv) + 8y (v),

where jg is the quadratic convex function corresponding to the positive definite formn
Q, and & is the indicator of the convex polyhedron V:

(2.10)

0 hen v e V|
@211) by () 7{ when v €

o whenv gV,
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Cioaly p is convex, and its conjugate

1240 w"(8) = sup{s-v—p(s)}
veR?

in 21 en by

(2.15) ©*(s) = prals).

b

Lo latter is therefore lower semicontinuous and convex in ¢, and its effective domain
.= anonempty convex set (these properties being true for the conjugate of any proper
v nvex function (36, §12]).

For each s € L, the supremum in (2.12) (equivalently (2.5)) must actually be
¢itiined, as noted above. On the other hand we know from convex analysis [36,
T 23.5] that the supremum in (2.12) is attained at v if and only if v € dp*(s),
viach is equivalent to s € dp(v). Thus L coincides with the effective domain of the
21b lifferential multifunction dp*, which is also the range of dp. We shall use this
7t to demonstrate that L is polyhedral and has the decomposition claimed.

Because ¢ = jo + & and jg is finite everywhere on R?, we have by |36, Thm
£3.8| that

.14) de(v) = djolv) + Dby (v) = Qu + Ny (v),

~here Ny (v) is the normal cone to V at v [36, p. 215]. This normal cone is polyhedral,
sacause Vois polyhedral, and it depends only on the face of V' to which v belongs.
Tlcre are only finitely many faces of V', so it follows from (2.14) that dv is a polyhedral
cul ifunction in the sense of Robinson [37], namely its graph in Rf x Rf is the union of
iriely many polyhedral convex sets (one for each face of V7). The same is then true
oc the multifunction dp* = dp !, whose domain, already identified with L, must
e ofore be the projection of the union of finitely many polyhedral convex sets. We
ay conclude that the convex set L is actually polyhedral and can be decomposed
Hero finitely many polyhedral convex sets Ly, over each of which the graph of dg*
< & polyhedral convex set. In the case of such a subset L, having int L, # 07,
2" must by this reduce to a single-valued afline mapping on int L;, inasimuch as
* is single-valued almost everywhere on int L (a fact true of the subdifferential of
any proper convex function on the interior of its effective domain [36, Thm. 24.5]).
Thaefore p* is quadratic (or linear) on int L, by the lower semicontinuity of »*. For
I with int Ly = 9, a slightly more general argument based on relative interiors of
v 2x sets leads to the same conclusion. Thus the function ¢* = py, is piecewise
f00: g e-quadratic as claimed. ]

['he terminology “linear programming in the general sense” in the case where

- 0and @ = 0 is justified similarly. The functions py g and py p reduce then
i.re support functions oy and oy in (2.7), which are polyhedral convex (piecewise
line ) because [/ and V' are polyhedral [36, Cor. 19.2.1].

Because py g and pyy p can take oo as a value in some cases, the linear-quadratic
oro ramming problems (B) and (Qg) may have implicit constraints. Thus in nini-
miz ng the function [ given by (2.3) we are really interested only in the choices of u
tha satisfy

(215) g-Due L aswellasue 17
Lk wise in maximizing the function g in (2.4) we focus on v satislying

6) D'v-—pe K aswellasvel.



788 It. T. ROCKAFELLAR

The polyhedral convexity of L and K in Proposition 2.3 together with that of U and V
means that these constraint systems can be represented in principle by finitely many
linear equations and inequalities.

A closer analysis of the sets L and K reveals additional structure that will be of
use to us. Here we denote the null space of Q) by

ul @ = {we R | Qu = 0}

and the recession cone [36, §8] of V' by

re V = {weR? ‘ v+ AweV VA 20} forvel
The latter is the same regardless of the choice of v € V. It is a polyhedral convex cone
(always containing 0), because V is a polyhedral convex set [36, Thm. 19.5]. Indeed,
if V = {v| Mv < m}, one has rc V = {w | Mw < 0}. We denote the polar of a cone
(; as usual by
(2.17) G° ={z|2z -w<0,VweG}

PROPOSITION 2.4. The effective domains L and K wn Proposition 2.3 are the
polar cones

(2.18) L=[reVnul@Q° and K=|rcUnnl P
Thus

(2.19) L =R <5 [the only w € re V with Quw = 0 15 w = 0],
(2.20) K =R¥ <= [the only z € re U with Pz =015 z = 0].

In particular L = RE if V' is bounded or if Q is positive definite, whereas K = R* f U
13 bounded or if P is posilive definate.

Proof. Let p be given again by (2.10), so that p* = py g a3 in (2.13). Since
L = domyp* and L is closed, we have by [36, Thm. 13.3] that the indicator & is
conjugate to the recession function

(re w)(w) = ,\]im wlv + Adw)/A,

where v € dom ¢ =V (the limit being independent of the particular choice of v 36,
Thm. 8.5]). The limit works out to

0 ifwercV and Quw=20

oo otherwise .

(re p)(w) = {

Thus re p = 8 for &G = re V (iul Q. The indicators ¢ and o, being conjugate to
each other, we conclude that G and L are cones polar to each other [36, §14]. ]

An important question of mathematical modeling and computation in applica-
tions both finite and infinite-dimensional is whether a problem (F,), associated with
a certain choice of J,U, and V', can reasonably be replaced by a more amenable prob-
lem (F)) obtained in substituting for U and V a pair of smaller sets Uand V,e
bounded sets. The theorem we state next provides the answers for finite-dimensional
linear-quadratic programming, although its full import will not be clear until the end
of §3. It will be the basis for an infinite-dimensional generalization at the end of §6.

THEOREM 2.5. Let (Ry) and (Qo) be a parr of finite-dimenstonal linear-quadratic
programming problems in the general sense. Consider also an aunliary pair of such
probiems (By) and (Do) which corresponds to the same function J but subsets Ucl
and V C V.

LINEAR-QUADRATIC PROGRAMMING AND OPTIMAL CONTROL THY

( ) If i and v are solutwns to {FE}) and (Qu} auch that actually i e U and v eV,
fio T and O are also solutions to (By) and ( (Qo). g

‘b) Conversely, if i and T are solutions to (Po) and (Qu), and if U comeides with
U wround @ (1.e. UNN = UNN for some neighborhood N of ©) and V' coincudes weth
i ground T, then w and v are actually solutions to (Fy) and (Qo).

Proof. From Proposition 2.1 and Theorem 2.2 we know that i and v solve (F))
ind (Qg) if and only if (i, 7) is a saddle point of J relative to 7 x V. Likewise, @ and
1 solve {R)) and (Do) if and only if (@, 7) is a saddle polm of J relative to U x V. The
{srmer trivially implies the latter when U = U and V =V, and this establishes (a).
11 1der the assumptions in (b), (&, 7) is a saddle point relative to certain neighborhoods
iiin U and Tin V., i.e. it is a local saddle point relative to U x V. But any local
¢aile point must be a global saddle point by the convexity-concavity of J. O

3. Basic models in linear-quadratic programming. The nature of the p
.7 tions appearing in the finite-dimensional linear-quadratic programming problems
" is revealed more clearly in the examples that follow. These examples illustrate
ssicus possibilities in formulation that one needs to appreciate in order to see the
w1 scope of the optimal control problems which will be introduced in §4.

Ezample 3.1. (Classical linear programming.) Let P = 0, Q=00 - H;j,
R: . Then

3 (0 ifs<o,
i rvals) =y (9= gy a0,

) ) 1] ifr<o0
r)=a Y= .
pu,pd R:( oo ifr €0
ol ows that in (Fy) we

minimize pru

aubject to Du = g, u >0,
chereas in (Qo) we

maximize q-v

subject to D*v < p, v = 0.

Nei> the role of 0o in (3.1) and (3.2) in representing constraints in these problems as
Adiergssed in connection with the sets L and K in Proposition 2.3.

Versions of linear programming that involve equality constraints or variables nol
ratricted to be nonnegative correspond to other choices of U and V' as polyhedral

U TEX cones.
Ezample 3.2, (Standard quadratic programmung.) Let Q@ = 0 (but. £ # 0) and
ke IF = RE V= RS . Then (2.8) holds, and in (Fy) we
minimize Pt %u - Pu
subject to Du > gq

‘This is quadratic programming in the traditional sense. To see what the dual is we
it determine

) pre p(r) = sup {r-u— ju- Pu}.
ucRk



790 R.T. ROCKAFELLAR

If P is positive definite, we easily calculate the supremum to be %r- P17, so that in
(Qo) we

maximize q-v- é[D‘t! pl-P DY - p)

subject to v2=0.
I P is ouly positive semidefinite, the dualization is more subtle and is facilitated by
an algebraic normalization. First we can decompose U = R* into U, x Us,, where
U, = {u | Pu = 0} and Uy = U}'. Then by a change of coordinates if necessary
we can actually suppose that U; x Uy = R*' x R*2 for some k; + k2 = k, so that
P = diag (P,,0) for an positive definite matrix P, € RF1>% . Writing u = (u;, uz)
with u; € R* uy € R and correspondingly r = (ry,72) in (3.4), we calculate

pu.p(ri,ra) = sup {r - uy +r2-uz — yuy - Pyuy}

wy,ug
(3:4) B { bri Py ifra =0,
I e if 7o # 0.

Also writing p = (p1,p2) and D = (Dy, D3), we see that in (F) we
minimize Uy b pyoug + %ul Piuy
subject to Dyuy + Daug = q
whereas i ( Q) we
maximize q v - %ED;U ml-Py . [Dv — p]
subject to D3v = pa, v >0

Mixed systems of equality and inequality constraints can be handled by choosing
V= Ri‘ % R for some ¢, + €, = L.

With further algebra transformations it is possible actually to normalize the study
ol quadratic programming to the case where the matrix I” is always diegonal. All one
has to do is provide a factorization

(3.5) P=M'M with MeR™¥ for some dimension m.
Then the problem (F) at the beginning of this example can be written as:

minimize p-u+0-u + %u’ -u' over all (u,u’') € RF x R™

satisfying ~ Du+ 0w’ > g, Mu — Iu' = 0.
This can be identified as a quadratic programming problem which can be written in
terms of the enlarged vector (u,u’) in the same format as the original (/), but with
mixed equality and inequality constraints and a diagonalized quadratic form (actually
with diagonal entries that are 0 for the components of u and 1 for the components of
u').

Incidentally, some quadratic programming models can be set up more easily by

taking advantage of the matrix @ instead of P>. For example, the problem

I 1 2
minimize 31Du — q|

subject to u >0,

where |- | is the Euclidean norm, can be regarded as the case of (Fy) where p =0, P =
0, Q=1 U=RE V=R inasmuch as

(3.6) pre,(s) = gls*
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i'he corresponding dual problem (Qg) is:
maximize g v— v
subject to D*wv < 0.

Ezample 3.3. (Basic precewise linear programmaing.) Suppose P = (), Q = 0. Let
J te any convex polyhedron in R (expressible by some system of linear constraints
#hih, for now, does not need to be specified), and let V' be the un:t simpler in R

37) V={veR,|v-1=1} wherel=(1,1,...,1).
Toea
(s pv.e(r) =ov(r) = max e for r = (ry,...,re).

‘t fllows that in (Fy) we

minimize p-u+ max {g —d; u} overuel]
i=1,...,¢

wheve g is the ith component of g and d, the tth row of D. The “max” expression in
the ¢bhjective in (Fy) is the pointwise maximum of a finite collection of alfine functions
2+ 1 and represents a general piecewise linear (i.e. polyhedral convex) function of w in
the cense of [36, §19]. In the corresponding dual problem (Q) we

maximize q-v—oau(p-— Dv)
subject to v >0, v-1=1,
where ap is the support function of U as in (2.7).
The constraint structure represented so far by the set U/ can he handled more

dire otly under a different choice of notation. Still with P = 0 and @ = 0, simply take
{0 R* but

™m
V= {v e R | z v = l} for an index m satisfying 1 < m < ¢,

=1

where vy is the ith component of v. This time

ma¥sey . onts gy 2000 e 20
i) pv.(r) = oy (r) = :
. 00 otherwise.
Thaen in (Fy) we
. minimize pru+ max {q —d;-u}
t=1,... .
subject to di-u>gq fori=m+1,..., ¢
whreas in (Qg) we
'
maximize Z TN
=1
m £
subject to v, >0 fori=1,... L Zv, =1, ZWL =P
=1 =1

Erample 3.4. (Bounded linear programmang.) The linear programming problems
i1 Example 3.1 are stated in terms of unbounded variables, but in practice this may not
iy ays be wise or convenient. Many linear programming codes ask the nser to specify
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both upper and lower bounds for the vector u in the primal problem, sayut” <u<uat.
The effects on duality, however, are not widely appreciated. In fact there is reason
impose upper and lower bounds on the dual variables too, say o~ < v < %+, What
this corresponds to is a representation of constraints in terms of linear penalties, like
those in the currently popular £ penalty function approach to nonlinear programming
(ef. Fletcher |38]).

To be specific, suppose P = 0, Q@ = 0, and let U and V be vectorial intervals
(“boxes”) defined by upper and lower bounds:

U=la,u'], V=g, i)
Adopting the notation
(3.10) [s]4 = max{0, s}, [s]- = min{0,s}

in the vectorial sense, where the max is taken component by component (so that
s =[]y + [s] ), we get

3.11 , = (8) = : 8 =07 T
( ) pv.ls) oy (8) : télfi_(f-* ves =0t (s +07 - 8],
(3.12) pop(r) = ou(r)= max w-r=a" ||, +a |7

u <u<uat
[t follows that in (7)) we

minimize prutot g Duly +o - |g- Dul.
subject to i <u<alt,
whereas in (@) we
maximize qgvt+a’ - [Dv—ply +a - [Dv-p|
subject to T <v<pt,

Observe that these problems have piecewise linear objectives of a special kind. The
optimal values are always finite, so optimal solutions always exist (Theorem 2.2).

Bounded linear programming in this sense may be a more natural vehicle in
some applications than standard linear programming. Furthermore, problemns in such
a format can be solved directly, without reformulating them in the traditional way.
Versions of the simplex method developed by Fourer [39] and the author [40, Chap.
ll] can be used instead, for example.

Ezample 3.5. (Bounded quadratic programming.) This is a extension of the pre-
ceding example to allow for quadratic terms. Let

U=[a,i" and V=[t

ot
again, and take
P =diag [B,..., B4, Q = diag [y1,-.. , 7,

where 3, > 0, 4, > 0. (The assumption of a diagonal form for P and ) does not
entail the loss of generality that might be imagined; cf. Example 3.2.) The calculation
of the p functions (2.5) and (2.6) decomposes into one-dimensional calculations of the
form

(3.13) max I{rn = 12a?}

atla~,at
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w various intervals (o, ot and constants A > 0. The maximum value in (3.13) is a

one ion of 7 € R that depends on the parameters «,at and A, and it is given by
(2r — Aat)(at/2) when 7 > dat,

doie) O(rioe ot A = (1/2M)72 when Adee <7< Aat

(27 — A ) /2) when 7 < Any

Josn te its formula, this function of 7 has a simple forin and a natural meaning. In
he case where A = (), it vanishes at 7 = 0, is linear with slope a, for r > 0 and linear
vitivslope a for 7 < 0. In the case where A > 0, it has a similar structure but with a
juacratic interpolation instead of a “corner.” Indeed, it is the unique smooth function
~hove values are given by atr + const. for 7 sufficiently high, by a 7 | const. for 7
ulfi-iently low, and by (1/2A)72 on the interval between.

With this notation, and denoting the components of p, ¢, and D by p,, q,,d,,, and
w ferth, we can express the primal and dual problems as follows. In (F)) we

k

k ¢
nimiz N 13,2 % v A
minimize [Py + 38,u5] 4 0fq ST T
3=1 =1

3=1
it o - et e
subject to i <u; <4 for 5 =dunnk

whereas in () we

‘ k ¢
oo i 1 2 ﬁg —"f oy st g
maximiz [ = gmivf] - vidyy it )
1=1 3= =1
subject to v, <y < irj for T = L, b
When 3, = 0, v = 0, these problems reduce to the bounded linear case in Example
44 They are useful in modeling situations where constraints are not necessarily
sita”p, as in stochastic programming (see Rockafellar and Wets [18] and King et al.
{1(). Thus for instance if (5.7, 05| = [0, @] ] the corresponding # term in (B) imposes
i : : —k S 5 S 3
o penalty if the putative constraint >_q=| diyuj > g is satisfied, a slight penalty at
« marginal cost that grows linearly (at the rate 1/7;) from 0 as this constraint begins
0 be violated, and eventually for large violations a penalty with constant marginal
st nl' 3
Of course it is also possible to get versions of these problems in which the penalty
: xpressions do not eventually become linear but stay quadratic for arbitrarily large

violations. These correspond to limiting cases of 0(7; ™, at, A) where o = — 0 or
= o0, or both. They can be obtained by taking U/ and V not to be “boxes™ bul
crtaants or products of orthants and subspaces, as in Example 2.3. tl

In understanding the relationship between penalty models such as Examples 3.4
2t 3.5 and the more traditional models without penalties, such as Examnples 3.1 and
A2, the facts in Theorem 2.5 are essential. As an illustration of the way Theorem 2.5
v be employed, let us look again at the standard linear programming problems in
xnmple 3.1, Suppose we know that an optimal solution @ to (Fy) will exist within
certain upper bounds, say u < 4, and also that a dual optimal solution © to (Qy) will
exit within certain upper bounds, say v < o. Then according to Theorem 2.5(a),
i nad U can be found by solving, instead of the given problems, the bounded linear
pregramming problemns in Example 3.4 with

15) U=lu,at]=04d, V=1[o,8" =109
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The idea here that dual bounds can be given along with primal bounds is not so
far-fetched as it might seem. The components of a dual optimal solution ¥ often have
interpretation as marginal prices, or as rates of change with respect to certain pertur-
bations of constraints. Economic limitations or experience may dictate appropriate
bounds. Anyway, there is no great harm in going ahead with solving the bounded
versions of the problems in terms of estimated bounds @ and 9. If solutions @ and v
are obtained for which the upper bounds are not tight, then @ and v actually solve
the original problems, according to Theorem 2.5(b). If the upper bounds are tight in
some components, they can be loosened and the procedure repeated.

4. Intertemporal linear-quadratic programming. The general problems of
optimal control that are the main object of our study can now be formulated. The
time interval [ty, 8] is fixed. The primal problem is:

(P)  Over the dynamical system
o(t) = A(t)z(t) + B(t)u(t) + b(t) ae., z(tg) = Beu, + be,
with control space
U= {(u,ue) ‘ ueE ﬁl,u(f) cU(t) ae, u.& U.}

minimize the functional

Flu,ue)

ty
] [p(t) - u(t) + Su(t) P(t)u(t) — elt) - x(t)]dt + [pe - ue + tue - Peug — e - z(t)]

to

+ [t l pviamlalt) = C)z(t) — D()u(t) + pv, @.(g- — Cez(tr) — Deue).

0

The dual problem is:
(2)  Over the dynamical system
(1) = A (O)(t) + O (D) + e() ae,  y(t) = Clue tee,
with control space
V= {(ve) |ve L () V(L) ae, vV,

maximize the functional

g(vvl"‘J =
jf lq(t) - u(t) - %U(t) SQ(t)u(t) — b(t) - y(t))dt 4 [ge - ve — %1'8 CQeve — be - y(to)]

0

b
' j pu ), P (BT (y(t) + D (t)u(t) - p(t))dt — py, p. (BIy(to) + Dlve — pe).
ty -
Here

ult) € R¥, w. e R, z(t) e R", () €Y, v eRY% y(t) eR™,
and dimensions of the other elements are determined accordingly. The matrices P(t),

P., Q(t) and Q, are assumed to be symmetric and positive semudefinite (possibly 0).
The sets U(t) = R U, = R* V(1) C R? and V, ¢ R’ are assumed to be polyhedral
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cniex. The p terms are defined by (2.5) and (2.6). In general they are piecewise
teo ~quadratic convex functions that may take on the value oo; cf. Proposition 2.3.
Licns cases based in part on the finite-dimensional models in §3 will be viewed n
7 Tirst we must clarify our technical foundations.

All the data elements in problems (P) and (Q), namely

A(t), B(),C(t), D(8),b(t), c(t), P(£), (1), p(t),q(£), U (L), V{1,

wsumed to depend continuously on . Tor the sets U(t) and 7({) this means
ond nuity with respect to the usual notions of convergence of subsets of Fuclidean
cs: e that are not necessarily bounded; see Salinetti and Wets [42] for an expositiomn
"¢ e convex case. Thus the multifunctions t +— U(t) and ¢ — V() should be lower
¢+ continuons and of closed graph. Lower semicontinuity of £ v+ U(t) implies thal
nultifunction t +— int U(t) is of open graph; indeed, by virtue of the convexity
1 (t), lower semicontinuity is equivalent to the latter property if int U(t) # © for
i € [to, t1] (Rockafellar [43, p. 458]). A special case of continuous dependence, of
. se, is the one where U(t) and V' (t) are constant with respect to t.
Under these assumptions the dynamical systems in (P) and (2) are well defined
¢+ h respect to the control spaces U and V. They determine unique absolutely con

uous functions r and y from (¢, ¢] to R™.

In showing that the integrals in the objective functionals in (P) and (&) are well
ie ined too, we shall make use of the following.
PROPOSITION 4.1. The expression py (o) .oi(3) i lower semicontinuous jomndly
¢ and s, tn fact continuous relative to {{t,s) | s € int L{t)}, where

{4.1) L(t) = {s € RY | py iy, 000)(8) < co}.
Woreover L(t) depends lower semicontinously on t.
The same holds for the expression py),pe(r) and the effective domain
(1.2) K(t) = {r e R¥ | gy (e (r) < oo}
Proof. Our argument is based on showing that the function py ) g depends
¢, teontinuously on t, i.e. its epigraph set
; - - Rt .
) 1‘.(1’,) = {(H,(l) e R" x R ‘ ,(J'L'“)‘Q(”(HJ = (\'}.

.1 ¢h is convex, depends continuously on ¢. Epicontinuity corresponds to a notion of
‘tion convergence first considered by Wijsman [44] and subsequently developed by
ariers; see Wets [45]. 1t yields all the propertics claimed. Indeed, if the multifunction
¢ E(t) is continmous, then by definition it is lower semicontinuous and of closed
wranh. The closed graph property is equivalent to the lower gemicontinuity of the

{1 ttion
£2) (t,8) = pvio,ouls)

“1 lower semicontinuity of t — E(t) implies from its definition the lower semiconti-
qeit s of the domain mltifunction ¢ — L(t), since L(t) is the projection in RY of the
iz-aph (4.3). (Recall from Proposition 2.3 that L(t) is a closed convex set, since il
“¢lyhedral.) The multifunction ¢ — int L(t) is then of open graph, as cited above,
the set {(t,s) | s € int L{f)} is open in the space [ty 1] x RE. The upper semicon-
vty of pyi.oin(s) on this open set follows then from the lower semicontinmty of
E(t) again and the corresponding openness of {(L,8,«) l (s,0¢) € inl. E(t)}, and

' the lower semicontinuity noted earlier for (4.4) one gets contimuty.
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To prove that py(4).q(¢) depends epicontinuously on t, we resort to the notation of
Proposition 2.3, where now, however, everything depends on t. We identify py (o) (o)
with the conjugate p} of the convex function y, = Jo) + by (r), where by, is the
indicator of V(¢) and

(4.5) Jow(v) = %z! Qv

Trivially éy ;) depends epicontinuously on ¢, since its epigraph is just V(L) x Ry.
Furthermore the convex function jg.) is finite everywhere on R, and its values depend
continuously on ¢ because Q(t) depends continuously on ¢. This implies by Wets [45,
p. 392] that jg(,) depends epicontinuously on ¢t and by McLinden and Bergstrom |46,
Thm. 6] that the sum o, = jg(¢) + by () depends epicontinuously on ¢. The operation
of passing to the conjugate of a convex function is known to preserve epicontinuity
(Wijsman [44]), so we may conclude that the function py (1 () = @i does depend
epicontinuously on t, as claimed. 3

THEOREM 4.2, In problem (P) the control space U is a nonempty closed convex
subset of L'([to,t1],RE) x R, and the objective functional F 15 well defined, lower
semicontinuous and conver, with values that are finite or co.

Likewnse, in problem (Q) the control space V 13 a nonempty closed conver subset
of LY({te, t1],RY) x RY | and the objective functional G 1s well defined, upper semicon-
tinuous and concave, with values that are finite or —oc.

Proof. Only the first half has to be argued; the second half is parallel. The
convexity and closedness of U is obvious from the convexity and closedness of the sets
U(t) and U,. The nonemptiness of U comes from the nonemptiness of U(t) and U,
and the continuity of ¢ +— U/{¢): the selection theorem of Michael [47] asserts that any
lower semicontinuous multifunction from [tg,t] to R* with nonempty closed convex
values has a continuous selection. Thus there actually exist pairs (u,u.) in U with u
continuous rather than just 2.

The mapping (u, u.) v x from £([tg, t,], R¥) x R into C([to, £1], R™) is affine
and continuous, even compact:

(4.6) r(t) = M(t](b’!.uC tobe 4 / M{r) Y [B(r)u(r) + b(r}]d’r),

where M(t) is the matrix with the property that £(t) = M(t)x, is the solution to
£(t) = A(L)E(L), £(to) = xp. The terms

th
f [p(t) - ult) —e(t) - x(t)]dt + [pe - ue — co - z(Ly)]
to

in F(u,u,.) therefore give a continuous, afline functional of (u,u.). The mapping that
takes a pair (u,1.) in £'([to, £,], R¥) x R into the pair (s, s.) in £'([to, t:], RY) x R
given by

(4.7) s(t) = q(t) — C()x(L) — D(t)u(l), 8¢ = g — Cez(ty) — Doug,

ig affine and continuous too.
It remains only to show that the expressions

Ly

I (u,ue) = / u(t) - P(t)u(t)dt + ue - Poug,
to
oty

fala, 2] :/ pv . (s())dt + pyv. g, (s)

to

LINEAR-QUADRATIC PROGRAMMING AND OPTIMAL CONTROI 74U

oo well defined, lower semicontinuous, convex functionals on L"H!(,,!l],li"] x Itke
aet CY([to, t1],RY) = R respectively, with values that are finite or cc. Certainly the

nuity of P(1) in ¢ and the lower semicontinuity of py(py oy (8) jointly in t and s
suved in Proposition 4.1) ensure that the integrands for 1) and [ are measurable

All the terms in the formula for I, are nonnegative and convex, because P(1)
n:t P, are positive semidefinite.  Therefore 1) is a well defined convex functional
vi'h values in |0, 00]. Its lower semicontinuity follows from Fatou’s lemnia, since
ity norm-convergent sequence in ! ([tn‘ill,ﬂk) has a subsequence that converges
‘ntwise almost everywhere.
The argument for I, is the same, after a normalization. We showed at the outset
+ ihis proof that U containg a pair (u,u,) with u actually continuous. The same
i oiies to V. Taking (v, v.) to be such a pair in V and observing from the definition
fihe p functions that then

Mepinle) = st) - ult), v, (8:) 2 ose v
Ae can write ;
1
[2(8,8.) = I3(s,8.) + f s(t) - v{t)dt + s, - v,
to

~here

-
Bovse) = [ lovioufs(0) - sl w0l + [y, g, (50) e v
t
‘nvs I, differs by only a continuous linear functional from a functional {3 whose
08 are all convex and nonnegative. As with Iy we can see that Iy is well defined
values in [0, 0o and is convex and lower semicontinuous. Therefore [ has Lhese
o1 ired properties, except that its values will generally be in {—o0, oc]. 0O

It is evident that in the minimization in (P) we are really interested ouly in the
nirols (u,1) € U yielding F(u, u,) < oo. Such controls have to satisfy

{8 g(t) — Cltyw(t) — D(Ou(t) € L(t) ae. and  ge —~ Cez(t:) — Doue € L,

¢ L(t) and L, are the effective domains of py ) () and pv, @, (cf. Proposition
i 2. Similarly, in the maximization in (Q) we are really interested only in the controls
(o, yielding G(v, v.) > —o0, and these have to satisfy

(L) Br(y(t) + DY(Ou(t) — p(t) € K(t) ae. and  Bly(te) + Dlve - pe € I,

e K(t) and K, are the effective domains of pyq), peey and po, e, These implicit
constraints can be regarded as “linear,” incidentally, since the sets L(t), L., K(t) and
i1, are polyhedral convex cones (Propositions 2.3 and 2.4).

As stated in §1, our approach in this paper to such implicit constraints imvolving
thie states z(t) and y(t) is to skirt them when convenient by adopting alternative
sroblem formulations where they have no force, specifically because L(t) and L, are
1 of RO and RY, or K(t) and K, are all of R* and R*-. Accordingly the following
fvp e of assumption will soinetimes be of importance to us.

We shall say that the primal finiteness condition is satisfied il the functions
sy and py, ¢, are finite everywhere (Le. L{t) = R® and L, = R*). Like-
wis, the dual finiteness condition is satisfied if the functions py ) P and pyi, p, are
finn e everywhere (ic. K(t) = R* and K, = R*). Criteria for this are furnished by
i1oposition 2.4
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PPROPOSITION 4.3, If the promal finiteness condition s satisfied, then F(u, u.)
wn (P) ds findte for all (w,w.) € U with u e L%

Likewise, if the dual finiteness condition s satusfied, then G(v,v.) in (Q) w3 finite
for all (v,v.) € V unthve L.

Proof. Under the primal finiteness condition the convex functions py ) () and
v, are finite on Rf and R and therefore continuous on these spaces, inasmuch as a
convex function on a finite-dimensional space is continuous on any open set where it is
finite [36, §10]. Moreover gy (y.0¢0) () is continnous jointly in ¢ and s by Proposition
4.1 and consequently is bounded above and below on [tg,t] x S for any bounded
subset § C RY. For the function s(t) in (4.7), then, the expression py () g (8(t)) is
£ in t when u(t) is £% in t, as is the expression u{t) - P(t)u(t). All the integrals in
the formula for F(u, u.) are therefore finite when uw € £°°. The argument for G(v,v.)
undler the dual finiteness condition runs the same way. [l

The reader may wonder why we have formulated problems (P) and (@) with con-
trol spaces involving £ rather than £°°. Matters would be simpler in some respects
with £2°, and for applications £ is apparently mere natural. The work done in
continnous-time programiing uses £ too. Of course, our problems include the L™

wse by simple restriction. The real reason for taking £', however, is not extra gener-
ality but the need for allowing ample controls in order to close a possible duality gap
between (P) and (Q). The payolf will come in our result on strong duality, Theorem
6.3.

5. Special cases of the optimal control models. Our task now is to illumi-
nate the scope of the problems () and (@) introduced in §4. We explain how they
cover the linear programming models (F) and (@) in §1 and much more.

The treatment of endpoints x(t) and x(t;) in (P) and y(to) and y(t,) in (Q)
departs from the traditional patterns in the literature on optimal control. We therefore
begin by considering various important cases embedded in our formulation and the
way Lhey come to be dualized.

Erample 5.1, (Problems with fized endpoints.) How can one represent in terms of
(lie endpoint provisions in the stracture of (7) a problem in which an integral

/ﬁ j[p(.‘] cult) + () PL)u(t) - e(t)-x(f) 4 Pv(t),(.g(r){f}(f) C(t)x(t) — D{t)u(L))]de

to

is minimized over all pairs x, u, satisfying u(t) € U(t) ae, ue £,
(5:2) F(t) = A(t)x (L) + B(thu(t) +b(t) ae., r(ty) = ag, z(t;) = ay,

where ag and a, are lixed points in R™? The requirement z(ty) = ap can be handled
by setting b, = g and trivializing the u. vector by taking R* to be zero-dimensional
(soU, = {0}, B, =0, D. =0, p. =0, P. =0). Only the term

(5.3) (e — Cex(ly)) - coxl(ty)

remains then in the endpoint expression for {P). This can be made to represent the
requirement (t)) = a; as follows. First choose V. = R™ and (. = 0, so that

0 ifs. =0,

(%.4) gl Ee) = apn(8e) = { 66 Fg 4.

LINEAR-QUADRATIC PROGRAMMING AND OPTIMAL CONTROL THY

1 hen

i 0 it Cex(ty) = g.,
] oy, e — Cex(ty)) = )
) Qe (t1)) {oo if Cox(ty) £ e
How all one has to do is take C. = I, q. = ay, €. = 0.
Note that the dual problem (Q) in this case has as its endpoint tenn
(JG) Qe Ve — i'vc 'Qﬂ“c - bry“l)) 7.0\",‘135{{}:9'“0}“}" D:Uc _ps:) =, '1.'“1 ) = u[)'y“{)]-

In (2), therefore, one maximizes

EJ‘

(5.7)

0210~ 100-QEI0) - BO- 0~ oo B Oufe) + D' ()it)= o)

+ay - y(t) — ao - y(to)
o er all pairs y, v, such that »(t) € V(t) ae, ve L1 and

(1.8) Sg(t) = A*(Oy(t) + C (t)u(t) +c(t) ae

{vith no restriction on the endpoints y(to) and y(t,)).

Of course one can stop with (5.4), (5.5), and have in place of £(¢;) — @y the more
gcueral constraint Cox(t;) = q. for some matrix C, and vector .. In (Q) this would
¢« trespond to replacing the term ay - y(f,) in (5.7) by g. - ve, where v, is unrestricted
brt y(ty) = Cru, in (5.8) (if e, = 0 still).

If we only want z(tp) = ag in (5.2), so that z(¢;) is a free endpoint in (P), and
correspondingly want to incorporate a term —dy - z(£;) in the objective (5.1}, we can
veoresent this by trivializing the vector v, too, i.e. by taking R® to be zero-dimensional
{sc that V, = {0}, C. =0, ¢. = 0, Q. = 0), and setting ¢, = d;. Then the term (5.3)
recuces to —dy - x(ty). In the corresponding version of (@) the term ay - y(t,) drops
from (5.7) but y(ty) = d, is added to (5.8). Thus (@) is a problem of the same type
hut with y(t;) fixed and y(tg) free.

Ezample 5.2. (General linear constraints on endpoints.) Instead of fixed endpoints
iet us consider a much more general case where the functional (5.1} is to be minimized
aver all pairs r,u, satisfying u(t) € U(t) ae., ue L1,

z(t) = A()z(t) + B{t)u(t) + b(t) ae.

zrd a constraint system of the form
(1.9) A()I(t()) + A]I(tl} s
o the endpoints, with a € R%. This can be placed in the form of (P) by choosing
# =1 and b, = 0 (so that z(tp) = u. in (P)) and then setting U, = R", D, = Ay,
=A, g =a, V.=R4Y, Q. =0. Then

3 =4
(5.10) v Vi — Bl ] = Dty { 0 if (\J.Q)Ih()]ds‘

oo otherwise.

“aking p. = 0, P. = 0, ¢. = 0, we get all the endpoint terms other than (5.9) to drop
cut, and (P) then represents the problem as specified.

The corresponding dual problem ( Q) maximizes

rty

I [g()v(t) = 4u(t)- QUO)(8) = b(t) y(t) —pu ey, pey (B (E)y(t) + D" (E)o(t) —p(t))|dt +a-v.

Ji0
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over all y, v, v, satisfying vty e V() ae, v e L9 v, E H‘j_,
(5.11) —glt) = AT (E)ylt) + C(tye(l) +e(t) ae., y(ty) = —Ajre,  ylt) = Ajve.

Obvionsly the inequality in (5.9) can be converted to an equation by taking V., =

it instead of H’f. For a particularly interesting case of this, let Ay = —I, A, =
I, a =0 Then (59) reduces to the requirement that x(ig) = x(t1), and the endpoint
conditions in (H.11) reduce correspondingly to y(te) = y(ty) (“periodic” boundary

conditions).

Ezample 5.3. (Basie intertemporal near programining.) Problems (P) and (Q)
turn into the basic linear programming models (Py) and (Q,) described in §1 when
P(t), P, Q(t) and @, are zeto matrices and

(5.12) Uy =RE, U =RE, V() =R, V.=RE

in the pattern of Example 3.1. By choosing products of orthants and subspaces in
(5.12) instead of merely orthants, one obtains the versions of these problems having
4 mixture of equality and inequality constraints. Neither the primal nor the dual
fAnitencss condition (as defined in the last section, before Propesition 4.3) is satisfied
in any such formulation, however.

The endpoint conditions in Examples 5.1 and 5.2 all fit into the mold of this
example, since only linear constraints are involved.

Ezample 5.4. ( Bounded intertemporal near programmang.) With P(t), P, Q{t)
and Q. still taken to be zero matrices as in the preceding example, replace (4.8) by
a choice of vectorial intervals giving upper and lower bounds on the various control

vectors:
(5.13)
U = [ (0,2 W0, Ue=lag.at], Ve =m0 0L Ve = [y 5 |

The assumption of continuous dependence of {7(t) and V({) on t is satisfied if the
vectors 1 (1), at(t), @ (1) and © F(t) depend continuously on t. In this case the
primal and dual finiteness conditions are both sattsfied. In the notation introduced in
Example 3.4 the objective in (P) is to minimize

-l

Flu,n,) / l{p{f] cu(t) - e(t) - x(O)]dt 4 [pe -t — 0o r(t))

|/Vamwwywwnm-nmmanq-m-mqm—pmm

ta

s
; / o) - [qlt) — Cl)zit) ~ D(t)u(t)] 4 dt + 0 - [ge — Cexlty) - D]y
Jiy

while the objective n (@) is Lo maximize

Glvve) - ] Il@(iJ co(t) = b() - y(t)]dt + [ge - ve = be - y(to)]
[

0

1
. ] a () - BT (Hylt) + DT (ult) — p()]_dt — 1, - [Blylto) + D, — pel
t

n

ty
/nmymmmnuwmmrwmm @l - (Bry(te) = Dive — pely -
t

Sl
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For instance, by taking
(5.14) V(t)=[-ALAL,  Ve=[-AdAld],

--.{h.ere_l denotes a vector (1,1,... 1) of appropriate dimension, we obtain in (P) the
nhjective

(£15)
ty
Flu,ue) i] [p(¢) - u(t) —c(t) - z(t)]de + [pe - we — o - ()]
to
ty
+ z\[t llq(t) — Ct)z(t) — D(t)u(t)]|1dt + Acllge — Cexlty) — Deuel|r,
(4]
wiiere
(5.16) Nalle = 11(81, .- 8e)][i = |81] + ...+ |se].
This corresponds to a mathematical model in which constraints of the form
{5.47) C(t)z(t) + D(t)ult) = ¢(t) ae., Cez(t1) + Dette = ge,
are to be enforced by linear penalties with parameter values A > 0 and A, > 0

sufiiciently high.

‘These ideas are useful in particular in penalty representations of endpoint con-
stiaints like the ones discussed in Examples 5.1 and 5.2. Thus a condition x(t;) = a,
can be modeled by a term A||(z(¢1) —a;]|; in the objective (the case of C, = I, D, = 0
E:L!?’].q., =a; in (5.15) and (5.17)). A condition z(tg) = ag corresponds of course to a
trivial interval U, = [0,0] and needs no penalty representation.

Ezample 5.5. (Intertemporal ptecewise linear programming.) In the general case
w'ere P(t) =0, P. =0, @(t) =0 and Q. = 0, one minimizes in (P) the objective

Fuu) = ft 1[;)[1!) cu(t) < e(t) - = (O)]dt + [pe - ue — co - x(ty)]

ty
+ /z ayglalt) — Clt)z(t) — D(t)u(t))dt + ov,(ge — Cox(t)) — Deu,)

i d one maximizes in {Q) the objective

N t
(v, ve) :[ lq(t) - v(t) = b(t) - y(t)]dt + [ge - ve — be - y(to)]

to
1
—~ /: oy (B (ty(t) + D*(t)o(t) — p(t))dt — oy (Blylte) + Dive — po),

v 1ere the o terms are support functions defined by (2.7) and are polyhedral convex
(Hiecewise linear).

There are two different ways of using this general piecewise linear model, beyond
Fhose already covered in Examples 5.3 and 5.4, that deserve emphasis here. The first
is in pljob]ems where the objective directly involves piecewise linear tering expressed as
the pointwise maximum of finite collections of affine functions. This case corresponds
to the patterns in Example 3.3 and need not be written out in detail. One has

V(1) = [simplex in R’'| x Jorthant or interval in R,

and similarly for V.. Note that in taking in an interval for the second term in each

‘(L‘,'Odl.lqt one has a case where V(t) and V, are both bounded, so the primal fintteness
condition 13 satisfied.
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The other way of using this model 13 less obvious but important in reaching
formulations of intertemporal linear programming problems that satisfy the primal
and dual finiteness conditions. As already noted in Example 5.3, those conditions are
never fulfilled in the basic case of (F) and (Q), but they can be brought to bear
by passing to a bounded linear programming formulation as in Example 54 A more
subtle approach is possible, however, in which only some of 1Fm constraints receive
a linear penalty representation, namely those that (ll'ﬁu'll.('.ly 11.5‘.*01\:(’ the s.al.utt.* z(t)
(or y(t)). This might turn out to be a valuable consideration in the application of
unmerical methods for finding solutions. . )

For example, suppose we are dealing with a problem initia!ly in the (P;) format
but with constraints partitioned to clarify the involvement of x(t):

minimize
o
] [p(t) - ult) — e(t) - z(t))dt + [pe - ue — e - x(t1)]
ty
subject to _
C(t)z(t) + Di(t)ult) Z qi(t),
Da(t)u(t) Z qa(t), ult) 20,
(:flr(tl) 4 D(.‘Iue 2 el
Dr-'luf 2 Qe2, Ue 2 Ds
where g, (1) € RP qu(t) € Rf2, g € R g2 € Rfes. The (P;) format corresponds to

choosing

il Dit)] o _[Ce _ | P
b= [ n( )1’ bl = L?i(t)}' G [ 0]]‘ B [Dr-e}‘

Uty =RE, U, =Rk, V() =R, V, =R%

(with £ = ¢, | £z and €, — £, + £,2). An alternative formulation, however, is Lo take

ity = Ci(t), D(t) = Dift), qlt) = ault),
U(t) = {u> 0| Da(thu = g2}, V() = RY,
C.=Co, De=Deoy G =ders
U, = {ue > 0| Degue 2 gea}y Ve = Rt
If U(t) and U, happen to be bounded sets, we have the dual boundedness condition

satisfied in this formulation even though it was not satisfied in the formulation as (Py).
What effect does this alternative have on the nature of the dual problem? Oue

maximizes the expression

/ti [qe(t) - ve(t) — b{E) - y(t)]dt + [ger - ver — e yito)]

Sty

t )
/ n!el[)(li'(!)g;(_f] b DY (e (t) plt))dt - ou (Bry(te) 1 DZyve Pe)
t

subject to vy (1) € Hk,' and v, € H;‘;". One has
auylr) ==~ sup{r-u | w0, Daylt)u = ga(h)}
—inf{—r-u|uz0, Duftju= qlt)}
=sup{qa(t) - v2 ‘ vy = 0, D3(t)ve < -1}
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t+ finite-dimensional linear programming duality, so that
— oy (BT (Oy(t) + Di(t)vi(t) — plt))
= supdqa(t) vz | v2 2 0, B*(thy(to) + Di(t)uvi(t) + D3 (s < p(t)}
Sunilarly
— (T;"(lj:y[t“) { U;l'i!,.l - )
vez 2 0, Bly(t) + Diver + Dlgven = pet

= HH}I,{QQ‘EQ )

it dual problem for the alternative approach is therefore essentially the same as
{2 ), except that the vy and vez components in R and Rf? have been “maximized
it 7 These components can ultimately be recovered if necessary, but 1n the meantime
w1 do not need to worry about them in connection with theorems about optimality
conditions, existence and duality, in particular the £ requirement on v(t) in (2).
Of course, in order for this approach to work, we must also be able to verify the
sssumption of continuous dependence of U(t) on t. When U(t) = {u =0 | Dy(thu > !
72'2)}, this i satisfied for instance if Da(t) and ga(t) do not actua:ly depend on ¢, or
if here is a conttnuous function u such that w(t) > 0 and Da(t)u(t) > ga(t) (strict ‘

insquality in every component). For the latter and also more general cases involving a
pessible mixture of equality and inequality constraints, see Rockafellar |48, Cor. 3.3|.
Similar ideas can be applied to a partitioning of the constraints of a problem (1)
inio those that affect y(¢) and those that do not. In (P) this would correspond to
dynamics & = Az + Bu + b, z(to) = Beue + be, where B = [By,0] and B, = [B.1,0],
. not all components of u and u, are directly active in the dynamics.
Erxample 5.6. (Linear-quadratic regulator problem and generalizations.) Consider
iow a classical type of problem having the form

}['[uu)-m)u(m (x(t) — 3(0)) - RU) () — F(0)]dt

to

minimize

(\18) + %(I(!l) = (Il)‘ﬁ!e(.((fj)" (l|}

subject to u e L%([ta, 1], Rk,
I(t) = A(t)z(t) + B(t)ult) + b(t) ae., x(ty) = ap,
where ag and a, are given points, # is a given function (continuous), I'(t) is positive
definite, and R(t) and R. are positive semidefinite. This can be formulated as a
problem (P) by introducing factorizations

(5.19) R(t)=C*()Q()"'C(t) and R.=C;Q;'C.,

vhere Q(t) and (). are positive definite. (II R(t) and R, themselves are positive
Jdefinite, one can of course take C(t) = I, Q(t) = R(t)', Ce = I, Q. = R, 'oin
'5.19).) Set

p(t) =0, elt) =0, D{t)=0, q{t)=C{)t), UL) RE V) = RY
Then in the general format of (P) the terms
p(t) - u(t) - P(tu(t) — e(t) - z(t) + pvn.olalt) -~ C)x(t) - Ditutt))

recuce to

yult) - P0)u(e) + 4zt — 2(2)) - R(O)((t) — £(1)).
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For the endpoints, trivialize u, by taking R** to be zero-dimensional (so U, = {0}, p. =
0, P =10, B.=0, D.=0)and let b. = ap, g. = Ceay,c. = 0. The terms
Pe - Ue + $ue - Pote — co - 2(t1) + pv, Q. (g — Cez(ty) = Deute)
in (P) then reduce to
%[I(![} - (‘!|) - R,-(.[.‘(tll = ﬂ[),
and we get the desired problem (5.18) as a special case of (P). The corresponding
dual (Q) has the form

minimize / ‘[j:(!] SC(t)u(t) - b(t) - y(t))de + |ay - Crve — ao - y(to)]

(5.20) : %/{]Ev(!)-Q(I)v{t)+y(t)-S{i)y(!)]df = e - Qv

subject to ve L)t t1),RY), v, € R,
y(t) = A (Hyt) + CT(the(l) ae., y(ty) = Clu.,

where
(5.21) S(t) = B(t)P(t) 'B*(1).

Note that in this example the primal and dual boundedness conditions are both
satisfied.

Generalizations of the linear-quadratic regulator problem can be made in several
directions without going beyond the format of our problem (P). For instance, instead
of letting u(t) be a free vector in R* one can insist on bounds @™ (t) < u(t) < a*(t).
Dually one can introduce bounds

M <o) <Al and —-Ad<v <AL

for parameter values A > 0, A, > 0. The effect of this on the formulation of the original
problem (5.18) is to replace the purely quadratic penalty expressions by terms that
are quadratic near the origin but eventually grow at a linear rate. Thus for example
if

R(t)=wul and R, =pd for p>0, y >0
(corresponding in (5.19) to C(t) = I, Q(t) = p~ 1,C. =1, Q.= p-'I) one has
terms

(;L/z)[t ' le(t) — 2(t)|*dt + (pe/2)|2(t1) — ar]?

in (5.18) that are replaced by

Z[/ Bll:(8) — 20D+ Bellz(tr) — anil) |,
t

1=1 o
where ,(t) and a,, are the tth components of z(t) and a, and ¥ is the growth function
defined by
(4/2)7* when 0<7<A/y,
YO M - () + (02/20) when 72 M

and similarly . in terms of A, and p..

Still other generalizations of the linear-quadratic regulator problem are covered
by the patterns in the next example.
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Ezample 5.7. (Bounded intertemporal quadralic programang.) This corresponds
ter the finite-dimensional bounded quadratic programming models in Example 3.5 in
thi same way that Example 5.4 corresponds to the finite-dimensional bounded linear
piorramming models in Example 3.4. Due to all the notation involved, we shall not
~ri e these problems out in full. The point is, however, that these are formulations of
courciderable versatility which allow for quadratic terms without damaging the explicit,
sypanetric nature of the dualization.

Ezample 5.8. (Problems whose duals are essentially finite-dimensional.) Supposc
i aroblem (P) that C(t) = 0. Then in (@) the trajectory y is uniquely determined
frim v alone. Although v(t) still appears in the objective in (), it does so in a very
sin ple way: the value chosen for v(t) has no connection to past or future. At each
tiize t one can just take v(t) to maximize the expression

u(t) - v(t) — folt) - QUE)u(t) = b(e) - u(t) — pve).Qo (B (thyl(t) + D*(t)u(t) - p(t))

cver V(t), where y(t) is already fixed. In this sense (2) is really a problem in o, aloue
a1 s therefore finite-dimensional. (Of course v(t) must ultimately be an £' function
of t.)

6. Saddle points and optimality. The duality between problems (P) and
(:2) will be established by associating them with an infinite-dimensional saddle point
;oblem. This will lead to the principal results of this paper, which concern the
cxstence and optimality properties of solutions to (P) and (2).

The saddle point representation we aim at follows the general guidelines at the
beginning of §2. We take the control spaces U and V already introduced in §4 (which
are nonempty by Theorem 4.2) and define on U x V a certain functional J, namely

ty

(6.1) J(u, ug; v, v.) / J{t ult), v(8))dt + Je(ue,ve) — [(1, ue), (0, 0]
ty

]

under the convention oo — 0o = oo (see below), where

5.2) Jtu,v) = p(t)utogt) v+ %u‘[’(t)uf i‘,v-QU)v v D(t)u,

(i 3) Jelte, ve) = pe - e + ge Ve 4 %up - P, %m Qe — v - Dy,

'l'l".l

[(u, ue), (v, ve)] = / ‘ y(t) - [B(t)u(t) + b(t)]dt + y(ty) - [Bore 1 be]
i54) ";l
= / z(t) - [CT()ult) + clt)|dt + o(ty) - [Chve + e
t

1 e common value of the two expressions for [(u, w.), (v, v.)] in (6.4) stems from the
iitegration-by-parts formula

ty Ly
f y(t) - #(t)dt 4 y(to) - x(to) = / x(t) - ylt)dt + z(ty) u(ty).
ty to
The term [(u, 1), (v, v.)], which is affine in (u, u.) for fixed (v, v.) and afline in (v, . )
for fixed (u,u.), as well as continuous with respect to all arguments, embodies the
71 damental connection between the control systems in (P) and (2).

The convention oo — oo = oo mentioned in the definition (6.1) of J refers to
porsible ambiguities in the value of the integral of J(t, x(t),v(t)). In general, since
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u(t) and v(i) are only L' in ¢, the integral of the term w(t) - P(t)u(t) might be oo, the
integral of v(t) - Q(¢)v(t) might be —oo, and the integral of 1'( ) - D(t)u(t) mlght be
either. We use oo — 00 = 0o to resolve any dilemmas in extended arithmetic that might
arise. This amounts to taking the integral term in (6.1) to be oo if J(t,u(t),v(t)) is
not majorized by any £' function of t. Of course if J(t,u(t),v(t)) < a(t) for an L'
function a, then the integral has an unambiguous value which is finite or —oo, whereas
if J(t, u(t),v(t)) = G(¢) for an L' function J, it is finite or co. Actually there is no
difticulty at all if w € £ or v € L*: one has

(6.5) Ju,uej v, v,) < 0o when we L)

(6.6) Ju,ugi v, v.) > —oo when ve L%

and therefore J{u, u.;v, v.) finite when both u € £ and v € L™,

Anyway, under the specified convention J is a well-defined functional on U x V
which is quadratic convex in (u,1u.) and quadratic concave in (v,v.). The convention
oo — 0o = —oo could have been used instead and would have led to a functional J
that would serve our purposes in equivalent fashion; we shall occasionally make use
of J in our proofs. Obviously [rom (6.5) and (6.6), J and J agree whenever u € £
orve L%

THEOREM 6.1. Problems (P) and (Q) are the primal and dual optimization
problems associated with the saddle point problem for J on U x V. Thus the functional
F which in (P) 15 minimized over U 13 given by

(6.7) Flu,ue) = sup J{u,ue; v, ),
(v,v)EV

whereas the functional § which i (Q) 15 mazrimized over V 13 given by

(6.8) Glo,v) = inf  J(u,ugiv,ve).
(wu el

Proof. In establishing (6.7) we take the second of the expressions in (6.4) for the
term [(w, %, ), (v,1.)] in the definition (6.1) of J, so that
(6.9)
oty
Tl ) j () - u(t) + Ju(t) - P(Ou(t) — c(t) - 2(t))dt
ty

-1-[ I(t.\[ﬂj g(t) — C)x(t) = D(thu(t)) — Jo(t) - Qt)v(t))dt

to

+ [p,: T %u, cPotte —co - x(ty)]

+ Ve [qe — Cox(ty) — Deud) — %r:e CQev,.
From the definition (2.5) of the functions py ¢y Q) and py, g, it 1s clear that
(6.10) Flu,ue) 2 Ju,ue;v,v,)  for all (w,u.) e U, (v,v.) €V,
and that the desired equation (6.7) can be verified by showing that the equation

¢

(6.11) mn[lr S(0) - 3000 QUIONE = [ prioyguo sl

ve Lo Sy, 0
wit)eVie)

holds for arbitrary s € £'. This equation can be wrilten as

(6.12) aip [0 5(0) - eulottie = [ eiste)a

nel>=Jtg 0
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i the convex function o (v) = jgey(v) + 6y (v) utilized in the proofs of Proposition
£, 2.4, and 4.1. It holds by [49, Thm. 2] (or [50, Thm. 3C]) if @(t,v) = @, (v) is a so-
ce lled normal integrand and the left side of (6.12) is not —oco. Actually (f, v) is lower
st nicontinuous jointly in ¢ and v, inasmuch as Q(t) and V (¢) depend continuously on
i, wvhereas normality merely requires ©(t,v) to be lower semicontinuous in v for fixed
¢ .nd measurable in (t,v) with respect to the g-algebra in [tg, ¢;] x R® generated by
the Lebesgue sets in [tg, ;] and the Borel sets in R* [50, Thm. 24). Thus @ is normal.
iirthermore the left side of (6.12), or equivalently of (6.11), cannot be —oco, because
thie integral is finite when v € £°°, and we do know (from the proof cf Theorem 4.2)
‘Lat V contains at least one pair (v,v.) with v actually continuous.

Our argument has not only verified (6.7) but shown that the same would he
irue if J were replaced by the alternative functional J using oo — 0o = —oo instead
of 00 — 0o = oo. Indeed, (6.10) still holds for J, since J > J. Everything else is
unchanged, because we relied only on v € £, and for such v the values of J and J
acree. This symmetry is all we need to conelude that (6.8) is valid too. ]

THEOREM 6.2 (Weak Duality). For the optimal control problems (P) and (Q)
it 15 always true that

inf (P) = sup (Q).

Furthermore a pair (i, 4. ), (¥, T.) 18 @ saddle pont of J on U x V of and only if (u, u,)
solves (P), (,7,) solves (), and min (P) = max (Q) (finite).

Proof. This is just a repeat of the general facts in Proposition 2.1 for the specili
case in Theorem 6.1. 0

A stronger result is obtained by appealing to the finiteness conditzons for (P) and
{2) that were introduced at the end of §4. We wish to emphasize again, as in §1, that
this is by no means the most general result on strong duality. Rather, it is presented
as a relatively siinple result which is easy to work with and already capable of covering
many important cases, especially in view of the modeling possibilities explained in §5.

THEOREM 6.3 (Strong Duality). [f the primal finiteness condition 1s satisfied,
LI 2N

(€ 13) inf (P) = max (Q) < oo,

ard'moreover the dual objective § 1s weakly sup-compact relative to V| d.e. all level
w3 of the form

{6.14) {(v,v.) €V I Glv,v.) 2 a} foraeR

are weakly compaet in L[ty t,],R?) x R
Likewtise, 1f the dual finiteness condition 1s satisfied, then

{1 15) min (P) =sup (Q) > —o0,

and moreover the primal objective (P) is weakly inf-compact relative to U
iivs of the form

e all level

(& 16) Hu,u.) el

Flu,ue) < a} foraec R

o weakly compact in L'([ty, ¢1],R¥) x RE-.
Thus of both finiteness condittons are satisfied, solutions exist to both (P) and
(&), and

6 17) nmin (P) = max(Q) (finite).
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Proof. Qur proof of the formulas (6.7) and (6.8) in Theorem 6.1 gave something
slightly stronger that will now be of use: if we denote by U™ and V> the subsets of
U and V having u € L™ and v € £, then

(6.18) Flu,u,) = sup  J(w,uv, ) for all (w, w,),
{10, )E V=

(6.19) Gl = inf J(u, e v v for all (o, v,).
(m0e, )e s
In order to obtain (6.13) it will be enough by this to demonstrate
(6.20) inf sup J = max inf J,
use Vv VU=
since the inequalities

infsup J = infsup J > supinf J

lge: Y u v v ou
hold trivially. The one-sided minimax theorem of Moreau [51] will justify (6.20) pro-
vided we can show that under the primal finiteness condition J(u, ue; v, v.) is weakly
sup-compact. in (v, v,) relative to V when (u,u,) € U™. The latter will also give us
the claimed sup-compactness of G via (6.19).

Fix (u,u.) € U™. Taking J as expressed in (6.9) and introducing s(t) and s, as

in (4.5), we have

-fl
(6.21) J(u,up;v,ve) = / [v(t)-s(t)— Jv(t)-Q(t)v(t)]dt+ [v.- 3, — FVe- Qev,] +const.
to
for all (v,v.) € V, where s(t) is L2 in t. The required sup-compactness property of
J is the weak compactness of the level sets
{{v,v.) eV ‘ Ju,up;v,00) 2 af for ae R,
We recognize now that this is the same as the weak compactness of the level sets

(622)  {(ov)e V| .5/ ot} - QUL + Sve - Qeve — ((1,00), (3, 8.)) < B

for ;4 ¢ H, where

(6.23) {(v,v.), (8, 8.)) = /f v(t) - s(t)dt + v, - s,.

St

Onee again the convex function
1 : s
] su-QUe)v fve V(t),
Ts Er= 0 { b - = 2
pe(v) Jow () vie(v) { a5 o V()

will be nseful, together with

‘F"t'("r] = JQ,{“'] + hl'..[“l" = { . if v, g "

The convex functional
ki
M) = [ o)t +plve)
fy

is well defined on El([!u.h[.ﬂ‘r) « Rf with values in [0,00), and in terms of it the set
(6.22) can be written as

(6.24) {(nv.) € L([to. 1], RY) x R

Huv,v.) = ((v,v0), (8,8, ) < O},

%ue Quve il ve €V, %
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‘Ne shall be able to establish the weak compactness of this set for arbitrary (s,s.) €
L£%([to, t1],RY) xR% and B € R by means of the theory of integral functional conjugate
.0 each other [49], [50].

Let us think of the spaces £!([tg, t1],R¢) x R% and £%°([tg, t1],R7) x R¥e as dual
i.. each other under the pairing (6.23). The pairing formula and the formula for I can
a:tually be viewed as integrals over a measure space that is the union of [tg,t;] and
an atom {e} of measure 1. In this sense I is an integral functional, pure and simple.
The functional 4

I (s, 3.) :/l i (s(0)dt + @l (s.)
0

on L%([te,t1],RY) x R, where ; and ] are conjugate to o, and 2., is an integral
functional too, and I and I* are conjugate to each other by [49, Thm. 2] (or [50,
Thm. 3C|) with respect to the pairing (6.23). Indeed ¢ = py (.0 and ©;
f1,.Q. 50 ; and @] are finite convex functions on R¢ under the primal finiteness
condition we are assuming. Furthermore o} () is for each 8 € R? continuous in ¢ by
* oposition 4.1, hence integrable over [ty,t,]. These properties for I* plug into the
v ak inf-compactness criterion of (49, p. 538| for integral functional on £!-type spaces
aiid prove the required weak compactness of all level sets of the form (6.24) for the
conjugate functional I = (I*)°.

The proof of (6.15) and the weak compactness of the sets (6.16) follows now hy
sy minetry. =]

COROLLARY 6.4. Suppose the primal and dual finiteness conditions both hold.
I'ven in order that (U, u.) solve (P) and (v,0.) solve (Q), it 13 both necessary and
s fficient that (u,u.), (¥,7.)) be a saddle point of J on U x V.

Proof. According to Theorem 6.2 the saddle point condition is always sufficient,
st if min (P) = max (Q) it is also necessary. Necessity therefore follows from the
primal and dual finiteness conditions by the result just proved in Theorem 6.3. [l

The saddle point condition in Corollary 6.4 means that (u,%.) € U, (v,70,.) € V,
aul

(£.25) J@, w5 v,v.) < J(W,%;0,7.) < J(u,u.;0,0,)

ioi all (u,u.) € U and (v,v.) € V. This “global” condition actually decomposes, as
we show next, into an “instantaneous” saddle point condition at cach time ¢ and an
“eadpoint” saddle point condition.

THEOREM 6.5 (Minimaximum Principle). For ((@, . ), (7,7.)) to be a saddle
sowmnt of J on U x V, it 13 necessary and sufficient that the following conditions hold
{11 addition to u(t) and v(t) being L' in t). For almost every t € [to, 4]

(6.26) (u(t),0(t)) 3 a saddlepoint relative to U(t) x V (t) for
J(t,u,v) —u- B ()y(t) — v C()F(t),
wnd also
(€.27) (te, 1) w3 a saddlepoint relative to U, x V, for
Jr(uu ve] — Ue - B;y(tﬂ) — Ve~ Ccful]y

where T and § are the primal and dual state functions corresponding to (u,u,) and
{8,79.).

Proof. The saddle point condition (6.25) for J on U x V is equivalent by Theorem
.+ to the condition

(‘28) jr(ﬁ! ﬁr) = J(ﬁvﬁc; ﬁu_)e) = g(ﬂ 7).
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Let us write this as

(6.29) Fluu) +a = J(@,4,7,%) +a = §(9,7.) + @,

where
-

@ / [e(¢) - Z(t) + b(t) - g(t)]dt + cc - T(t1) + be - Ulto) — [(W, 7e), (V, )]

to

The alternative expressions for [(w, w, ), (v,0,)] in (68.4) give

5= / e(t) - 7(t) — a(t) - BHOFOM + e - F(t1) — T, - BLF(t))

- /‘lb(zj-ﬂ(!) ~B(L) - CUOT(E)]dE + [be - Flta) — Te - CeE(11)].

to
Using these along with the formulas defining 7, G, and J, we get expressions of the
form

ty
= 7.l )d g
Flu jlu f@n)dt + (@),
Ly
Gm v ) +a= | Gu(t))dt + g.(v.)
to
ty
J(H, 20, 0,) + = Je(@(t), vlt))dt + Jo(ue, ve)
ty
where
(6.30) J (u) = [p(t)~ B*()g(1)] w+ ju-P{t)utpy(o),qelat) — C(L)E(t) — D(t)u),

(6.31)  folue) = [pe — Biylto)] - u + jue- Pewe + pv, @, (g — CeZE(t1) — Deu,),
(6.32) g(v) = lg(t) ~ CLO)E(L)] v~ Jv-Q(t)v = pu (o). p(o (B ()F(E) + D™ (t)u = pit)).
(6.33)  Golve) = [ge — CeT(t)] - ve = 30 - Qeve — pv, £ (BIUlto) + Dive — po),
(6.34) Jo(u,v) = J(Lu,v) —u- BTOG() - v COZ(L),

i.35) Jolue, ) = Jelwe,ve) e BIG(to) - v - CLT(t).

The saddle point condition on ((u, %), (¥, U.)), written as (6.27), 1s equivalent under
this formulation to

/f(u Nt + f (i, :] (), 5(t))dt + T (T, B,)

(6.36) 3
/ G (o)) dt + g, (v.).
St

But

(6.37a) filw) = sup J,(w,v), ﬁl(r:}— lllf Ji(u,v),
veEV(l) Ut

(6.37h) Tr‘(u,‘) = inf To(itisds G.(ve) = sup J.(1e,v,),

veVe uel,
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by the definition of the p terms in (6.30) - (6.33), so
frlu) = Je(u,v) = ge(v) for allu e U(L),v € V(1),
felue) = Je(ue, ve) 2 ge(ve) for all u, € U, v, € V..

Since the left side of (6.36) cannot be --00, whereas the right side cannot be oo (from
the corresponding facts about F(u,u.) and G(v,v.) in Theorem 6.1), condition (6.36)
a9olds if and only if

Ju@(t)) = Je(u(t), o(t) = g (0(t)) ae,  fole) = Jelu,v.) - g.(v.).
i view of (6.37a) and (6.37b) these are precisely the “instantaneous” and “endpoint”
2wddle point conditions asserted in the theorem. 0

Theorem 6.5 has an interesting interpretation in the context of the finite-dimen-
sional linear-quadratic programming problems in §2, as revealed by its proof. We shall
frmulate this as a corollary.

Corresponding to the trajectories T and %, consider the “instantaneous” primal
aud dual problems associated with the linear-quadratic form J,(u,v) on U(t) x V (1),
wiere J, is given by (6.34), namely:

(5 (Z,7) minimize f,(u) over u € V(t) where f, is given by (6.30}),

1@2:(z,7)) maximize §,(v) over v V(t) where g, is given by (6.31).

Caonsider too the “endpoint” primal and dual problems associated with the linear-

quadratic form J, (., v.) on U, x V., where J, is given by (6.35), namely:

{F.(Z,7)) minimize f,(u.) over u. € U, where J, is given by (6.32),

(& e(Z,7)) maximize g (v.) over v, € V, where g, is given by (6.33).
COROLLARY 6.6. For ((4,%.),(9,7.)) to be a saddle potnt of J on U x V, it

1= necessary and sufficient that the following conditions hold (in addition to u(t) and

(1) betng L' tnt). For almost every t € [ty, t]

(.38) %(t) solves the instantaneous primal (P(Z, 7)), and
@(t) solves the instantaneous dual (Q.(%, 7)),

ard furthermore

1.39) U, solves the endpoint primal (P.(T, 7)), and
. solves the endpoint dual (Q,.(T,7)).

Proof. Because the instantaneous and endpoint problems fall in the category of
Huite-dimensional linear-quadratic programming, we can apply Theorem 2.2 to themn
.nd see that (6.38) entails

min( P (Z,7)) = max(Q,(Z, 7)),
:nd.(6.39) entails

min(FP.(Z, 7)) = max(Q.(Z,y)).
1* follows then from Proposition 2.1 that (6.38) is equivalent to (6.26), whercas (6.39)
ie equivalent to (6.27). O

Our final result extends Theorem 2.5 to the infinite-dimensional case. It provides
a basis for the idea that in intertemporal linear-quadratic programming as well as in
finite-dimensional linear-quadratic programming, a given pair of problems (P) and
(2) can often be remodeled, at least for computational purposes, by a more tractable
pair {P) and (ﬁ) in the pattern of bounded linear or quadratic programming as in
Examples 5.4 and 5.7
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THEOREM 6.7, Consider along with (P) and () an auzihary pair of problemns
(}3} and (QJ under the same assumptions and defined by the same data, except with
the control sets U(t), U, V(t), and V. replaced by sels

(6.40) Uwcuw, O.cu, Vicvi), V.cV.

Su;:po‘;t' mln{l‘) - mex((J), as would be true in particular by Theorem 6.3 if the sets

0(1), 0., V() and V, are all bounded.
(a) If (w.u.) and (U,7.) satisfy the instantaneous and endpoint conditions in
Theorem 6.5 (or Corollary 6.6) and also are such that

a(t) € U(t) ae., wel., o(t)eV(l)ae, v €V,

then (1, ) solves nof only (P) but (5), and (U,0,) solves not only (2) but (Q}

(b) If(u‘?'if) solves (P) and (v,9.) solves (Q), and if U (t } and V( ) cotncide with
ﬁ( t) and V( ) around u(t) and B(t) for almost every t, while U, and V. coineide with
U, and V. around @, and 1., then actually (¥, @.) solves (P) and (v,7,.) solves (Q).

(The terminology about “coinciding” is defined in the statement of Theorem 2.5.)

Proof. Under the assumptions in (a), (u,u.) and (7,9,) give a saddle point of
Jon U x V (by Theorem 6.5, or as the case may be, Corollary 6.6), and this saddle
point happens to lie in I % V (where U and V are the control spaces corresponding
to (ﬁ) and (ﬁ}] Then ((w,1,), (,T.)) is also a saddle point for J relative to ix V.
Theorem 6.2, applied to both pairs of problems, yields the conclusions. .

Under the assumptions in (b) we know by Theorem 6.2, as applied to (P) and
(Q), that ((@, . ), (0, 7.)) is a saddle point of J relative to il x V. The instantaneous
conditions and endpoint conditions in Theorem 6.5 must therefore be satisfied relative
to [7{t} % V(1) and U, % V.. But by Theorem 2.5 and our hypothesis about the sets
coinciding locally, the same conditions are then satisfied relative to U(t) x V(t) and
U, x V.. Theorem 6.5 tells us now that ((z,%.), (v,7.)) is a saddle point also for J
relative to U % V. Then (%1, ) and (#,7,) are optimal for (P) and (@) by Theorem
6.2. |

To make the best use of Theorem 6.7 in the manner outlined at the end of §3 for
the finite-dimensional case, it would be helpful to have criteria under which (P) and
(Q) have solutions (%, %, ) and (%, T.) with % and ¥ actually in £°°. Then, for example,
Theorem 6.7 can be applied with the subsets (6.40) taken to be intervals adequately
large. Such criteria can be developed, but we shall not address the issue here. Results
of this nature for the cases covered by continuous-time programiming may be gleaned
from Grinold [5], [6] and Reiland [8], [15].
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