CHAPTER 23

LAKE EUTROPHICATION MANAGEMENT: THE LAKE
BALATON PROJECT

A.J. King, R.T. Rockafellar,
L. Somlyddy, R.J-B Wets

Abstract

This is a brief overview of a collaborative effort of the Environment and Natu-
ral Resources, and the Adaptation and Optimization task forces at IIASA, to
design stochastic optimization models for the management of lake eutrophica-
tion, and its use in a major case study {Lake Balaton). For further details,
consult: Somlyddy [5],[6]; Somnlyddy and van Straten [8]; Somlyédy and Wets
[9]; Rockafellar and Wets [2]; and King [1].

Lake Balaton (Figure 23.1), one of the largest shallow lakes of the world,
which is also the center of the most important recreational area in Hungary,
has recently exhibited the unfavorable signs of artificial eutrophication. An
impression of the major features of the lake-region system (including phosphorus
sources and control alternatives) can be gained from Figure 23.1 (for details, see
Somlyddy et al [7]; and Somlyédy and van Straten [8]). Four hasins of different
water quality can be distinguished in the lake (Figure 23.1) determined by the
increasing volumetric nutrient load from east to west (the biologically available
phosphorus load, BAP, is about ten times higher in Basin | than in Basin Iv).
The latter is associated to the asymmetric geometry of the system, namely the
smallest, western basin drains half of the total watershed, while only 5% of the
catchment area belongs to the larger basin.

Based on observations for the period 1971-1982 the average deterioration

of water quality of the entire lake is about 10% (in terms of Chlorophyll-a (Chl-

a)). According to the OECD classification, the western part of the lake is in
a (most advanced) hypertrophic state (which is the result of the large nutrient

[ load), while the eastern portion of it is in an eutrophic stage.

The modeling approach to eutrophication and its management involved 4
major phases (Somlyddy [5]).

| L. The description of the dynamics of the lake eutrophication process by a
gimulation model (LEM) which has two sets of inputs: controllable inputs
{mainly artificial nutrient loads) and noncontrollable inputs (meteorologi-
cal factors, such as temperature, selar radiation, wind, precipitation). The
output of the model is the concentrations vector y of a number of water




; N - e > ; i %
436 Stochastic Optimization Problems 4 Lake Eutrophication Management 437

quality components as a function of time {on a daily basis) f, and space
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© 3 wg f % ] r :y.(t.,r.). I.LEM is calibrated and validated by relying on historical data.
] ] ‘*.::’ O'_,‘:' 1 2. Derivation of stochastic inputs and the usage of LEM in a Monte Carlo
S5 8 ® g.E’ fashion under systematically changed load conditions resulting in water
é [l 0 % 2 '{é quality as a stochastic variable: §(t,r). Selection of the indicator for water
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ing the indicator as a function of the load (for Lake Balaton a linear re-
lationship was obtained). Design of a planning type nutrient load model
{NLMP) and the incorporation of LEMP and NLMP in a management,
‘ optimization model (EMOM).
7'"‘,. | 4. Validation. In the course of this procedure various simplifications and
e E aggregations are made without a quantitative knowledge of the associated
errors. Accordingly, the last step in the analysis is validation. That is,
e the LEM should be run with the “optimal” load scenario (found in the
N previous step), and the “accurate” and “approximate” solutions generated
g : by the aggregated and nonaggregated versions of LEM can be compared.
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\i: ] was found to be appropriate. The use of (Chl-a)max.as the indicator allows
p 4 to eliminate time from the analysis on the level of management.
‘B - I ] 3. Derivation of the aggregated, stochastic load response model (LEMP) serv-
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i The lakes’ total P is in an average 315t /yr (the BAP load is 170¢/yr); but
J §  depending on the hydrologic regime it can reach 550t fyr. 53% of the load L is
- g carried by tributaries (30% of which is of sewage origin-—indirect load, see e.g.,
. E the largest city of the region, Zalaegerszeg in Figure 23.1}, 17% is associated
¥4 $  to direct sewage discharges (the recipient is the lake). Atmospheric pollution
= ; § is responsible for 8% of the lake’s load and the rest comes from direct runoff
(urban and agricultural). Tributary load increases fromn east to west, while the
. change in the direct sewage load goes in the opposite direction. The sewage
3 contribution (direct and indirect loads] is 30% to P, while it is about. 52% to the
E total biological available load (the load of agricultural origin can be estimated
ag 47% and 33%, respectively) suggesting the importance of sewage load from
the viewpoint of the short term eutrophication control. Figure 23.1 indicates
also the loads of sewage discharges and tributaries which were involved in the
management optimization model. These cover about 85% of the nutrient load
which we consider controllable on the short term (e.g. atmaospheric pollution
and direct, runofl are excluded).

Control alternatives are sewage treatment, (upgrading of the biological stage
and introduction of P precipitation) and the establishment of prereservoirs as
indicated in Figure 23.1 (see e.g. the Kis-Balaton reservoir system planned for
a surface area of about 75 km®).

The nutrient load model for Lake Balaton incorporates control variables
associated with control options mentioned. Sewage load was considered deter-
ministic, while tributary load was modeled by the simple relationship.
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Figure 23.1 Major nutrient sources and control options
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where Ly is the base load (mainly of sewage origin), Q is the stream flow rate,
L, is the residual, and the variable £ accounts for the influence of infrequent
sampling (£~ is the lower bound). The most detailed data set including 25
years of continuous records for ¢ and 5 years of daily observations for the loads
was available for the Zala River (Figure 23.1) draining half of the watershed
and representing practically the total load of Basin 1. For the Zala River L, was
found to have a normal distribution, while Q was approached by a lognormal
distribution. Tributary load can be controlled by choosing the size of reservoirs
(they generally consist of two parts, having separated impacts on dissolved and
partirulate loads, see Figure 23.1), while the Ly component can be influenced by
sewaze treatment. As can be judged from the above equation, sewage treatment
affects the expectation of the load, only, while reservoirs affects both expectation
and variance (for details see Somlydédy [6]]

The planning type nutrient load model (NLMP) outlined briefly and the
linear load response model (LEMP) lead to the affine relation (Sorlyédy and
Wets ig”

{es) = T(w)z — ()

where ¥ = (yy....,y4) are the water quality indicators in Basins 1,...,4, the
random vector h incorporates all noncontrollable factors, the z-variables are
the control variables and the linear transformation 7'(w)a gives the effect on
water quality of the measures taken to control the loads L.

In the formulation of the eutrophication management optimization model
(EMOM) the objective must be chosen so as to measure in the most realistic
fashion possible the deviations of the indicators from the water quality goals.
This led us to a stochastic program with recourse model with associated solution
procedure developed by Rockafellar and Wets [38] and implemented by King [1].
We also used a linear programming model, see Somlyddy [6] and Somlyédy and
Wets (9] (Section 6) that is based on expectation-variance considerations (for
the water quality indicators). In the Lake Balaton case study the results for
both this expectation-variance model and the stochastic programming model
(5.11) lead to remarkably similar investment decisions. Subsequently, objective
functions and results of the two models are briefly discussed.

1. The recourse formulation starts from the following considerations. The
model should distinguish between situations that barely violate the desired
water quality levels (v;, 7= 1,...,/N} and those that deviate substantially
from these norms. This suggests a formulation of our objective in terms of a
penalization that would take into account the observed values of (v (z,w)— %)
fori=1,...,4.

We found that the following class of functions provided a flexible tool for
the analysis of these factors. Let 6 : R — R, be defined by

ifr <o
T fo<r<i
-1 ifr>1
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This is a piecewise linear-quadratic-linear function. The penalty functions
(¥:, i=1,...,N) are defined through:

W,iz) = greif(e; '2) for =1,...,N,

where g, and ¢; are positive quantities that allow us to scale each function
¥, in terms of slopes and the range of its quadratic component. By varying
the parameters e, and g, we are able to model a wide range of preference
relationships and study the stability of the solution under perturbation of these
scaling parameters.

The objective is thus to find a program that in the average minimizes the
penalties associated with exceeding the desired concentration levels. This leads
to the following formulation of the water quality management problem:

find ze& R" such that
0< e <ry, T PO )

n

Za.*_,';rjgh,‘. =T, i1

j=1
n

Z tilw)ey —vi{w) = hilw) £ 20 Y
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and z = Z ((‘_.,':T_,‘ + ;:—r?) + E{Z greid {r:f l‘e=,‘[‘w_‘)) } 1s minimized

1=1 7 =1
to which one refers as a quadratic stochastic program with simple recourse; here
by is the available budget that we handle as a parameter. For problems of
this type, in fact with this application in mind, an algorithm is developed in
Rockafellar and Wets [2], and Rockafellar and Wets [8], which relies on the
properties of an associated dual problem. In particular it is shown that the

following problemn:
find y e R and z(-) : @ — R™? measurable such that
0 < z(w) <g, 3= Ty e nng T

my my
u; = —Zﬂ,_,y, *E{Zz,{-w]f.”—[u'”. F=1..., n
=, (B |
nli nl? i
and Z yibi — Z Efh(w)z (w) + 3 ‘7 2 (w) )
=i =1 B
n
- Z v“]rf}‘ﬂ((lj_l?l_,'] is maximized ,
1=1
is dual to the original problem, provided that for ¢ = 1,...,ma, the ¢; and ¢

are positive (and that is the case here) and for y =1,...,n, the d; > 0, which
is taken care of by a natural perturbation of the objective.
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An experimental version of this algorithmn that relies on MINOS was im-
plemented at 1IASA by A. King (and is available through HASA as part of a
collection of codes for solving stochastic programs), see King [1]. It starts the
procedure by solving the deterministic problem with expected values for the
coefficients in h and 7.

2. As a starting point for the construction of the expectation-variance

model, we consider the following objective function:

N

Zq,-]t‘{;u.[:r, s '7")2; }

=1

where, as earlier, y; (#,w) is the water quality indicator characterized by the
selected indicator in basin ¢ given the investment program « and the environ-
mental conditions w, 4, the goal set for basin ¢ and ¢; a weighting factor. The
objective being quadratic in the area of interest, and the distribution functions
Gi{z,-) of the wi(x,-) not being too far from normal, one should be able to
recapture the essence of the effect of this objective function on the decision
process by considering just expectations and variances of the y,(r,-). This ob-
servation, and the “soft” character of the management problem, suggest that

we could substitute for the original objective

&
Y (Efwilz,) = Foi} + 0 (wi(2.7) — 5ai))

i—1

where @ is a positive scalar (usually between 1 and 2.5), 7,; = E{yai} is the
expected nominal state of basin 7, and o denotes standard deviation,

a (vilz,) = i) = E{(wi(2,) - Elule, )7}

Since for each 7 = 1,..., N, the y; are affine (linear plus a constant term) with

respect to z, the expression for

n
1"«'{'5'; (J’.) — Yo } = Z.ulj-rj + Hio
J=1
as a function of z is easy to obtain from the load equations. The p; are
the expectations of the coefficients of the z; and the g, the expectation of the
constant term. Unfortunately the same does not hold for the standard deviation
o{yi{z,-) — @) The nutrient-load model suggest that

alwila.) = dui) ~ (3 ode)}
(4

where o,z is the part of ihe standard deviation that can be influenced by the
decision variable z¢; for example, the standard deviation of the tributary load.

Lake Iutrophication Management 111

Cross terms are for all praciical purposes irrelevant in this situations since the
total load in basin 7 is essentially the sum of the loads generated by various
sources that are independently controlled. This justifies using

1
N n 7
=1

n
al| D wiey | +0| Y al=t] ]
=1

J=1

as an objective for the optimization problem. This function is convex and
differentiable on R7 except at = = 0, and conceivably one could use a nonlinear
programming package to solve the optimization problem:

find =z € R" such that

; ' v
t; Rzp S g e
n
S ﬂ,‘_,‘l‘_,f’?, t=1,...,m
J=1

N n

n
and z = Z G {Z pijri+0 n,?r‘rf
-1 J=1

1 =t

s minimized.

One can go one step further in simplifying the problem to be solved, narmely
by replacing the term.

. b
E 2.3

rr,_,-.?.)-
y=1

in the objective, by the linear (inner) approximation

n
Y aijej.
Jj=1

On each axis of RY, no error is introduced by relying on this linear approx-
imation; otherwise we are over-estimating the effect a certain combination of
the 2’ & will have on the variance of the concentration levels. Thus, at a given
budget level we shall have a tendency to start projects that affect more strongly
the variance if we use the linear approximation, and this is actually what we
observed in practice. Assuming the cost functions ¢ are piecewise lincar, we

7
have to solve the linear program:
find & R™ such that
) .
rr,rS.r_,-ér,, 1=1...4m
1
4 )
E aix; < by, § = 1,000

=1
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N n
and t = @ Y (pi; +00;;)z; is minimized.
J 271

=1 =1

We refer to this problem as the (linearized) exzpectation-variance model.

We have given only a heuristic “justification” for the use of the expectation-
variance model as a management tool. In Section 6 of Somlyédy and Wets [9],
this model is also derived from a basic formulation of the management problem
that integrates reliability and penalty considerations.

3. Figures 23.2 and 23.3 give a comparison of the results for the recourse
and the expectation-variance models when we vary # (the budget level). Statis-
tical parameters (expectation, standard deviation and extremes) of the water
quality indicators gained from Monte Carlo procedure are illustrated in Figure
23.2 for the Keszthely basin as a function of the available budget /.

In Figure 23.3, we record the changes in the two najor control variables
(zsn1 and zp;) associated to the treatment plant of Zalaegerszeg and the {sec-
ond) reed lake segment of the Kis-Balaton system (see Figure 23.1). There is a
significant trade-off between these two variables. For decision making purposes,
it is important to ohserve that there are four ranges of possible values of 4, in
which the solution has different characteristics.

s Expectation variance model

Y
-1 3 X Stochastic model with recourse
Ll v, = (48,28,24,18), i=(1,...,4)
e =50 q =100 i=I(1,. ., 4)
150 1 1

95% confidence level
Byl
min {Y.l-

a Y.‘I

O . *

g2 TAC [107 f/yr]

Figure 23.2. Water quality indicator (Chl — a),.. as a function of the total

annual cost.
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e Expectation variance model
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Figure 23.3. Change of major decision variables.

As seen from Figures 23.2-23.3, the two models produce practically the same
results in terms of the water guality indicators (including also their distribu-
tion). With respect to details there are minor deviations. According to Figure
23.3, the expectation-variance model gives more ernphasis to fluctuations in
water quality and consequently to reservoir projects, than the stochastic re-
course model (see the basic case, B, with the parameters specified), and this is
in accordance with the fact that the role of the variance is oversiressed in the
expectation-variance model.

From this quick comparison of the performances of the two models, we
may conclude that the more precise stochastic model validates the use of the
expectation-variance model in the case of Lake Balaton.

A more detailed analysis, and further discussion on the role of parameters
%iye; and g, and comparison between deterministic models and the stochastic
models is given in Section & of Somlyédy and Wets [9].
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