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LINEAR-QUADRATIC PROGRAMMING PROBLEMS
WITH STOCHASTIC PENALTIES:
THE FINITE GENERATION ALGORITEM

R.T. Rockefellar' and R.J.-B. Wets'

Much of the work on computational methods for solving stochastic programming problerus
has been focused on the linear case, and with considerable justification. Linear programming i
techniques for large-scale deterministic problems are highly developed and offer hope for the even
larger problems one obtains in certain formulations of stochastic problems. Quadratic program-
ming techniques have not seemed ripe for such a venture, although the ultimate importance of
quadratic stochastic programming has been clear enough.
There is another kind of approach, however, in which quadratic stochastic programming
- problems are no harder to solve than linear ones, and in some respects easier. In this approach,
for which the theoretical groundwork has been laid in Rockafellar and Wets [1}, the presence of
quadratic terms is welcomed because of their stabilizing effect, and such terms are even introduced
in iterative fashion. The underlying stochastic problem, whether linear or quadratic, is replaced
by a sequence of deterministic quadratic programming problems whose relatively small dimension
g can be held in check. Ameng the novel features of the method is its ability to handle more kinds
’ of random coefficients, for instance a random technology matrix.
s In this paper we present a particular case of the problem and method in [1] which is especially
: easy to work with and capable nevertheless of covering many applications. This case falls in the
category of stochastic programming with simple recourse. It was described briefly by us in 12},
but with the theory in [1] now available, we are able to derive precise results about convergence
and the nature of the stopping criterion that can be used. This is also the one case that has been
implemented so far and for which numerical experience has gained. For a separate report on the

implementation, see King 13].

For the purpose at hand, where duality plays a major role and the constructive nse of

quadratic terms must be facilitated, the format for stating the problem is crucial. The following

deterministic model in linear-quadratic programming serves as the starting point:

U This work was supported in part by a grant from the Air Force Office of Scientific Research

at the University of Colifornia, Davis. {
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(Paec) ', sy g t
dmize f(z) = ) [e;z; — Lp.z?
E\ 725 = grE] = Zﬁ’f"kipk&k)
k=1
subject to 0 < Iy Sepforj=1 n

n
Zﬂ;,rjgb, fori=1...m
=1 ' P

n
ve=D lyzi—hefork=1.... ¢
=1

where p 15 a penally function épending on two Darameters p, and g% and havi; g the for W
h alty fi tol d d 1 1 avin form shown

in Figure 1, namely

1]
for v <0
. ) Hiid o
Ploeipeae) = { Folpe for 0 < v < prgy
This Bk = bpend forv>opg. o1
is is convex in v, t j i
= %, 50 the object function f in (Pdes) is concave; it is
and §; are nonnegative. For py = 0, ane takes ‘ I v

0 for v, <0,

plvs o, qi) = {
geve  for vg > 0. (0.2)

Plveipe. ai)

- slope

slope =gk

'
i
i
'
Y

v,
Prgx *

FIGURE |

\
e pen TS Ir ( det/ Tepresent a weakened incorporation of constraints
h alty 4 P I i) k nstraint,

Eh‘}: She for k=1
= ! S (0.2)

into e problem. They vanish as Ong as these constraints are satis e ut charge a
& i i & iti
th h 150 th t fied, but ch positive

cost when they are viola ed. The cost ToOws lnearhy B e 0 but otherwise 1
t 5L g linea v in the special case of (0 2)
.2}, but otherwis

first passes smoothly through a quadraric phase
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The stochastic programming problem (P, ) that we want to consider is obtained by allowing
all to be random variables and replacing each penalty term by its expectation.

tr;s hies pe and gk
few of these variables might actually be random.) The

(In any one application, of course, only a
interpretation is that the z;'s are decision variables whose values must be fixed here and now.

The constraints 0 < z; < 55 and

Zu;jzj-f_b, for i=1,...,m (0.4)

i=1
are known at the time of this decision, but about the random variables in question there is only

statistical information (their distributions). The constraints (0.3) therefore cannot be enforced in
the selection of the ;s without severe consequence. Instead of trying to guard against all possible

violations by being extremely conservative, we imagine there is a way of coping with violations

| if they should occur. Some recourse action is considered to be possible

of the constrainis (0.3}
as an associated

after the values of the random variables have been realized, and this recourse h

cost which depends on the extent of violations. This cost is represented by the penalty terms

. and its expectation is subtracted from the here-and-now expression in the z;'s that

plvk;px, ax)
is being maximized.

Besides the direct applications of this model, we see it as potentially valuable in problems

mulated deterministically, but in which some of the data may be

that until now have been for
) it should be possible, even with

putting such problems in the form of {Psto

rather uncertain. By
s and probabilities, to gain some appreciation of how

every crude guesswork about penalty cost
the choice of the x;'s should be modified to hedge against the uncertainties. Certainly this ought

to be better than merely assigning specific values to the fuzzy data.

We mention again that aithough our basic problem is nominally
nature of the penalty terms will be recorded later, in §3), we are
OQur plan is first to

quadratic (a formulation

{hat sidesteps the “piecewise”
also very much concerned with the linear case where r; = 0 and pp = 0.

2 method whose characteristics are mest attractive in the strictly quadratic case where

display
0, and then apply it to problems lacking in strict quadraticity by

r;>0and pr > means of the

proximal point technique 14}, [1).

1. OPTIMALITY CONDITIONS AND DUALITY

The approach we are taking depends very much on duality. A subproblem of a certain dual

problemt will explicitly be solved at every iteration. The Lagrange wultipliers in this process will
generate the optimizing sequence for the primal problem.

For the deterministic problem (P4ec). the appropriate dual would be
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m [4
winimize g(y.2) = 3 by + 3 [z + Lpysd
(Dde:) i=1 k=)

n
-'rz!__lp(w,:r,.s,)

subject to 0< 3 for i=1,...,m,

0< 2 < g for k=1,....¢

™m L

w =¢; —zy-ﬂ-, = z-‘afk, for y=1,....n.
k=

=1
Here p is the same function as before {ef. Fig. 1), except that the symbols for the variables have

been switched:
0 for w; <0

for 0 5 wj < rjs (L1)

(ars s % L3 e,
p(""‘j:rjlst == 2’”’)’/”}'
N T
6jWi — gri6;  for w; 2 riw;.
The terms plwiiri 8;) in (Dye) are to be viewed as penalty representation replacements for
constraints

m ¢
Zy,-a,,‘-i-z:kthzc, for y=1...,n. (1.2)
=1 k=1

This form of duality is a special case of the scheme used in monotropic programming [5). It

results from the conjugacy between the ronvex functions

Prlve) = ploe: pe, ge),

ve(z) = {;‘Pk”'i “05{1: < g, (1:3)
00 otherwise.

Cne can show that as long as the constraints (Paet) are consistent, one has

max (Pyw) = min (Dyec).

In the stochastic case we are directly concerned with in this paper, the appropriately modified
primal and dual problems are

\ i ¢
(Puce) maximize [(z) = 3 [ejz; — bryed] - E{Y pluni e, )} {

F=t k=1

subject to 0<z; <8 for j=1,...,n,
n
Za,jz,_gb, for i=1,...,m,
I=1

[]=

e {k,ﬂ',—ﬁk for k=1,...,L

1=1

Il
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m L
minimize gy, z) =Y by + E{ Y [heze + Lpizi]}
=l k=1

(DSIO} n
+§:p[’w1;r_,.sj}
i=1
subject to 0<y; for i =1,...,m.

02, < for k=1,....L

m )
P S TTRS-T) e
=1 k=1
The random variables in these problems have been indicated by ~: the symbol E denotes math-
ematical expectation.
In order to avoid minor technical complications that have no real importance in our present

task of setting up a computational framework for (Psc,), we shall rely henceforth on two assump-

tions.
There is at least one vector z satisfying
Al :
(A1) 0<z; <5 for j=1,...,n, and Zn gz, b for i=1,...,m.
i=1
(A42) The given random variables ¢, ke, Pi, {5 take on only finitely many values.

Only (A2) needs comment. We are assuming that whatever the “true” distribution of these
variables might be, we are treating them here in terms of finitely many values to which probability
weights have been assigned. Such a discrete distribution might be obtained by approximating a
continuous distribution. or by sampling a continuous distribution, or empirically. For now, that
need not matter; the question of the source of the discrete distribution and how it might be
“improved” is quite separate. The important thing is that we impose no further conditions on the
random variables. Aside from (A2). their distribution can be completely arbitrary. In particular

a joint distribution is allowed; the variables do not have to he independent.

THEOREM 1. Under assumptions (A1) and (A2), problems (Pyzo) and (Dggo) both have opii-
mal solutions, and

max (Pygo) = min (Dyy)-
Moreover in the strictly quadratic case where r; >0 and P > 0, the follewing conditions are

necessary and sufficient in order that T be optimal for (Pyo) and (¥, Z) optimal for (Dyg, ):

0 i
Y oayT—b <0, 7,20, and (30,7 —b,)F, =0, (1.4)

=1 s=1
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.
%, = p(Wyirj,05) for Ty=ej=y (2.8)
=1
n
e = p(Thi Pe, Gi) for T = Zith = hi. (1.6)

In these relations the derivatives p' refer to the first argument indicated, not the parameter

arguments. Thus

0 ifw; <0
plwiirjosg) = wyfr, f0<w; Lrpg (1.7)
&) if wy 2185
and likewise, with just a change of notation,
L] frpg <0
PveiPry i) = { ve/pe 0 <0 Spege
3 if vk 2 prgs.

I is clear then that (1.5) entails 0 < T, < #;, and (1.6) entails 0 < %, £ ¢, Thisis why
these basic requirements do not appear explicitly in the theorem along with the feasibility and
complementary slackness conditions (1.4).

Formula (1.5) serves as a means of obtaining the optimal solution to (P,,) from the optimal
‘solution to (Do), or an approximately optimal solution to (Pyg,) from an approximately optimal
one for {Dy;,). the mapping being continuous. Formula (L.6). on the other hand, says that the
component I of an nptimal solution to (Dseo) Is a random variable expressible in terms of the
known random variables ! k;, hx, Pk, 9k, and the (nonrandom) optimal solution Z to (Ps,). More
generally, by means of this formula as a.l.apijed to various nonoptimal vectors r that arise in the
solution process, it is possible economically to represent (and store in a computer) some of the

elements 2 that will be needed in the solution process.

PROOF OF THEOREM 1. The duality will be obtained from a minimax representation in

terms of the sets

X={r=(21,...,20) [0 € 2; < 4}, (1.9)
; Y={y=@---om) [0Sy}, (1.10)
Z:[;.,:(in'-'nft)losfksik}s (1-11)

and the function L on X x 1" x Z defined by

n

Liz,y,z) = Z[CJI)' = -I-f")z,?] *H E.‘II‘ {b.‘ = Z “‘:'zf]

1=1 j=1

; 3 (1.12)
+ 3 E{z (e — TN R 1A E
=i

=1
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Here because of assumption (42) we could think of each of the random variables as functions on
a single finite probability space (1, or equivalently as vectors indexed by w € (1. Then in (1.1) we

could write 0 < z_x < gux for all w and k, while in (1.12) we could write

=1 Len j=1
where 7, > 0 is the probability weight assigned to the element w of (1. This makes it plain that
Z, like X and ¥, is simply a finite-dimensional convex polyhedron, although the dimension may
be very large, and L is a quadratic function which is concave in r and convex in {y, z).
It is easily verified that

B 2= {f(:r] if zis f.eaﬂb]e in (Ps.), (1.14)
(%2)EY x2 ~ —co  otherwise,

sup L{z,y,2) = (1.15)

gly,z) if (y,2) is feasible in }{Dsro),
2EX

co otherwise,
where f(z) and gly, ) are the objective functions specified for (Psee) and (Dsgo). Thus (Pyg)
and (Dy;,) are the primal and dual problems associated with the minimax problem for L on
X x (Y x Z). Because L is quadratic concave-convex, and the sets X and ¥ x Z are convex
polyhedra. we may conclude from generalized quadratic programming theory (see [L, Theorem 1])
that if the optimal value in either problem is finite, or if both problems have feasible solutions,
then both problems have optimal solutions and max(Py:,) =min (Ds). This is indeed the case
here. because {Dyg,) trivially has feasible solutions, and our assumption (Al) guarantees that
(Psto) has feasible solutions. ‘

The optimality conditions (1.4), (1.5), (1.6), are just a restatement of the requirement that
(£,7,%) be a saddlepoint of L on X x (¥ x Z). For instance, the part of the saddlepoint property

that corresponds to maximization in z decomposes into

- n
Tor € argmin . [hug — quijf,‘] + bporzli}-
0820k S qui 1

Tn terms of the conjugate convex functions in (1.3) and the notation

n
Tuk = z tokiTuk — huk,
=1
this can be written as

Tk € argnn;?{w"uk(zuk] = Tukiuk}
€

Fwk
or 0 € Hvk(Tux) — Puk. and then equivalently as T, € Gv i (Zuk) OF Tuk € pur(Tuk). The
latter reduces to . = . (¥_%) and condition (1.6) when p,« is differentiable, as is the case

when pug > 0. The derivation of (1.5) from the saddle point property is similar. O
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This formulation of stochastic programming duality differs somewhat from the one in our
basic paper [1]. In order to facilitate the application of the results in |1] to the present context,
an explanation of the connection is needed. In [1], problem [Psto) is associated with a different

minimax problem. namely for

n ¢ n

LO(-"'-,:'.‘ = Z[CI:J = %r,xf] i ZE{Ek ['_’Ek R Z,{’UI:] + %Ekii} (1.18)
=t k=1 f=t

on g x Z, where Z is still the set in (1.11) but X7 is the set of feasible solutions to ({Pyy,):

n

Xo={z=(21,...,z) [0S 25 €8, Y aija; < bi). (1.17)
=1
This leads to the dual problem
minimize go(z) over all zEZ (D2,)
where
z) = min g{y, z).
0(z) ming(y,2) (1.18)
Indeed. one has in parallel to (1.14), (1.15), that
EJéng(ﬁf}:f(z) for all z€ X, (1.19)
and by quadratic programming duality (using (41))
35 ) = pp ot e g)
e B 4 (1.20)
= &E%J}r}y-iné%f,(z.y,;) = ;né\;ng(yf_.:) forall z € Z.

(Actually in [1] one has minimization in the primal problem and maximization in the dual. but

that calls for only a minor adjustment.) Obviously, then, the pairs (¥, Z) that solve (Dg,) are

the ones such that ¥ solves (D%, ) and 7 provides the corresponding minimum (1.18).

2. FINITE GENERATION ALGORITEM IN THE STRICTLY QUADRATIC CASE

The basic idea of our computational procedure is easy to describe. We limit attention for the
time being to the strictly quadratic case where ri > 0and Py >0, becanse we will be able to show
in section 4 that problems that are not strictly quadratic can be made so as part of an additional
iterative process. This imitation also simplifies the exposition and helps us focus on the results
we believe to be the most significant. It is not truly necessary, however. A more general version

of what follows could likewise be deduced from the fundamental theory in [1].

e
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In problem (D.,) we minimize a certain convex function gy, z) over Y x Z, where ¥ and
Z are the convex polyhedra in (1.10) and {1.11). As we have seen in the proof of Theorem 1, this
corresponds to finding a saddlepoint (7,7, Z) of the function L in (1.12) relative to X x (Y x Z),
where ¥ is the polyhedron in (1.9). Indeed. if (7.T) is optimal for (Dy,), then the T obtained
from formula (1.5) gives us the saddlepaint. This T is the unique optimal solution to (Patsi

The trouble is, however, that because of the potentially very high dimensionality of Z (whose
elements : have components z,; for £ = 1,...,¢ and all w € {1, with 0 possibly very large),
we cannot hope to solve (Dy,) directly, even though it is reducible in principle to a quadratic
programming problem. What we do instead is develop a method of descent which produces a
minimizing sequence {(¥,Z%)}7Z, in (Do) and at the same time, by formula (1.5), a maximizing
sequence {F}°2 | in (Psco).

In this method we “generate Z finitely from within". Let Z be expressed as

Z=Zyx...x 2 with Ze = {24 | 0< 2 < g¢). (2.1)

At iteration v we take a finite subset 2,‘; of Zi, and instead of minimizing gy.z) over ¥ X Z we

minimize it over ¥ x Z¥, where
Z¥=Z¥ % .. xZY with Z¥ =co{0,E}). (2.2)

By employing a parametric representation of the convex hull co{0, 2:';:’} and keeping the number of
elements in fg small, which turns out always to be possible, we are able to express this subproblem
as one of quadratic programming in a relatively small number of variables. This subproblem is
deterministic in character; the coefficients are certain expectations in terms of the given random
variables Lrjshe, P and the chosen random variables in 2;

The details of the subproblem will be explained in due course (§3). First we state the
algorithm more formally and establish its convergence properties.
FINITE GENERATION ALGORITHM [version under the strict quadraticity assumption
thatr; > 0 and Px > 0.)

Step 0 (Initialization). Choose finite subsets f,i E - ZLFIERE Lo b SIS L

Step 1 ((Quadratic Programming Subproblem). Calculate an optimal solution (77,2Y) to the
problem of minimizing gly, z) over ¥ x ZY, where Z” is given by (2.2). Denote the minimum

value by @,. Define ¥ from (7*,Z*) by formula (1.5).

Step 2 (Generation of Test Data). Define :* from T by formula (1.6). Set o, = Lq(Z",2¥) in

(1.16).
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Step 3 (Optimality Test). Definc ¢, = —a, 2 0. Then * is an &, -optimal soiution to (P,,,),

(¥,3¥) is an &, -optimal solution to (Dy,), and
@, 2 max (Pyo) = min (Do) = a0,

(Stop if this is good enough.)

Step 4 (Polytope Modification). For each k = I,...,£, choose a finite set 27" C Zi whose

cenvex hull contains both ¥ and z“. Replace v by v + 1 and return to Step I

Note the very mild condition in Step 4 on the choice of 2;"”. One could simply take

Z =3 ) (2.3)
or at the opposite extreme,
Zrtlos ey ey, (2.4)
Another possibility would be
It =ZuEen _ (25)

in all iterations, with 2,: selected initially to provide a certain richness of representation. Although
the number of elements of f,‘; (which determines the dimensionality of the quadratic programming
subproblem in Step 1} would continue to grow indefinitely under (2.4), it stays fixed under (2.3)
or. {2.5).

For the statement of our convergence result we introduce the vector norms

Nzl = [3 23], (2.6)
=1
t
el = [3 pes?]'?, (2)
k=1
and matrix norm
ITllpr = max{z Tz | |2]l, < 1, 2]l < 1}. (2:8)

\
THEOREM 2. Under the strict quadraticity assumption that r; > 0 and P > 0, the sequence
{ZY}7%, produced by the finite generation algorithm converges to the unique optimal solution T
to (Pseo). Moreover it does so at a linear rate, in the following sense.
Let ¢ be an upper bound to the range of the (Bnitelv discrete) random variable || T |z, in

(2.8}, where T is the macrix with entries ti,. Let v € (0,1) be the factor defined by

2 o3
_:{" U (2.9)

1—(1/4e%) ifa* >

M b3
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Then in terme of the values
T = max (Pyo) = min (Dyeo) ond %, =7-7, < ¢, (2.10)
one has
T4 S7he, forall v=1,2,..., and p=12,..., (2.L1)
IE=2F#, < [27#2,]"? for all v=1.2,..., and p=1,2,.... (2.12)

Observe well that in (2.11) and (2.12) the estimates are claimed for o/l v and p, not just when_
v is sufficiently large. Most convergence results are not of such type, so this is rather surprising,
especially in view of the fact that the factor r € |0,1) can in principle, at least, be estimated in
advance of computation, right from the given data. Moreover 7 does not depend on any data in

the problem other than t;,P¢ and r;. In the special case of nonrandom fy; and p; (the only

random variables in the problem being Ax and gk). one can simply take ¢ = ||T|,,.

PROOF OF THEOREM 2. The procedure specified here is a special case of the algorithm
presented in [1], as can be seen in the following way. In calculating a pair (§*,Z") that minimizes
gly, z) over ¥ x Z¥ in the subproblem in Step 1, we nbtain a solution Z¥ to the different subproblem
of [1], in which go(z) is minimized over Z¥ (with g the function in (1.18)). The number @, is
the optimal value in both subproblews, and Z furnishes the saddle point Z,7",Z¥ to L on
X x (Y x Z¥) in the present formulation, hut also the saddlepeint (Z¥,Z%) to Ly on X x Z¥, as
required by Step 1 of the algorithm as formulated in [1].

The elements z and o, calculated i:"l Step 2 satisfy

z¥ = argmin Ly(Z", 2), a, = min Lo(Z", 2). (2.13)
& €2 ~ i€
Thus these are the same as the elements calculated in the version of Step 2 in [1] (except for a
notational switch between maximization and minimization). Of course they are given here by
closed formulas, whereas in the far more general setting of {1] they might have to be calculated
by solving a large collection of quadratic programming subproblems in the random components
Zuk-

The updated polyhedron Z“*! does contain T¥ and z¥ under the conditions in Step 4, as
required by the conditions in the more general version of Step 4 in [1].

Thus all the conditions in Theorem § of [1] are fulfilled, and the stated convergence properties
follow, provided that we reconcile the choice of ¢ given here with the corresponding one in [1].

The condition specified in [1, Theorem 5] is that

Ll B b (2.14)
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for all realizations of the random vector P and matrix T and all possible choices of the vector z.

- , S = i .
Here we are nsing the notation r=' = (r7',.... r2). The norm |- |},—: is the dual of the norm

I+ {lein (2.6). 50

02" zlle-e = max{(7" z) 2 | f=fl S 1}.

(T = transpose of T.) Therefore one has
max{lI7" sl -+ | Nzlly < 1) = I T 1.0
as defined in (2.8). This shows that (2.14) is equivalent to
a2 ITlp.r
and the proof of Theorem 2 is thereby completed. O

3. SOLVING THE QUADRATIC PROGRAMMING SUBPROBLEM.

Returning now to the elucidation of the finite generation algorithm and how it may be
implemented. we demonstrate that the subproblem in Step 2 can be represented easiiy as an
ordinary quadratic programming problew of relatively low dimension and thereby solved using
standard codes. Explicit notation for the elements of the finite sets 2;' selected from Zx is now

needed. Let us suppose that

B ={Z.la=1L...,m}. (3-1)
This yields :
N my My
Z=cof0,Zf} = {26 = Y AtoZra | Ma 20, E dia S 1. (22)
a=1 a=]

In Step 2 we want to minimize the objective g(y, z) in (D) not over all of ¥ x Z (the
variables w; standing for linear expressions in y and :), but only over ¥ x Z¥. By virtue of (3.2)
we can substitute for the elewents : of interest in this subprablem certain linear expressions in

the parameters Ax,. In this way we get the function

gy A) = Zb.m— + Ep(w,:r,sj)

= ; ’fn‘ (2.3)
+B{ Y (1 (3 o Fha) + 24 (E0, Aen3t)’]),
k=) o=l
where .
“‘;=";‘iﬂ-“u*Els:,(ihéifo){n}- (34)

1=] k=1 a=1
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But these complicated expressions can greatly be reduced by carrving the expectation operation

through the sums to get explicit coeficients for the parameters A;,. Specifically. let

i

ki = E{miiu) (3.5)
Fraz = E{0eZ5aE151 (3.6)
E;n} = E{:.:;-:nr,{,*i } (2.7)
Then
m n
7y A = Zbey.- + Zﬂ(w;:?;-é‘j]
o = (2.8)
+ Z [E ReaAea = FEmaly Plagikedials
k=1 a=I
where
m L my,
Wy =ci— 3 Witi;— 3 9 Avalkas (3.9)
=1 k=la=1

‘Finaily let us observe that the penalry expression p{w,:r;. 5;) in these formulas, as given by

(1.1), satisfies
plwjir,, 6;) = minimum of s;wy; + Fug /1)

(3.10)
subject to wy, 20, ay; + wa, 2 w;.
Moreover 4
e ..- " inli > i
p'(w;:ry.85) = Lagrange multiplier (> 0) for the constraint (3.11)
wy, +ug, 2w, in (3.10).
With these facts in mind we pose the quadratic programming problem
m h n
minimize Y byi + S [sswnj + b i)
=1 j=1
£ m
(D) + 2012 Fratia = § TT5LY Phaphuodus]
k=1 a=1
subject to ¥ 2 0,u; 2 0, Aeq 20,
SA;,, < I for k=g
a=l
. T T
Y it Y Y Moliay t oy tws 2, for =L {2.12)
=1
We then have the following implementation.
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SUBALGORITHM (for Step 2). Given the sets 2 in the notation (3.1). calculate the co-
eficients (3.5). (3.6). (3.7). for the quadratic programming problem (D¥). Solve (D) by any

method. gerting from the optimal solution values 3. 7\, T4, and X:o the elements
&

3

k=

1

e
Z Aka kot
1

e

a

The minimum value in (D*) is the desired ,, and the Lagrange multiplier vector obtained for

the constraints {3.12) in (DY) is the desired approximate solution I to (P, ).

Thus it is not actnally necessary in Step 2 to invoke formula (1.5) to get Z¥. Instead, T¥ can

be obtained as a byproduct of the solution procedure used for the minimization.

4. APPLICATION TO PROBLEMS THAT ARE NOT STRICTLY QUADRATIC.

Ifin the given problem (Pyo) it is not true that r; > 0 and Py > 0 for all j and k, we use the
proximal point technique [4] (as adapted to the Lagrangian Ly(z,2) in (1.16)) to replace (Py,) by
a sequence of problems (P4, ), # = 1.2,..., that do have the desired character. To each problem
(P%.,) we apply the finite generation algorithm as above, but with a certain stopping criterion in
Step 3 that ensures finite termination. This is done in such a way that the overall doubly iterative
procedure still converges at a linear rate.

To obtain the problems (PL,), we introduce alongside the given values r, and Pk some other

values 7, > D,E;‘ > 0 and set
Tay = TF AT, Pk = PiF 0Pk (41)

where > ) is a parameter value that wil play a role in theory but can be held fixed for the
purpose of computation. We also introduce elements
B (@hyeee T andlZE =N, v 3N

which are to be thought of as estimates for the optimal solution values in (Pyo) and (D). In
terms of these we set
el =¢; =I5, and kY = he —nPiZh,. (42)
Then
(PL,), (DX,) are the problems obtained by replacing

rpPaiyc; and by in (Pyg). (Dyga) by TejrRutrt

n
&; and Rl
These wodified problems are, of course. strictly quadratic: one has r., > 0 and p.; > 0.

MASTER ALGORITHM.
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Step 0 (Initialization). Choose 7} € X and T} € Z. Set p = 1.

Step 1 (Finite Generation Algorithm). Apply the fnite generation algorithm in the manner
already described to the strictly quadratic problems (P%,) and (DX,) in (4.3). Terminate in Step

3 when the stopping criterion given below is satisfied.

Step 2 (Update). For the elements 2 and 3% with which Step I terminated, set 7' = ¥ and

4% = 2%, Replace p by p + I and return to Step 1.

The stopping criterion is as follows. In terms of the norm
s - 1/2
Iz 20 = (=12 + B{ll 2113 }) (4.4)

and a sequence of values ¢, with

o0
0,30, ¥ 8u<on, (4.5)
w=1
we define the function
enlz, z) = 02 min{1, (n/2)]I(2, 2) — (B, 22} (4.6)

We stop in Step 3 of the finite generation algorithm when the computed elements £,, 7" and Z¥

satisfy
(4.7)

This stopping criterion will eventually be satisfied, when v is high enough; the only exception
is the case where T happens already to be an optimal solution ¥ to (Py) and Z% the Z-component

of an optimal solution (7.Z) to (D). (See (1, §6] for details.)

THEOREM 3. If the master algad;hm is executed with the specified stopping criterion (4.7),
then the sequences (Z%}31, and (Z¥)jL, converge to particular elements T and I, where T is
an optimal solution to {Py.,) and, for some §, the pair (3, %) is an optimal solution to (Dsto).
Moveover there is a number 8(n) € {0,1) such that (z#,3¥) converges to (Z,Z) at a linear rate
with modulus 3(n).

PROOF. This is an immediate specialization of Theorem 6 of [1] to the case at hand. the
path of specialization having been established already in the proof of Theorems 1 and 2. O

The theory of proximal point technique in [4]. as applied in the derivation of Theorem 2.

shows actually that linear convergence is obtained at the rate

atnt = Aaflr+ ot e (4.8)
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where ~ = 0 is a number depending only on the data in the original problems (Psco) and (Dseo).
not on 7,7, or :ﬂ:k. In particular 3(y) — 0 as y — 0. Thus an arbitrarily good rate of convergence
can be obtained (in principle) for the vuter algorithm (master algorithm) simply by clooesing the
parameter value n small enough.

At the same time, however, the choice of y affects the convergence rate in the inner algorithm
(finite generaticn algorithin). That rate corresponds by (2.12) to a number #(q)/? €10, 1) defined

by (2.9) in terms of an upper bound a{n) for | T ||p..-., where P, and r. are vectors consisting of

the parameters in (4.1). Thus #(n)? is an upper bound for the expression

over all possible choices of the vectors € R™ and z € B* and all possible values taken on by the
random variables T. P and 7. It follows that 7(n) — 0 as 7 — oo but 7(n) — lasp—0. Thus
an arbitrarily good rate of convergence can be obtained (in principle) for the inner algorithm by
choosing 7 {arge enough, but too small a choice could do damage.

This trade-off between the outer and inner aleorithms in the choice of 4 could be a source
of difficulty in practice, although we have not had much tronble with the problems tried so far.
(See King [3])
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