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Optimization is a big subject with deep historical roots, but its scope and form are radically
different ioday from \'"hat they one \rere. A revoluliorl that begin in the 1950s has changed the
entire outlook and generated a new kind of marhematics \fith far-reaching consequences- not
olrly for applications but for the very foundations of anal!.sis.

h might be imagined that this revolution is attributable to the advent of the computer, and to
some extent this is true. Armed *ith the capabilities of computers. it became possible to atlack
problems that previousl] \vere beyond solution. To think. though, that the revolution nlai y had
to do with finding nev, ways of processing input and output from computers in order Io bridge a
gap belween theory and practice, would be a mistake. Rather it had io do $.ith the different
nalure of the emerging problems and the inadequacy of traditional Drathematical conoepts in
dealing with them.

Mathematics. after all, is a living body of thought rfuch has grown through the centuries in
response to lhe chailenges of r-arious civilizations and pedods. This in nor io say that mathe-
matics only progresses oul of specific need, because it clearly also has its o\'"n internal lines of
deveiopment. But the geometry of the Greeks $,ould not have arrived \yithout the preocoupation
of the ancient world with architecture and public works. The tone of much of the mathematics of
present times was set by the rriumph of the physical sciences in ihe eighteenth and nineteenth
centuries. Almost everything about differential equations falls into this category, for example. A
fundamentally modern innovation, the theorv of probability and statistics, receives impelus ftom
contemporary pressure in the social sciences, nedicine and agriculture.

The purpose of ihis article is to explain bdefly the nature of optimization as a rapidly
expanding field arld the importance of fundamental mathemalical research in its continued
success. The main point is thai the applicabilitv and computational vigor of any subject depeld
hearily on the conceptual frame\r'ork that is available. This framework needs to be developed
with originality, rigor and an eye for the right level of abstracrion. Such developmenr $'ill not
take place if left in the bands of practitioners aftending lo just a naro\\, range of app]icatiols. It
requires the dedicated efforts of trained mathematicians.
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Fis. 1

The lundamentals of optimization

The typical circumstance that gives dse 10 a problem of optimization is a need for comparing
or decidilg among the elements of sone set .S. These elements may represent the possible states
of a system or the available choices in some situation. Often thev can be specified by giving the
values of finitelv many variables rr:.. . . jr,. and in rhis way identified wirh points r. : (_t1... . , r,)
in R". Then .S is a subset of R", but usualll' not all of R'': the points jr jn -S must satisfy certair.r
equations or inequalities, called conrlldialr. In applications $here the elements oI S cannot be so
described, perhaps because they tepresent functions or probability distributions, .t mav not be a
subset of R', of course, but of some infinire-dimensional space.

For the sake of comparing or deciding anong the elements oI S. there must be some cdterion.
Ordinarily this is given by a real-valued lunction /, called rhe oDjectire funcrion. The basic
problem of oprimization is

minimize /(r) over all r in S.

MDdmizaiion could be the goal rather than minimization, but for theoreiical purposes there is
no difference. because marimizing a function I is equivalent io minimizing /: g.

The elements r of S are called, the leasibte solutions lo the problem. white an t gi\,ing the
minimum is called an optimal salution. (.See also Fig. 1.) The number f(.r) ts the optimat adtae.In
specific applicalions it is son,etirnes difficult even to determine a feasible solution. because of
complications in the constraints that define .S. Sometimes it is just the opdmal vatue that is
derived, but in other cases the function / is merel) an a ificial construct and only an optimal
solution is acceptable. Always. however, the fact that an optimal solution nlay occur along the
boundary of S at a potentialh' 'nasty'point is a source of trouble.

The calculation of optim.rl solurions and values is, in the long nrn: a primary concern, but a
great amount of sludy is needed before the stage can be reached \\,here calculations can
effectively be performed and the results fully interpreted. Necessary and sufficient conditions for
optinalitv musi be discovered, not only for use as tests in algorithms. but as a guide for
understanding the siluation that is being modeled. Questions about the sensitivity or stabjlity of
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the problen lo peflurbations in the structure of S and / mus! be ans$er€d. Problem lypes must
be classified accordirg to dreir amenability to various approaches. Different formulations must
be compared for their adrantages and disadvantages. and the methods of passine bel*'een them
clarified. Criteria must be set up for recog izing whether the properties on which a conclusion or
numerical procedure ma)i depend are present or not.

All rhis cal1 have a very important influence on the model]ing process itself. Mathemalical
modelinS in the context of any sort of application is an art that obviously depends on knowing
what models are available and how effecti\'el-r they can be handled. There is no such thing as

simply using a computer to get the ans\ters one needs. Any nu bers that are computed have

releence only to the model that has been selected, not !o speak of the computalional medlod.
This model may be convenient or inconvenient. too coatse or loo fine. and lhe conclusions based

on it may be mathenlatically correct or hcorrect.
The truth of the matter is that classical analysis does not furnish s[itable models for most of

the nodern situatjons irvohing optinization, because the problems are often in areas like
economics or hanagemem that previous geDerations of mathematicians did not think much
about. Nelv approaches have had to be inver1ted. Optimizalion theory sefles lherefole as an
excellenl example of mathematical ideas at $ork. where there is a \,ital conllection between
theorelical progress and rapidly expanding applications. This is mucb 10 the constemation of
oldlimers. incidentally. \ho tbink they kno* ho\! to tell tbe differcnce between $.hat is'pure'
alrd $.hat is'applied', Such may be possible iri a branch of mathematics that is cut and dried.
ahhough one could dispuie ir. Certainly it js not true in the subject we are going to look at here.

The range of applications

Eleoentary problgms of optinization are enoountered by everv sludert in lirsFyear calculus.
Whal proportions in a cardboard box *ith an open top l}ill minimize the amount of catdboard
ueeded !o acbjeve a given volume? What proportions il,I a melal oan \rj1l naximize the volume for
a gir.e[ amount of metal? These are questions in eagineering design.

More complicaled problems of engineering design are easy to find. What shape of an aircraft
wing nrinimizes drag, subject to maintaining the desired fligh! characteristics? What structure of
a buitding minimizes cost subject to staying earthquake-proof? How should the componenls of
an elechonic unit be arranged in order to minimize signal loss or i[ledereDce?

Oiher problems of optimization are concerned not so much.r.ith design as $ith the manage-

l,I1ent of systems already in place, What trajectory should a satellite launching locket follo$ in
order to achieve orbit *'iih the least amount of fuel? What mixture of available ores provides the
cheapest *'ay of manufacturing a given alloy to within specificarions? what schedule of
drawdowns should be followed for a net$r'ork of reseNoit! to ensure the most reliable level of
hydroelectic generating capacit! \rithout jeopardizing essential iEigation usage? How should a
patiern of insecticide spraying be organized in order lo wipe out an infestation at leasl dan'nge to
the environment?

often the concerns are distinctly economic in nature. How should production and invmto es

be managed over time in order lo mi{imjze expected profit in the face of uncertain demaud?
Ho*' should capital in\€slment be carried oul in order to attain the highest mte of economic
growth $ithil a given pedod of rime?
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Optimization enters rnany applications in a purely mathematical we!. too. Typical of this rre
problems of numerical approximation or the identification of parameters. In the first case one
tries to find the simple function from a restdcted class that best fits a given, more complicated
funciion. In lhe second case a particular model has been chosen for some phenomenon. but the
paranletels in the model have yet to be assigned thet specific values. The paramerers musi 91\ e

the best fit in some sense to a mass of empidcal data. A kind of'distance'expression must be
minimized. Nonlinear regression and maximum likelihood estimation are examples of parameter
identification problems in statistics that ha\.e both theoretical and practicai components.

Finally ihere are imporlant problems of oplimization that do not involve decision-making at
all but relate rather to characte zing the behavior of a system that operates autonomously. ln
this category are the classical variational principles of physics and chemistry: a sysrem miIrimizes
"action". or tends toward a state of minimai energy. The recognition that the eq ilibdum stales
in such a setting may be vie$'ed as optimal solutions to problems o{ constrained mininization
can have important consequences in science. The equilibrium mixture of gases in a planetary
atmosphere, or of biochemical species in human b1ood, can be determined despite the large
number of reactions possible q,ithin the system and across its boundades by minimizing the
Gibbs free energy subjecl to a set of mass balance conditions. On the other hand, one may no\l
be able to extend the basic theory of vadous physical systems to nonclassical situations involving
multiple unilateral constraints, for instance, by invokilg the pertinent variaiional pdnciple and
passirrg lo the optimality conditions that the case entails.

A large part of mathematical econonics is likewise in this category of optimization. It is
concemed with ihe identification and analysis of variational principles, such as ma-rimization oI
'utility', that govem economic behavior. It provides mary interesting questions which push on
d1e limits of present theory. Multiple objectives must be considered. and also conflicts bet$een
differenl agents or decision makers. The theory of many-person games is a fascinatilg example
of optimization ir,I this mode.

Depsrture from classical notions

In the framework for optimization provided by classical analysis, the function / and set S are
comparatively simple in structure. There are only a few constraints. and these are usually in the
form ol equations. Differentiability is taken for granted. Thus in finite-dimensional problems S
is a cune. sudace. or other smooth mardfold, or at worst a closed region of such e manifold
whose boundary is composed of a small nLrmber of aice pieces that can readily be described and
given a paramet c representation; see Fig. 2(a).

There is a slrnmetry in attiiude between ninimization and maxinizatioll. Indeed, one is
almost as interested in 'stationary points' as in true extrema. The task is viewed in lerms of
determining ail possible statiolary points of / relative to S and classifying them by their nature,
whether they give midma, mardma, or somelhing in between. For this an entirely loca1 analysis
involving first and second derivatives is deemed adequate.

Moden problems fail to fit this frame$ork for a variety ol reasons. First of all, the number of
constraints can be very large, and these constraints are chiefly in the form of inequalities rather
than equations. This means that the geometry ol the set ^S can be ve4, complicated. The
equations among these constraints may still detemine a smooth manifold in $'hich S lies, but
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Fig. 2.

the boundary of ,S as a close region in that malifo]d csn be made up oI an astronomical number
of pieces which do not fit together in any eesily descdbable patternt see Fig. 2(b). Il no longer is
reasonable to think of analyzing the boundar\ one piece at a time. each piece having an

individual representalion. It may be preferable to view the boundary ralhff as a sort of
'nonsmooth hlpersurface'. The graph of the ob.jective funcrion / in many applications tums out
to have such a characier too, This is strong motivation for the development of new mathematical
techniques $,hich resemble the calculus bul do no! depend on the exislence of deivatives and
gradients in the classical sense.

Another distinguishing feature of modern problems is an unambiguous orientalion towards
either minimization or maxi ization. Hardly ever is one interested in both in the same context,
i.e. with respect to the same set of variables. much less in the question of more general slationar!'
points, excepi as potential troublespots in the convergence behavior of optinization algorithms.
Furthermore, a g/oba1 analysis of optimality is desired.

Modern problems are also typically much larger in scnle than was true in the past. There is no
hope of solving them bl hand and lherefore little reason to pursue the ldnds of'closed form'
methods of soludon that used to be ihe norm. Problem structure must be studied instead with a

view iowards convenieice of representation and manipulation in a computer. Ideas of decom-
position or the decentralization of decision making become very atlractive. and not only for
purposes of computation. These ideas are powerful tools in the modeling phase too.

Stochastic elements are yel another conlplication. Problems may invoh'e random variables and
conditional expectations. They m4y suffer from uncertainties in the data and require an adaptive
approach which involves the selective generation of fresh data. Monte Carlo techniques may
offer a way of gelting around local obslacles in order to discor.er a globidly oplimal solution.
Such prcbabilistic considerations can carry the analysis far from the classical frame of reference.

The example ol linea! programming

Linear progranrming problems were among the firsl in oplimization to break the old bounds.
They came ilto focus around 1950, just q'hen conputers !{ere getting going and the idea had
dawned thal mathematics could be applied to questions of logistics, production and manage-
ment. 'Programning' was odginally just a bweaucratic synonym for'planning'. 3s in sening up
a governmell program to accomplish a certain task. When computers were invoh-ed, one had
'computer progranrning'. When oplimization theory was involved, one had'mathematical
programming'. Nowadays progranming has come 1o mean giving instructions to a co puter. at
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Fig. 3.

least to most people. But in mathehatics a different usage has evolved: linear and nonliiear
programming. conr-ex progranrming, integer programmingj and network progranming all refer to
areas of optimization which are distinguished ftom each other by tbe character of objectives and
constraints,

In linear programming the objective function is linear and the constraints arc in gerletal a
mi\ture of linear equations and \\'eak linear inequalities. Ticks of refomulation. however, meke
it possible to cast any linear programming problem in the followillg standardized form:

minimize ctjat + c2r. + ,. +c!)a,,
subject to arrr.r +.ri2x2+ .. +abxn>br,

a21x1+ a.2x2+ -- +a2,,x,,> 4,
:

a,,r1xr+ an2xz+ . . +a","x,,> b^.

Each of the constraints defines a closed half-space in the r,dimensional space R" of points
x : (r,,. - . , -t,,). The feasible solution set ,S is the intersection of these half-spaces, as in Fig. 3. A
set S of this kind is called a conuex poLyhetlron.

Systems of linear equations have been an object of studv for a very long time. of course. How
remarkable il is, therefore, and wha! a comment on the way mathematics proceeds, that \rhen
linear progranrming came inlo being there *,as barell, any theory of linear inequalilies on hand.
Hardly anyone had thought abour &e subjecr before or imagined it to be worrh developing. The
traditional nind-set was strong, and many people actually found ir hard to believe that
constraints could often be fomulated rnore appropiat+ as inequalities than equations. To ihis
day one can see papers in engineeriig or economics. for instance, rhat fail to appreciate this
poinl.

But if the inequalities itr problem (P) were \1,ritten as equations! ihis could be a severe
restdction that might even preclude the existence of any feasible solution at all, not to speak of
an optimal solution. Suppose for example that (P) is a blending problem where }? different
substances are to combined in the cheapest possible way that meets cettdn minimal require-

(P)
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ments on the finel composition. Then xj denoles the amount of substance.l to be added to the
mixture, and .i is the cosi per unit of lhat substance. so the objective expression gives total cost.
The minimal requiremeit for ingredient i in the mixture is 1,. and a,, is the amount of this
ingredient per unit of substance j. Each constraint then represents a condition thal the tolal
amotrnt of an ingredient i present in the mixture must be at least as high as the minimum
required. To insist that it aclnally equal the minjmal amount for every I $ould be to erclude
various potentially cheaper mjxtures from consideration and even to run the isk of lhere being
no tni\lule wharsoev lhat meets such tight conditions, regardless of cost.

The linear programming problem (P) illustrates another feaiure that is blithely accepted in
optjmization loday but was anathema in the past: a possible multipLicity of solutions. Inasmuch
es the objective function is linear, its level contours (where a conslant value is essumed) form a
family of parallel hyperplanes (dotted lines in Fig. 3). lf these happen to line up with one of the
'faces' of the convex polyhedron .S, then that entire face will consist of optimal solutions. This
may seem like a rare event. since the slightest perturbation of coefficients would preclude it. In
practice. ho*ever. it occurs quite often. because the constraints of a problem, far frorn being
'random', are usually in special relalionships \l'ith the objective and each other.

Everyone has therelore gotlen accustoned to speaking oI dn opiimal solution rather than 1,4€

optimal solution. It is interesting to colltrast Ihat with the traditional thinhing that a malhemati-
cal problem can hardly be considered \rell posed unless the uniqueness of the solution, at least
locally. can be established along side of the e)(islence. That frame of mind is due, of cou6e, to
past reliance on equations as the work horse in mathematical modeling. In a rough sense il is
true that, with equations, nonuniqueness can occur only nith some kind of nismatch between
lhe number of conditions that have been identified and the number of degrees of freedom that
are present. But this has no validity uhen inequalities are the rule.

Although a linear programming problem may have more than one oplimal solulion, there will
ahvays be among them at least one that is a .'ellei of the convex polyhedron .S. It follows that in
order to be solve such a problem, all one has to do is inspect the vertices one by one (there being
only finitely many) along with the coresponding values of the objective fuflction. A vertex
yielding the lo\\,est such value is ar, optinal solution to (P). ln algebraic terms, r'(rrices ffe
characterized as the intersections of various collections of the hyperplanes thai bound the
constraining halfspaces. They can therefore be determined b,"- solving vadous svsrems of
equations gcnerated by the inequalities in (P).

Here again we have an illustration of how attitudes have changed. Back in the 1950s. many
mathematicians when presented \rith this description of solring a linear progranmdng problem
would have felt there was little left to be sajd. They might *e11 have felr let dorn: the pioblen
had tumed out to be'trivial'. To be sure, it might not be an easv matter to inspect all the vertices
when therc are many of them, but that is.just a question of tedium. A computer could do it. some
day anllvay. From the mathematical standpoini, once a problem had been reduced to the
enumeralion of finitely many possibi[ties, nothing of interest could remain.

To say there are 'many' veltices, horvever. is conically mild. Linear progranrming problems
that today can routinely be solved in seconds ma_"- ha\.e more vertices thall there are grains of
sand on all the planets in the universel How ihen is their solutiorl possible? It is possible because
the set of vertices has significant structure and should not be vie$,.ed merely as discrete. Two
vertices of ,S carl be adjacent to each otherl one carl pass between them by following an 'edge' of
S. By starting at one \,€r'tex and moving along edges, al\lays in the direction of improvement i1



250

the value of the objective! one carl reach all optimal vertex in relarively short time. Optimaljty is
deiected by the lack of anl adjoining edge along which a Iurther improvement is possible. This,
in essence, is ihe celebrated Simplex Method of G.B. Dantzig, whioh for its practical applications
in the last 35 yeers nust be regarded as one of the most fruitful discovedes in nodem
mathematics.

Needless to say. the Simplex Method is not as elementary to execute as it sounds. A
considerable theoretical back-up is required in tljng algebra and geonetry together. devising
tests for feasibility and optimality of verrices, avoidirg possible 'degeneracy'. aIId establishing
the tlpical amount of time that the method may be expected to take. This dl h,1s had to be
worked out by mathemaiicians in theorem-and-proof style-

Dualit] and other surprises

Linear programming theory has many other novel characteristics besides the ones alreadJ
mentioned. Among the most stdking is the phenomenon of duality, $hich had no recognized
precedent in classical optimizalion bLrt is now seen as fundamental to many kinds of problems.

One rvay of arriving at duality is through the conditions that identify a feasibie solution to a
linear programming problem (P) as optimal. The basic picture is displayed in Fig. 4. At rhe point
; of S only some of the ineqLrality constraints are'acti\.e'. i.e. satisfied rvith ecluality: the others
are 'slack. i.e. satisfied with strict inequality. The gradie11ts oI the active constralnrs at t xre
certain vectors a,:(ai,....ar,). *.hereas the gradient of the linear objective./ is ihe veclor
.:(.i.....c"). The condition \rhich is necessary and sufficient for optimatry is following: c
should belong ro the'cone'K generated b! taking all linear combinations of the active constraint
gradient ; urth nonnega. \e coelficierr..

Ii is convenient in expresshg this property to assign coefficients also to the inactive constraint
gradients bul require them to be zero. The optimality conditioll on t then amounts to the
exislence of e coefficient vector t : (tr...., t;) \lhich rogerher with t satisfies

RT. Ra.kafeUat / Oprnt.ato,

t,>0, ",t-, b,:0. t,Q, - 1- b,) :0.
,p\ + t1d|+ . +t^a",: c. (c)

Fig. 4.
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Here the first row expresses the feasibility oI i and thc rcquirernent that for each I uith
./ \ 6 0. one -nu.r here j -0. Of.o:r.e. a.,t..

There is nothing particularly remarkable so far in ihis. True. the process of finding an optimLll
solution (tr,..., t,,) to (P) appears to involve the delermination oI a specixl coefficient vector
(tr,.. . , t;,). That sort of lhing occurs even classically, however; the coeflicients t, trre evidentl,v
1() be regarded as Lagrange multipliers associatcd with the conslrainrs in (P).

A surpdse comes. though. $iih the realizetiorl that these coefficients are connected \\'itb a

second linear programming problen. namely

maxinize l]rbr + !rb2+ .. +t^b-.
sub.jecl to lrdrr +12 d\ + . -. +!,,,d, :tt,

llap + bct, + ... +\ta,e: c|,
:

(D)

!!b,+ r|a)-+ ... +!,,a^": (,,.

tr>o' J'r>0, .. r,">o
This is called ihe drdl of problem (P). The crucial facl is lhai {hen we analyze *hat it means for
a feasible solution l: 1() (D) to be optimal, as rve did in the case of (P). the necessary aIId
sufficient condition rve get is the follo$.ing: there should erist a vector t : (;1, ... ;,) such that
(C) is satisfied the sanre (C) as before!

Optimality in (P) and (D) thus recei\.es a ioilrt characterization. The t;'s may be Lagiange
nultipliers for the consrraints in (P). but at the same lime the tr's are Lagrange muhiplien irl for
lhe constraints in (D). Moreover the optimal values oI the objectives in the two problems lurn
out to be tied together bv thisr one has

min il (P) : nax in (D).

ln b eI, neilher problen (P) nor problem (D) can be solved without automatically solving the
oiher. Indeed. the Sinplex Method does soh'e both and actually depends on this propertl' in its
algebraic lorn1ulation.

The more one thinks about lhis, the more mystedous and intriguing it seems. We thoughr we
had only one oplimization problem. Whv couldn'1 nauers stay rhat simple? Whet mterprerad.n
can the l dden second problem possibly have. especialli- in concrete applications?

Even more surpdsing than the phenornenon of duality itself is the nature of the ke! to its
explanation, namel)/ the theor.- of games. This iheort, which is closeh rclated to optimization in
more \\'ats than one, \\'as invenied by J. von Neumann, one of the greatest mathenalicians of the
present century. (Besides games end other landmark contributions to mathematic:rl economics.
he $orked on the mathematical foundations of quantun mechanics aid, before his untimely
death in the early 50s, was instnrmental in the dcvelopment of conputers).

In a so-called two-person zero-sun, game- there are two plavers, I and ll. each of which hes a
set of elements called'stretegies'. Player I selecis an element n from his set Lr, $hile Player II
selects an element I from his set I/. They nake the selections secretly and re\,'eal thcir choices
simultaneously. Then there is a 'pay off' of an amount a(-r, },) (positi\.e, ncgati\'e. or zero) from
Player I to Player IL

Obviously Player I \1ould like to minimize fie pay-off amount $hi1e Player II q,ould like to
ar.imize it, bui neither phyer has complete control o\.er the oulcome. Nevertheless ir is possible
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to sct up ralional c ieria for play. on the basis of \l'hich Pleyer I chooses an optinal element t
by sohing a certain minimizatioll probl€m which is independent of the unkllown acdon to be
taken by Player ll, and similarly Player II chooses an optimal element t by solving a certain
maximization problem which is independent of the unkno\rn action to be raken by plater I. In
this manner any two-person zero-sum game gi\es rise to a pah of simple optimization problens_
one of minimization and the other of mDiimization. Under certain fairl.\' general assumptions. it
can be established that the minimu value in the one problem equals the maximum value in the
other. The optimal elements ; and t rhen furnish a sort of state of ecluilibrium. and intuitively it
is clear $'hy in such cares the optimalily oI t and t might have ajoint charactedzation.

The notion of a t\\'o-person zcro-sunl game aftempts to provide an abstract mathenatical
nodel for the most fundamental instance of conflict in decision making. This model may seem
too simple to be of much use. but one can demonstrale that it 4ctua11y covers games like chess
and poker as \lell as numerous situaiions in ecollomics and human alfairs. Our pur;rose in
mentioning it here. however, js its role in the theor! of linear programming.

It turns out that the linear programming problems (P) and (D) can be idenrified *,ith rhe
separare straiegy problems Ior Players I ar1d ll in a certain i\\,o-person zero-sum garne. In this
g.1lne,thesetLifrom$'hichPlavetlmakeshisselectionisthesetofallvcctorsx:().r,_..,jr.)
in R'. $hile the set f for Player II consists of 

^II 
t}re nannegati\e vectors I : (1... . . r;,) in R"'.

The'pay-off l(r. y) for -r in U and } in I/ is given by

Z(x. -r,):c,x,+ . +.,ir,+brJir+ .. +b,J,,
-a:nrx1 ar2ttxz .. a,,,,,!^x,,.

By analyzing the meaning of this function in a particular application, one can arrjve at an
interprelaiion of the dual problem and the information furnished by its solutioll t_ Since. after
all, this vector of coefficients is autonalically going to be produced by any nethod that solves
the given problem (P). there is good reason for trying to urlderstand its significance and the
possible uses to \\,hich it might be pur.

The game-theoretic interpretation of linear progranrming duality provides many answers. blrt
it does not really dispel the mysterv. It teils us that in rrling to solve a linear programming
problem, innocent as that may seen1. \,"e become patly to il sort of metaphysical conflict. There is
an antagonist oul there whose inrerests are directly opposed to ours. Remarkably, this happens
not only in lineer progranrming but in many other areas of optimization as $,e11. A great amount
of malhematical effort has gone iDto exploring this norion and marking out its limits. but thejob
is lar Iron done yet. What better exlrmple can there be ol the fresh and meatringful challenges
that continualll' arise in mathematics?

Convexitl and nonsmooth analJsis

The conplicated nature of the boundafl of the leasible set S in an optimization problem €iives
incenti\e for developing a new kind of 'nor, srnooth' calculus. as nentioned eatlier. There ate
olher incentives loo, and ihese can in pafi be understood after further examination of the linear
programming pair (P) and (D).

These problems depend on the specifird on of coefficielts d,,, b, rnd ., for l:1....,,t andj:1,...,n, but for the time being let 11\ tlnnk uf the ,7,. \ and . s a. iued and the D,.s as
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parameiers that can vary. The common oprimal value in the two problems is ihen a funclion ol
the veclor b: (rr,..., 6,,,):

r) (b) :ndn(P.) : max(r).
The oprimai solutions to the two problcns are:rlso in some sense functions of r. but the catch
here is that ihe optimal solutions are nor necessiuily unique. Therefore one cannot speek of a
ftrnction in strict terms, $dich would require unambiguous single-valuedness. The $ord mrlrl-
/u,rclrar has come into use for someihing that assigns to each point not always a single vrlue but
possible a set of values (maybe d1e enpt) set in some cases). Thus $e have t\lo multifunctions l(
end Y here rather than functions:

I(r) : ser of all optimal solutions to (P),
y(b) : set ot all optimel solutions to (D).

(JI course for many. even most choices of b these sets may reducc to single elements.
It goes eithoui saying, that great interest resides io lhe quesrion of how L,(b). X(6) and f(b)

behave when b is perrurbed. What kiid of continuiry properties. il anv. can be expected? Is it
possible to quaniify the changes in terms of 'rates'l

As far as the multifunctions I and ): are concerned. ii is inmediatelv clear that new ideas are
leeded beyond an\'thing available in standard calculus. lf J.(]) can be a set rather than e single
point, $hat sense should one ascribe ro,Y(6') converging to ,Y(D) as b' converges to r. and even
if an iniuitive idea car, be formulaled. docs rhis properiy t)'pif] what actuelly happens in the case
of an optimal solulion multifunction? Ho$ can one preretd to form a differen(e quorleDr
IX(b- th) X(.b)1/t ir terms of sels. and is rhis the appropdare thing ro rry to do anyway?

The function rj may it firsl seem elsier ro deal $ith. bur serious difficuhies lurk under the
sudace. The critical feature is that the Iery definition of I involves a process oI optimization in
several vadables, *tether $.e r,iew ir in terms of (P) or (D). Star,dard calculus is not designed to
treat functioDs corNtructed in such a manner. It can handle arith etical opereiions like addition
and multiplicadon, and also the composition of one fulction wiih another. and formulas
involving iniegration. but formulas involves minimization or madnxzarion are beyond ils
domain. The inescapable facl is that lunctions defined b) such formulas generall_\' fail ro be
differentiable in the uslral sense. The inherited theorems about derivatives and gradients
therefore cannot be applied.

Some inlling of the state of affairs can be obtaincd b1, erploring the nature of the optimal
value function u at a poini 6 \,"here the dua] optimal solution set y(D) happen" to reduce to a
single vectoi _t:. From an analysis of the optimalit) conditions (C) it is posslble to show that for
all 6' in some regio[ around b, 16') Iikewise reduces to t. and

r.'(6'): r'(b)+;, (b' b).

Thus i) is linear around b $ith gradient Vt,(r) : t This hinrs at a close connection between the
differentitl properties of t) and the optimal soluliols 1.) (D). but the sane t cannot be the
urique oprinal solution ro (D) for everr' choice of b. so u cannot bc a iinear function iD the
large. What is the o\-erall picture of u, and ho$ does it account for the fact that y(b) can
somcdmes contain more than one element?

IttunNou1 thatIis piece$ise linear'. butnotjustin an arbitrary wa): see Fig.5. The graph
of v is the lorver boundary of a certain convex polyhedron. The points , \\,here l-(b) reduces to a
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Fis. 5.

single _": correspond to the flat faces of the polyhedron. At points b thal corespond to edges or
comers of the pollhedron. therc is no uniquell determined 'ljneadzation' of o bul just a set of
possibilities, a set of vectors t. This set happens exactly to be y(D)!

The connection bet\\'een u and y is therefore v'ery close indeed. If we are williig to consider
,re-Ji./e.l directional derivatives as defined by

l)'(6r .4): lim
D(b+th)-t)(b)

we can come to the conclusion thai for each , lhis expression. considered as a funcdon of lr, is
*.ell defined and completell characterized by the set I(r), and vice vcrsa:

r'(6; ft): mari t , for all i.
) € r,(D)

This formula is po*erfu1 testimony to the role of lhe dual problem (D) in thc behavior oI the
optimal value in problem (P). When y(b) reduces to a single .yi, the formu.la turns into the
gradieni relation

t'(b; h): t- h: yt(b).h.
Several lessons can be drau'n from this example. By a new approach, the concepts of calculus

can be adapted and extended into a vast ne\r territory. The classical geometric emphasis on the
graph of a ftinction can be replaced by an emphasis on eltgTzp,i?, $hich consists of all the points

\'ing on ar dbaae the graph. Such an approach may seem unsynmelric. but then a fundamental
leck of s)nrmetry must already be recognized at the heart of optimization dleory.

Two-sided dedvatiYes can be replaced bl various one-sided linlits. Instead of a'gradient'. one
can look to\rards a characterization of the generalized derivatives by a set of 'subgradients'. Thus
for the Iunctioll \. one obtains by the process of differentiation not e gradient function V.'. but a
subgradient multifunction 3u, given b.v ar(D): 1(b). Muliiva]uedness, lhen, is something that
makes sense on more than one level and can be welcomed as a nalurd expression of reality,

Anothcr inportant idea is that of using col1\'e)dty as a lool where linearity and linearization no
longer qork. This has proved 1() be highly successful not onl! irl treating functions whose
epigraphs are conver polyhedra. as in Fig. 5, bui for exlremely genetal classes of nonsmooth
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functions whose epigraphs are in no way convex. Such funclions adse as optimal velue functions
r) for more complicated kinds of optimization problems than (P). Theh study is yielding valuable

inlormalion about stability and methods of decentralizalion or decomposition. The new foms of
analysis are also being applied no*, 1() infinite-dimensional problems and variational principles,

and in this way they are affecting more traditional areas of mathenatics, like the theory oI
parlial diflerential equations.

A11 of this leads to the conclusion that malhematics, as the science of identifying the essential

geometrical and numerical concepts in any siluation and making the most of them, is as vital to
progress today as in past elas of discovery. The ardval of compulers. far from siglalilg thai
everything is over except for the compulations, has shaken long_standing ideas and presented

new challenges thai mathematicians $i1I long be working llard to meel-
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