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A new method is proposed for solving two-stage problems in iinear and quadratic stochastic
programmjng. Such problems are dualized, and the dual, elthouSht itself of high dimension, is
approximated by a sequence of quadratic programming subproblems whose djmensionality can
be kept low. These subproblems correspond to rnaximizing the dual objective over the convex
hull of finitely many dual feasible solutions. An optimizing sequence is produced for the primal
problem that converges at a iinear rate in the strongly quadratic case. An outer algorithm of
augmented Lagrangian type can be used to introduce strongly quadratic terms, if des;red.
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l. Introduction

In the recourse model in stochastic programming, a vector n must be chosen
optimally with respect to present costs and constraints as well as certain expected
costs and induced constraints that are associated with corrective actions available
in the future. Such actions may be taken in response to the obseryation of the values
of various random variables about which there is only statistical information at the
time r. is selected. The actions involve costs and constraints that depend on these
observed values and on r. The theory ol this kind of stochastic programming and
the numerical methods that have been proposed for it has been surveyed recently
by Wets [12].

We aim here at developing a new solution procedure for the case where the first
and second stage problems in the recourse model fit the mold of linear or quadratic
(convex) programming. We assume for simplicity that the random variables are
discretely distributed with only flnitely many values. This restriction is not fully
necessary in theory, but it reflects the realities of computation and a natural division
among the questions that arise. Every continuous distribution must in practice be
replaced by a nnite discrete one, whether empirically, or through sampling, mathe-
matical approximation, or in connection with the numerical calculation of integrals
expressing expectations. The efiects of such discretization raise important questions
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of convergence and statistical confidence in the solutions that are obtained, but
such matters are best left to separate study.

We assume therefore that the probability space is a finite set 0: the probability
associated with an element @ e Q is p-, and the expectation of a quantity l,l- that
depends on ro is

Eu-:= | p-u-.
aeA

The fundamental ptoblem we want to address is

minimize c.x+tx Cx+ Et!-(x) over all xe XcR', (p)

where X is a nonempty conyex polyhedron, c is a vector in R", C is a symmetric
matdx in R'*" that is positive semidefinite, and ,y'- (x) is the minimum cosr in a
certain recourse subproblem that depends on ar and x. (Here x. I denotes the inner
product of x and l.) We view this recourse subproblem as one of linear or quadratic
programming, but instead of handling it directly we work with its dual. More will
be said about this later (see Proposition I in Section 2 and the comments after its
proof), but what counts in the end is the following: we suppose a representation

,l'-(x) = max{z-.lh- T-x) iz-. H,"z-} (1.1)

is available, where Z- is a nonempty convex polyhedron in R-, I is a matrix in
R-'", l- is a vector in R-, and tI- is a symmetric rnatrix in R-'- that is positive
semidefinite. Such a lormulation also coyers important cases where, as will be
explained presently, "recourse" is not the key idea and instead ry'-(x) arises when
penalty expressions of a certain general type are introduced to restrain the difference
veclot h- T-x, Note from the subscript (,) that all the elements in the representation
( 1.1) are in principle allowed to be random, although a particular application might
not involve quite so much randomness.

Two basic conditions are imposed on the given data. We assume X and C are
such that for every 0 € R" the set

6(u) := ut*-nrr ' x+ix Cx] (.1.2)

is nonempty and bounded. We also assume 2,., h-, 'f_, and FI.,,, are such that for
every x€X the set

{-(x):: argmaxlz. . lh- T-xl-}z-. H-z-} (1.3)

is nonempty and bounded. Certainly the first condition holds if X is bounded or
C is positive definite, and the second h oldsif 2,, is bounded or Ii- is positive definite.

The first condition is quite innocuous, since in practice X can always be taken
to be bounded. It implies that the function

d(,):j:I {, x+,lx. cx},

which will have a role in duality, is flnite everywhere.

(1.4)
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The second condition is more subtle, since it involves dual elements that might
not be giyen directly but derived instead from a primal statement of the recourse
subproblem that depends on x and @. It ensures in particular that for everyr € X
and @eQ, the optimal value ry'-(x) in this subproblem is finite, and an optimal
recourse exists. This means that our stochastic programming problem (P) is one of
relatiuely complete recourse ll}f: there are no induced constraints on .x that arise
from the need to keep open the possibility of recourse at a later time.

Of course, if our problem were not one of relatively complete recourse, we could
make it so by identifying the induced constraints and shrinking the set X until they
were all satisfied. The smaller X would still be a convex polyhedron, although its
description might be tedious in situations where special approaches such as in
[10, Section 1] can't be followed. In this sense our second condition forces no real
restriction on the problem either, except in requiring that the induced constraints,
if any, be identified thoroughly in advance.

In some of the situations that motivate our model the recourse subproblem is

actually trivial and its solution can be given in closed form. Such situations occur
when constraints are represented by penalties: the term Ey'.(x) in (P) can then be

interpreted as an expected penalD,. Indeed, using the notation

s-("): *!ZIz- 
. u )z-. H-z-I

we can write

t!-(x) = 0.(h.-'I'-x).

If0€Z-,then

0-(u)>0 for all u, 0-(0) = 0,

(1.5 )

(1.6)

(1.7 )

so we can view 0-(h- [x) as a penalty attached to certain degrees or directions
of deviation of Lr( from the vector h-. Many useful penalty functions of linear-
quadratic type can be expressed as in (1.5 ). In particular the case where 0-(h- T-x)
is a sum of separate terms, one for each scalar component of the deviation vector
h-- T-x, can be identified with the case where each Z is a product of intervals
and H- is diagonal. This case underlies a special model we have treated in [9].

The solution procedure that we shall present depends on a Lagrangian representa-
tion of problem (P) which leads to the dual problem

maximize g(c ETf;z-) + E{z- . h- iz- . H-z-}

subject to z-e Z* for all a e dl. (D)

Here / is the function in (1.4), for which another representation will later be given
(Proposition 2 in Section 2). The asterisk * signals the transpose of a matrix. The
maximization in (D) takes place over the convex polyhedron

7 = 11_.n7-c= (EI^)tt ; (1.8 )
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we think of z@ as the component in Z. of a point z € Z. The vector space (R-)r'
here, which is a product of copies of R', one for each ra e f), is likely to be of very
high dimension, since the number of points in J2 may be very large. Despite this
formidable dimensionality it is by way of (D), at Ieast in concept, that we propose
to solve (P). Properties of expectation, decomposition and quadratic structure, will
make this possible. The relationship between (P) and (D) is explored in Section 2

along with other questions of quadratic programming duality that are crucial to in
our formulation and our algorithm.

We approach problem (D) by a finite generation technique in which the feasible
region Z is approximated from within by polytopes ofcomparatively low dimension,
a polytope being a subset generated as the convex hull of finitely many points. This
technique is presented in Section 3. It resembles the classical finite-element or
Galerkin approach to the unconstrained maximization of a functional defined over
an infinite-dimensional space, where one maximizes over finite-dimensional sub-
spaces that grow in size as the approximation is refined. An important difference,
however, is that in our case the new element or elements that are introduced at each
stage in modifying the polytope over which we maximize are not obtained from
some predetermined scheme, as classically, but identified in an 'adaptiye' manner.
Furthermore, the total number of elements used in generating the polytope does
not have to keep increasing; the sequence of polytopes does not have to be nested.
We prove in Section 4 that when the mat x C is positive defrnite these elements
can readily be consolidated without threat to ultimate convergence, although the
rate of progress may be better if a substantial set ofgenerating elements is maintained.
In this way the dimension of the subproblem to be solved in every iteration can be
kept as low as seems desirable.

The subproblem of maximizing over a polytope can be represented as a standard
type of quadratic programming problem and solved exactly by available codes. It
yields as a byproduct an approximate solution vector for (P) along with bounds
that provide a test of near optimality. The sequence of such approximate solutions
converges to an optimal solution to (P). If not only C but also the matrices H- are
positive definite, the rate of convergence is linear, in fact with guaranteed progress
of a certain sort in every iteration, not just for the tail of the sequence.

In producing a new element to be used in the subrepresentation of Z in terms
of a convex polytope, we have a particular x on hand and must carry out the
maximization in ( 1.1) for every ro e J2. In other words, we must solve a large number
of closely related linear or quadratic programming problems in R-. This could be
a difficult task in general, but techniques such as have already been developed in
connection with other approaches to stochastic programming problems of a more
special nature (see Wets [12]) do olTer hope. Furthermore, there are cases of definite
intcrest where the maximization in (1.1) is trivial, for instance where Z- is a product
of intervals and H- is diagonal. Such a case has been described in [11].

Not all of the problems we wish to solve have C and H- positive definite, but
this does not prevent the application of our method and the achievement of a linear
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rate of convergence. Augmented Lagrangian techniques [7] can be efiectiye in
approximating any problem (P) by a sequence of similar problems that do exhibit
positive definiteness. We explain this in Section 5 after having established in Section
4 the results that show the advantages of the strongly quadratic case.

Our algorithm has been implemented successfully by Alan King on a VAX 11/780

at IIASA and at the Uniyersity of Washington for solving quadratic stochastic
programs with simple recource. We have solved some product-mix test problems,
and used it in the analysis of investment strategies to control the eutrophication
process of a shallow lake. This last class of problems involved 56 decision variables,
most of them with upper and lower bounds; the set X was determined by 35 linear
constraints. The matrix Te R"56 and the vector I e Ra were random, whereas the
(nonstochastic) quadratic term involving FI was introduced as a result of the

augmentation procedure suggested in Section 5. A report on this implementation
and the numerical results that have been obtained has been written by A. King [4].

2. Lagrangian repres€rtatiotr and duality

As the Lagrangian associated with problem (P) under the representation (1.1) of
the recourse costs, we shall mean the function

L(x, z\ : c. x +)x. Cx I E {z-. [h- - T-x] -iz-' H-z-]

(2.1)

where Z is the convex polyhedron in (1.8). Clearly L(x, z) is convex in.x and
concave in z, since C and H- are positive semidefinite. General duality theory [6]
associates with f, X, ar'd Z, the primal problem

for xeX, zeZ,

minimize F over X, where F(x) :: ma1 l(.;, s),

and the dual problem

ar4max L(x,r)=\zlz-e(-(x),for atl we O),

argmin L( x, z) : €(c - ETtz") .

(2.2)

maximize G over Z, where G(z) := mi1 l(.;, 2). (2.3)

The functions F and G are convex and concave, respectively. Our assumptions in
Section I allow us to wfite 'max' and 'min' in their definitions rather than 'sup' and
'inf'.

These problems turn out to be the ones already introduced. In terms of the

notation in (1.2) and (1.3), we have

(2.4)

r'r 5)
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Moreover for xe X and z e Z we haye

F(x) = g' x+)x' Cx+ Er!.,(x),

G(z): eQ ETIZ-) + Elz-. h- trz-. H-z-\.

Thus the primal and dual problems (2.2) and (2.3) can be identified with (P) and
(D), respectively.

In order to continue with our analysis of these problems, we need to step back

briefly for a look at some basic facts about duality in quadratic programming, not

only as they might apply to (P) and (D), but also to various subproblems in our
schemes. A quadratic programming problem is usually defined as a problem in
which a quadratic convex function is minimized (or a quadratic concave function
maxirnized) subiect to a system of linear constraints, or in other words, over a

convex polyhedron. As is well known, such a problem has an optimal solution
whenever its optimal value is finite (see Frank and Wolfe [3, Appendix (i)]): the

Kuhn-Tucker conditions are both necessary and sufficient for optimality. For the
purpose at hand, it is essential to adopt a more general point of view in which a

problem is considered to fall in the category of quadratic programming as long as

it car,be represented in this traditional form, possibly through the introduction of
auxiliary variables.

Consider an arbitrary Lagrangian of the form

I(.u,u)=p. uiq.ullu'Pu-!u'Qu o Ra for ue(J, oeV, (2.8)

where U and V are nonempty convex polyhedra, and P and Q are symmetric,
positive semidefinite matdces. Let

(2.6)

(2.7)

I ut - sup {u' I q - Rul- t u Qu.l,

Uo: {l, l/(ll) flnite}: {u lsup in (2.9) auained},

g(0) : ,{{ ta . lp R*af iu' Pu},

%: {u lg(o) finite}: {u linf in (2.11) auained}.

The primal and dual problems associated with l, U, and V l:y general duality theory
can then we written as:

minimizep. u+lu'Pu+f(u) over uelJ o [Jo,

maximize q'a-:o Qu+g(u) over ue Vo Vo.

The following duality theorem for (Po) and (Do) extends the standard results in
quadratic programming that were achieved by Dorn [2] and Cotde [ 1]. Those authors

concentrated in efiect on the case where U and V are orthants. The proof that we

fumish is directed not only at an extension of theory, howeyer. It explains how the

optimal solutions to problems in the general framework of (P6) and (D6) can be

identified in terms of the input and output 6f standard algorithms in quadratic

(2.e)

(2.10)

(2.1 1)

(2.12)

(PJ

(D")
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programming after a reformulation. This observation is essential in dealing with the
variouus subproblems that will play a role in Section 3.

Theorem 1. Problems (Pl and (D) are representable as quadrutic progtamming in

the truditionql sense. If (P] qnd (D; both haue feasible solutions, or if either (Pn)

or (D) has fnite optimal ualue, then both haoe optimal solutions, and

min(Po) = Pa11Po1.

Tlhis occurs if and only if the LagrangiLn I has a saddle point (n, u) rclatiDe to U x V,

in which case the sadd.le oalue l(i, D) coincides with the common optimal ttalue in (Pn)

and (D), and the saddle points are the pairs (rr, t) such that i is an optimal solution

to (Pl and u is an optimal solution to (D).

Proof. General duality theory [8] assures us that inf(Pu)>sup(Do) and in particular
that both.(Po) and (Do) have frnite optimal value if both have feasible solutions. It
also informs us that (t, r.r) is a saddle point of 1 on U x y if and only if n is an

optimal solution to (Po), t is an optimal solution to (Du), and min(Po) = rn311po1,

this common optimal value then being equal to /(t, u). We know further that a
quadratic programming problem in the traditional sense has an optimal solution if
it has finite optimal value [3, Appendix (i)]. The Kuhn-Tucker conditions are both
necessary and sumcient for optimality in such a problem, because the constraint
system is linear. The proof ofthe theorem can be reduced therefore to demonstrating
that (Po) and (Dp) are representable as quadratic programming in the traditional
sense and in such a manner that the Kuhn-Tucker conditions for either problem
correspond to the saddle point condition for 1 on U x V

The sets U and V are associated with systems of linear constraints that can be

expressed in various ways, but to be specific we can suppose that

( 2.13 )

where A is m'><n and B is mxn'. Let u'e R'' and o'eR- be Lagrange multiplier
vectors paired with the conditions B*u < b and Au> a, respectively.

Formula (2.9) gives/(u) as the optimal value in a classical quadratic programming
problem in u. The optimal solutions to this problem are vectors that satisfy the usual

Kuhn-Tucker conditions, or in other words, correspond to saddle points of the
Lagrangian

u' lq Rul-tru' Qu + u'' lb B+ al: b u' I u' lq - Ru - Bu'l-lu' Qp
(2.14)

relative to u'e R]' and o e R-. In partcular, then, we have

fl') :,.i$l. sug { b' u' * u' lq - Ru - Bu'l-!u' Qu}' (2.15)

The inner supremum here is attained whenever finite, and it is attained at a point

a : r". Thus it equals infunless there exists a vector u" € R- such that [q Ru - Bu')

U ={u.R'lAu>a}+0 and y: {o € R- lB*o < b} 10,
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Qu" = 0, in which case it equals b . u' +!u" . Qu", a value that actually depends only
on u and u'. We may conclude that

Uo={u€R' lu'eR1', with Ru+Bu'+Qu"=q}, (2.16)

.f(u) = minimum of b' u'+)u" Qu"

subjecttoll'eRl, u"e R-, RuiBu'IQu":q. (2.I7)

We can therefore represent (P6) as

minimize p.ui\u. Puib.u'i\u" Qu" 
(p")

subject to Au>a, u'>0, Ru+Bu'+Qu":q,

where the value of l,l" . Qlr" does not depend on the particular choice of the vector
a" satisfying Rui Bu'i Qu" : q but only on u and u'. This is a quadratic program-
ming problem in the usual sense, but in which u" is a sort of vector of dummy
variables that can be eliminated, if desired. In any case it follows that (P0) has an
optimal solution if its optimal value is finite, inasmuch as this property holds for
(F").

The optimal solutions (t, r', t") to (p0) are characterized by the Kuhn-Tucker
conditions that involve multiplier vectors t for the constraint Ru+Bu'+Qu":q
and o' for the constraint Au> a. These conditions take the form:

Ai> a, i'>0, p' . lAn' - al= 0,

,'>0, B*D<b, n'.lB*u-bl:0,
R+o+ A*i'- Pi: p, Rn+Bn'+Qn":5, Qn":Q6.

Because of the final condition we can write the next-to-last condition instead as

Rn+ Bn'+ Qn = q. Note that there is no restriction then on t", except that Qn" = Qu;
we could always take t": t in particular. This is in keeping with our observation
that (Fo) is really just a problem in a and u'. We see in fact that the pairs ( u-, l')
which are optimal for (Fo) are the ones which, for sorne pair (u, t'), satisfy the
conditions

An>0, u'>0, n' .lAn'- al:0,
u'>0, B*D<b, u''lB*L) bl=0, (2.18)

Rn+ Bn'+ Qu: q, R*i+A*D'-Pn:p.

Problem (Do) can be understood in the same way. From the formula (2.11) for
g( u) we deduce that

yo={u€R-lfo'€R?,o"eRN, wilh R*1)+B*u' Po"=pl, (.L19)

g(u):maximum of a u' )u" Pu"

subject to u'eRi', rr"e R', R*ulA*u'-Po'=p. (2.20)
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These formulas yield for (Dq) the representation

maximize q' D -r) ' Qx + a ' u' -lu" Pu"

subject to B*o<b, u'>0, R*a+A+D'-Pu'=p, (Dn)

where the value of u" ' Pu" does not depend on the particular o" satisfying R*o *
A*D' PD": p but only on tl and u'. This is really a problem in u and o', and the

Kuhn Tucker conditions characterize u and u' as optimal if and only if there exist

i arld u'such that (2.18) holds, the same conditions as before. Since (i6) is a

quadratic programming problem in the usual sense, it has an optimal solution

whenever its optimal value is linite, and (D6) therefore has this property too.

Our argument demonstrates that if either (Po) or (Do) has finite optimal value,

then both problems have optimal solutions. The optimal solutions in both cases are

characterized by the existence of auxiliary vectors such that (2.18) holds. But (2.18)

can also be seen as the Kuhn-Tucker conditions for (t, t) to be a saddle point of
the Lagrangian (2.8), when LJ and V are given by (2.13) Thus for u and t to be

optimal solutions to (Po) and (D6) respectively, it is necessary and sumcient that

(t, t) be a saddle point in (2.18). Following on the remarks at the beginning of the

proof, this establishes the theorem. n

Corollary. Any standard quadtatic prcgrqmming method can in principle be used lo

soloe problems of theform (.P) or (.Di), infactboth simultaneously, thereby determining

a saddle point ofthe corresponding Lagrangian I on U x V, if such a saddle point exists.

Proof. The representations in the proof of the theorem show more specifically that

if an algorithm is applied to (Fo), the optimal solution vectors t, u' and multiplier
vectors t and o'which it produces yield optimal solutions t to (P6) and rr to (Do),

and (r, t) is a saddle point in (2.8). The same holds if an algorithm is applied to

(bo), except that then u and u'are the optimal solution vectors, whereas u and u'

are the multiplier vectors. n

Theorem 2. The stochastic ptogramming problems (P) and (D) are representable as

quadrutic programming problems in the truditional sense, although with potentially

oery high dimensionaliq'. Both problems haue optimal solutions, and

min(P) : max(D).

A pair (i, Z) is a saddle point of the Lagrangian L relatiue to X x Z if and only if t
is qn optimql solution to (.P) and Z is an optimal solution to (D). The set of such pairs

(i, t) is bounded.

Proof. We need only observe that the tdple L, X, Z, can be construed as a special

case of the tdple I, U, V, in Theorem 1. A term tike Ez- H',2- canbe expressed as

z Qz for certain matrix Q and so forth. Our assumption that the extremal sets 6(u)
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in (1.2) and(-(x)in(1.3) are nonempty for all oeR',.xe X and ae!), guarantees
that every xe X is feasible for (P), and eyety zeZ is feasible for (D). Therefore
we are in the case of Theorem 1 where both problems have feasible solutions.

As for the boundedness of the set of saddle points (t, t), consider a particular
pair of optimal solutions t+ and t* to (P) and (D). Observe that for every optimal
solution x to (P), (t, z*) is a saddle point and therefore satisfies

x e argmin l(x, z*) = {(c - ETjzl,)

(cf. (2.5)). But the set on the right is bounded (one of our basic assumptions in
Section 1). Likewise for every optimal solution t to (D), (t'i, Z) is a saddle point
and therefore satislies

t. argmax Lrx*. z). so Z-. (-\\-) for all w. fl.
zeZ

(cf. (2.a)). The sets (-(i*) are all bounded (again by one of our basic assumptions
in Section 1), so t belongs to a certain bounded set. The pairs (! z) thus all belong
to a product of bounded sets dependent only on x+ and Z*. n

The following pair ofresults will help to cladfy the quadratic programming nature
of problems (P) and (D).

Proposition l. For the function,Jt- giuen by (1.1), if the polytope Z.has a representation

Z-= {z-e[4- BIz.,< b,.,]

Y- = \y- en" )A-y-> a-]

(2.21)

for some uector b- etr|' and matrk B- e R- *' (with s independ.ent of o), then r!- has
an q.ltetnqtiDe expression of the form

ry'-(x): minimum of d-. y- + jy-. D.,,y.,,
(') ))\

subject to y-€Y-. 7,x I w-y-=E-,

fot certq.in uectorc d-e!l.", h-eRq, and matrices Ie Ra ", W-aRn", andD-e R,""
with D- symmetric and positiae semidefinite, and where

(2.23)

for some a- eEX,P and A-eftrP"'.
Conuersely, ant function ilr- hauing a representation (2.22) es just described (with

,Jt.(x) finite for all xe X) also has a representation (1.1) with Z- of the form (2.21).

Proof. Starting with the representation (1.1) and Z- of the form (2.21), view the
maximization problem in ( 1.1) as the dual problem associated with the Lagrangian

L'@-, z-) : u-' lb- BIz-l+ z-' lh- - T-xl-lz- ' H-z-

for u- e Rl and z- e R-.
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The corresponding primal problem, whose optimal value is also equat to ry'-(x) by

Theorem 1 (as long as rc€X, so that ry'-(x) is finite by assumption) is

minimize b-' u-+;f-(u.,) over u- € Ri, where

l,(a-): sup {","' lh- - T.x - B-u-l-)2,"' H-z-}-
.-en-

Using the trick in the proof of Theorem 1, we can reformulate the latter as

minimize b- u-+iu'!.' H-u'|"

subject to a-€Rl, ll1€R-, B-u-+H-ui:h- T-x'

We can then pass to form (2.22) in terms of y- : ( a,,, ui) (or by settin g y-: u. after

algebraic elimination of ?1, if the rank of I{- is the same for all ro e O).

Starting with the representation (2.22) and y- of the form (2.23), on the other

hand, we can view ry'-(x) as the optimal value for the primal problem associated

with the Lagrangian

1,.-t y-. u, t - d-. y- ' iy",' D,y- r u- lh- T-x- W-y-l

for y- e Y- and D. € Rq.

Then dr-(x) (when finite) is also the optimal value in the comesponding dual problem

maximize u- li--l.x)+s-(u-) over u-€Rq, where

g-r u- r - 
"inf 

rr" ld- W!.u"1-iy- D-v-r.

As we saw in the proof of Theorem l, this problem can also be written as

maximize o,. li- T-xl+ u'- a- -Io'i" D-r:'i,

subject to o. e Rq, oi e Rp*, W:D-+ AIu'.,+ D.,o'-= d-.

With z-: (u-, u:, Dl), this can be brought into the form (1.1) with Z- as in (2.21).

(Alternatively one could take z- = (u-, u'-) and eliminate ui algebraically, provided

that the rank of D- is independent of ro. If also the rank of the matrix W- is

independent of ar, one could even eliminate u- from the problem and just take

z-: D'- to get a representation (1.1) in fewer variables.) I

Proposition 2. The function I in (1.4) also has a reprcsentation

E(r') : maximum of q u \u Qu oaer all u € U satisfying Bu: 1)

for some choice of aectors b and c1 and matrices B and Q with Q symmetric qnd positiae

semidefi.nite, where LI is a conuex polyhedron.

Proof. Recallthat rp(u) is finite for all u by assumption. Express X as {x e R' lAx >
a) for some c e RP and A e Rr'"', and consider the Lagrangian

I"(x,"'):u'xilx CxIu' la Axl for xe R' and a'eRP*.
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The primal problem associated with this Lagrangian is the minimization problem
in (1.4), whereas the dual problem, which also has 9(u) as its optimal value, is

maximize a u' I g(u') over u'e R!,

where 8(u') = inf ,{x'lu A*u'l+\x' Cx}

The reformulation trick in Theorem 1 translates this into

maximize a . u' )u" Cu"

subject to u'eRf, z"eR", A*u'-Cu":u.
We can then get a representation (2.24) in,"t-r og 4 : (r', z"). !

Propositions 1 and 2 make possible a more complete description of the quadratic
programming representation ofproblems (P) and (D) indicated in Theorem 2. When
f.(x) is expressed in terms of a recourse subproblem in y- as in Proposition 1, we
can identify (P) with the problem

minimize c. x*]x Cx+ E{d- y-+}y-. D-t-}

subject to xeX, y-€Y-, l;,+W y-=i- forall .oeO.

Similarly, when g is expressed as in Proposition 2 we can pose (D) as

maximize q u-tu.Qu+ Elz-.h- trz- H-z-)

subject to u € U, z- e 2,,, and Bu+ E{T[2,,): c.

(2.2s)

In the latter, our assumption that E(a) is finite for all o e R" implies that no matter
what the choice of vectors z- e Z-, there does exist a u e U such that the const.aint
Bu + E{Tfz*}: c is satisfied.

3. Finite gereratiotr method

Our aim is to solve problem (P) by way of (D) according to the following scheme.
We replace (D) by a sequence of subproblems

maximize G(z) over all z € Z" L Z (D',)

for v = 1,2,..., where G is the dual objective function in (2.3) and (2.7), and Z'
is a polytope of relatively low dimension generated as the convex hull of finitely
many points in Z Obviously (D") is the dual of the problem

minimize F'(x) over all x e X, (P")

where F" is obtained by substituting Z' fot Z in the formula (2.2) for the primal

(.2.26)
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objective function F:

F'(x) : max L(x, z)
z.Z'

= c. x'r )x. Cx * ma4 E{2.. fh- - T-xl-iz-. H-z-}. (3.1)

Indeed, (P') and (D") are the primal and dual problems that corespond to L on
X xZ" tathff than X xZ. In calculating a solution z' to (D') we obtain also a

solution i" to (P") that can be viewed as an approximately optimal solution to (P).
From ?" and i" we gain information that helps in determining the polytope Z"*1
to be used in the next iteration. The new polytope Z"*1 is not necessarily 'larger'
than 2".

Problems (P") and (D') belong to the realm of'generalized' quadratic program-
ming as demarcated in Section 2. Clearly

F(x) > F"(x) for all r. (3.2)

where F is the primal objective function in (2.2) and (2.6), so (P") can be regarded
as a'lower envelope approximation' to (P). The feasible sets in (P") and (D") are
X and 2", respectively, whereas the ones in (P) and (D), are X and Z. From
Theorem 1, therefore, we know that optimal solutions i" and Z" to (P") and (D')
exist and satisfy

F" (r',) : G(2"),

t " € argmin F"(x) c a1g61n 11O ;" 1,

2" e argryg.x G(z)< v1g u* 11t', 
"r.

Having determined a pair (*", t") of this type, which is a saddle point of L relative
lo X x 2", we can test whether it is actually a saddle point of I, relative to X \ Z.
This amounts to checking the maximum of L(i', z) oyer alI z e Z to see if it occurs
at z: 2'. If yes, i' and 2'' are optimal solutions to (P) and (D), and we are done.
If no. we obtain from the test an element

(3.3 )

(3.4)

r r 5\

z" e argmax L(i', z)

and have

L(i', z') < L(r", z"): F(i' ).

(3.6)

(3.7)

The crucial feature that makes the test possible is the decomposition in (2.4):
maximizing L(i", z) in z e Z redtsces a solving a separate quadratic programming
problem (perhaps trivial) in z- e Z- for each ar e O. Aryway, with such a z" we haye

F(x)> L(x, z") for all x, with equality when r: i'. (3.8 )

We can use this in conjunction with (3.3) in constructing a new lower envelope
approximation F"*1 for -Fl, which in primal terrns is what is involved in constructing
a new set Z"+1 to replace 2". More will be said about this later.
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Ol course the optimality test also furnishes a criterion for termination with
suboptimal solutions, if desired. Since i' and Z" are feasible solutions to (p) and
(D) and satisfy (by Theorem 2)

F(t") > min(P) = max(D)> G(2"), (3.9)

we know that for e"= F(i")- G(t'), both t' and Z' are €,-optimal:

lF(r')-min(p) <e, and lG(;")-max(o)l<e". (3.10)

Our basic procedure can be summarized now as follows,

Algorithm
Step 0 (lnilla.lizalion). Choose the optimality test parameter e > 0 and the initial

convex polytope 21c Z. Set v:1,
Slep 7 (Approximate Solution). Determine a saddle point (i", z") of I relative

Io XxZ' and the value a"= L(t',2").
Slep 2 (Decomposition). For each ., € O, determine an optimal solution zl to the

problem

maximize z-.[h- 'f-t"l- +z. H-z- over z-eZ- (3.11)

and the optimal value ai. Let z' be the element of Z having component zi rn 2.,
and let

a,= c. i" *ii" . Cr" + Ed'-= L(r", z"). (3.12)

Step 3 (Optimality Test). Let E,: d"- dn Then i' is an €"-optimal solution to
(P), Z' is an €,-optimal solution to (D), and

a, > min(P) = P31(D) > "". (3.13)

If €, < terminate.
Step 4 (Polytope Modiflcation). Choose a new convex poly'tope Z'+t that contains

both i" and z', although not necessarily all of 2". Replace z by /+1; return to
Step 1.

We proceed to comment on these algorithmic steps individually in more detail,
one by one. Properties of the algorithm as a whole will be developed in Section 4

and Section 5.

The most important observation concerns the quadratic programming nature of
the subproblem solved in Step 1. Suppose that Z" is generated from certain elements

z'=coliilk=l,...,^,\:[i 
^*;;,iu=0, 

i ^.:r] 
(3.14)

[t:r t:r ]

Finding a saddle point (r', Z") of L(x, z) relative to x e X and z € Z' is equivalent
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to finding a saddle point (;", l') of

I m, \
L'(jt,^)- t[x,L t,i',1\ r-r l

relative to x e X and ,\ e ,4. ", where ,4 ' is the unit simplex in R-',

I
,1":-{,1 -1,r,,.....^- rl^, =0. i ,r, -t f.l- - (r ,

and then setting

z : L  kZ L.
t:l

But from the definition (2.1) of f(x, z) we have

I'(r, 
^): 

c x+]x'Cx* ?. 
^*n:zi-'1n- 

- 4,x1)

i L L 
^,^kLItL,' 

H*;LI
j-1 k-- I

= c' xrlx Cx+i'1fi'-t"i )x fr"x,

where

(3.15 )

(3.16)

(3.18 )

(3.1e )

(3.20)

(3.21)

9"(x) :: 634 11' lii" - i" xl - \t Ft " x1 : ^* u r""' lh- - T-xl - lz- H-z.l'

(3.23)

(3.17 )

ff" e R-' with components fii: eIZi-' tt-j,

Fr' €nr^,'^" with entries fr1*= e{21-' n.;L},

i' e R-' ' wirh enrries ii, rt;L r:1.

T; being the ith column of the matrix L, e R"'"-. Problem (D') thus reduces to a

deterministic quadratic programming problem in which the coeficients qre certain

expectqtions.

maximize Ok - t'* i) l,t E',t over all r e ,{'. (D")

Here g is the function in (1.4), which has alternative representations such as in

Proposition 2 that can be used to place (i") in a more traditional quadratic

programming format. Regardless of such reformulation, the dimensionality of this

quadratic programming problem will be relatively low as long as m", the number

of elements Zi used in generating Z', is kept modest.

The translation of (D') into (i") atso sheds light on the lower envelope function

F" in the approximate primal subproblem (P"):

(3.22)

where
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Clearly 9'(x) is a lower envelope approximation to the recourse cost function

V (x) := max E { z- . lh- - T-xl \z-. H,,z-}: Er!-(x).

?"(x) : pu" tii n' tj,
&:1....,m,,

(3.24)

Especially worth noting in (3.23) is the case where there are no quadratic terms

z- H.2., i.e. where I{-:0 for all aeA and consequently Ii"=0. Then

(3.25)

where ii is the vector in R' given by the kth row of the matrix i' in (3.21):

ii: r{rI;L}. Q.26)

In this case \P" is a polyhedral convex envelope representation of 11, the pointwise

maximum of a collection of affine functions

l.(r):ii ii. , fork-1,...,m,,.

Our technique then resembles a cutting-plane method, at least as far as the function
tZ is concerned.

Indeed, if not only H. = 0 but C :0, so that there are no quadratic sost terms

at all and (P) is a purely linear stochastic programming problem, we can regard F'
as a polyhedral convex subrepresentation of F. Then the subproblems (P') and

(i") can be solved by linear rather than quadratic programming algorithms. Further-

more the function L(r, z") determined in (3.8) is then affine in x. If in fact rve were

to take Z"*t : coIZ", z"\, we would get

F"*1(x): p3t1P"G), L(x, z" )\,

and this would truly be a cutting-plane method applied to problem (P).

It must be remembered, though, that in such a cutting-plane approach it might
generally be necessary to retain more and more affine functions in the polyhedral

approximation to 4 since the conditions that theoretically validate the dropping of
earlier cutting-planes might not be met. The dimension of the linear programming

subproblem to be solved in each iteration would become progressively Iarger. In
contrast, by taking advantage of the quadratic structure eYen to the extent of
introducing it when it is not already at hand (as proposed in Section 5), one can

avoid the escalation of dimensionality and at the same time get convergence results

of a superior character (as presented in Section 4).

Note that u jth a nonvanishing quadraric term l l] ,1 in {3.21r rthe matrir A'
being positive semidefinite, of course) the lower envelope approximation q" to q
will generatly not be polyhedral but have 'rounded corners' As a matter of fact, if
F' is nonsingular, then 9'is a smooth convex function with Lipschitz continuous

derivatives.
In Step 2 ofthe algorithm, we need to solve a potentially large number ofquadratic

programming problems (3.11) in the vectors z-. This could be a trouble spot lfthe
problems are complicated and require full apptication of some quadratic program-
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ming routine, the secret to success would have to lie in taking advantage of the

similarities between neighboring problems. Techniques of parametric programming

and 'bunching' might be useful. Not to be overlooked, however, are the situations
in which each problem (3.11) decomposes lurther into something simpler.

Especially important is the cas€ where

(3.27 )

(3.28)

Z: Ztx. . xZ, with Z1= II-.IZ-,
and work with polytopes of the form

(3.2e)

(3.30)

Then (3.11) reduces to a separate problem over each of the sels 2.1,...,2-, If
these sets are actually intervals (bounded or unbounded), then the separate probiems

are one-dimensional, and their solutions can be given in closed form Such is indeed

what happens when the costs 'y'-(r) 
in (P) are penalties d-(i- - ILx) as in (1.5),

(1.6), (1.7), and d-(h- Lx) is a sum of separate terms, one fot each real component

of the vector h- T-x. The special model we have treated in [11] makes use of this

simplification. In such a setting the vector z" is readily computed as a simple function
of i", and indeed one can get away with storing only i', which has only a small
number of components compared to z" : cf. l4l,

The product form (3.27) for 2., if it is present, also raises further possibilities

for structuring the subproblems introduced in Step 1, by the way. One could write

Z-:Z.t><Z-zx"'xZ-,
and I{- does not involve cross terms between the sets in this product:

H- : diagfH-r, H-r,. . ., H-,].

and

z""t =coIz", z'] (generalized Frank-wolfe rule)

Z"*t : colZ", z"\ (generalized cutting-plane rule).

7'=7i '..'Zi wirh Zle 2,.

for instance. This could be advantageous in holding the dimensionality down. If
each Zi is generated as the convex hull of a finite subset of Z, consisting of n,

elements, one can get away with describing the points of Z" by rn, parameters tr;r.

On the other hand, if Z" is regarded as the convex hull of the product of these

frnite subsets of Zr,..., Z. one would need (n")' parameterc.
The procedure invoked in Step 4 of the algorithm has been left open to various

possibilities, which could be influenced too by such considerations as the foregoing.
Two basic possibilities that immediately come to mind are:

(3.31)

(3.32)

The first of these is adequate for convergence if the rnatrix C is positive definite,

as we shall see in Section 4. It is certaintly the simplest but might sufler from too

much information being thrown away between one iteration of Step I and the next

It gets its name from the interpretation in terms of problem (D) that will underly

the proof of Theorem 5.
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The second formula goes to the opposite extreme. It achieves better and better
representations of the primal objective ,Il in the sense that

F(r) > F"*l(x) > max{F'(x), L(x, z" )} for all ,c. with

F(t") = F"*r(r") = L(i", z, ), (1.3 3 )
but this is at the expense of keeping all information and continually enlarging the
size of the quadratic programming subproblem. A good compromise possibility
might be

Z"*1 : co{21, 2", z"}, (3.34)

where Z'is the fixed initial pol)'tope.
This brings us to the choice of 21 in Step 0, which in determining the first

approximate solutions ir and Zr could have a big efiect on the progress of the
computations. We can, of course, start with Zt: {2}, where ? is an element of Z
that may be regarded as an estimate for an optimal solution to (D). For example,
if an initial guess i is available for an optimal solution to (p), one might take i to
be a vector constructed by calculating an element ?- e (, (i) for each c,.r. This approach
makes sense especially in situations where (-(i) is a singleton for each r.r e,f), so
that ? is uniquely determined by the estimate i.

Another approach to the initial Z1 requires no guesses or prior information about
solutions. A fixed number of elements ap- (k= 1,. . . , p) is chosen from each Z-,
such as the set of extreme points of Z- augmented by some selected internal points.
These yield p elements ap of Z, where au has componen t ap- in Z-. The convex
hull of these ca's can be taken as Zt . Such an approach to initialization has turned
out to be very efiective in the case of our special model in [11] when adapted to a
product structure (3.27); see King [4].

In summary, there are many possibilities for choosing the initial polytope Zr in
Step 0 and modifying it iteratively in Step 4. They can be tailored to the structure
of the problem. Vadous product representations of Z and, Z" cottld, be helpful in
particular. Versions of rules (3.31), (3.32), and (3.34), which maintain the product
form, can be developed.

See the end of Section 4 for other comments on forming Z,*t from 2".

4. Convergence results

Properties ofthe sequences produced by the finite generation algorithm in Section
3 will now be derived. For this purpose we ignore the optimality test in Step 3 of
the algorithm, since our interest is centered on what happens when the procedure
is iterated indefinitely. Unless otherwise indicated, our assumptions are merely the
basic ones in Section 1. The initial polytope Zt is arbitrary, and Z'*1 is not subjected
to any requirement stdcter than the one in Step 4, namely that Z"*t = {2", z,}.ln
addition to the symbols already introduced in the statement of the algorithm in
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Section 3 we use the supplementary notation

a =min(P) =max(D),

t": A - d",

m" :V,L(i", z"): c+ Cx' - ETf;zi,

lx16 =lx. Cxlt/2.

Theorem 3. The sequences {x'), {z'}, and {z'} are bounded and satisfy

F(i'): a,> a> . . .> a"*1> a" = G(2").

Furthermore one hqs the estimate.

tl i - r"ll2c< E" - w". (t-r") < €, < t"

for euery optimal solution x to (P), where

w" . (x- i')>0 for every x e X

81

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

If e,-'>Q, thsn su., clustet point of {x'} is an optmal solution to (P), and euery cluster
point of {2"} is qn optimql solution to (D).

Proof. We have a,:111",2") and a":L(i',2') by definition, so F(t")=a" by
(3.7). Then a,> a> a, by (3.9). Bythe same token, G(2"*1): d,*1 and a>a,*r.
But also

GI2"'tt= ma4, Gt zl > GI z')
zeZ"'

because Z' e Z"*t. All the relations in (4.5) are therefore correct.
Next we verify that the sequence {2"} is bounded. Recall that G is a continuous

concave function on Z since G is given by (2.7), where g is the concave function
defined by (1.4); our basic assumption about the sets 6(o) being bounded implies

9 is flnite everywhere. (As is well known, a concave function is continuous at a

point if it is finite on a neighborhood of the point [9, Theorem 10.1].) We know
from (4.5) that the sequence {G(2")} us nondecreasing, so the boundedness of {2"}
can be established by showing that th e set \z e ZIG(z) > G(zr)) is bounded. Consider
the closed concave function

We wish to show that a certain lev€l set {zlg(z)> a.\} is bounded. But the level sets

{zlg(z)> a}, a e R, are all bounded if merely one ofthem is bounded and nonempty

lG(z) ilzez,
Ico jf zeZ.
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(see [9, Corollary 8.7.1]). In the present case we know that the level set

{zlg(z)> ot}:lset of all optimal solutions to (D)l

is bounded and nonempty (Theorem 2). Therefore the set 1z € ZIG(z) > G(21)| is
indeed bounded, and the sequence {;"} is bounded as claimed.

We invoke now the fact that

x" e tk ETIZ".) for all v, (4.8)

which is true by (2.5) because (i", z') is a saddle point of t relative to X x Z'. In
terms of the finite concave function g we have

€(u): a,p(u) for all r.r e R'. (4.e)

Indeed, (1.4) defines 9 as the conjugate of the closed proper concave function

. f -l*. Cx if .lr. c X,
vtxl=1' Im il rzX,

so d9( u) consists ofthe points r which minimize u . x - 7(x) over R' (see [9, Theorem
23.51). These are the points that make up the set f(o) in (1.2). Thus

t" € aej') for all z, where a" : c - ET!,7i. (4.10)

The sequence {o'} is bounded, since {t"} is. Moreover the multifunction ap is
locally bounded: for every o e R' there is a 6 > 0 such that the set U {itg(o)l lo ol <
6) is bounded (see [9, Corollary 24.5.1]). It follows by a simple compactness
argument that dg carries bounded sets into bounded sets: if ycR' is bounded,
then U {6q (o) o e V} is bounded. Taking V: { D'}, we conclude that the sequence

{i"} is bounded.
The argument establishing that {z'} is bounded is similar. We have zie(-(i"),

where 4- is the multifunction defined in (1.3). Since the sequence {i"} is now known
to be bounded, we need only show that (- is locally bounded at every -" in order
to conclude that each of the sequences {zi} is bounded and cons€quently that {2"}
is bounded.

In terms of the convex function 0., defined in (1.5) we have

{-(x): a0-(h-- T-x) for all xeX (4.11)

This hotds because ( 1.5) expresses d- as the conjugate of the closed proper convex
function

( 1,2.., . H..,2.., il 2,,, e 2...,
1,.,(2,.,): IIco il z-( 7_.

The vectors z*€dq-(u) are therefore the ones that maximize u.z.-f-(2,,) (see

[9, Theorem 23.5]). Our assumption that L(n) is nonempty and bounded for every
x € X means that dd-(u) is nonempty and bounded for every a ofthe form l- - [x
for some x€X Ev€ry such u:h--T.,x therefore belongs to int(dom d-) (cf.
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Section 3 we use the supplementary notation

a=min(P):max(D).

E": d - d,,,

w" :V ,L(i',2') = c+ Ci' ETI."-,

llxll. = [x. Cx]l/'?.

Theorem 3. The sequences {i"}, {,"}, and lz'l are bounded and satisfy

F(i') : a,> a >. - . > a"*,> A" = G(2").

Furthermore one has the estimate.

j r-r'll:<d"-r".(]r r")< r, < 6,

for euery optimal solution i to (P), where

w".(x-x')>0 for every xeX.

81

(4.1)

(4.2)

(4.3)

(4.4)

(4.5 )

(4.6)

(.4.1)

If e, + Q, thsn euery cluster point of \i']t is an optmal solution to (P), and euery cluster
point of {2"} is an optimal solution to (D).

Proof. We have a,:l(i', z') and a,:L(i',2') by definition, so F(i") :a, by
(3.7). Then q,> a> d, by (3.9). By the same token, G(.2"*t)=",,, a\d d>ct,+t.
But also

c( 2"*') : Igr, G(.2)> G(z')

because Z" e Z"+1. All the retations in (4.5) are therefore correct.
Next we verify that the sequence {;"} is bounded. Recall that G is a continuous

concave function on Z, since G is given by (2.7), where g is the concave function
defined by (1.4); our basic assumption about the sets {(o) being bounded implies

9 is linite everywhere. (As is well known, a concave function is continuous at a
point if it is finite on a neighborhood of the point [9, Theorem 10.1].) We know
from (4.5) that the sequence {G(Z')} us nondecreasing, so the boundedness of {Z'}
can be established by showing that th e set {z € Z G(z) > G(Z')} is bounded. Consider
the closed concave function

We wish to show that a certain level set {zlg(z)> Ar} is bounded. But the level sets

{zlg(z)> a}, a € R, are all bounded if merely one ofthem is bounded and nonempty

( G\z) if zez.
["o ilzzZ.
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(see [9, Coroltary 8.7.1]). fn the present case we know that the level set

{z g(z)> a} = [set of all optimal solutions to (D)l

is bounded and nonempty (Theorem 2). Therefore the set {z e ZIG(z) > C(Z')} is
indeed bounded, and the sequence {2"} is bounded as claimed.

We invoke now the fact that

i" e {(c - ETf;z'-) for all v, (4.8)

which is true by (2.5) because (x", z') is a saddle point of ,L relative to X xZ". h
terms of the finite concave function g we have

t(o):aE(u) for all r€R'. (4.9)

Indeed, (1.4) defines 9 as the conjugate ol the closed proper concave function

[ ]x.Cx ifx. X,v(x):( -
' loo if xd1,

so a9 (r) consists ofthe points x which minimize rr . x - 7(x) over R" (see [9, Theorem
23.51). These are the points that make up the set 6(o) in (1.2). Thus

(4.10)

The sequence {o'} is bounded, since {7"} is. Moreover the multifunction d9 is
locally bounded: foreveryIeR"thereisa6>0suchthatthesetlJ{ae(r.,)llr,-Ol<
6] is bounded (see [9, Corollary 24.5.1]). h follows by a simple compactness
argument that ag cardes bounded sets into bounded sets: if VcR" is bounded,
then U {Aq(o) r.r e V} is bounded. Taking V:{O'}, we conclude that the sequence

{;"} is bounded.
The argument establishing that {z'} is bounded is similar. We have zie {-(i"),

where f- is the multifunction defined in (1.3). Since the sequence {x"} is now known
to be bounded, we need only show that (- is locally bounded at every i" in order
to conclude that each of the sequences {zi} is bounded and consequently that {z'}
is bounded.

In terms of the convex function 0- defined in (1.5) we have

t",G) : a9,,,(h,., ?1.,x) for all rc e X (4.11)

This holds because (1.5) expresses d- as the conjugate of the closed proper convex
function

- | \z- H-z- il z., e Z-,
'-''-'-l- il z-r Z-.

The vectors z*eA9-(u) are therefore the ones that maximize u- 2.,-f-(z-) (see

[9, Theorem 23.5]). Our assumption that (.(x) is nonempty and bounded for every
x e X means that ao-(u) is nonempty and bounded for every I ofthe form ft- [x
for some r€X Every such a=h- 4x therefore belongs to int(dom 9-) (cf.

t' e Ae(u') for all z, where n' : c - ETIZ'-.
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[9, Theorem 23.4]). It follows then that ad- is locally bounded at lt (cf. [9, Corollary
24.5.1]). The mapping x+ft- qx is continuous, so this implies (- is locally
bounded at x for every r € X, as we needed to prove.

The argument just given shows also that the convex function d- is continuous at
h- - ?ix for every x e X (since d- is continuous on int(dom d- ) [9, Theorem 10.1]).
Therefore F is continuous on X by (1.6) and (2.6). We observed earlier in the proof
that G is also continuous on Z. Of course X and Z, being convex polyhedra, are

closed sets. Hence il e, -> 0, so that F(x") ) d and G(2")'> a, any cluster points t-
of {x"} and Z' of {2"} must satisfy F(t-) - a = G(t*) and be optimal solutions to
(P) and (D).

We tum finally to the estimate (4.6). The saddle point condition on (i', 7') entails

i'e argmin l(x, 7").

Since X is a closed convex set and l(x, t") is a differentiable convex function of
x, this condition implies that the vector fr' : -V ,L(i', Z") belongs to the normal
cone to X at i" (cf. [9, Theorem 27.4]), which is exactly the assertion of (4.7). We
have

L(x, z") : L(t", z") +v,L(.x", z" ) . (x - t" ) + l(.x- ;') . C(x - ;")

- a,. i' lx- r") ll r t'l ]- lor all x

from the quadratic nature of l, and also

l(x, z") < F(x) for all x e X

by (2.2). For any optimal solution t to (P), then, we have

o, w'.rx-i')-r rl.--\"ll * Fr;r a.

In terms of E,: d d,, this can be wdtten as the frrst inequality in (4.6). The rest
of (4.6) then follows from (4.7), inasmuch as e,= a, a,: E,-l a, d> E,,. a

Theorem 3 focuses our attention on finding conditions that guarantee 6, r 0. Our
first result in this direction makes no additional assumptions on the data in the
problem and therefore serves as a baseline. It relies on an increasing sequence of
polytopes in Step 4, however. The generalized cutting-plane rule in (3.32) is covered
as a special case.

Theorem 4. If Z'*1 :>Z"w{2"} in Step 4 of the algorithm, then €,}0.

Proof. Let a-=brn,a, and .!-:limsup,a". (The flrst limit exists because {4,} is

nondecreasing in (4.5).) Since e,: a" a,>0 for all z, we need only demonstrate

that a-< a-. The sequences It'\, P'L and {z'}, are bounded by Theorem 3, so

we can extract convergent subsequences with a common index set 1'r - {1,2,. ..}
such that

(4.12)
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Then since

d": L(i',z")- L(t-,z-), a,= L(t",z")-,.-N, L(t-, z-),

we have a-:a(i-,?-) and a-=I(x-,2-). Our task now is to prove that
r(x-, z-) < L(i-, z'").

From the saddle point condition on (i", Z") we have

L(i", z)< L(i".2") for alt zeZ".

Let Z':l)i=, 2". Since Z' < 2"+t <:. . . we know that for any fixed. z e Z- the
inequality L(i", z)< L(i", z") holds for all z sufficiently high. Taking the limit as
v ).n, / e N, we obtain L(i',2)<L(i-,2-). This holds for arbitrary zeZ-,so

L(i-, z)< L(i-, Z-) for all zeclZ-.
But z* is one ofthe elements of c1 Z', since z, e Z"*r for all z Therefore t(i-, z-) <
L(i-, z-) in particular, and the proof is complete. D

Our main result comes next. It assures us that when C is positive definite, we do
l?o, have to keep increasing the size ofthe polytope Z" in orderto have convergence.
The number of elements used to generate Z" can be kept at whatever level seems
adequate in maintaining a robust representation of F and G.

Theorem 5. Suppose the matfix C in (p) is positiae defnite. Then under the minimel
requirement Z"*t :> {2", z"} in Step 4 of the algorithm, one has e,;0 and also i" ; i,
where t is the unique optimal solution to (p).

If in addition there exists p >O such that

2.. T-C-17[2.< p2,,,. H.,2. for all z-e R-, ro e J.?,

(as is true in particular if euery H., is positiue definite), then in the estimate
hqs

r, l- rF, for u - I,2,...
where the factot r e10,1) is giuen by

IP iro'- p<],' l't ip' if p=j.
Thus

Note that Theorem 5 asserts in (4.14) a linear rate of convergence of d, to .r with
modulus r, and the estimate (4.6) efiectively translates this into a linear rate of
convergence of x" to t with modulus r1l2. Indeed, from (4.6) and (4.16) we have

li - i"*]'llc <[2,r]'e ,)1/2 for v=1,2,...and, p.=1,2,....

(4.13)

(4.6) one

(4.14)

(4.1s)

(4.16)
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This is an unusual sort ofresult, because it applies notjust to the tail ofthe sequence

{t'} but right from the beginning. Moreover the value of e, is known in each

iteration, and the value of r e [0, 1) can be estimated in advance.

Theorem 5 makes no assertion about the convergence of {7"} beyond the one in

Theorem 3. Of course if there i s a unique oplimal solution z to (D), then by Theorem

3 we have z' - t wher.evff €, + 0, as is the case here. In particular (D) has a unique

optimal solution if the matrices H., are all positive definite.

The proof ofTheorem 5 depends on further analysis ofthe dual objective function

G Essentially what we must provide is a lower estimate of G that ensures that the

direction z" z' determined in Step 2 of the algorithm is always a direction of
ascent for G.

Proposition 3. let

"f"(r): Tgr {(, - rr") (x t')-i(x-;') c(x-;")} /or weR'.

(4.11)

Then f" is q rtnik conDex function on R" with 0 : f" (0) < f' (w) for all w, and

0< L(i",2) G(z) -f'(ET[(z-- z))
< Ef"("tIG- - z"-)) forallz€Z. (4.18)

If C is positiue deJinite, then

-f"(t)<i[(" w")+sll "] C '[(]t-t')+sn'l for all s>0, (4.19)

so that in particular (/or s = 1)

G(z)> L(i", z) -ttEIQ- t"-) T-c 'TIQ- - z'-)\ for all z e Z. (4.20)

Proof. First re-express /' in terms of the finite concave function g in (1.4), so as

to verify that /' is a finite convex function and that 'max' rather than 'sup' is

appropiate in (4.17):

-/"(w): min {(w" w).(x-;')+}(x *").C(x-;')}
r€X

:(w-rl")' i" +tri" Cf,"+m-ax{[w'-Ci"-u] x+1x Cx]

-\w-w").i" I:i' Cx'-olw' -Cx'- wt.

Clearly /" (w) > 0 for all w, because x = f" is one of the points considered in taking

the maximum in (4.17). Furthermore

-"f"(0):*'+{r". (x t')+1(x-;"). c(x-;')}.

Recalling the expansion (4.12) of L(x, 2") around t" and the fact that t" minimizes

t(x. t') overX (since (;', Z") is a saddle point ofl on X xZ"), we see that/"(0):0.
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To get the equation in (4.18), from which the two inequalities in (4.18) immediately
follows (the first because.f'(w) > 0 and the second by Jensen's inequality, because

/' is convex). we look ar the expansion

L(x, z) = L(i", z) +Y,L( i", z\. (x - ;")+l(x - ;') . C (.x t" ),

where

i ,L(i", z): c+ Ci' - ETIz- = m" ETI?- z).

From this we calculate

L(x", z)- G(z): L(t", z) Trl l(x, z) = p-a1 1t1;', z) - L(x, z)j

-T3rtt r Tltz--zit @"'l .{x t'r

-L(.x - x'1 C(n -t'))
:f"(Erf(z- zi.)).

This establishes (4.18).

Finally we use property (4.7) in Theorem 3 to estimate for arbitrary s > 0:

/'(w)<sup{[(w-t')+rt']. (x-t"l-j()r x") C(x t")]

< sup {[(]r - ''') +.!l''l (x-t')-l(x-;').C(x x")].
{€R"

When C is positive definite, this last supremum equals the quadratic expression on
the dght side of (a.19).

Proof ofTheorem 5. Since (i'*r, z"*') is a saddle point of lrelative to XxZ",we
have

a*r: G(Z'*t): max, G(z).

But Z"*1 includes the line segment j olning Z" and 2". Therefore

o,*, >pg, G(2" + t(2" - z"\). (4.21)

To see what this implies, we substitute z: z' + t(z' - z") into the estimate (4.20) of
Proposition 3 and make use of the fact that, for 0 < t < l,

L(t" t', + t(21' - z")) : L(i" (1 t)2" + tz")

>(l - t)L(*", z")+ tL(t', z"): (1- t).1"+ td,- ct,+ te,. (4.22)

This yields

G(Z',+ t(2"))> a"+ b,-+t26, for0<r<1 (4.23)
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where

s,:= E{(2"-- z"-) . T-C-1rIQ',-- z"-)}. 14.24)

Combining (4.23) with (4.21), we get

a,*r> a,* o(e- 6,), (4.25)

where

(4.26)

Note that o is a continuous function of (e,6)eR1 with o(e,6)=0 if €=0, but
a(e, 6) > 0 if e > 0. The sequence {a,} is nondecreasing and bounded above by .r
(cf. (a.5)), so o(e,,6,)+0. The sequence {6"} is bounded, because the sequences

\z"j and \z"j are bounded (Theorem 3). From the cited properties of o, it follows
then that e, - 0. This implies x'>; by property (4.6) in Theorem 1.

We can also write (4.25) as

F, , r < F, - o(F,, 5, ). 14.21\

Under the additional assumption in Theorem 5 that (4.13) holds, we have

6, < pB,, where p":: E{(zi- zi) ' H.(z'- 2'-)l. (4.28)

Consider now the quadratic function

q(t): L(x', z' + t(z' * z")) for0<t<1.

This has q(0):rG',2'):d", q(1): L(t", z") = a,, q"(1)=-B,, so 4 must be of
the form

q(t) : (.1- t) d, + ta, +:t(1- t) 8,.

Moreover the maximum of 4(t) over 0< I < 1 is attained at I = l, since the maximum
of L(i', z) over z € Z is attained at z: 2". Therefore

(I- t)a,+ to,+:t(.1- t)9"<a" for0<t<l,
or in other words,

t(1- t)P"<2(I t)(cv"- a,):2(1- r)e" for0<l<1.

This implies B,<2e,, ard then (4.28) yields

6,<2pe,. (4 29)

Formula (4.26) now gives us

o(e,, 6,) > o(e,,2pe") = e,o(1,2p) > E"o(1,2p).

Substituting in (4.27) we get

E,*,< E, - E,o(1,,2p) = 11- o(1,2p)1e", (4.30)

Ir-:,a if o<6<r,
o(r. 5): max {rr -it'6} l,.rU-, if 6 > r.
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-P if 0<p--1.o(l-2pt- l, ', ,. --,tap tl p-< -.

The factor 1-c(I,2p) is the number r defined in (4.15), and (4.30) is thus the
desired condition (4.14). n

Remark. Proposition 3 provides additional information that could be used in the
direction search and polytope modification steps in the algorithm. Inequality (4.1g)
asserts that

L(i", z)> G(z)> L(i", z)- nf"(TL(z- z'-)\

for all z e Z, with equality when z : t" (4.31)

The vector z" maximizes l(i",z) over all zeZ and thus provides not only the
needed value L(.i", Z'): F(i') but also a clue as to where we might look to move
next in trying to improve on the current value G(7") of G. A further clue can be
found by maximizing the right side cf (4.31) over Z to get a vector 7". This is
possible because the right side decomposes into separate terms for each to. Indeed,
the components 2i of 2' can be determined by

2L,e arymax {f '(Tt,(2,,,- zi,))+ 2.,-1h., T-t'l-\z-. H,,2,.,1.

L,(x,z): L(x,z)+:(x-i?. -1"-;1i- 
1e11"- zi-1 . u-12- zi-11

(5.1 )

(.4.32\
.,.e 2,.,

In view of the form ofl" in (4.17), this amounts to solving a special quadratic
programming problem for each r,., e f).

If ?" is calculated in this way along with z" in Step 2, it can also be incorporated
in the new polytope Z"*r in Step 4 in order to enrich the representation of G.

5. Adding strongly quadratic terms

The theoretical convergence properties of the finite generation algorithm are
markedly superior when the quadratic forms that are involved are positive definite.
But many problems lack this positive definiteness. Stochastic linear programming
problems, lor instance, have no quadratic terms at all. Such problems can be handled
by a procedure which combines the finite generation algorithm with an augmented
Lagrangian technique that introduces the desired propefiy.

The technique in question was developed by Rockafellar [7] in a general context
of rninimax problems and variational inequalities. As applied to the present situation,
it concerns the replacement of the saddle point problem for l, on X xZ by a.

sequence of saddle point problems for augmented Lagrangians of the form
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Here C and Il- are fixed positive definite matdces, T is a penalty parameter value
that helps to control the rate of convergence, and (t!,zi) is a current 'estimate'
for a saddle point of titself on X x Z, i.e. for an optimal solution pair for problems
(P) and (D).

When the augmenting terms in q, are expanded and combined with those in t,
the expression (5.1) turns into

L"(x, z ) : ci . x i lx. C *x + E lz-. fh * - - T-x) - Iz-. H * -z-] + cotst.
(s.2)

where

C*: CtqC, H*.: H-* qH-,

ci: c ae;i, h+-= h_- \H_2X..

ll"l * =[". Cx]'/' for xeR",

ll(x, z) * = | x l'*+ l" l'*l'/'

lz l* : lE {z-' E-"-}l' /' for z e (R-)o,

(s.6)

(5.3 )

( 5.4)

Note that the vectors ci and hi- giving the linear terms in l" depend on the pth
solution estimates, but the matrices C* and H*- giving the quadratic terms rernain
fixed as long as the value of 4 is not varied. Since r7 > 0, these matrices are positive
definite. Therefore the saddle point problem for l, on X x Z can be solved by the
finite generation algodthm with an essentially linear rate ofconvergence (cf. Theorem
s ).

We make use of this as follows.

Master Algorithm
Step 0 (Initialization). Fix the matrices C, H-, and the parameter value 4 > 0.

Choose initial points x| e X and 21* e Z. Set p = 1.

Slep 7 (Finite Generation Method). Use the finite generation algorithm to deter-
rnine an approximate saddle point (i*, Z*) of L, on X x Z (according to a stopping
criterion given below).

Step 2 (Update). Set (tf*', ti*r):(i+. 21 i. Replace g by 4+l and return to
Step I (with the same value of 4).

The finite generation method in Step 1 generates for the function I, a sequence
of pairs (i', Z") and test values e,. To get an approximate saddle point we take

(i*, z) = (t",7") when e,<Eff(i',2"), (5.s)

where the function tf in the stopping criterion is defined as follows. In terms of
the norms
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we set

E!(x, z) : e'." nrn{|, (t1 / 2)l (x, z) - (rp, zp) l':*} with e, > O, i O, < 
"o.P:t 
(5.7)

Obviously EiQ, z)> 0 unless (x, z) = (ip, z"). The sequence \(t", z')I converges to
the unique saddle point of l, on X x Z, so except in the lucky, degenerate case
where (;f, i[) is already that saddle point, the values el(i',2") will be bounded
away from zero, and the stopping criterion in (5.5) will eventually be satisfied. (In
the degenerate case, (;!,7f) must in fact be a saddle point of L itself and there is
no need to leave Step l: the sequence |G', z')I converges to this saddle point at a
linear rate.)

Theorem 6. The sequences {*$} and {Zi} generuted by the master algorithm conuerge
to patticular optimal solutions i and Z to problems (P) and (D), rcspectiuely. Ifi and
t arc the unique optimal soluti(,n to (P) and (D\, then there is a number B(a ) e [0, 1)
such that (if, Zl) conuerges to (t, Z) at a linear rale with modulus B(r1). Moreouer

F(n\ - 0 .ts n 'o.

Proof. We shall deduce this from [7, Theorems 1 and 2], which are general results
applicable to the calculation of a saddle point of a convex-concave function on a
product of Hilbert spaces. The Hilbert spaces in this case are R' and (R')o under
the norms in (5.5). The convex-concave function in question is

The saddle points of I, on R" x(R-)o are the same as those of L on X xZ. The
problem of finding a saddle point of La on X >< Z reduces to the one for

L,rx.zt L,\.zt+: lr-;Il_ llz zil,*

on R" . 1R-;o.
Denote by P(ip,tl') the unique saddle point of l" on R" (R-)t, which is also

the unique saddle point of L, on X xZ The mapping P is the'proximal mapping'
associated with the maximal monotone multifunction T that corresponds to 4 tl
in the sense of [7, Section 1 and Section 5]. In consequence of [7, Theorem 1], the
sequence {(ti, zi)} generated by the master algorithm will converge to a particular
saddle point (i,Z)of Lon R" x(R-)' (the same as a saddle point of l, ot X xZ)
if

I 
L(x, z) if xe X and ze Z,

Lrx-zt 
\- 

o ily' Xbutz(7.
lco if xeX.

(it'+1, zt'+1)- P(t", i,)l*<y* with 7">0, I y,<m.
p-l

(5.8 )
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Under the more stringent condition

Ll(r4,,, ra+,) p(14, r")ll*< p,,ll(f/'+"rp+')-(;", t')Jl*

wirh tt >o I' d <oo-
LI:1

we know from [7, Theorem 2] that if (x, z) is the unique saddle point of ,L and a

certain Lipschitz property holds in terms of a constant .t > 0, we will have

rim sup ll(;{*', z+*\-(i, z)ll*/ l?i, G, z)ll*: lt(n)'

where

BG): on l0 + o'1,t')'/"t 1. (5'10)

The Lipschitz property in question is the following: for o>0 and some e)0, all

the saddle points (i,7) ol any perturbed Lagrangian of the form

iit,vl- 11r,r]-i ri/ lli-- z-l onX'Z-

with d€ R" and f,: i. . . , li., . . .). (m-)", will satisfy

(i,z)-(t,t)l*<ol(4f,11** *h"n ll(., i) l** < 
'.

(Here l. ]** is the norm dual to I lr..) This needed property does hold, because

of the quadratic nature of our problem. The optimality conditions that charactedze

(i i) as a saddle point of i on X x Z are all linear; the multifunction that associates

with each (c, i) this corresponding set of saddle points is in fact a polyhedral

multifunction in the sense of Robinson, i.e. its graph is the union of finitely many

convex polyhedra. Any such multifunction has the Lipschitz property in question;

see Robinson [6].
We shall show now that our stopping criterion (5.5), (5.7), does imply (5.8) and

(5.9) with y,:0"121 nft/'. Consider the primal and dual objective functions associ-

ated with L, namely

(s.e)

Fu(.x) = max Lu(x, z), Gu(z) : min Lr(x, z).

The approximate saddle point (xI*', z{'): (t',7') satislies

4(;i-') G,(7f*')< e, < e{(if *', ti*])

(5.11)

(s.12)

by Theorem 3 (as applied to I,. ) and (5.5). The true saddle point (i{, 2? : P(tI' z;)
satisfies

t'g r"(", z? = Lp(ii, 2l) = max L,(ii, z),

and because t,, is strongly quadratic by virtue of the terms added to form it from

I, this must actually hold in the strong sense that

L,(x, 2l> L,(ii, 2il+ h lz)llx- ii 12* for att z e z,

L,(ii, z)< L*(ii' 2?-(n/z)lz- 2!12* for all zeZ'
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Taking x:;{tsl ar,d z:xux*'in these inequalities and observing from definition

(5. i 1) that

FpGil > Lp(iI, 2il > G,(zi),

we obtain

F,Gl*') - G*(tt'**\ > h /z)llti*' - ifll'z*+ (n l2)llzi"' - 
'xlll*

= |J,12)J[;i-1, 2"*-') - P(ti, ti) ll'*.

This, combined with (5.12) and (5.7), yields

hI2)ll(.il*', zf\)- PGf ,zill'z*
* 0l minl l, {r/2}'l{ir' '.;; rr rx{. z{'rrtl*1.

Then (5.8) and (5.9) hold as claimed, with 7,:9"121 ,1trz. O

We conclude by connecting rhe choice of the matrices C and H- in l5l) with

the convergence rate of the finite generation algodthm in Step 1 of the master

algorithm.

Proposition 4. Suppose e and H- qre selected so that for cr certqin p>0,

z-'lT-e'TI)z-< pfz-' E-z-) for all z- e[x^'

Then the matrices C* and H*- in (5.3) hatte

(5.13 )

(5.14)2.. lT-C ;1 TLlz 
", 

< ( p l r')lz-' H * -z-l for all z- e tfx^'

so thqt when the fnite generation algorithm is applied to fnding a saddle point of Lu,

the conuetgence results in Theorem 3 wiU be uatid for p = p/ q2 '

Proof. Let us simplify notation by wdting A<B for positive definite symmetric

matrices A and B to mean that B-A is positive semidefinite Since A and B can

be diagonalized simultaneously, this relation can be interpreted also as a coordinate-

wise inequality on the corresponding vectors of eigenvalues ln this notation, our

assumption (5.13) is that T-e \rI<pE- Since C*= C+nC we know-C*>4C

and iherefore C*t< 4 tC-t. But also, from H*-=H^'lnH. wehave riH-<Ha-,
or in other words I{. < ,1 t H*-.It follows that

T,,C;' TI< q' T-.'TI< n' pE-< q'pH*-

as claimed in (5.14). D

Thisresultrevealsatrade-ofibetweenthelatesoflinearconvergencethatcan
be achieved in the finite generation algortihm and in the master algorithm The

modulus F(ri) for the latter can be improved by making 1 smaller' But one cannot
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at the same time make p smaller, as would be desirable for the finite generation
algorithm in the light of Theorem 5.
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