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1. INTRODUCTION

A FUNDAMENTAL topic in optimization theory and nonsmooth analysis is the study of sets of
the form

T'(w) ={x|fi{v,x) =fori=1,...,5s and fi(v,x) =0 for i=s+1,...,m} (L.1)

where f; is a real-valued function on R? X R™. Such a set consists of all the points satisfying
a certain system of constraints in R", where the constraints depend on a parameter vector
v € R, More generally one may consider

C(v) = {x|F(v,x) €C, (v,x) €D}, (1.2)

for F:R*xX R"— R™, CC R™, D C R* X R™, A major question is the way that I'(») varies as
v varies. Of particular importance are properties of Lipschitz continuity of the multifunction
I':v— I'(v) that may be present,

The special case of

I(v) = {x|F(v, x) = 0} (1.3)

is addressed by the classical implicit function theorem when F is smooth. Clarke [2] and
Hiriart-Urruty [4] have extended this case to mappings F that are locally Lipschitzian; they
give criteria for I'(v) to be single-valued and locally Lipschitzian.

Sets of the form

T'(v) = {x|0€f(v,x) + T(x)} (1.4)

have been studied by Robinson [7-11], for certain kinds of multifunctions 7: R"= R™ and
smooth mappings f:R? X R"— R™. (He allows v and x also to range over spaces more
general than the spaces R and R" indicated here.) The condition 0 € f(v, x) + T(x) can be
written equivalently as

(x, —f(v,x)) Egph T, (1.5)

so that (1.4) can be viewed as an instance of (1.2) (with F(v) = (x, —f(v, x)), C=gph T,
D = R? X R™). It can also be written in other ways as a special case of (1.2), for instance when
gph T can be described by a system of Lipschitzian constraints,
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868 R. T. ROCKAFELLAR

What notions of Lipschitz continuity are appropriate in this setting? Consider an arbitrary
multifunction T': R*=3 R" (assigning to each v € R? a set I'(v) C R", which may be empty),
and suppose that the image sets I'(v) are closed. The classical notion is that I" is Lipschitzian
relative to V, a subset of R?, if I'(v) is nonempty and compact for every v € V, and there is
a constant A = 0 (the modulus of Lipschitz continuity) such that

haus (I'(v1), T(v2)) = Aoy — vy forallvy, v €V, (1.6)

where “haus” denotes the Hausdorff metric on the space of all nonempty compact subsets of
R™:

haus (X, X5) =min{e= 0| X, C X; + eB, X, C X, + €B},

with B the closed unit ball for the Euclidean norm |:|. Condition (1.6) can be written
equivalently as '

T(v)) CT(vy) + Aoy —v2|B forall vy, v,EV. (1.7)

When the sets I'(v) are unbounded, as is often the case in applications, these notions are
not suitable and something else is needed. The following concept was introduced by Aubin
[1]: T is pseudo-Lipschitzian at (0, X), where % € I'(5), if there exist neighborhoods V of o,
X of %, and a constant A = 0 such that

T(w) N X CT(vy) + Alvy —v2|B forall vy, v, €V. (1.8)

A related concept which we introduce here is that T is sub-Lipschitzian at 0 if T'(5) # ¢ and
for every compact set X in R", no matter how large, one has (1.8) for some neighborhood V
of & and constant A= 0,

This paper is focused on the study of multifunctions with these Lipschitzian properties. In
Section 2 we clarify the relationship between the properties and express them in terms of the
distance function associated with a multifunction. In Sections 3 and 4 we derive conditions
that allow these properties to be verified for multifunctions of various constructions. A
generalization of Aubin's implicit multifunction theorem [1, Section 3] is obtained in particular.

For multifunctions (1.4) of the kinds investigated by Robinson [8, 9], the results we obtain
are complementary to his and somewhat different in spirit. Robinson makes assumptions on
the multifunction obtained in (1.4) in place of I' by linearizing f in x at a certain (5, ¥) but
keeping the same T. From these he derives bounds of the form

(o) CT(5) + Alu— |8 |

(and more general estimates when f(v, x) is not Lipschitzian in v). Such bounds describe an
“upper Lipschitzian” behavior of the multifunction I" at the point i itself, rather than a
Lipschitzian property which compares ['(vy) and I'(v;) for arbitrary vy and v; in some neigh-
borhood of 7, as pursued here. '

2. CHARACTERIZATIONS AND INTERRELATIONS
For a multifunction I': R*= R", we shall use the notation

r(v)=\JrI(v) forany VCR-
veEV



Lipschitzian properties of multifunctions 869

We shall say that T is locally bounded at ¢ if there is a neighborhood V of & such that the set
(V) is bounded. _

Furthermore, we shall say that I is closed at ¢ if for every X & I'(9) there exist neighborhoods
V of & and X of £ such that I'(v) N X = ¢ for all v € V. (Then in particular I' must be
closed-valued at 0, i.e. the set I'(5) must be closed.) This is true for every o if I is of closed
graph, i.e. the set gph T = {(v, x)|x € I'(v)} is a closed set in R* = R".

THEOREM 2.1. Let T':R4=3 R" be closed-valued, and let 5 € R%. Then the following are
equivalent:

(a) T is locally bounded at & and sub-Lipschitzian at 0;
(b) on some neighborhood of 3, I is nonempty-compact-valued and Lipschitzian.

Proof. (a) = (b). Local boundedness implies that for some bounded set X and neighborhood
V of 5 one has

IF(v)NX=T(v) forall veEV.

Taking V to be a neighborhood with both this property and (1.8), as is possible by definition
when T is sub-Lipschitzian at 5, one obtains the Lipschitz condition (1.7). Also I'(5) # ¢ by
definition of “sub-Lipschitzian”, and therefore from (1.7) as applied to vy =8, v; = v, we
must have I'(v) # ¢ for all v € V.

(b) = (c). By assumption there is a neighborhood V=5 + 8B of ¥ such that I'(v) is
nonempty and compact for all v € V, and

I'(v;) CT(v2) + Aloy —v2|B forall vy, v, EV. (2.1)
Then trivially (1.8) holds for arbitrary X, so I is sub-Lipschitzian at 5. One has in particular
I'(v) CT(p) + Alv—=b|BCTI(d)+ AdB

for all v € V by (2.1), so that I'(V) is included in the set I'(5) + A6B, which is bounded. Thus
I is locally bounded at 5. W

THEOREM 2.2, Let I': R R" be closed-valued, and let 5 € R®. Then the following are
equivalent:

(a) T is sub-Lipschitzian at 7;

(b) T is closed at § with I'(5) # ¢ and T is pseudo-Lipschitzian at (5, %) for every
ZET(0).

Proof. (a)= (b). If T is sub-Lipschitzian at &, then from the definition we have that
I'(d) # ¢ and for every compact set X there is a neighborhood V of & on which (1.8) holds.
In particular X can be taken to be a neighborhood of any X € I'(5), and therefore T is
pseudo-Lipschitzian at (0, £) for any £ € I'(). To see that I' is closed at i, consider any
f&TI(0) and take X to be a compact neighborhood of % such that for some &> 0,

[T'(5) + eB] N X = ¢. Then for a corresponding neighborhood V as in (1.8) and of the form
V =0+ 6B, we have

T(w)NXCTI(®) +Alv—8|BCI(d)+ A0B forall vEV.
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If & is chosen small enough that A8 = ¢, we get
FMo)NXCT@)+eBlNX=¢ forall veEV,

which is the property of V that is desired.

(b) = (a). In demonstrating that I" is sub-Lipschitzian at 7, it suffices to consider a compact
set X large enough that I'(5) N X # ¢ and to produce a corresponding neighborhood V of &
such that (1.8) holds. By assumption there exist for each £ € I'(§) open neighborhoods Vz of
0, Xz of £, and a constant A; = 0 such that

T(v) N Xz CT(vy) + Azlvy — v2|B forall vy, v € Vs

Because I'(0) is closed, the set I'(5) M X is compact, and from the collection of open sets
X; as £ ranges over I'(i7) N X we can extract a finite covering of I'(5) N X:

v N X C Uj-1 X,, forcertain x;EI'(v) NX.
Let
X' =U1X,, V'=nNiuV, Ai= max A,

Then X' and V' are opens sets such that () N X C X', 6 € V', and
T(v) N X' CT(v2) + Aoy —v2|B forall v, v,EV'. (2.2)

Consider now the relative complement X\X', which is a compact set with I'(§) N [X\X'] =
¢. Because T is closed at § there exist for any £ € X\X' open neighborhoods V* of § and X*
of #— such that

I'(v)NX*=¢ when veEVE

From the collection of sets X* as ¥ ranges over X\X' we can extract a finite covering of
X\X".

XX' CU_, X forcertain ¥’ € X\X'.
Let
X'=Uia X4, V=0V
Then X" and V" are open sets such that X\X' C X", 6 € V", and
I'v)NX"=¢ when veV",
so that
FTp)NXCT(w)NX" when veEV" (2:3)
Let V=V'N V" Then V is a neighborhood of & for which (1.8) holds by virtue of (2.2) and
(2.3). Thus T is sub-Lipschitzian at 0 relative to S. H
A closed-valued multifunction T': R?=3 R" can be identified in a set with its distance function

dr(v, x): = dist(C(v), x): = mi?) e =x} (2.4)
xET(p
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(By convention this quantity is = if I'(v) = ¢.) Obviously T is uniquely determined by dr, so
every property of I must correspond to a property of dr and vice versa. Our next result reveals
the property of dr that corresponds to pseudo-Lipschitz continuity of T and indicates clearly
why that concept has a natural significance.

THEOREM 2.3. Let T': R“=3 R" be closed-valued, and let § € Ré xe T'(5). Then the following
are equivalent:
(a) T is pseudo-Lipschitzian at (3, %);
(b) dr is Lipschitzian on some neighborhood of (5, %).
Proof. Observe first that (b) is equivalent to the existence of neighborhoods V of , X of
X, and a constant A = 0 such that dr is finite on § X X and
dr(va, x) Sdr(vy, %) + Alva— vy forall vyv,EV,x EX. (2.5)

This 1s true because di(v, x) is by nature Lipschitzian in x with modulus 1 for all v such that
I'(v) # ¢.
(b) = (a). If (2.5) holds, then for every x € I'(v;) N X and vy, v, € V one has

dist(T(v;), x) = dist (T(v1), x) + Alvy — va| = Aoy = 4],

because dist(I'(v1), x) = 0. Thus x € I'(v3) + Alv; — va| B for every x € T(v;) N X, as required
in (1.8) for pseudo-Lipschitz continuity.
(a) = (b). Suppose (1.8) holds for neighborhoods V of 5 and X of £. Then

dist(I'(v2) + Alvs — v2|B, x) = dist(T(v)) NX,x) forall v,v,EV,x ER"  (2.6)
But one also has
dist(I'(v,), x) — p = dist(['(v,) + pB, x)
for any p= 0, so (2.6) implies
dist(T(v2), %) — Aoy — vz S dist(C(vy) NX,x) forall v,v,€V,x ERY  (2.7)

It need only be shown now that for certain neighborhoods Vy of & and X, of # with V,C V
and Xy C X one has

dist(T'(v) N X, x) = dist(I'(v),x) forall v €Vyx EX, (2.8)
Indeed, this in combination with (2.7) will yield
dist(I'(v2), x) = dist(T(v1), x) + Alv; — 05| forall vy, 0, EVyx EX,,

which is the desired Lipschitz property (2.5) relative to V, and Xj,.
Choose £> 0 small enough that ¥ + éB C X, and let Xy = % + (1/3)¢B. Then X, C X, and
for arbitrary X € X; one has in fact x + (2/3)eB C X, so that

dist(I(v) N X, x) = dist(T(v), x) when v satisfies dist(I(v), x) = (2/3)e.
Furthermore
dist(T(v), x) = (2/3)e when dist(T(v),x) = (1/3)e x €X,,
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because

dist(T(v), x) = dist(T'(v), %) + |x = %|
Therefore (2.8) does hold for the specified X, and any neighborhood V; of & with the property
that

dist(T'(v), %) = (1/3)e forall v €V,

_if such V, exists, The existence of such Vj is verified by appealing again to (1.8): one has in
particular that s

fET@)NXCT(w) +Alv—8|B forall v EV
and consequently
dist(T(v),x) = Alv— 0| forall vEV.

Thus one can take V=0 + 8B for any >0 small enough that 6+ 8BCV and A0 =
(1/3)e. ®

COROLLARY 2.4. Let T': R“=3 R be of closed graph, and let 5 € R“. Then the following are
equivalent:

(a) T is sub-Lipschitzian at 5;
(b) dr is locally Lipschitzian relative to some (nonempty) open set containing {(5, %)|% €

()}
Proof. This combines theorem 2.3 with theorem 2.2. H

Remark 2.5. The first part of the proof of theorem 2.5 provides an estimate for the modulus
A in the pseudo-Lipschitzian continuity property (1.8) of I at (7, £): any A such that (2.5)
holds will do, where V X X is a neighborhood of (5, £). The greatest lower bound A for all
such A is easily identified by the methods of nonsmooth analysis (cf. Clarke [3]) as

A= II};laX d(v, X, h, 0) = max{|z| | 3u with (z, u) € adr(v, %)},
sl

where df denotes the Clarke derivative and ddr the Clarke subdifferential of dr.

Remark 2.6. Everything in this section (with the exception of the formula in the preceding
remark) can readily be generalized to the case where the parameter space is any metric space,
rather than just R“ (for instance, a subset of R?).

3. SOME CLASSES OF PSEUDO-LIPSCHITZIAN MULTIFUNCTIONS

A sufficient condition for a multifunction of the general form (1.2) to be pseudo-Lipschitzian
will be derived now from results in nonsmooth analysis. Let F:R? X R"— R™ be a locally
Lipschitzian function (i.e. single-valued) and consider closed sets CC R™ and D C R?x R",
We shall denote by N¢(#) the Clarke normal cone to C at a point 7 € C (see Clarke [3] or
Rockafellar [12]) and similarly by Np(&, %) the normal cone to D at a point (5, £) € D. The
set F (0, £) will denote the Clarke generalized Jacobian of F at (0, %) (see Clarke [3]); this
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is a certain nonempty compact convex set of matrices of size m X (d + n) which reduces to
a single matrix (the Jacobian VF(3, £)) if and only if F is strictly differentiable at (7, %).
The main result of nonsmooth analysis on which we shall rely is the following.

THEOREM 3.1. (Rockafellar [13].) Let
p(v) = inf{f(v,x)|F(v,x) €C, (v,x) €D},
P(v) = argmin{f(v, x) | F(v,x) €C, (v(x) €D},

where C and D are closed, and f and F are locally Lipschitzian. Let & be a point at which p(5)
is finite and suppose that for some a > p(§) the multifunction

P,(v) ={x€R"|f(v.x) = a, F(v,x) €C,(v,x) ED} (3.1

is locally bounded around &. Suppose further that the following constraint qualification holds
for every # € P(i): the only vectors y € R™ and z € R such that

yEN(F(5,%)) and (z,0) EysF(8,%) +Np(d, %) (3.2)

arey =0, z=0.
Then, relative to some neighborhood V of 7, p is finite and locally Lipschitzian, whereas
P is nonempty-valued, locally bounded and of closed graph.

Proof. This is the special case of [13, theorem 8.3] in which the objective function f is
assumed to be locally Lipschitzian and one invokes the criterion in [13, proposition 2.1] for
p to be locally Lipschitzian. The graph of P relative to a closed neighborhood V of v is the
set of pairs (v, x) € V X R" satisfying f(v, x) = p(v), F(v, x) €EC, (v, x) € D, and this is
obviously closed when p is continuous on V. B

THEOREM 3.2. Let
I'(v) = {x|F(v,x) € C, (v, x) € D}, _ (3.3)

where C C R™ and D C R? X R" are closed, and F:R? X R"— R™ is locally Lipschitzian. Let
o € R? and £ € () be such that the following constraint qualification holds: the only vectors
y € R™ and z € R? such that

Yy ENc(F(5,%)) and (z,0) EyiF(s,%) +Np(b, %) (3.4)
arev=0,z=0.
Then T is pseudo-Lipschitzian at (3, ) (and also of closed graph).

Proof. It is obvious that T is of closed graph: gph T = F~!(C) N D. In light of theorem 2.3,
we can establish that I is pseudo-Lipschitzian at (7, #) by demonstrating that the distance
function dr is Lipschitzian on a neighborhood of (&, #). We shall do this by way of theorem
3.1 and the representation

dr(v,x) = min{lx — w||F(v,x) €C, (v,x) €D}.
This can be written as dr(v, x) = p(w, v) where

p(w, v) = min{fy(w, v, x) |[Fo(w, v,x) EC, (W, v,x) EDg}, (3.9)
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with
fow,v,x) = |x —w|, Fyw,v,x) =F(v,x), Dy=R"xD.
We wish to show that p is Lipschitzian on a neighborhood of (£, &), and this can be obtained

by verifying that the assumptions in theorem 3.1 are satisfied at (w, v) = (%, §) in the case of
(3.5) and the multifunction

P(w, v) = argmin{fo(w, v, x) |Fo(w, v, x) €C, (W, v,x) ED} (3.6)
Note that p(%, 5) = 0 and P(%, 0) = {#}, because ¥ € I'(5). For any & > 0 the corresponding
multifunction (3.5) is given by
pew,0) =x ER|x —w|=Z=a,x EI(v)} =T(v) N[w + aB].
Trivially P, is locally bounded in a neighborhood of (w, v) = (%, 7); in fact P(w, v) C
[+ (e+ &) B] when |w— x| = &

We need to show now that the following constraint qualification holds at the unique element
of P(%, §), namely %: the only vectors y € R™ and (u, z) € R" X R? such that

Yy EN(Fo(%,5,%)) and (u,z,0) € dF(%, 5,%) +Np, (%, 5, %) (3.7
are y =0, (4, z) = (0, 0). Here Nc(Fy(%, 0, X)) = Ne(F(5, %)) and
aFy(x,0,%) = (0, 0F(0, %)), Npyx,0,%) =(0, Np(5,%))
(the last by [13, corollary 2.5.1]), so (3.7) reduces to u =0 and (3.4). The latter implies

y =0, z =0, by hypothesis. Therefore the desired constraint qualification is satisfied, and the
proof of the theorem is complete, H

COROLLARY 3.3. Suppose in theorem 3.2 that the constraint qualification is satisfied at every
¥ € T(9), the set I'(§) being nonempty. Then T is sub-Lipschitzian at &.

Proof. This follows via theorem 2.2, because I' is of closed graph, hence in particular closed
ato. H

COROLLARY 3.4. (Aubin [1, Section 3].) Let I': R?=% R" be a multifunction with closed graph,
and let D = gphT. Let 5 € R% Suppose £ € I'(§) is such that the only vector z satisfying
(z, 0) € Np(3, %) is z = 0 (or equivalently, that under the projection (v, x)— v the Clarke
tangent cone Tp (5, X), which is the polar of Np(5, £) has all of R? as its image). Then T is
pseudo-Lipschitzian at (7, X).

Proof. This is the case of theorem 3.2 where the elements F and C do not appear. B
COROLLARY 3.5. (Inverse multifunctions.) Let

I'(v) = {x|F(v,x) € C} (3.8)

where F:R? x R"— R™ is locally Lipschitzian and C C R™ is closed. Let (3, ) be such that
F(5, ) € C and the following constraint qualification holds: every matrix J = (J,, J,) €
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aF (b, %) (where J, € R™*% and J, € R™*") has the property that the only y € N¢(F(5, %))
with v/, =0is y=0.

Then T is pseudo-Lipschitzian at (5, ¥) (and of closed graph).
Proof. Take D = R* x R" in theorem 3.2. W

Remark 3.6. A case of corollary 3.5 that deserves particular attention is the one where

C={w=(wy,...,Wn) ER"w;=0 for i=1,...,s,
w;=0 for i=s+1,...,m}
Then for F(v, x) = (fi(v, x), . . ., fu(v, x)) we have
I'(v) = {x|fi(v,x)=0 for i=1,..., and f{v,x) =0 for i=s+1,...,m} (3.9

Moreover
Nc(F(5,%)={y=01n...,¥m ;20 and yf{5,%) =0 for i=1,...,5} (3.10)

When the functions f; are smooth, the constraint qualification in this case is the
Mangasarian-Fromovitz condition [5]: the only y as in (3.10) with

Z?ilygvxff{v, .'E) =0

is y = 0. This is dual to (and equivalent to) the regularity condition used by Robinson [8] in
this situation, as he himself has shown [8. theorem 3]. The result obtained by Robinson under
this condition is complementary to ours, however:

dist(C(v), x) = pdist(F(v,x),C) for v EV,x EX, (3.11)

where V X X is a neighborhood of (5, #) and w20 is a certain constant. In contrast to
pseudo-Lipschitz continuity this only compares a (v, x) with the given (4, £), but it does give
a bound that in some situations may be more practical.

Corresponding results of Robinson for the more general case contained in theorem 3.2
where D = R x E with E convex (and F still smooth) are also given in [8], and for E = R"
and F(v, x) = g(x) — v in the earlier paper [6]. (Although Robinson’s assumptions of smooth-
ness and convexity are more restrictive than ours, he does, on the other hand allow v and x
to range over spaces more general than R and R".)

COROLLARY 3.7. Let
I'(v) = {x|F(v,x) =0},

where F:R? x R"— R™ is locally Lipschitzian. Let (&, ) be such that F(d, ¥) = 0 and the
following constraint qualification holds: every matrix J=(J,, J,) €EdF(5. X) (where
J, E R™*4_J. € R™*") has rank J, = m.

Then T is pseudo-Lipschitzian at (5, £) (and also of closed graph).

Proof. Take C = {0} in corollary 3.4, B

Remark 3.8. When m = n in corollary 3.7, the constraint qualification takes the form that
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every J = (J,, J,) as described has J, nonsingular. This is the condition in the Lipschitzian
implicit function theorem of Hiriart-Urruty [4] (and Clarke [2, 3]). To obtain that result, all
that is needed besides the assertion of corollary 3.7 is the proof of single valuedness of I in
such a case. Contrary to what one might expect, however, the cited implicit function does not
seem to lend itself in turn to the derivation of the result in corollary 3.7, due to the multiplicity
of the Jacobian matrices J at (7, £) when F is not smooth.

Remark 3.9. Corollaries 3.5 and 3.7 are obtainable as particular cases of corollary 3.4 when
F is continuously differentiable, but not when F is merely locally Lipschitzian. This is because
the Clarke tangent cone to the graph of a Lipschitzian function F carries less information
about F than the subdifferential oF does.

Remark 3.10. Conditions for T to be sub-Lipschitzian in the context of corollaries 3.4, 3.5,
and 3.7 can obviously be derived simply by combining these results with theorem 2.2. (Likewise
for T to be Lipschitzian: see theorem 2.1.) '

COROLLARY 3.12. Let
T(v) = {x|0 Ef(v,x) + T(x)},

where f:R? x R"— R™ is a locally Lipschitzian function and T:R"=2 R™ is of closed graph.
Let 5 € R? and % € I'() be such that the following constraint qualification holds: for no matrix
JI=(J,,J;) € of (5, X) does there exist s € R™ with

(sJy, 8) € Ngn1(%, —f(0, %)) (3.12)
except for s = 0.
Then T is pseudo-Lipschitzian at (5, £) (and of closed graph).
Proof. Let F(v, x) =“(x, ~f(v, x)), C=gph T, D =R*Xx R" Then T fits the pattern in
theorem 3.2 with
(r.5)6F(0,%) = (0,r) —sof(, %)

for all (r, s) € R” X R™. The constraint qualification in theorem 3.2 becomes the condition that
the only combinations of (r, s) € No((£, —f(5, %)), zER?, and (J,, J,) € 8f (5, %) with
(z, 0)=(—sJ,, r—sJ,) have (r, s) = (0, 0), z=0. This reduces to the condition stated
here. H

Remark 3.13. In the case where f is continuously differentiable, so that J, = V,f(7, %) and
J. = V,f(v, %), corollary 3.12 can be compared with results of Robinson [6, 8-10]. When T

has the special form
K if x€E,
T'(x)= ;
¢ if x&E,

where K= R™ and E = R" are closed sets, the constraint qualification becomes the following:
for no matrix J = (J,,J,) € (5, %) does ,'iil"'rgxist SENg(—F(5,%)), s#0, such that
sJ, € Ng(¥). When K and E are convex and f smooth, this condition is dual to the one used
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by Robinson [8] in obtaining results such as have already been indicated in remark 3.6. (The
case of E=R", f(v,x) = g(x) — v, is in Robinson [6].)

On the other hand, when T = 3¢ for some closed proper convex function ¢ on R”, or more
generally when T is a maximal monotone relation from R" to R", we have in corollary 3.12
the framework for a perturbed variational inequality of the kind treated by Robinson on
[9,10]. In this case the normal cone in condition (3.12) is always a (linear) subspace L of
R" x R" having dimension at least n (see Rockafellar [14]), whereas the linear transformation
s— (sJ,, 5) = (sV.(f(0, %), s) has rank exactly n (because m = n); its range is a subspace M
of R" X R, having dimension n. Simple considerations of linear algebra reveal that under these
circumstances the constraint qualification in corollary 3.12 fails to be satisfied unless, in
particular, the dimension of the subspace L is exactly n. Then the graph of T is “strictly
smooth” at (5, X) (see Rockafellar [14]). This is a generalized differentiability property of the
multifunction T which for T = d¢ corresponds to a generalized second derivative property of
@ [14, Section 4]. The constraint qualification that results is then more restrictive than the one
of Robinson in [9, 10], except in allowing f to be locally Lipschitzian instead of smooth.

A different approach to the case of 7' maximal monotone would be to use the fact that gph
T is a Lipschitzian manifold (as explained in [14]). Associated parameterizations or constraint
representations of gph T then make possible other expressions for the multifunction I in
corollary 3.12 to which our results can be applied in a different fashion. This technique will
not be pursued here.

Remark 3.14. The results of Robinson [6-10] and to some extent Aubin [1], are not only
qualitative like those above but furnish estimates for the Lipschitzian modulus 4 that governs
each situation. In fact such estimates can also be derived by our techniques. In quoting
theorem 3.1 as a special case of [13, theorem 8.3] we omitted the estimate provided by that
result for the subgradients of p (in the sense of Clarke [3]):

ap(3) C co{z|3% € P(9),y E Nc(F(5,%)), with (z.0) € of (8, %) +yaF(p,%) + N p(b,%)}.

Applying this in the context of the proof of theorem 3.2 (where afy(¥,5,%) = {(u,0
—u)||ul =1}), one gets

3

8dp(D, %) C co{(z, u) E Nc(F(5,%))oF (5,%) + Np(D, %) | |[u| =1} (3.13)
Then for
i=max{|z||3u with (z,u) E Ne(F(p,%),dF(5,%) + Np(0,%), u| =1} (3.14)

one has by remark 2.5 that any A >4 works, relative to some neighborhood V X X of (3, %),
as the modulus in the pseudo-Lipschitzian continuity property (1.8).

Remark 3.15. The results in this section are essentially based on applying [13, theorem 8.3]
to get a condition for dr to be Lipschitzian at (5, ¥) and using the fact in theorem 2.3 that this
property corresponds to pseudo-Lipschitzian behavior of I at (0, £). The following general-
ization would be possible: a certain property of I' corresponds to dr being directionally
Lipschitzian at (&, %) with respect to a vector (4, k) as defined in [12]; criteria for the latter
are furnished by [13, theorem 8.3] in terms of the same Lagrange multiplier set-up.
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4. OPERATIONS THAT PRESERVE LIPSCHITZ CONTINUITY

The conditions in the preceding section serve to identify some important classes multi-
functions having properties of Lipschitz continuity, but many other multifunctions can be
constructed from these by composition, addition, union, intersection, projection, and so forth.
To what extent is Lipschitz continuity preserved when such operations are performed?

We begin with the fundamental operations of composition.

THEOREM 4.1. Let T': R“=3 R" be given by
T(v) = T(To(v)) = ME%(U) Ti(u),
where T'p: R?= R” and I';: R? — R" are multifunctions of closed graph such that the multi-
function A:R? X R" = R? defined by
A(v,x) = {u € To(v)|x € Ty(w)} = To(v) NT1'(x)

is locally bounded everywhere. Then I is of closed graph.
If x € T(d) (so that A(5, x) # ¢) and for every # € A(, X) one has Iy pseudo-Lipschitzian
at (5, ) and I'y pseudo-Lipschitzian at (&, ¥), then I is pseudo-Lipschitzian at 4.

Proof. First observe that
gph T = {(v, x)[A(v, x) # ¢}
and that A is of closed graph:
gph A = {(v,x,u)|(v, u) € gph Ty, (u,x) € gph T'1}.

We can prove the closedness of gph I' by showing that for arbitrary (&, ¥) € gph I" and compact
neighborhoods V of & and X of ¥ the set

{(v,x) EV X X|A(v, x) # ¢} (4.1)

is closed. By our assumption that A is locally bounded everywhere, there exists for each
(v,x) € V X X a neighborhood W, , such that A(W, ,) is bounded. Such neighborhoods cover
V' x X, which is compact, so finitely many of them cover V x X. Thus there is a compact set
U such that

A(p,x) CU forall (v,x)EV xXX.
The set (4.1) is then the same as
{(v,x) EVXX|A(w,x) N U # ¢},

which is the image of the compact set [V XXX U]NgphA under the projection
(v, x,u)— (v, x). The image of a compact set under a continuous mapping is compact, in
particular closed. Therefore (4.1) is a closed set, and the graph of I is closed as claimed.
Consider now a pair (7,%) such that A(5,%)# ¢ and, for every € A(7, £), Iy is
pseudo-Lipschitzian at (3, @) and I’y is pseudo-Lipschitzian at (i, £). For every & € A(D. X)
there exist open neighborhoods V; of & and X, of #, and constants A3 = A} = 0, such that

FD(Ul) M Uu = rg(Ug) T if;'ivl - UZEB when v, 01 E Vr;._. (42)
I‘l(ul) n Xﬁ & F](ug) + ).iul - uz!B when Ly, Us = Uu (43)
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The set A(7, %) is compact (because A is of closed graph and locally bounded), and it is
covered by the collection of open neighborhoods U; as & ranges over A(5, £), so it is covered
by a finite subcollection, corresponding say to points i;, i=1,...,r. Let

U=Ui2Us, V=0Ni11Vy, X=0N1X;, A= max A}, A= max Al.

i=1.....r i=1,...,r

Then from (4.2) we have
To(v1) N U CTo(v) + Aolvr — va| B when vy, 0, EV. (4.4)
whereas from (4.3)
Fi() N X C(ug) + A|uy — ua| B when  wug, up; € Uy, forsomei. (4.5)

Returning now to the fact that A is a locally bounded multifunction of closed graph, we
note that these properties imply upper semicontinuity of A, in particular at (d, ): for every
& > 0 there exist neighborhoods Xj; of X and V; of V such that

Alv,x) CA(D,%) + B when (v,x) €EVyx X,

Here A(p,X)+ B is compact, because A(0,%) is compact, and consequently
A7, %) + B C U for g sufficiently small, because A(5, %) C U and U is open. Taking Uy =
(0, %) + &B for & sufficiently small, then, we obtain the following: there exist

LwClU, V,CV, X CX,
such that U, is compact, Vj is a neighborhood of &, Xj is a neighborhood of ¥, and
A(v,x) CUy when (v,x) EVyx X,
The latter means by definition of A that
Ti(To(v) N Up) N Xp =T(To(v)) N Xy when v EV,. (4.6)

Remembering that U is the union of the open sets Uy, i = 1,. .., r, appearing in (4.3), we
note the existence of some &> 0 such that

foreachu € Uy + eB, onehasu + eB CU; forsomei. (4.7

(Indeed, Uy + £B for a fixed &> 0 sufficiently small is a compact subset of U and is covered
by the collection of open sets

Wei={ulu+eBCU;} for e>0,1si=r

Take a finite subcover and the minimum of the corresponding & values and &) Combining
(4.7) with (4.5) and the fact that X3 C X, we obtain

Ti(w)NXCTy(u) + ' —u|B when u&€Uy+ B, |lu' —u|=¢,
or in other words
I+ 6B) N Xy CTy(u) + 116B when u& U+ eB, 6=« (4.8)
We can replace Vj by a smaller neighborhood of v if necessary so as to ensure that

Adlor — 02| =& when vy, v, € V. (4.9)
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Updating (4.4) to
To(v1) N Up CTo(w2) + Aolvy — vp|B whenuoy, vy €V, (4.10)
as is possible because Uy C U, V, C V, and observing that
[To{vz) + 6B] N Uy C[To(va) N(Uy+ 6B)] + OB, (4.11)

we argue now as follows. For arbitrary v;, v; € Vj and the value 6= :;t0|i')1 - Ug|, we have
successively by (4.6), (4.10) and (4.11) that

[(To(v1)) N X = Ty(To(v1) N Uy) N X
C Ty(To(w2) + 8B] N Up) N X,
CTi([To(vy) N (Uy + 8B)] N Uy N X. (4.12)
Here 6 = e by (4.9), and therefore by (4.8) we have
Ti([To(vs) N (Up + 8B)] + 8B) N X,
I'i(u+ 6B)] N Xy

L e, (P N (Lo 8E)

& J [Ty(u) + 4,6B]

we 1—0(02) MLy + 38)

= I“I(I‘o(vg) N[Us+ SB]) + A0OB (4.13)
where

T1(To(vs) N [Us + 8B]) = T4(To(2)) (4.14)
by (4.6), because
To(v2) N Uy C Tolva) N [Up + 6B] C To(v2).
Putting the chain of (4.12), (4.13) and (4.14) together, we obtain
[(vy) N Xy CTy(Co(v2)) + 6B
whenever vy, v, € Vi, with 6 = A|v; — v,]. In other words,
T(v1) N Xy CT(vsy) + MAgloy — v2|B forall vy, vy € V.

This being true for certain neighborhoods Vj of 5 and X; of £, we conclude that T is
pseudo-Lipschitzian at (7, x). H

Remark 4.2. The proof of theorem 4.1 also yields an estimate for the modulus A in the
pseudo-Lipschitzian property of T’ at (5, %): A= AjAy will work for some sufficiently small
neighborhood V X X of (3, %) if A works locally for T at each (¢, 7) with & € A(7, %), and
A works locally for I'y at each (4, #) with & € A(5, %).

This sort of estimate could be specialized to the various corollaries that follow.

COROLLARY 4.3. Let I'(v) = T';(G(v)), where G:R?=2 R” is a locally Lipschitzian function
and I'y: RF = R” is a multifunction of closed graph. Then T is of closed graph, and I is
pseudo-Lipschitzian at (7, ) whenever T} is pseudo-Lipschitzian at (G(5), X).
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Proof. Let Ty(v) = {G(v)} in theorem 4.1. One has A(v,x) = G(v) if G(v) ETT(x),
A(v, x) = ¢ otherwise, so A is locally bounded. H

COROLLARY 4.4. Let I'(v) = G(T'y(v)), where Ty: R? =3 R? is a multifunction of closed graph
and G:R’ — R" is a locally Lipschitzian function. Suppose that the multifunction
A:R?Yx R"=3 RP defined by

Av,x) = {u € Ty(v)|Glu) = x}

is locally bounded. Then I is of closed graph, and T is pseudo-Lipschitzian at (5, £) whenever
I’y is pseudo-Lipschitzian at every (0, ¥) with @ € A(5, X).

Proof. LetI'i(v) ={G(p)} in theorem 4.1. H

COROLLARY 4.5. Let I'(v) = ol o(v) + @, where I'y: R =% R" is a multifunction of closed graph,
«€ER, a#0, and «€R". Then I is of closed graph, and T is pseudo-Lipschitzian
at (0, af + a) whenever Iy is pseudo-Lipschitzian at (5,%). (A special case of this is
r=-TIy)

Proof. Let G(u) = au + «in corollary 4.4. H

COROLLARY 4.6. Let
I'(v)={x€RFy with (x,y) € T(v)},

where I'o: R*= R” X R™ is of closed graph and such that the multifunction A:R? x R* =2 R™
defined by

A(v, x) = {y|(x,y) € ['y(v)}

is locally bounded everywhere. Then T is of closed graph.
If £€T() and I is pseudo-Lipschitzian at (7, %, §) for every y € A(3, %), then T is
pseudo-Lipschitzian at (7, %).

Prboﬁ One has T' = G(Ty(v)) for G(x,y) = x. Apply corollary 4.4. H

THEOREM 4.7. Let
I'(v) = (T1(v), T2(v)) CR™ X R™,

where I';: R? =2 R™ and T';: R? =2 R™ are multifunctions of closed graph. Then T is of closed
graph.

If T, is pseudo-Lipschitzian at (5, %) and I'; is pseudo-Lipschitzian at (7, %), then T is
pseudo-Lipschitzian at (7, %;, £,).

Proof. The closedness of gph T’ is elementary to verify. The pseudo-Lipschitzian property
too follows right from the definition. B

THEOREM 4.8. Let
I'(v) = T1(v) = Tav) = {x1 — x2]x1 ET4(v), x2 ET5(v)},
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where T1:RY =2 R" and T,:R*=2 R" are of closed graph and such that the multifunction
A:R"= R" defined by

A(v) = Ty(v) N Ta(v)

is locally bounded everywhere. Then T’ is of closed graph.

If x€TI(D), and for every %; € I'1(7) and %; € I')(5) with £ — %, = £ one has I'; pseudo-
Lipschitzian at (0, %;) and T'; pseudo-Lipschitzian at (5. %), then T is pseudo-Lipschitzian at
(8, %).

Proof. Let To(v) = (T1(v), T2(v)) and G(x;, x2) = x1 — x2. Then I'(v) = G(To(v)). The result

then follows from corollary 4.4 and theorem 4.8. H

COROLLARY 4.9. Let I'(v) = T'y(v) + C where I'1:R*= R is of closed graph and CC R"is a
compact set (for instance, C = £B). Then I is of closed graph. If T'; is pseudo-Lipschitzian at
(7, £1), then I is pseudo-Lipschitzian at (7, £) for every ¥ € [%, + C].

Proof. Let I';(v) = C in theorem 4.8, B

CoroLLARY 4.10. Let I'(v) = I'(v) + G(v) where T'1:R*=3R" is of closed graph and
G:R‘— R" is a locally Lipschitzian function, Then I is of closed graph. If T} is pseudo-
Lipschitzian at (7, £), then I is pseudo-Lipschitzian at (3, £ + G(5)).

Proof. Let I;(v) = {G(v)} in theorem 4.8, B
THEOREM 4.11. Let
F(U) = U;=1Ff[‘!’?)>

where I';: R?= R" is of closed graph for i =1, ...,4. Then T is of closed graph. If £ € T'(5)
and T is pseudo-Lipschitzian at (¢, £) for every i such that ¥ € (o), then I is pseudo-
Lipschitzian at (g, x).

Proof. This can easily enough be proved from the definitions, but the pseudo-Lipschitzian
property also follows at once from the distance function formula
dr(v. x) = minf=dr (v, x)
and the characterization in theorem 2.3, &
THEOREM 4.12. Let
T(v) = NI Tlv),

where I';: RY=2 R" is of closed graph for i=1,...,r Then I is of closed graph. One has I’
pseudo-Lipschitzian at (7, ¥) if the normal cones

Ny = Ng-phr!-(ﬁ,f).f = Low cu) ¥,

have the following property: the only choice of vectors (z;, w;) € N; such that Z/_; w; =0 is
(z;, w) =(0,0) fori=1,....r
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Proof. Let D;=gph I';, D = gph T, and observe that D =N /., D, By hypothesis each D;
is closed, so D is closed. Thus I is of closed graph. One has

No(8,%) C ZM—

by [13, corollary 8.1.1] if the only choice of vectors (z;, w;) € N; such that Z-;(z;, w)) =
(0,0) is (ziwy) = (0,0) fori =1, ..., r, Our assumption on the cones N; ensures this and also
that the cone 2]~ N; contains no vector of the form (z,0) with z # 0. Then T is pseudo-
Lipschitzian at (5, £) by corollary 3.4. B

COROLLARY 4.13. Let
I'(v) =Ty(v) N C,

where T :RY=3 R" is of closed graph and C C R” is a closed set. Let & € I'(6) and suppose
that the following condition on normal cones holds: the only vector

(z,w) € i\'rgph['](ﬁ, %) with —w EN(X)
is (z,w) = (0,0). Then T is pseudo-Lipschitzian at (5, %) (and of closed graph).
Proof. In theorem 4‘12 take r =2, Th(p)=C. B

THEOREM 4.14. Let

[(v) =T(v, U) = U Ti(u, v)
where I';: RY X R? =3 R"is of closed graph and U C RP is closed. Suppose that the multifunction
A:R%x R" =3 RP defined by

A(v,x) ={u € Ulx € Ty(v, u)}

is locaily bounded everywhere, Then T is of closed graph.
If 5 € R? and % € I'() are such that T is pseudo-Lipschitzian at (5, &, £) for all 4 € A(5, %),
then T is pseudo-Lipschitzian at (5, £).

Proof. Represent I as I'; © Iy, where I'g:R? =2 R? x R? is defined by T'y(v) = (v, U), and
apply theorem 4.1. The multifunction
(0, )= To(v) NTx) = {(v, w)|u € U,x € Ty(v, w)},
whose local boundedness is required in theorem 4.1, is locally bounded by our assumption
on the multifunction A defined here. B
COROLLARY 4.15. Let
I'(v) = G(v, U) = {G(v,w)lu € U},

where G:R? x RF — R" is a locally Lipschitzian function and U C R” is a nonempty closed set.
Suppose that the multifunction A:R? X R" =2 R? defined by

A(v,x) ={u € U|G(v, u) = x}
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is locally bounded everywhere (as is true in particular if U/ is bounded, in which T case itself
is locally bounded). Then T is of closed graph, and everywhere sub-Lipschitzian (actually
Lipschitzian if U is bounded).

Proof. Take I'y(v, u) = {G(v, u)} in theorem 4.15 and use theorem 2.2. ®
THEOREM 4.16. Let

I'(v) = coTp(v) (convex hull),

where T'g: R?=3 R" is locally bounded and of closed graph. Then T" is locally bounded and of
closed graph. If I' is Lipschitzian at a point J, then so is ',

Proof. Let U be the compact set in R**! consisting of the vectors u = (ug, 4y, . . ., U,) such
that u; = 0, Zfou; =1. By Carathéodory’s theorem on convex hulls one has

coTy(v) = {Z’) uwilx; € To(v), u € U},
so that I'(v) = I'y(v, U) for
[y, u):= 2 ulo(v).
Furthermore T'; = Geo I“z, where
G(X0y X1y o v oy Xy UGy Uy o ooy Uyt = I%u;xf,

Ta(v, u): = (To(v), . . ., To(v), u).

Clearly I'; inherits closedness and local boundedness from Ty, and I'; is Lipschitzian at & if
I'g is (cf. theorem 4.16 and the characterizations in Section 2). The same then follows for
T';, because G is a locally Lipschitzian function (cf. corollary 4.2). Corollary 4.15 now gives
the desired conclusion. B

COROLLARY 4.17. Let
[(v) = cofg1(v), . . ., gAv)};

where the functions g;: R?— R" are locally Lipschitzian. Then T is a locally bounded multi-
function of closed graph, and I' is everywhere Lipschitzian.

Proof. Let I'y(v) = {g1(v)} in theorem 4.16. The multifunction Iy is locally bounded, and
by theorem 4.11 it is of closed graph and everywhere Lipschitzian. (The latter also follows
easily from the definitions.) B

REFERENCES

1. AuBiN J.-P., Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9, 87-111 (1984).
2. CLARKE F. H., On the inverse function theorem, Pacif. J. Math. 64, 97-102 (1976).



10.
11.

12.
13.

14

Lipschitzian properties of multifunctions . 885

. CLarkE F. H., Optimization and Nonsmooth Analysis, Wiley-Interscience, New York (1983).

. HIRIART-URRUTY J.-B., Tangent cones, generalized gradients and mathematical programming in Banach spaces,

Math. Oper. Res. 4, 79-97 (1979).

. ManGasariaN O, L. & FromoviTz S., The Fritz John necessary optimality conditions in the presence of equality

and inequality constraints, J. Math. Analysis Applic. 17, 37-47 (1967).

. RoBINsON 8. M., An inverse-function theorem for a class of multivalued functions, Proc. Am. math. Soc. 41,

211-218 (1973).

. Roemvsown §. M., Stability theory for systems of inequalities, part I: linear systems, SIAM J. Numer. Analysis

12, 754-769 (1975).

. RoBmvson S. M., Stability for systems of inequalities, part II: differentiable nonlinear systems, SIAM J. Numer.

Analysis 13, 497-513 (1976).

. RoBmvson 8. M., Generalized equations and their solutions, part I: basic theory, Math. Progmmrﬁfng Study 10,

128-141 (1979).

Roginson 8. M., Strongly regular generalized equations, Math. Oper. Res. §, 43-62 (1980).

Rosmson 8. M., Generalized equations and their solutions, part II: applications to nonlinear programming,
Math, Programming Study 19, 200-221 (1982).

ROCKAFELLAR R. T., The Theory of Subgradients and its Applications to Problems of Optimization, Heldermann,
Berlin (1982).

RockareLLAR R. T., Extensions of subgradient calculus with applications to optimization, Nonlinear Analysis
9, 665-698 (1983).

. RockareLiar R. T., Maximal monotone relations and the generalized second derivatives of nonsmooth func-

tions”, Annls Inst. Henri Poincaré: Analyse Non Lineaire (1985).



