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1. iNTRODUCTION

A ILNDAMEN.TAL topic in optimization theory and nonsmooth analysis is the study of sets of

r(u)={.r/r(u,;)=ror;=1,...,s ard l(r,.r) =0 for t=r+1,...,,n }, (1.1)

where, is a rcal-valued furcrion on Rd x R". Such a set consists of all the points satisfying
a cenain system of constraints in R', where the constraints depend on a parametei vector
l) € Rd. More generally one may consider

lor F: Rd x R' + R-, C C R', D c Rd x R-. A major question is the way rhat l(r) varies as
u varies. Of particular importance are prope ies of Lipschitz continuity of the multifunction
f: r- I(r) that may be present.

The special case of

I(,) = {i F(r, r) e C, (r, r) € D}, (1.2)

r(u) = tr r(u,.r) = ol (1.3)

r(r) = t 0€/(o,-r)+r(i)l (1.4)

(r, -l(,, r)) € gph r, (1.5)

so thar (1.,1) can be viewed as an instance of (1.2) (with F(r) = (i, -f@, x\), C: WhT,, = Rd x R"). It can also be written in other ways as a special case of (1.2), for instance when
ph I can be descrlbed by a system of Lipschitzian constmints.

' Research supporled ln pan by a Crant lron the Natiolal S.iene Fonndation ai the Universiry of Washington,

is addressed by the classical implicit function theorem when F is smooth. Clarke [2] and
Hiriart-Urruty 14] have extended this case to mappings F that are locally Lipschitzian; they
give criteia for I(D) to be single-valued and locally Lipschitzian.

Sets of the form

have been stgdied by Robinson [7-11], for certain kinds of multifurctions f:R'=R- and
smooth mappings/:RdxR'+R-. (He allows , and'} also to rarge over spaces more
general than t}le spaces R' and R" indicated here.) The condition 0 c/(r, r) + f(i) can be
written equivalently as



W}lat notions of Lipschitz continuity are appropriate in this setting? Consider an arbitrary
multiturction I:Rd3 R' (assigning to each u € R'd a set f(.,) c R', which may be empty),
and suppose that lbq image sets f(u) are closed, The classical notior is thatf 1s Lipschitzia
rclatiue to V, a subset of R', if f(r) is nonempty and compact for every , € y, and there is
a constant i= 0 (the modrlu.r oI Lipschitz continuity) such that

haus (f(rr), f(oz)) 
= 

I \-Dz fotallul,Dz€V, (1.6)

l(01) c f(rt + llr, - r, B forall L'1,1'r€Y. (1.'7)

r(u1) n-YCr(rt +1 q - uz B fot all DrDreV. (1.8)

where "haus" denotes the Hausdorff metic on the space of all nonempty compact subsets of
R':

haus (-Yr, -]r?) : min{€ 
= 

0 XIC X2 + EB, Xza Xt + EB},

with -B the closed uni! ball for ihe Euclidean norm . Condition (1.6) can be witten
equivalently as

w}len the sets f(r) are unbounded, as is often the case in applications, these notions are
not suitable and somethirg else is needed- The following concept was introduced by Aubin
l1l I is pseudo-Lipschitzian at (6. i), whete t € f(t), iI there exisl neighborhoods y of ,,
X of f. and a constant I 

= 
0 such that

A related concept which we introdlce here is that f ]s sub-Lipschitzisn st t if l(t) + 4 and
for every compact set X in R', no mattei how large, one has (1.8.) for some neighborhood y
of , and constant ,1= 0.

This paper is focused on the study of multifunctions with lhese Lipschitzian properties. In
Section 2 we clarify the relationship between the prope(ies and express them in terms of the
distance function associated with a multifunction. In Sections 3 and 4 we dedve conditions
that allow these properties to be verified for multifunctions of varioDs constructions. A
generalizatiol of Aubin's implicit multifunction tleorem 11, Section 3] is obtained in particular.

Fo. multiJunctions (1.4) of the kinds investigated by Robinson [8, 9], the results we obtain
are complementary to his and somellhat different in spirit. Robinson makes assumptions on
the multifunction obtained in (1.4) in place of f by lflearizing I in i at a certain (t, i) but
keeping the same r, From these he derives bounds of the form

f(r) c r(r) + ,t q.- t 4
(a:rd more general estimates when/(u, -r) is nor Lipschiizian in ,). Such bounds describe an
"upper Lipschitzian" behavior of the mt tifunclion f at the point rj itself, rather than a

Lipschitzian property which compares f(rr) and f(rr) for arbitrary ,1 and ur in some neigh-
borhood of.i. as pursued here.

2. CHARACTERIZATIONS AND INTERRELA'IIONS

For a multifunction f :Rd=R', we shall use the notation

f(Y): U I(,) for any YcRd.



Lipschirzian properti.s ol bultiiunctions 869

We shall say that f is /oca y bounded at I if there is a neighborhood y of , such lhat the set

r(Y) is bounded.
Funhermore, we shall say that f is clorsd at i if for every t € f(tt) there exist neiShborhoods

y of , and X of i such that f(r)nx= 0 for all t€y. (Then in particular f musi be

closed-ualued at D, i.e, the set f(t) must be closed.) This is true for every [ if I is of cbsed

Sraptr, i.e. the set gph f = {(.,, r)l' € t(o)} is a closed set in Rd = R'.

THEoREM 2.1. Let f:Rd=R'be closeal-valued, and let ,€Rd. Then the fotiowing are
equivalent:

(a) I is locally bounded at , and sub-Lipschitzian at rt:
(b) on some neighborhood of t, f is nonernpty-compacFvalued and Lipschiizian.

Proo, (a) > (b). Local boundedness implies that for some bounded set Xand neighborhood
Y of i one has

r(u) nX= r(u) for all D e Y.

Taking y to be a neighborhood with both this property and (1.8), as is possible by definition

'ri'hen f is sub-Lipschitzian at .t, one obtains the Lipschitz condition (1.7). Abo f(t) + 0 by
definition of "sub-Lipschitzian", and therefoie from (1.7) as applied to L,r = r, ,, = D, we
must have I(u) + 0 for a[ u € Z

(b)>(c). By assumption there is a neighborhood y=, + 68 of n such that f(r,) is
nonempty and compact for all D € y, alld

(2.1)

Then tdvially (1.8) holds for arbiirary X, so f is sub-Lipschitzian at t. One has in pafiicular

r(.,) c I(t) + r, D - tla c r(t) + 
^dB

for all l) € y by (2.1), so that f(y) is included in the set f(t.) + ,168, which is bounded. Thus
f is localy bounded at n. I

THEoREM 2.2, Let f;Rd=Ri be closed-valued, and let t€Rd. Then the fotlowing arc
equivalentl

(a) I is sub-Lipschitzian ar i;
0) f is closed at , with f(r)+O and f is pseudo-Lipschitzian at (n, i) for every

Ptoof. (a.) > (b). If f is sub-Lipschitzian at ,, then from the dennition *e have that
f(t) + 0 and for every compact set X there is a neighborhood y of tl on which (1.8) holds.
In panicular X cah be taken to be a neighborhood of any i€f(r), and therefore f is
pseudo-Lipschitzian at (t, t) for any t e I(n). To see that I is closed at ,, considei any
ief(t) and take X to be a compact neighborhood of, such that for some 6>0,
[f(r) + .3] n X: O. Then for a corrcspondidg Deighborhood y as in (1.8) and of the forn
Y=, + dB, we have

f(u1) c f(ur) - llDr - ,218 forau Dr,urcv.

r(u) a Xc F(D) + ilu - rrB C r('r) + tbB fot all o eV.



If 6 is chosen small enough that ,trd= €, we get

I(0) n xc F(t) + sBl nx= d fora DeY,

which is the property of V that is desired.
(b) > (a). In demonstraling that f is sub-Lipschitzian at i, it sulfices to consider a compact

set -l. large enough that l(r) n X+ 0 and to produce a corresponding neighborhood y of t
such that (1.8) holds. By assumption there exist {or each i € f(n) open neighborhoods yr of
,. -Yr of i. and a constant ,1r 

= 
0 such that

r(DD n&cr(Dt +,1'l,r- L,rlB for ail ,r,u?€v"

Because I(n) is closed, the set f(r) n X is compact, and from the collection of open sets

Xr as i ranges over l(n) n Xwe can extract a fir te covering of l(n) n -Y:

r(r) nxc ui=rx,, for certair rrer(u)nx.
Let

x, = ri=tX", v, : .i= jv:, i = ,=1I,.r,,.

Then L' and y' arc opens sets such that I(t) n L C X', ii e V' , and

f(utn].'cl(rr+r. ur urB for all Dl,rre Y'.

Consider now the lelative complement.t\X', which is a compact set wirh f(t) n [-n-Y'] =
0. Because I is closed al i there exist for any :' e X!Y' open neighborhoods yi of t and -1.
of i- such that

l(,)nr=4 when u€Vr.
colleciion of sets X: as t ranges over X\l.' we cafl extract a finite covering of

x r'..x'. v -t v'.

Then x" and y" are open sets such that XX' C X".l] € y", and

r(,)nx"-O when ,€Y",
so that

,l]-Y' C Ui=,-Xl forcertain/€XLY'.

d1(r,,r): = dist(I(r.'),r): = nin r'-'r.
rEr(')

(2.2)

From the
,YLY',

Let

l(D) o xc I(D) n x' when r € Y". (2.3)

Let V : v' o V". Then v is a neighborhood of , for which (1.8) holds by virtue of (2.2) and
(2.3). Thus f is sub-Lipschitzian at i relative to S. I

A closed-valued multifunction f: Rd= R' can be identified in a set with ils dislance function

(2.4)
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(By convention this quantity is - if f(r) = O.) Obviously I is uniquely determined by .lr, so
everyproperty off must cortespond to a ptoperty of dr and vice vena. Our next result reveals
the property of dr that corresponds to pseudo-Lipschitz continuity of f and indicates clearly
why that concep! has a fla0ral significance.

TEEoREM 2.3. Let l: Rd= R, be closed-valued, and le1 n € Rr, t e I(t). Then the followrng
are equivalent:

(a) I is pseudo-Lipschitzlan 
^t 

(t, i)l
(b) dr is Lipschitzian on some neighborhood of (n, r).

P,"ool. Obsene first that (b) is equivalenr to the existence of neighborhoods y of n. ). of
i, and a constant ,1. 

= 
0 such that d. is finite on ,t x X and

di(r,r, x) 
= 

dt(D L x) +rr2-D, forall D1,D7eV.t=X. (2.s)

This is true because dr(r, i) is by nature Lipschitzian in.r with modulus 1 for all D such thai
r(D) + p.

(b))(a). If (2.5) holds, then for every r € l(rr) n X and or, ,2 € y one has

dist(r(ut, r) 
= 

dist (r( u r't, x) + ), u r _ u z = I)u t _ u zi,

beca Ne dist(f(L'1),.r) = 0. Thus, € f(D, +.i. L'r - '2 
Bforeveryj e l(rr) n ,Y. as required

in (1.8) for pseudo-Lipschitz conrinuity.
(a) > (b). Suppose (1.8) holds for neighborhoods y of n and -Y of t. Then

dist(f(u)+,1101 - u, B,r) 
= 

dist(l(rr) nX,.r) foralt r,1,uz€V,x._R,. (2.6)

But one also has

disr(l(rt,.t) - p 
= 

dist(f ( r.r z) + pB, x\

for any p= 0. so (2.6) implies

dist(I(Dr,"r) -,t1,1 -'? = 
dist(r(.'t nx,r) forall,r u? ey,r €R^. (.2.7)

It need only be shown now that for certain neighborhoods y0 of n and & of j with y0 C y
and Xo C X one has

dist(r(u) nx,i) = disr(r(,).r) forall IJe y.!'ero. (2.8)

Indeed, this in combinarion wirh (2.7) 
"'i11 

yietd

disr(f(.,r,') 
= 

dist(t(t) i, t) + A)D 1 - a1 foral D1, r, € yi. r €-Yo.

which is the desired Lipschitz properry (2.5) relarive to y0 ard &.
Choose €> 0 small erough tlat t + EB C -Y, and let & = j + (V3)€A. Then Xo C ,Y. and

for arbitrary ).C & one has in fact i + (?3)€B c -Y, so rhat

dist(l(') n x, ') = disr(r(D).jr) when u sarisfies dist((,,),r) 
= 

f2l3)6.
Furthermore

dist(r(D), 'r) = 
(73)€ when dist(r(r), x) 

= 
( 13) E, x € x o,



disr(r(u),r) 
= 

dist(r("), t) + r-t.
Therefore (2.8) does hold for t}le speciied& and any neighborhood y0 of n with the property

aist(r(u),;) 
= 

(V3)s for all L,€Yo,

if such yo exists. Th€ existence of such y0 is verified by appealing again to (1.8): one has in
parricular lhal

t € l(t) nxc r(,) + r. ' - rlB forall 
', 

€Y
and consequently

dist(f(.,),t)=1u-tl for ail .,cY.
Thus one can take y0:n+dB for any d>0 small enough that i+dBCy and,tr6=
(.13)8. ]

CoRoLLARy 2.4. Let I rRd= R' be of closed graph, and let .t e Rd. Then the following are
equivalent:

(a) f is sub-Lipschitzian at t;
(b) dr is localty Lipschitzian relative to some (nonempty) open set containing {(r, t)li €

r(r)].

Prool. This combines t}leorem 2.3 with theorem 2.2. I

Refia* 2.5. The first part of the proof of theorem 2.5 provides an estimate for the modulus
,t in the pseudo-Lipschitzian continuity property (i.8) of I at (r, i): any.;, such that (2.5)
holds will do, where y x X is a neighborhood of (n, i). The grcatest lower bound I for all
such ,l is easily identified by the methods of nonsmootl analysis (cf. Clarke [3]) as

tr = mar dF(ri. j: r.0) - ma({ 2 frwitht:.r'eodrtD.ttr.

where di denotes the Clarke derivative and ddr the Clarke subdifferential of dr.

Remark 2.6. Everything in this section (with the exceplior of the formula in the preceding
remark) can readily be generalized 10 the case where the parameter space is any metric space,
rather than jusl R' (for instance, a subset of Rd).

3. SOME CLASSES OF PSEUDO.LlPSCHITZIAN MULTIFUNCTIONS

A sufficient condilion for a multifunction of $e general form (1.2) lo be pseudo-Lipschitzian
will be derived now ftom results in nonsmooth analysis. Let F:R" , R^ - R' be a iocally
Lipschitzian function (i.e. single-valued) and considet closed sets Cc R- and D c R' x R'.
We shall denote by Nc (n) te Clarke normal cone to C at a point t e C (see Clarke [3] or
Rockafellar [12]) and similarly by ND(r, t) the normal cone to D at a point (t, i) € D. The
set ,F(r, i) will d€note the Cla*e generalized Jacobian oI F dt (6. i) (see Clarke [3]); this
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is a certain nonempty compact convex set of matices of size m x (d + n) which reduces to
a single rnatrir (the Jacobian Vlc(r, t)) il and only if F is striclly differentiable at (r, t).

The dain result of nonsmooth analysis on wbich we shall rely is the following.

THEoREM 3.1. (Rockafeilar [13].) Let

p(u) : inf,{/(L',i) F(u,r) € c, (u,r) ED},

P(D) = arsmin {/(.,,r)|F(u,r\ eC,(u(t) €Dl,
where C and D are closed, and/and F are locally Lipschitzian. Let t be a point at which p(n)
is 6nite and suppose that for some a>p(n) the multifunction

is locally bounded around .i. Suppose further that the following constraint qualification holds
for every t C P(n): the only vectors ] € Rn and z € Rd such tlat

P"(u) = {r € R" /(u, r) = a F(D,.r) € c, (o, i) e D} (3.1)

) c Nc(F(r, i)) and (zr0)eldF(r,i) +ND(t,i) (3.2)

r(,) = {.! F(r,r) € C, (r,.r) € D}, (3.3)

)€Nc(F(t,i)) and (2,0) e)dF(r.t) +N,(r,i) (3.4\

ate y = 0, z = Q.

Then, relative to some neighborhood y of ,, p is finite and locally Lipschitzian, whereas
P is nonempty-valued, locally bounded and of closed graph.

Ploof. This is the speciai case of [13, theorem 8.3] in qhich rhe objectire tuncrior / is

assumed to be locally Lipschitzian and one invokes the criterion in [13, proposltion 2.1] fo1
p to be locally Lipschiuian. The graph of P relative to a closed neighborhood y of u is the
set of pairs (u, r) € V x R' satisfying /(u, .r) =p(r), r(u, r) e C, (u, r) e D, and this is
obviously closed when p is continuous on y. I
T!iEoREM 3.2. Let

where C C R' and D C Rd x R' are closed, ind FtRd x R'- R- is locally Lipschirzian. Let
n € R' and i € I(n) be such rhat the foilowing constmint qualification holds: the only vectors
) € R' and z e Rd such ihat

are)=0.2=0.
Then f is pseudo-Lipschitzian at (r, i) (and also of closed graph).

P/oo, It is obvious that f is of closed graph: gphf = F 1C) n D. In light of rheorem 2.3,
we can eslablish that f is pseudo-Lipschitzian at (t, i) by demoNtrating that the distance
function dr is Lipschitzian on a neighborhood of (n, i). We shall do this by way of theorem
3.1 and the representaiion

dr(u,xl= vni"1r - * F(D,x)€c,(n,x)eDl.
This can be written as dr(u, r) = p(n, u) where

p(}', D) = min{/0('?, ,, r) lFo(w, l,, i) E c, (w, u, r) €r0}, (3.5)



wirh

faOr,D,x) = x-w, Fl(w,D,x) =F(D,x), Do=R'xD.
We wish to show thatp is Lipschitzia on a neighborhood of (t, t), and this can be obtained
by verifying that the assumptions in theorem 3.1 are satisfied at (1', L,) = (i, n) in the case of
(3.5) and the multifunction

P( ,,) = argmin{/0(}r, D,x) Fa@,u,r') €C,{1r,D,x) eD\ (3.6)

Note thar pfi. {j) -0and Prt. nr - {i}. becausetc ffn). for ary a 0 rhe corre:ponding
multituflction (3.5) is given by

p,(w, u\ = {x e R'l r rr l = 
d, .r e r(u)} = (u) n lw + aBl.

Tdvialy P" is locaily bounded in a neighborhood of (u,, ,): (t, ,); in fact P"()e, D) c
Ii+(a+s)Al when 'e-i =eWe need to show now that the following constraint qualification holds at the unique eiement
of P(i, n), namely i: the only vectors ) € R'and (r, z) € R'x Rd such that

) € N.(F(i, t, tD and (&, z, 0) € dF(r, t, r) + NDi(i, r,r)
are y = o, (r, z) = (0, o). Here N6(F(i, r, i)) - Nc(F(r, r)) and

a FoG, D, r) - (0, dF(ta, i)), ND,(t, r, r) : (0, ND(r, iD

(the last by [13, corollary 2.5.1]), so (3.7) reduces to !l = 0 and (3.4). The latter implies
) = 0, z = 0, by hFothesis. Therefore the desired constraini qualification is satisfied, and the
proof of ihe theorem is complete. I

CoRoLLARY 3.3. Suppose in theorem 3.2 that the constraint qualification is satisfied at every
i € l(r), the set l(r) being nonempty. Then I is sub-Lipschitzian at t.

P/oo, This follows via theorem 2.2, because f is of ciosed graph, hence in pafiicular closed
at r. I

CoRoLLARy 3.4. (Aubin [1, Section 3].) Let I:Rri R' be a mulritunction witl closed graph,
andletD=gphf.LetneRd.Supposeicf(r)issuchthattheonlylectorzsatisfying
(:, 0) € ND(r, :.) is z: 0 (or equivalently, that under the projection (r, t)- u the Clarke
tangent cone ID(t, t), which is the polar of ND(n, i) has a1l of Rd as its image). Then I is

pseudo-Lipschitzian at (t, t).

P/oof. This is the case of theorem 3.2 where the elements F and C do not appear. I

CoRoLLARy 3.5. (Inverse multifunctions.) Lel

(3.7)

r(u) =t F(t,,.!) ec) (3.8)

where F:Rd x R'+ R' is locally Lipschitzian and C c R' is closed. Let (t, t) be such rhat
F(0, t)ec and the following comtraint qualification holdsr every matrir{ J=(,I,, "rJ €
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al.(t, ;) (where ./" € R"d and l, € R"') has the propefty that the only , € Nc(I(r, i))
with]'J,=0is)=0.

Then f is pseudo-Lipschitziar at (t, t) (and of closed graph).

Proof. Take D = Ra x R' in theolem 3.2. I

Remark 3.6. A case of corollary 3.5 that deserves particular attention is the one where

C = {l' = (w,,..., }',) ER- }ri=0 for i = 1,...,r,
w,=0 for j=s+1,...,mI

Ttren tor r(u, .r) = (/r(u, r), . . ., /.(r,,.r)) we have

r(o) =k /r(u,r)s0 for i=1,..., and /(r,1)=0 for i=s+1,...,ft), (3.9)

Irc(F(t,i)) = lu = (r'...,y,) Ji = 
0 and ]r/,(r,i) =0 for l =1,...,s). (3.10)

when rhe funclions ]4 are smooth, the constraint qualification in thls case is the
Mangasarian-Fromovitz condition [5]: the ofll-v ] as ir (3.10) with

:i':,),v.i(u. t) = 0

is ) :0. tO, . ouut ,o (and equivalent to) the regularity colldilion used by Robinson [8] in
this situation, as he himsetfhas shown [8, theorem 3]. The result obtained by Robinson under
this condition is complementary to ours: however:

dist(r(r), x) 
= ! dist(F(u, r), C) for Dev.r€X, (3.11)

where yxx is a neighborhood of (t, j) and p=0 is a certain constant. ln contras! to
pseudo-Lipschitz continuity rhis only compares a (u, r) with the given (t, i), but it does give
a bound that irl some situatrons may be more practical.

Corresponding results of Robinson for rhe more general case contained in tbeorem 3.2
where , = R' . E $irh E convex (and F still smooti) are also given in [8], and for E: R'
and F(,, x) = C@) - D in the earljer paper [6]. (Although Robinson s assumptions of smooth-
n€ss arld convexit]_ are more rcstrictive than ours, he does, on the other hand allow o and t
!o range over spaces more general than Rl and Ri.)

CoRoLLARY 3.7. Ler

r(u) = {xir(o, x) : o},

where F:Rd x R'+ Ra is locally Lipschitzian. Let (t, j) be such that F(n, t) = 0 and the
following. constraint qualification holds: every natrir J=(J,, "1,)e aF(J, .t) (whoe
Ju c R'xd. J € Rdx') has rank J, - ,?.

Then f is pseudo-Lipschitzian at (t. t) (and also of closed graph).

Proof.'lake C = {0} in corollary 3.4. I

Remuk 3.8. When m = n in corollary 3.7, the constraint qualification takes the form that



e\ery I = (J,, J,) as described has I, nonsingular. This is the condition in ihe Lipschitzian
implicit tunctior tleorem of Hiriafurruty I4l (and Clarke 12, 3l). To obtain that result, all
that is reeded besides the assertion of corollary 3.7 is the proof of single valuedness of I in
such a case. Contmry to $'hat one might expect, however. the cited implicit function does nol
seem to lend itselfin turn to the dedvation ofthe result in corollary 3.7, due to the multiplicity
of the Jacobian matrices "I at (t, i) when F is not smooth.

Remark 3.9. Corollaries 3.5 and 3.7 are obtainable as particular cases of corollary 3.4 when
Fis continuously differentiable, bilt not when F is merely locatly Lipschitzian. This is because
the Ctarke tangent cone to the graph of a Lipschitzian function a cardes less information
about F rhan the subdifferential aF does.

Rematk 3.10. Conditions for I to be sub-Lipschitzian in the context of corollaiies 3.4, 3.5,
and 3.? can obviouslybe derived simply by combining these results with theorem 2.2. (Likewise
for I to be Lipschitziar; see theorem 2.1.)

CoRoLLARY 3.12. Let

r(r): ft 0 €/(.,,-r) + ?'(r)1,

qherel:Rd x R'+R- is a localy Lipschitzian tuncrior and f:R'=R- is of closed graph.
Let , € -Rd andi € l(t) be such that the following constailt qualification holds i for no matrix
J = (Jt, Jx) € Af@, t) does there eist s € R- with

(s"r,, t € Nsph(j, _/(r,r))

Then I is pseudo-Lipschitzian at (r, i) (and of closed graph).

(3.12)

Ptoof. Let F(u, x):(x, -f(.u, r)), C-gph I, D=RdxR'. Then f fits the pattern in
theo.em 3.2 with

(r,trF(r,t) :(0,/) sa/(r,'i)

for all (r, s) € R'x R'. The constrainl qualifrcalion in theorem 3.2 becomes the condition that
tne only combinalions of (/, r)€Nc((i, f([, r)), zeRd, and (J,,,r,)€dl(t, i) wuh
(;, 0) = (-s./,, r' sJ") have (r, s) - (0, 0), z = 0. This reduces to the condition stated
here. I

Rehalk 3.73. In the case where / is continuously differentiable, so lhat J, : v,/(r, t) and
J, = Y,f(r, i), corollary 3.12 can be compared with results of Robinson [6, &10]. When f
has the speciai form

where l(€ -R' and E €R' are closed sets, tbe,qo_nsrraint qualificalion becomes fie followingi
for no matrix J=(J,,1")eaf(D,t) aoes#€*;'t 

'Lrvj1-111.*1). r+0, such th;t
sJ, € Nr(t). When f and -E are convex and /smooth, this condition is dual to the one used

(-. .-tK it rer.
I(.r) : l

tO if r€E'



Lipschitzian propertics of nnhitutctions 871

by Robinson [8] iir obtaining resu]ts such as have already been indicated in remark 3.6. (The
case of E: Ri, /(u,r) : g(.r) ,, is id Robinson [6].)

On lhe other hand, when f: a?for some closed proper convex function qon R", or more
generally when f is a maximal monolone relation from R' to R", we have in corollary 3.12
the framework for a perturbed vaiational inequality of the kind treated by Robinson on

[9,10]. In this case the normal cone in condition (3.12) is always 
^ 

(\near) subspace L oI
R' x R'having dinension at least n Gee Rockafellar [14]), whereas the linear transformation
r+ (sJ", r) = (rvr(/(t, i), J) has rank exactly ,? (because m : n); its range is a subspace M
ofR' x R, having dimension r. Simple co$iderations ollinearalgebra reveal that under th€se
circumstances the constraint qualidcation iI! corollary 3.12 fails to be salisfied unless. in
particular, the dimension of the subspace a is exactly n, Then the graph of f is "strictly
smooth" at (r, J) (see Rockafellar I14]). This is a generalized differentiabilily property of the
multilunction f which for I = aq correspoDds to a generalized second derivative property of
q I14, Section 41. The constraint qualificalion that results is ther more restdctive thar tbe one
of Robinson in [9, 10], except in allowirgfto be locally Lipschitzian instead of smooth.

A different apprcach to the case of I ma\imal monotone would b€ to use the fact that gph
Tis a Lipsfitzian madJold (as explained in [f4]). Associated parameterizations or constraint
representations of gph I then make possible other expressions fo! the multifunction f in
corollary 3.12 to which our results can be applied in a different fashion. This technique wili
not be pursued here,

Rema* 3.14. The results of Robinson [G10] and lo some extent Aubin [1], are not only
qualitadve like those above but furnish ,stmal€r for the Lipschitzian modulus ,1 that governs

each situation. In fact such estimates can also be derived by our techniques. In quotitrg
theorem 3.1 as a special case of [13, theorcm 8,3] we omitted the estimate provided by that
resulr for the subgradients of p (in the sense of Clarke [3]):

dp(r) c coizl:r € P(t), y e rr'c(F(r, ;)), with (2, 0) € al(t, t) -)ar(t, J) + Nlt, t)I
Applying this in the context of lhe proof of theorem 3.2 (where a/o(i, t,i) : {(r,0,
-&)l iu = 

1l), one gers

(3.13)

Then for

i : max{lzl lla with (z,u) €Nc(F(t, x), aF(a,t) + N D(D,r\,,rr =1} (3.14)

one has by remark 2.5 that any,tr >tr works, relative to some neighborhood y x X of (d, t),
as the modulus in the pseudo-LipschitziaD continuit-! propert-"- (1.8).

Remalk 3.1,5. The results in this section are essentially based on applying [13, iheorem 8.3]
to get a condition for dr to be Lipschilzian at (r, t) and using the lact in rheorem 2.3 that this
prcpeny cofiespotrds to pseudo-Lipschitzian b.havior of I at (t, t). The followitrg general-
ization would be possible: a cenain property of I corresponds to dr being ditectionally
Lipschitzian at (r,t) with respect to a vector (r, k) as detured in [12]; criteria for the latter
are furnished by [13, theorem 8.3] in terms of the same Lagrange multiplier set-up.

adr(D,r) q co{(2. L) €Nc(r'(r,r))aF(r,t) +N,(r,r)llu 
=1}.
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4 OPFRATIONS THAT PRESERVE LIPSCHITZ CONTINUITY

The conditions in the preceding section sene to identify some important classes mulii-
functions having properties of Lipschitz continuity, but many other muitifunctions can be

constructed from these by composition, addition, union, intersection, projection, and so forth.
To what elent is Lipschitz continuity preserved when such operations are pedormed?

We begin with the fundamental operations of compositior.

TrrEoR€M 4. 1 . Let I : -Rd = 
R' be given by

r{Dr = r,rrorl,)) -,J,J.,r r,'.

where I0:Rd=R' and f1;Rp+ R' ar€ multifunctions of closed graph such that the multi-
function A :Rr x -R' = 

R, defined by

^(o,i) 
= {I,l e r(r)-I € r(u)}: r(u) n ri1(r)

is locally bounded ever''wherc. Then f is of closed graph.
Ifi € f(t) (so that A(r,t) + 4) and for every t e A(r,t) one has I0 pseudo-Lipschitzian

at (t, t) and f1 pseudo-Lipschitzian at (t,t), then I is pseudo'Lipschitzian at ,.

Prool. Fint obse e that

sph r = {(u, r)l^(u, r) + 0}

and that A is of closed gmphi

gph A = {(0,r, a) (r,, Il) e gph f0, (&,r) c gph fr}.

We can prove the closedness of gph f by showing lhat for arbilrary (i,;) € gph I and compact
neighborhoods Y of , and -Y of t the set

{(t),x) €v x x l(r,.r) + d} (4. D

(4.2)

(4.3)

is closed. By our assumption tlat A is localy bounded everFvhere, there exisls for each
(r, r) € y x Xa neighborhood 1f,., such that A(W,,) is bounded. Such neighborhoods cover
y x -Y, which is compact, so finitely many of them cover y x ,Y. Thus there is a compacl set

U such that
A(,,jr) c U for all (',.r)€Yxx

The set (4.1) is lhen the same as

{(0,'I) € Y x xi^(r,r) n u + d},

which is the image of ttte compact set lvxxx t4ngph^ undet the projection
(u.x,u)+ (D,x). The image of a compact set under a continuous mapping is compact, in
particular closed. Therefore (4.1) is a closed set, and the graph of I is closed as claimed.

Consider now a pair (r,t) such that A(r,i)+o and, for every t€A(t,i), I0 is
pseudo-Lipschitzian at (r, t) and 11 is pseudo-Lipschitzian at (r, i). For every t € d.(r, t)
there exist open neighborhoods y' of , and ,Y' of i, and constants ,U 

= 
,tl 

= 
0, such that

f(u) n tf,, c f(u,) + ,{ D' Dz B when or, uz€vr,

I(!.1) n&cl(ut +,r.ilut uzlB wnen ut,uzeUd.
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The set A(r,i) is compact (because A is of closed graph and locally bounded), and it is
covered by the collection of open neighborhoods U, as t ranges over A(.i, i), so it is covered
by a finite subcollection, corresponding say to points ii, i = 1, . . ., /. Let

u = ri=Pr, v =.i=Ivr,, x = ni=$r,,ir =,_T:L,19,, 1, -.mar,1j,.

Then from (4.2) we have

Io(D1)nUcf(rt+rarj u?B $hen ul,r?€Y. (1.4)

(4.s)

whereas fron (4.3)

Returning now to the fact that A is a locall]' bounded muitifunction of closed graph, we
note that these properties imply upper semicontiruity of A, in particular at (t, i): for every
,ir > 0 there exisi neighborhoods & of X and y0 of y such that

A(l,,r) c A(r,t) + €0t when (,,.r) eI/0 xx0.

Here A(t, i) + arB is compact, because A(t,t) is compact, and consequently
A(r, -.) + eiB C U for €,r sufficiently small, because A(r, j') C U and U is open. Taking U0 :
(n,:i) + &8 for Etr sufficiertly small, then, we obtain the following: lhere exist

ui. u, voav, xoc x,
such that U0 is compact, y0 is a neighborhood of ,, ].0 is a neighborhood of i, and

A(u,i) c Uo when (r,,r)e Yoxxo.

The latter means b{ definirion of A t}rat

fr("1) n-LCf(at+,ljq u)B when r.rre U,, forsomei.

r,(r(,) n u0) nx0 = r(r(u)) n& when u e y0. (4.6)

foreachre U0 + €8, onehasu + EB c Ur forsomei. (4.7)

(4.E)

(4.e)

RememberingthatUistheunionoftheopensetsUn,i-1,...,/,appearingin(,1.5),we
note the existence of some E> 0 such that

(Indeed, LIo + aA for a fixed a> 0 sufficienily small is a compact subsei of U and is covered
by the collection of open sets

W,j: Iu u + tB CUrJ for E> 0, 15 i 
= 

r.

Take a finite subcover and the minimum of the corresponding 6 values and 3.) Combining
(4.7) wiih (4.5) ard the fact that & C X, we obtain

rr(u') nxc r(u) + r.1ln'- n B when ue4+ EB,lu'-u 
=8,

fr('r + 68) n& cI(u) +,i1dB when aeUo+88,6=8.
We can replace y0 by a smaller nei8hborhood of u if necessary so as to ensure that

,/ir r)1 - url= € when ul, ,: e y0,
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Updating (4.4) to

ro(u, n Uo c r(,, +.h L,r - ,r B whenDL,u,evo, (4.10)

(4.13)

(.4.11)

as is possible because U)c U, Va C V, and observing that

lr(r, + 68l n u0 c [r0(1,, n (u0 + ,tB)] + 68, (4.11)

we argue now as follows. For arbitrary r,1, o, € y0 and the value 6: ,tr{ ul - ur , we have
successively by (4.6), (4.10) and (4.11) that

r,(fo(,,)) nxo : f,(fo(u,) n uo) nxo

c r1(fo(Dr) + d8l n uo) n xo

c r(F(,t n (% + 68)] n uo) n)..

Here 6 
= 

€ by (4.9), and therefore by (1.8) we have

(4.12)

r,(ll(rt n (Uo + dB)l + dB) nxl)

I ; f1(/ o8) - 
^oLr€ rir!:1^rl/o-d')

e U Ir1(,) + r.168l

"€r.(""(qr+6R)
= r,(ro(,t n I% + 68l) + 1168

f](ro(L',) n luo + 68]) = r1(ro("))
by (4.6), because

r(,, n uo c r(", n IUl) + dB] c r(ut.
Putting the chain of (4.12.), (4.13) and (4.14) together, we obtain

r(,rnxocr(I(,r)+r,68
whenever ,1, u? € V0, with 6 = fulur - rr?. In other words.

l(D, n-Y0 c f(r, +,r1kq- uzB for all I,r, rr € v0.

This being true for ce ain neighborhoods y0 of t and & of i, we conclude that f is
pseudo-Lipschitzian at (r, t). I

Remark 4.2. The proof of theorem 4.1 also yields an estimate for t}le modulus ,4 in the
pseudo-Lipschitziar property of f at (t,t))^=AIk will work for some sufficiently small
neighborhood y x -Y of (t, i) if ,trr works locaily for l0 at each (t, t) with , € A(t,t), and
,L works locally for Ir at each (r,:t) wit}l te A(r,;).

This sort of estimate could be specialized to the various corollaries that follow.

CoRoLLARy ,{.3. Let I(r) : fr(c(I])), where G:Rd=RP js a locaily Lipschitzian function
and I1:Rp=R'is a multifunction of closed graph. Then f is of closed graph, and f is
pseudo-Lipschitzian at (t, j.) whenever ft is pseudo'Lipschitziar at (G(t), t).
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Prcof. Let la(i) = {G(o)} in theorem 4.1. One has A(u,.r) - G(r) if G(u) efi'(x),
A(u, i) = 0 otherwise, so A is locally bounded. I

CoRoLLARy 4.4. f-et f(u) = c(f(u)), where f0:Rr' = Rp is a multifunction of closed graph
and G:Rp+R' is a locally Lipschitzian function. Suppose that the multifunclion
A:R'x R'3 RP defined by

l(u, r) = {u e r(u) c(a):.r}
is locally bounded. Then f is ofclosed graph, and f is pseudo-Lipschitzian at (t, i) whenever
f0 is pseudo-Lipschitzian at every (n, f,) with n € A(n, i).

Proaf. Let r{D) = Ic(,)} in theorem 4.1. I
CoRoLLARy 4.5. Let f(u) : cf(r) + d, where f0:Rd 3 R'is a multifunction ofclosed graph,
.v€R, d+0, and &€R^. Then f is of closed graph, and f is pseudo-Lipschitzian
at (6,ei+d) whenever l0 is pseudo,Lipschitziafl at (r,t). (A special case of tlis is
f=-fo.)

Prcof. bt G(u): du + d in corollary4.4. .

CoRoLLARY 4.6. Let

r(r,) : {r c R, 3y with (r,y) € I(u)},
where Io:Rd= R'x R'is of closed graph and such that the multjfunction A:R, x R, 

= R-
defined by

^(u,i) 
= t)'l(r,)) € r(.,))

is locally bounded ever).lvhere. Then I is of closed graph.
If i€f(t) and f0 is pseudo-Lipschitzian at (r,j,i) for every i€A(n,j), ihen f is

pseudo-Lipschitzian at (n, i).

Proo, One has r = G(I(u)) for c(i,)) : -r. Apply coroltary 4.4. I
THEoREM 4.7. L€t

r(u) = (r(u), r,(u)) c n" x n",
where lr:R'=R'1 and fr:Rd3 R i are multifunctions of closed graph. Then f is of closed
graph.

If 11 is pseudo-Lipschitzian at (6,i) and I? is pseudo-Lipschitzian at (n,tr, then f is
pseudo-Lipschitzian at (r, ir, i2).

P/ool. The closedness of gph I is elernentary to verify. The pseudo-Lipschitzian property
too follows right ftom the definition. I

TITEoREM 4.8. Let

r(,) = r(r) - rr(u) - {a1 - },1}, € r(u), r, € r,(r)},
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where Ir:RdiR' ard l2rRd=R" are of closed graph and such that the nultifunction
A:R'= R' defined by

A(.,)=r(r)nrr(r)
is locally bounded everlwhere. Then f is of closed graph.

I'.ref('). a.rd,ore!er) i af \n, "rdi af(r) wi,h ir i_ ione ha. f, pseLido-

Lipschitzian at (t,it and l, pseudo-Lipschitzian at (t,tr), then I is pseudo-Lipschitzian at
(r, j).

Proof.Letr(,)=(rr(r).r,('))andc(r,,r,=.r,.r,.rhenr(u):c(I(.,)).rheresult
then follows from corollary,l.4 and theorcm 4.8. I

CoRoLLARY 4.9. Let l(r) = f(u) + C where f1:R'=R'is of closed graph and C C R" is a
compact set (for instance, C - eB). Then f is of closed graph. If Ir is pseudo-Lipschitzian at
(t, it, then f is pseudo'Lipschitzian at (r, i) for every i e [i1 + q.

Prcof. Let f7(u) = C in theoiem 4.8. I

CoRoLLARy 4.10. Let f(D) =f(r)+G(r) where lr:Rd3R'is of closed graph and
G:Rd-R'is a locaily Lipschitzian tunction. Then f is of ciosed graph. If lr is pseudo-
Lipschitzian ar (t, t), then I is pseudo-Lipschitzian ar (r, i + G(r)).

Prcof. Let f2(r,) = IG(u)] in theorem ,1.8. I

TITEoREM 4.11. Let
r(,) : ui=1r(r),

where IirR! = R" is of closed graph for i: 1, . . .,4. Then f is of closed graph. If i € f(r)
and fi is pseudo-Lipschitzian at (n,i) for every i such rhat i€|,(t), ther I is pseudo-
Lipschitzian at (t, t).

Prool. This can easily enough be proved from the definitions, but the pseudo-Lipschitzian
property also follows at once from the distance function formula

dr(u,r) = mini=,dr(u,x)

and the characterization in iheorem 2.3. I

THEoREM 4.12. Let
r(u) - n:=rr{r),

where frrRd=R" is of closed graph for i:1,...,/. Then f is of closed graph. One has f
pseudo-Lipschitzian at (t, i) if the normal cones

N' = N*r,1(ti,i),i = 1,..., r,

have the following property: the only choice of vectors (.:i, 1', € Ni such thal:i=1lri =0 is
(zr, te) =(0,0) for i = 1, . . ., z.
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Proof. Let Di= gph fi, D - gph f, and observe thar D = n i- rDr. By ht?othesis each Di
is closed, so D is closed. Thus I is of closed graph. One has

vD(r.r)c>N

by [13, corollary 8.1.i] if the only choice of vectors (zr, l,1,) e N, such rhat :i=r(z,, w, =
(0, O) is (zrw) = (0, O) tor / : 1, . . ., /, Our assumption on the cones N, ensures this and also
that the cone >i=rNi contains no vector of lhe form (2,0) with z + 0. Then f is pseudo-
Lipschitzian at (r, i) by corollary 3.4. I

CoRoLLARY 4.13. Let
r(L') = r,(') n c,

where I1-:Rd3 R" is of closed gmph and C C R. is a closed ser. Ler j € t(r) and suppose
that the following condition on nomal cones holds: lhe o y vector

(2, u) e \ar(a, i) wirh -1, € Nc(i)

is (2, n) = (0, 0). Then I is pseudo-Lipschirzian at (t, j) (and of closed graph).

Proof. In theotem 4.12 take /:2, Ir(r) = c. I

THEoRIM 4.14. Let
f{rr-frr.U)= U fr(r. rr

where lr:Rd x Rp =R'is ofclosed gtaph and U C R? isctosed. Suppose ihat lhe multifunction
a rRa x R" = RP defined bv

^(1,,r) 
= {u e U, € r(,,ll)}

is locaily bounded ever).lvhere. Then I is of closed graph.
lf t € Rd and i € l(r) are such rhat rr is pseudo-Lipsahitzian ar (r, r,r) for all r e A(r, j),

then I is pseudo-Lipschitzian at (n, i).

P/ool. Represent I as fr o I0, where fo:Rd=Rd x Rp is defined by t0(0) = (u, U), and
appiy lheorem 4.1. The muitiJunction

(D,.r)+ I0(,) n ri(r) : {(t), u)lu €u, x e_r/.D,u)),

whose local boundedness is required in theorem 4.1, is locallv bounded by our assumption
on ihe multifunction A defined here. I

CoRoirARY 4.15. Let

t(a) = G(0, L\ = {G{u, u)lu e u \,
where G:Rd x Rp+ R'is a locally Lipschitzian function and U C Rp is a ronempty closed set.
Suppose that the multifunction A:nd x R'J RP deined by

L(v,x) = {u€U G(u,u) =x}



is locally bounded ever'.rhere (as is true in particular if U is bounded, in which I case its€lf
is locally bounded). Then I is of closed graph, and evertlvhere sub-Lipschitzian (actually
Lipschitziar if U is bounded).

Ptoof.'lakeft(v,u) = {G(0, ll)} in theorem 4.15 and use theorem 2.2. I

TTiEoREM 4.16. Let

f(u) = s61'111 (convexhuil),

where I0:Rr3R'is locally bounded and of closed graph. Then f is locally bounded and of
closed gfaph. If l0 is Lipschitzian at a point ,, then so is f.

P/oof-LetUbelhe.ompactsetinR'+rconsistingofthevectorsu=(u6,11,...,n") such
that ui 

= 
0, >i=ori =1 By Carath6odory's theorem on convex hulls one has

* r,1a = {i,,,, ', e r,(,), , - u},

so that I(r) : fr(u, U) for

rr(u. r t: = ) a,fotu t.

Furthermore Ir = Go f2, where

Gtxa.x,. ...x^.u,ju . .,),-2,,,.

r2(I,,,) : = (ro(r,),. . ., fo(,), u).

Clearly f2 inhedts closedness and local boundedness from f0, and f2 is Lipschitzian at n if
lo is (cf. theorem 4.16 and the characterizations in Section 2). The same ahen follo\r's for
fr, because G is a locally LipschitziaD function (cf. corollary 4.2). Coroliary 4.15 now gives
the de.ired conclusion. I

CoRoLLARY 4.17. Let

r(u) = co{s(u),...,g{u)},

where the functions 8i:Rr+ R' are locally Lipschitzian. Then f is a locally bounded mulli-
function of closed graph, and I is everywhere Lipschitzian.

, Ptoof. Let fo(u) = {S(.,)} in theorem 4.16. The multitunction fo is locally bounded, and- by theore. 4.1I it is of closed graph and everl here Lipschitzian. (The latter also follows
easily from th6 definitions.) I
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