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AESTRACT

The motivations of nonsmooth analysis are discussed. Applications are given to
the sensitivity of optimal values, the interpretation of Lagrange multipliers, and the

stability of conslraint systems under perturbation.

INTRODUCTION

It has been recognized for some time that the tools of classical analysis are not
adequate for a satisfactory treatment of problems of optimization. These tools work
for the characterization of locally optimal solutions to problems where a smooth (i.e.
continuously differentiable) function is minimized or maximized subject to finitely many
smooth equality constraints. They also serve in the study of perturbations of such con-
straints, namely through the implicit function theorem and its consequences. As soon
as inequality consiraints are encountered, however, they begin to fail. One-sided
derivalive conditions start to replace two-sided conditions. Tangent cones replace
tangent subspaces. Convexity and convexification emerge as more natural than linear-

ity and linearization.

In problems where inequality constraints actually predominate over equations, as
is typical in most modern applications of oplimization, a qualitative change occurs. No
longer is there any simple way of recognizing which constraints are active in a neigh-
borhood of a given point of the feasible set, such as there would be if the set were a
cube or simplex, say. The boundary of the feasible set defies easy description and may
best be thought of as a nonsmooth hypersurface. It does not take long to realize too
that the graphs of many of the objective functions which naturally arise are nonsmooth

in a similar way. This is the motivation for much of the effort that has gone into
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introducing and developing various concepts of "tangent cone”, "normal cone’, "direc-
tional derivative’ and ""generalized gradient'. These concepts have changed the face
of optimization theory and given birth to a new subject, nonsmooth analysis, which is

affecting other areas of mathemalics as well.

An important aim of nonsmooth analysis is the formulation of generalized neces-
sary or sufficient conditions for optimality. This in turn receives impetus from
research in numerical methods of optimization that involve nonsmcooth functions gen-
erated by decomposilion, exact penalty representations, and the like. The idea essen-
tiaily is to provide tests thal either establish (near) optimality (perhaps stationarity)
of the point already attained or generate a feasible direction of improvement for mov-

ing to a better point.

Nonsmooth analysis also has cther important aims, however, which shouid not be
overlooked. These include the study of sensitivity and stability with respect to pertur-
bations of objective and constraints. -"In an optimization problem that depends on a
parameter vector v, how do variations in v affect the optimal value, the optimal solu-

tion set, and the feasible solution set? Can anything be said about rates of change?

This is where Lipschitzian properties take on special significance. They are
intermediate between continuity and differentiability and correspond to bounds on
possible rates of change, rather than rates themselves, which may not exist, at least in
the classical sense. Like convexity properties they can be passed along through vari-
ous constructions where true differentiability, even if one-sided, would be lost. Furth-
ermore, they can be formulated in geometric terms that suit the study multifunctions
(set-valued mappings), a subject of great importance in optimization theory but for

which classical notions are almost entirely lacking.

[t is in this light that the directional derivatives and subgradients introduced by
F.H. Clarke [1] [2] should be judged. Clarke’s theory emphasizes Lipschitzian proper-
ties and sturdily combines convex analysis and classical smooth analysis in a singie
framework. At the present stage of development, thanks to the efforts of many indivi-
duals, it has already had strong effects on almost every area of optimization, from non-
linear programming to the calculus of variations, and also on mathematical questions

beyond the domain of optimization per se.

This is not te say, however, that Clarke’s derivatives and subgradients are the
only ones that henceforth need to be considered. Special situations certainly do
require special insights. In particular, there are cases where special one-sided first
and second derivatives that are more finely tuned than Clarke's are worth introducing.
Significant and useful results can be obtained in such manner. But such results are

likely Lo be relatively limited in scope.



57

The power and generalily of the kind of nonsmooth analysis that is based on

Clarke’s ldeas can be credited to the following features, in summary:

(a) Applicability to a huge class of functions and other objects, such as sets and

muitifunctions.
(b) Emphasis on geometric constructions and interpretations.

(c) Reduction to classical analysis in the presence of smoothness and to convex

analysis in the presence of convexity.
(d) Unified formulation of optimality conditions for a wide variety of problems.

(e) Comprehensive calculus of subgradients and normal vectors which makes pos-

sible an effective specialization to particular cases.

(f) Coverage of sensitivity and stability questions and their relationship to
Lagrange multipliers.

(2) Focus on local properties of a "uniform” character, which are less likely to
be upset by slight perturbations, for instance in the study of dirsctions of

descent.

(h) Versatility in infinite as well as finite-dimensional spaces and in treating the
integral functionals and differential inclusions that arise in optimal control,

stochastic programming, and elsewhers.

In this paper we aim at putting this theory in a natural perspective, first by dis-
cussing its foundations in analysis and geometry and the way that Lipschitzian proper-
 ties come to occupy the stage. Then we survey the results that have been obtained
recently on sensitivity and stability. Such results are not yet familiar to many
researchers who concentrate on optimality conditions and their use in algorithms.
Nevertheless they say much that bears on numerical matters, and they demonstrate

well the sort of challenge that nonsmooth analysis is now able to meet.

1. ORIGINS OF SUBGRADIENT IDEAS

In order to gain a foothold on Lhis new territory, it is best to begin by thinking
about functions f: R™ —R that are not necessarily smooth but have strong one-sided

directional derivatives in the sense of

£Uzh) = lim LEFRD) —F(z) (1.1)
h,"t?ﬂ, i

Examples are (finite) convex functions [3] and subsmooth functions, the latter being

by definition representable locally as
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J(z) =max f.(z). (1.2)
5 €S

where S is a compact space (e.g., a finite, discrete index set) and {f s €S is a family
of smooth functions whose values and derivatives depend continuously on s and z
jointly. Subsmooth functions were introduced in [4]; all smooth functions and all finite

convex functions on R™ are in particular subsmooth.

The formula given here for f'(x;h) differs from the more common one in the
literature, where the limit hA’—*A is omitted (weak one-sided directional derivative).
It corresponds in spirit to true (strong) differentiability rather than weak differentia-
bility. Indeed, under the assumption that f'(z,kh) exists for all A (as in (1.1)), one has
s differentiable at z if and only if f'(z;k) is linear in A. Then the one-sided limit £.0

is actually realizable as a two-sided limit ¢ —0.

The classical concept of grg,dt‘.e‘r;.t arises from the duality between linear functions
on R™ and vectors in R™. To say that f’(z;h) is linear in h is to say that there is a

vector ¥y € R™ with

S'(z:;h) =yh forall hA. (1.3)

This ¥ is called the gradient of f at z and is denoted by V/ (z).

In a similar way the modern concept of subgradient arises from the duality
between sublinear functions on R™ and convex subsets in R™. A function [ is said to be

sublinear if it satisfles
LAGh g+ + Aghy) S A l(Ry) +..+ Apl(hy) (1.4)

when A 20, " A, 20.

It is known from convex analysis (3, §13] that the finite sublinear functions I on R™ are
precisely the support functions of the nonempty compact subsets ¥ of R™: each [

corresponds Lo a unique ¥ by the formula

[(h) =max y-hA forall A. (1.5)
yeY

Linearity can be identified with the case where Y consists of just a single vector y.

It turns out that when f is convex, and more generally when f ls subsmooth [4],
the derivative f’(z ,A) is always sublinear in A. Hence there is a nonempty compact

subset Y of R™, uniquely determined, such that

J'(z:h) =rr;a:_:1:’ y'h forall A. (1.8)
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This set Y is denoted by 8f(z), and its elements y are called subgradients of f at z.

With respect to any local representation (1.4), one has

Y =cofVf(z) [s €S, |, where S, = argmae.:sc‘ I iz) a.mn
=

(co = convex hull), but the set Y = §f(z) is of course by its definition independent of

the representation used.

In the case of f convex [3, §23] one can define subgradients at z equivalently as

the vectors ¢ such that

J(z)Y=2sf(z) +y(z'—=z) forall z'. (1.8)

For f subsmooth this generalizes to

L) zsf(z) +y(z' =) +o(lz~2 D), (1.9)

but caution must be exercised here about further generalization to functions f that
are not subsmooth. Although the vectors y satisfying (1.9) do always form a closed
convex sel Y at =, regardless of the nature of f, this set Y does not yield an extension
of formula (1.6), nor does it correspond in general to a robust concept of directional
derivative that can be used as a substitute for f'(z;h) in (1.6). For a number of years,

this is where subgradient theory came to a halt.

A way around the Impasse was discovered by Clarke in his thesis in 1973. Clarke
took up the study of functions f: R™ » R that are locally Lipschitzian in the sense of

the difference quotient

i@ —r@Elslzr—z (1.10)

being bounded on some neighborhood of each point z. This class of functions is of
intrinsic value for several reasons. First, it includes all subsmooth functions and con-
sequently all smooth functions and all finite convex functions; it also includes all finite
concave functions and all finite saddle functions (which are convex in one vector argu-
ment and concave in another; see [3, §35]). Second, it is preserved under taking linear
combinations, pointwise maxima and minima of collections of functions (with certain
mild assumptions), integration and other operations of obvious importance in optimiza-
tion. Third, it exhibits properties that are closely related to differentiability. The
local boundedness of the difference quotient (1.10) is such a properiy itself. In fact
when f is locally Lipschitzian, the gradient Vs (z) exists for all but a negligible set of

points z in R™ (the classical theorem of Rademacher, see [5]).
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Clarke discovered that when S is locally Lipschitzian, the special derivative

expression
Po(z:h) = lim sup LEFER) =S (=) (1.11)
L0 t
h'=h
I'~z

is always a finite sublinear function of A. Hence there exists a unique nonempty com-

pact convex set Y such that

S(z:h) =max y'hA forall A. (1.12)
yEeY
Moreover
S(zih)=s"(z:h) forall h when f is subsmooth. (1.13)

Thus in denoting this set Y by 81 (z) and calling its elements subgradients, one arrives
at a natural extension of nonsmooth analysis to the class of all locally Lipschitzian
functions. Many powerful formulas and rules have been established for calculating or
estimating 4/ (z) in this broad context, but {t is not our aim to go into them hers; see
[R] and [6], for instance,

It should be mentioned that Clarke himself did not incorporate the limit A’ —h
into the definition of f°(x;h), but because of the Lipschitzian property the value
obtained for f °(z;h) is the same elther way, By writing the formula with A’ —h one is
able to see more clearly the relationship between f°(z;h) and f’'(z:A) and also to
prepare the ground for further extensions to functions f that are merely lower sem-
icontinuous rather than Lipschitzian. (For such functions one writes z’ —yz in place
of ' — z Lo indicate that z is to be approached by z’ only in such a way that
S(z’) — f(z). More will be said about this later.)

Some people, having gone along with the developments up until this point, begin to
balk at the "coarse” nature of the Clarke derivative 7 °(z;h) in certain cases where f
is nof subsmooth and nevertheless is being minimized. For example, |f
f(z)=-lzl +|2z® one has *0;h) =lh | whereas f'(0;h) exists too but
LOh) = ~la |l Thus J' reveals that every A #0 gives a direction of descent from 0,
in the sense of yielding f’'(0;h)<0, but f* reveals no such thing, Inasmuch as
J*(O;h) > 0. Because of this it is feared that f*® does not embody as much information
as /' and therefore may not be entirely suitable for the statement of necessary condi-

tions for a minimum, let alone for employment in algorithms of descent.



61

Clearly f ° cannot replace /' in every situation where the two may differ, nor has
this ever been suggested. But even in face of this caveal there are arguments to be
made in favor of f° that may help to illuminate its nature and the supporting motiva-
tion. The Clarke derivative f° is oriented towards minimization problems, in contrast
to f’, which is neutral between minimization and maximization. In addition, it
emphasizes a certain uniformity. A vector A with f°(x;A) <0 provides a descent
direction in a strong stable sense: there is an &€ >0 such that for all £’ near =, A’

near A, and positive { near 0, one has

S(z'+th') < f(z') —te.

A vector A with f'(x;A) <0, on the other hand, provides descent only from z: at
points z’ arbitrarily near to z it may give a direction of ascent instead. This instabil-
ity is not without numerical consequences, since £ might be replaced by z’ due to

round-off.

An algorithm that reliled on finding an A with f'(z;h) <0 In cases where
S°(z;h) 20 for all h (such an z is said to be substationary point) seems unlikely to
be very robust. Anyway, it must be realized that in executing a method of descent
there is very little chance of actually arriving along the way at a point z that is subs-
tationary but not a local minimizer. One is easily convinced from examples that such a
mishap can only be the consequence of an unfortunate choice of the starting point and
disappears under the slightest perturbation. The situation resembles that of cycling in
the simplex method.

Furthermore it must be understood that because of the orientation of the defini-
tion of f° towards minimization, there is no justice in holding the notion of substa-
tionarity up to any interpretation other than the following: a substationary point is
either a point where a local minimum is attained or one where progress towards a
local minimum i{s "confused”. Sometimes, for instance, one hears cited as a failing of f°
that £’ is able to distinguish belween a local minimum and a local maximum in having
f'(z;R) 20 for all A in the first case, but f’(z;A) <0 for all A in the second, whereas
S (z;h) 20 for all A in both cases. But this is unfair. A one-sided orientation in
nonsmooth analysis is merely a reflection of the fact that in virtually all applications
of optimization, there is unambiguous interest in either maximization or minimization,

but not both. For theoretical purposes it might as well be minimization.

Certainly the idea that a first-order concept of derivative, such as we are dealing
with here, is obliged to provide conditions that distinguish effectively between a local
minimum and a local maximum is out of line for other reasons. Classical analysis makes

no attempt in that direction, without second derivatives. Presumably, second
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derivative concepts in nonsmooth analysis will eventually furnish the appropriate dis-
tinctions, ¢f. Chaney [7].

A final note on the question of f° versus f' is the reminder that f°(z;h) is
defined for any locally Lipschitzian function f and even more generally, whereas

Jf’(z;h) is only defined for functions f/ in a narrower class.

An important goal of nonsmooth analysis is not only to make full use of Lipschitz
continuity when it is present, but also to provide criteria for Lipschitz continuity in
cases where it cannot be known a priori, along with corresponding estimates for the
local Lipschitz constant. For this purpose, it is necessary to extend subgradient
theory to functions that might not be locally Lipschitzian or even continuous every-
where, but merely lower semicontinuous. Fundamental examples of such functions in
optimization are the so-called marginal functions, which give the minimum value in a
parameterized problem as a function of the parameters. Such functions can even take
on =+,

Experience with convex analysis and its applications shows further the desirabil-
ity of being able to treat the indicator functions of sets, which play an essential role in
the passage between analysis and geometry,

In fact, the ideas that have been described so far can be extended in a powerful,
consistent manner Lo the class of all lower semicontinuous functions f: R™ — R, where
R = [=oe,00] (extended real number system). There are two complementary ways of
doing this, with the same result. In the continuation of the analytic approach we have
been following until now, a more subtle directional derivative formula

fNz:h) = lim [llm sup[ y LLE¥A)7(2) ]] (1.14)

£40 t40 [h'-hl=ze 5
:’*;2

is introduced and shown to agree with f°(z:h) whenever f is locally Lipschitzian and
indeed whenever f°(z;h) (in the extended definition with =z’ — 7. as mentioned ear-
lier) is not +e=. Moreover f '(z:k) is proved always to be a lower semicontinuous, sub-
linear function of A (extended-real-valued). From convex analysis, then, it follows
that either f'(z;0) = —e or there is a nonempty closed convex set Y cR™, uniquely

determined, with

ri(z:n) =s;tg'y'h for all A. (1.15)

This is the approach followed in Rockafellar [B], [9]. One then arrives at the
corresponding geometric concepts by taking 7 to be the indicator 6(; of a closed set C,
For any z € C, the function A b dé(z:h) is itself the indicator of a certain closed set
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Tq(z) which happens always to be a convex cone; this is the Clarke tangent cone to C

at £. The subgradient set

Ne(z) = 86p(z), (1.16)

on the other hand, is a closed convex set too, the Clarke normal cone to C to z. The

two cones are polar to each other:

No(z) = To(x)®, Tolz) = Ne(z)" (1.17)

In a more geometric approach to the desired extension, the tangent cone To(z)
and normal cone Np(z) can first be defined in a direct manner that accords with the
polarity relations (1.16). Then for an arbitrary lower semicontinuous function
f: R® =R and point z at which f is finite, one can focus on Tp(z.f(2)) and
Np(z.f(z)), where E is the epigraph of f (a closed subset of R™*!). The cone
Tg(z.f(z)) is itself the epigraph of a certain function, namely the subderivative A &
7%z :h), whereas the cone Ng(z.f(z)) provides the subgradients:

af (z) = fyerR™ | (y,-1) € Ng(z.f (=)} (1.18)

The polarity between Tp(z,f (z)) and Ng(z.f (z)) yields the subderivative-subgradient
relation (1.14). (Clarke’s original extension of 8f to lower semicontinuous functions
[1] followed this geometric approach in defining normal cones directly and then invok-~
ing (1.17) as a definition for subgradients. He did not focus much on tangent cones,
however, or pursue the idea that Tg(z .f (z)) might correspond to a related concept of

directional derivative.)

The details of these equivalent forms of extension need not occupy us here. The
main thing to understand is that they yield a basic criterion for Lipschitzian con-
tinuity, as follows.

THEOREM 1 (Rockafellar [10]). For a lower semicontinuous funciion f: R" —R
actually to be Lipschitzian on some neighborhood of the point z, it is syfficient
(as well as necessary) that the subgradient set 87 (z) be nonempty and bounded.
Then one has

lim sup s r@El oL, [yl (1.19)

¢ a1 lz" =zt yedf(z)
xf"z
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This criterion can be applied without exact knowledge of 8f(z) but only an esti-
mate that ¢ # 87(z) C Y for some set Y. If Y Is bounded, one may conclude that f is
locally Lipschitzian around z. If it is known that ly <A for all Yy €Y, one has from

(1.19)

if(z") —f(z')|sk{z”-:'i for z' and £’ near =z.

2. LAGRANGE MULTIPLIERS AND SENSITIVITY

Many ways have been found for deriving optimality conditions for problems with
constraints, but not all of them provide full information about the Lagrange multipliers
that are obtained. The test of a good method is that it should lead to some sort of
interpretation of the multiplier vectors in terms of sensitivity or generalized rates of
change of the optimal value in the broblem_ with respect to perturbations. Until quite
recently, a satisfactory interpretation along such lines was available only for convex
programming and special cases of smooth nonlinear programming. Now, however, there
are general results that apply to all kinds of problems, at least in R™. These results
demonstrate well the power of the new nonsmooth analysis and are not matched by any-

thing achieved by other techniques.

Let us first consider a nonlinear programming problem in its canonical parameter-
fzation:
(Py) minimize g{z) subjectto z€ X and

gi(z)+u; <0 for i=1,..,s,
=0 for i=s+i,...m,

where ¢.¢4,....9y are locally Lipschitzian functions on R™ and X is a closed subset of
R™; the u,’s are parameters and form a vector u €R™. By analogy with what is known

in particular cases of (P, ), one can formulate the potential optimalily condilion on a

feasible solution z, namely that
0 € 8g(z) + 2, MV 994 (2) + Nx(z) with (2.1)

¥ 20 and yy[g;(z)+uy] =0 for i=l,....s,

and a corresponding constraint gualification at z:
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the only vector ¥ =(y4, . . . , ¥y ) satisfying the version (2.2)

of (2.1) in which the term 8g(z) is omitted is ¥ =0.

In smooth programming, where the functions ¢,¢;,...,gy, are all continuously
differentiable and there is no abstract constraint z € X, the first relation in (2.1)

reduces to the gradient equation

0=Yg(z) + LMy Yoy (2),

and one gets the classical Kuhn-Tucker conditions. The constraint qualification is then
equivalent (by duality) to the well known one of Mangasarian and Fromovitz.

In conver programming, where g.g4....¢s are (finite) convex functions,
Os 41,0 are affine, and X is a convex set, condition (2.1) is always sufficient for
optimality. Under the constraint qualification (2.2), which in the absence of equality
constraints reduces to the Slater condition, it is also necessary for cptimality.

For the general case of (P, ) one has the following rule about necessity.

THEOREM 2 (Clarke [11]). Suppose z is a locally optimal solution to (P,) at
which the constraint qualification (2.2) is satisfied. Then there is a muliiplier
vector y such that the optimality condition (2.1) is satigfied.

This is not the sharpest result that may be stated, although it is perhaps the sim-
plest. Clarke's paper [11] puts a potentially smaller set in place of Ny(z) and provides
along side of (2.2) a less stringent constraint qualification in terms of "calmness"” of
(P,) with respect to perturbations of u. Hiriart-Urruty [12] and Rockafellar [13]
contribute some alternative ways of writing the subgradient relations. For our pur-
poses here, let it suffice to mention that Theorem 2 remains true when the optimality

condition (2.1) is given in the slightly sharper and more elegant form:

0 € 3g(z) + y8G(z) + Ny(z) with Yy N (CG(z)+ u), (2.3)

where G(z) = (g4(2).....0n(z)) and

€ = fweR™ lw,;<0 for i=1,...s and w;=0 for i=s+1i,...m}. (2.4)

The notation 8G(z) refers to Clarke’s generalized Jacobian [2] for the mapping G, one

has
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v 0G(z) = (L v 0 (). (2.5)

Theorem 2 has the shining virtue of combining the necessary conditions for smocth
programming and the ones for convex programming into a single statement. Moreover
it covers subsmooth programming and much more, and it allows for an abstract con-
straint in the form of z € X for an arbitrary closed set X. Formulas for calculating
the normal cone Nx(z) in particular cases can then be used to achieve additional spe-
clalizations.

What Theorem 2 does not do is provide any interpretation for the multipliers y,.
In order to arrive at such an interpretation, it is necessary to look more closely at the

properties of the marginal function

p(u) = optimal value (infimum) in(P, ). | (2.6)
This is an extended-real-valued function on R™ which is lower semiéonunuous when the
following mild inf-boundedness condition is fulfilled:

Foreach u €R™,a€R and £ >0, thesetofall z € X 2.7)

satisfying g(z) s a, gy(z) S 4 ;+¢ for i=1,....s, and

U, -¢sg(z) sU;+z for t=s+1,...,m, isbounded in R".

This condition also implies that for each u with p(u) < « (i.e. with the constraints of
(P,) consistent), the set of all (globally) optimal solutions to (7, ) is nonempty and com-

pact.
In order to state the main general resuit, we let

Y(u) = set of all multiplier vectors ¥ that satisfy (2.1) (2.8)

for some optimal solution z to (P,).

THEOREM 3 (Rockafellar [13]). Suppose the inf-boundedness condition (2.7) is
satisfied. Let u be such that the constraints of (P,) are consistent and every
eptimal solution z to (P,) satisfies the constraint qualification (2.2). Then 9p(u)
is a nonemply compact set with

Op(u) Cco Y(u) and ext dp(u) c¥Y(u). (2.9)
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Gwhere "ext' denoles exireme poimnls) In particular p is locally Lipschitzian

around u with

p{uh)s sup yh forall A (2.10)
vEY(u)

Indeed, any A salisfying f'y l<a Jor all y €Y(u) serves as a local Lipschitz con-

stant:

lp(uy—p@)!sAlu"—u'l when u’ and u” are near u. (2.11)

For smooth programming, this result was first proved by Gauvin [14]. He demon-
strated further that when (F,) has a unique optimal solution z, for which there is a
unique multiplier vector v, so that Y(u) = {y |, then actually p is differentiable at u
with Vp(u) = y. For convex progrﬁmmlng one knows (see [3]) that 8p(u)=Y(u)
always (under our inf-boundedness assumption) and consequently

p'(uh)= max y-h. (2.12)
ye¥{u)

Minimax formulas that give p’(u;A) in certain cases of smooth programming where
Y(u) is not just a singleton can be for example found in Démyanov and Malozemov [15]
and Rockafellar [16]. Aside from such special cases there are no formulas known for
p’(u;h). Nevertheless, Theorem 3 does provide an estimate, because
p(uih) S p*(u;h) whenever p’(u;h) exists. (It is interesting to note in this connec-
tion that because p is Lipschitzian around u by Theorem 3, it is actually differentiable

almost everywhere around u by Rademacher’s theorem.)

Theorem 3 has recently been broadened in [6] to include more general kinds of

perturbations. Consider the parameterized problem

(@) minimize f(v.z) over all z satisfying
Flvz)eCand (v,z) €D,

where v s a parameter vector in Rd. the functions f: R% X R™ —R and
F: R® x R™ —R™ are locally Lipschitzian, and the sets C CR™ and D c R®xR™ are
closed. Here C could be the cone in (2.4), in which event the constraint F(v,z) € C

would reduce to

Si(v,2)s0 for i=1,..s,
=0 for i=g+i,...m,

but this choice of C is not required. The condition (v,z) € D may equivalently be
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written as z € ['(v), where I is the closed multifunction whose graph is D. It
represents therefore an abstract constraint that can vary with v. A fixed abstract
constraint z € X corresponds to I'(v)=K, D=R? x k.

In this more general setting the appropriate optimality condition for a feasible
solution z to (@, ) is

(z,0) €df(v.z) + y&F(v,z) + Np(v ,z) (2.13)

for some y and z with ¥ €Ny (F(v,2)),

and the constraint qualification is
the only vector pair (y,z) satisfying the version of (2.13) (2.14)

in which the term 6f(v,z) isomittedis (y,z)=(0,0).

THEOREM 4 (Rockafellar {6, §81). Suppose that z is a locally opilimal solution
to (@) at which the constraint qualification (2.14) is satigfied. Then there is a

multiplier pair (y,z) such that the optimality condition (2.13) is satisfied.

Theorem 4 reduces to the version of Theorem 2 having (2.3) in place of (2.1) when
(@y) is taken to be of the form (il namely when
S (v.z)=g(z), F(v,z)=CG(z)+ v, D=R™ x K (R™=R%), and C is the cone in (2.4).

For the corresponding version of Theorem 3 in terms of the marginal function

g (v) = optimal value in (Q,). (2.15)

we take inf-boundedness to mean:
For each Y eR%, aeR and >0, thesetof all z (2.16)
satisfying for some v with lv—¥ i< ¢
the constraints F(v,z)eC, (v.2)e€D, and
having f(v.z) s a, is bounded in RT",
Again, this property ensures that ¢ is lower semicontinuous, and that for every v for

which the constraints of (@,) are consistent, the set of optimal solutions to (&) is
nonempty and compact. Let
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Z(v) =set of all vectors z that satisfy the multiplier (2.17)
condition (2.13) for some optimal solution

z to (@,) and vector .

THEOREM 5 (Rockafellar [6, 88]). Suppose the inf-boundedness condition (2.16)
is satisfied. Let v be such that the consirainis of (Q,) are consisient and every
optimal solution z to (Q,) satisfies the constraint qualification (2.14). Then 8¢ (v)

is a nonemply compact set with

dg(v)cecoZ(v) and ext 8g(v) cZ(v). (2.18)

In particular g is locally Lipschilzian around v with

g{v:h)= sup z'h forall h. (2.19)
z2e€Z{v)

Any A satisfying PARSY Jorall z € Z(v) serves as a local Lipschitz constant:

‘q(v”)—-q(v'ﬂs}\[u”—v’l when v' and v’ are near v. (2.20)

The generality of the constraint structure in Theorem 5 will make possible in the

next section an application to the study of multifunctions.

3. STABILITY OF CONSTRAINT SYSTEMS

The sensitivilty results that have just been presented are concerned with what
happens to the optimal value in a problem when parameters vary. It turns out, though,
that they can be applied to the study of what happens to the feasible solution set and
the optimal solution set. In order to explain this and indicate the main results, we must
consider the kind of Lipschitzian property that pertains to muitifunctions (set-valued
mappings) and the way that this can be characterized in terms of an associated dis-

tance function.

Let I': R% 3R™ be a closed-valued multifunction, i.e. [(v) is for each v € R? a
closed subset of ™, possibly empty. The motivating examples are, first, ['(v) taken to
be the set of all feasible solutions to the parameterized optimization problem (Q,)
above, and second, ['(v) taken to be the set of all optimal solutions to (@, ).

One says that I'(v) is locally Lipschitzian around v if for all v’ and v” in some
neighborhood of v one has ['(v‘) and I'(v ") nonempty and bounded with
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[(v) =iz |F(v,z) € C and (v,z) €D} (3.4)

Suppose for a given v that [ is locally bounded at v, and that ['(v) is nonempiy
with the constraint qualification (2.14) satisfied by every z € ['(v). Then [ is

locally Lipschitzian around v,

COROLLARY. Let T[:RYIR™ be any multifunction whose graph
D={vz)lz €l(v)] is closed. Suppose for a given v that I' is locally bounded at v,
and that [(v) is nonempty with the following condition satisfied for every z el(v):

the only vector z with (z,0) €Np(v,z) its z =0. (3.5)

Then I is locally Lipschitzian aroﬁ.ud v.

The corollary is just the case of the theorem where the constraint Flv.z)eC is
trivialized. It corresponds closely to a result of Aubin [17], according to which I is
"pseudo-Lipschitzian” relative to the particular pair (v,z) with z € [(v) if

the projection of the tangent cone Tp(v,z) c RExR™ (3.6)

on R% isall of RY,

Conditions (3.5) and (3.6) are equivalent to each other by the duality between Np(v,z)
and Tp(v,z).- The "pseudo-Lipschitzian” property of Aubin, which will not be defined
here, is a suitable localization of Lipschitz continuity which facilitates the treatment of
multifunctions [’ with I'(¥) unbounded, as is highly desirable for other purposes in
optimization theory (for instance the treatment of epigraphs dependent on a parameter
vector v). As a matter of fact, the results in Rockafellar [18] build on this concept of
Aubin and are not limited to locally bounded multifunctions. Only a special case has

been presented in the present paper.

This topic is also connected with interesting ideas that Aubin has pursued towards
a differential theory of multifunctions. Aubin defines the muitifunction whose graph is
the Clarke tangent cone Tp(v.z), where D is the graph of [, to be the derivative of I’
at v relative to the point z € ['(v). In denoting this derivative multifunction by I";,‘,.
we have, because Tp(v,z) is a closed convex cone, that I, z is a closed convez process
from R® to R™ in the sense of convex analysis [3, §39]. Convex processes are very
much akin to linear transformations, and there is quite a convez algebra for them (see
[3, §39]. [18], and [20]). In particular, [, . has an edjoint [',%: R™ 2R?, which turns

out in this case to be the closed convex process with



72

gph 1";": = fw,z) | (z,—w) € Np(v,z)i.

In these terms Aubin's condition (3.6) can be written as dom I‘;._x =R%, whereas the
dual condition (3.5) is T, 3(0) = {0}. The latter is equivalent to [z being locally
bounded at the origin.

There is too much in this vein for us to bring forth here, but the few facts we have
cited may serve to indicate some new directions in which nonsmooth analysis is now
going. We may soon have a highly developed apparatus that can be applied to the study
of all kinds of multifunctions and thereby to subdifferential multifunctions in particu~
lar,

For example, as an aid in the analysis of the stability of optimal solutions and mul-
tiplier vectors in problem (@, ), one can take up the study of the Lipschitzian proper-

ties of the multifunction
[(v)=setof all (z,y,2z) such that z is feasible in (@)

and the optimality condition (2.13) is satisfied.

Some results on such lines are given in Aubin [17] and Rockafellar [21].
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