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ABSTRACT. — Mazximal monotone relations serve as a prototype from
which propertics can be derived for the subdifferential relations associated
with convex functions, saddle functions, and other important classes of
functions in nonsmooth analysis. It is shown that the Clarke tangent
cone at any point of the graph of a maximal monotone relation is actually
a linear subspace. This fact clarifies @ number of issues concerning the
generalized second derivatives of nonsmooth functions.
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REsumE. — Nous déduisons, grace & I'étude de multi-applications mono-
tones maximales, diverses propriétes relatives aux multi-applications sous-
gradients de fonctions convexes, fonctions de selle et autres types de fonc-
tions importants en analyse sous-différentielle. Nous montrons, gu'en
tout point du graphe d’une multi-application monotone maximale, le
cone tangent, au sens de Clarke, est en réalité un sous-espace vectoriel.
Ce fait éclaircit certaines questions concernant les derivées genéralisées
du second ordre de fonctions non-différentiables.
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168 R. T. ROCKATELLAR

1. INTRODUCTION

Generalized theories of differentiation in convex analysis [20] and more
recently the nonsmooth analysis of Clarke [§] associate with an extended-
real-valued function {on R” a multifunction (set-valued mapping) ¢f with
graph in R" x R" The clements of ¢f(x) are called the subgradients or
generalized gradients of ( at x, und they are used in characterizing first-
order derivative properties of f such as are important especially in the
analysis of problems of optimization. Since second-order properties could
be useful in such analysis too, there have been various attempts to extend
the operation of subdillerentiation from [ (o éf No simple approach
has scemed entirely satisfving, however, so this arca of rescarch is still
in a state of lux. The purpose of the present article is to establish a number
of facts that should help to clarify the situation and shed light on the limits
of the possible.

Convex [unctions have been the main focus for work on generalized
second derivatives. The classical theorem of Alexandrov [1] says that a
finite convex function on an open convex set is twice diflercntiable almost
everywhere in the sense of having a second-order Taylor's expansion,
Alexandrov’s proof is couched in a geometric language that is nowadays
hard 1o follow, but the same thing has been proved in terms of the theory
of distributions by Reshetniak [20]. It is closely connected with a result
of Mignot [/6, Theorem 1.3] according to which a maximal monotone
relation is once differentiable almost everywhere on the interior of its
effective domain. Indeed, when f: R" — Ru{ + a0} is convex, lower
semicontinuous and proper (not identically + oc). the subdifferential
relation ¢fis a maximal monotone relation whose effective domain includes
the interior of the convex set dom f= { x| f(x) < o | (sce [20,§24)]).

The drawback with twice dillerentiability in this classical sense, of
course, is that it tells us nothing about the behavior of f at boundary points
of dom f or interior points where f has a « kink ». Such are just the kinds
of points where the minimum of /' may occur, so eflforts have been made
to include them in some generalized definition of second derivative, One
approach, followed by Lemarechal and Nurminski [/5], Auslender [6],
and Hiriart-Urruty [/3] [/4] has been to exploil certain propertics of
the support function ol the ssubdifferential ¢, f(x) of f at x as ¢ | 0. This
idea is motivated by computational considerations, but it only Icads in
general to « approximate » second derivatives, and it is limited in concept
to the case of f convex.

Another approach has been 1o consider tangent cones of various kinds
to the graph of &f and view thesc as the graphs of derivative relations.
This approach has been pioneercd by Aubin [5]. who has observed in
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particular that the Clarke tangent conc at a point of the graph of ¢f 1s
the graph of a closed convex process which. il f is convex, 1s also a monotone
relation. Aubin has used this concept along with surjectivity conditions
to derive Lipschitz stability for the optimal solutions to a parameterized
class ol convex optimization problems in the Fenchel duality format.

The resulis in this paper will show that the kind of derivative multi-
function that occurs in applications ol this second approach is actually
the inverse of a linear transformation. One conclusion to be drawn is
that the cases where this approach works are more special than has been
realized. On the other hand. it will be seen that the properties in such
cases are also much stronger than reported. Furthermore the proposed
dertvatives for éf can be chuaracterized in terms of limits of second-order
dilference quotients for f that can make sense cven at points where f is
not smooth or continuous.

The plan of the paper is to treat first the graphs of maximal monotone
relations and related multifunctions which can be regarded as Lipschitzian
manifolds of a certain sort. The results are then applied to the subdiffe-
rentials of convex functions und tied to second derivative properties of
the functions themselves. So-called lower-C? (strongly subsmooth) func-
tions are covered at the same time. Extensions 1o saddle functions. and
other functions that occur as the Lagrangians in optimization problems
with constraints or perturbations. would be possible, but we do not pursue
them here. duc to lack of space. For simplicity we limit attention to R”,
although most of the results have some infinite-dimensional analogue,
at least in a separable Hilbert space.

2. LIPSCHITZIAN MANIFOLDS

A function F : U — R™ where U is open in R”, is said Lo be Lipschitzian
(with modulus ) if | Flu') — Fl)| £ 1o’ — u| for all w and o’ in U, The
classical thecorem of Rademacher [26] asserts that such a function is dille-
rentiable almost everywhere: for almost every = U there is a lincar trans-
formation A = VI(u) such that

F')=Flu) + Al —w) + ol v —ul).
This obviously says something about the geometry of the graph set
gph F = {(uwv)|ueU, v =Fu}=R"'",

Our aim is to utilize such geometry in the study of certain important
classes of sets that may not at first appear 10 be the graphs of Lipschitzian
functions but can be interpreted as such through a change in coordinates.

The following concept will be useful. A subsct M of RN will be called a
a Lipschitzian manifold if it is locally representable as the graph of a Lips-
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170 R, T. ROCKATFELLAR

chitzian function in the sense that: for every X € M there is an open neigh-
borhood X of ¥ in RN and a one-to-one mapping @ of X onto an open
set in R" x R™ (where n + m = N) with @ and @ ! continuously diffe-
rentiable. such that ®(M ~ X) 1s the graph of some Lipschitzian func-
tion F: U — R™ where U is some open set in R Clearly the @ and F
in this definition are not uniquely determined by M and X, but the integer n is.
It is the dimension of M around x, and it must in fact be the same for all
xeM if M is connected, in which case one can appropriately speak of M
as a Lipschitzian manifold of dimension n in RY. An immediate example
is the following,

ProrosiTioN 2.1, — If F:R" — R™ is locally Lipschitzian, then the
set M = gph F is a Lipschitzian manifold of dimension n in R" x R™,

For a less obvious example that will be of great interest to us later.
we recall the notion of maximal monotonicity. A relation or multifunc-
tion D : R" — R" (assigning to each x € R" a subset D(x) = R” that might
be empty) is said to be moenorone (in the sense of Minty [/7] )if

(X1 =x2). (31 —y2) 20 forall x,x,, and y e Di(x;).  vseDl(x,).
It is maximal monotone if, in addition, its graph -
gph D = {(x, y)| xeR", yeD(x) }

is maximal, or in other words, if there does not exist another monotone
relation E: R" — R® having gph E = gph D, gph E # gph D. (Every
monotone relation can be extended to one which is maximal in (his sense.)

The study of maximal monotone relations is closely connected with
the study of subdifferentials of convex functions [20. § 24], saddle fune-
tions [20, § 35), lower-C* (strongly subsmooth) functions [21] [22] and
other topics of importance in nonsmooth analysis and variational theory.
Right now we need only mention the fact (see Minty [/7]) that if D is
maximal monotone, then the relation P = (I + D)~ ! is actually a single-
valued mapping of all of R" into R"™ which is nonexpansive, 1. ¢. globally
Lipschitzian with modulus y = 1. The following is essentially well known,
although it has not previously been expressed in the language of Lipschitzian
manifolds,

ProrosiTioON 2.2, — If D: R" — R" is maximal monotone, then the
set M = gph D is a Lipschitzian manifold of dimension n in R* x R",

Proof. — Let P=(1+ D) ! as above and also Q=(I1+D ") L
Then P and Q are both Lipschitzian (globally), since D ' as well as D
1s maximal monotone. Furthermore one has

(x. ¥) =(Plu), Qu)) = veD(x}) and x+y=u.
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GEWNERALIZED DIERIVATIVES 171

(Indeed, for any u the vector P(u) is the unique x such that u e (I + D)(x}, 1.
it — x € D(x). Then u — x must correspondingly be the unique y such that
u=yeD Y y),ie u— xmust be Q(u). In particular, P + Q = 1) Consider
now the linear transformation

(D{_’\:: J',] = [Y WX J] ]

which is one-to-one from R” x R” onto R" x R” Trivially, ® and @ !

are differentiable. The image of M = gph D under @ 1s evidently the set
of all pairs (i, v) such that v = P(u) — Qfu). Thus 1t is the graph of the
Lipschitzian function F;R" — R" where F =P — Q = 2P — 1. This
demonstrates that M fits the definition of Lipschilzian manifold. O

CoroLLary 2.3, — Let F:R" — R be a closed proper convex function,
and let &f be the subdifferential of [ in the sense of convex analysis. Then the
set M = gph éf is a Lipschiizian manifold of dimension n in R" x R".

Proof. — The relation D = ¢f is maximal monotone, as is well known;
of [20,§24]. O

COROLLARY 2.4, — Let L:R" x R — R be a closed proper saddle
Sfunction (with Lix, y) convex in x, concave in y), and let 0L be the subdifferen-
tial of L in the sense of convex analvsis. Then the set M = gph L is a Lips-
chiizian manifold of dimension n + m in (R" x R™) x (R" x R™).

Proof. — The definition of éL is explained in [20, § 35] along with the
concepts of « closed » and « proper » that are required here. It is shown
in [24] that the hnear transformation

{_-\-: ¥ W, Z} - (-(? _ll':: W, — Z]

transforms the graph of ¢L into a maximal monotone relation. O
One other case deserves explicit mention. Recall thata functionf : X — R
where X is open in R, is called lower-C* [27] (strongly subsmooth [22])
if cach X £ X has a ncighborhood on which f can be represented as a max
of C? functions:
J(x) = max g{x),
SE

where § is a compact topological space, each g, is twice differentiable
on the neighborhood in question, and the values of g, and its first and
second partial derivatives are continuous jointly in x and s. (Here S could
in particular be a finite set in the discrete topology.)

COROLLARY 2.5. — Let f: X — R be lower-C?, where X is open in R”.,
and let &f be the Clarke subdifferential of f. Then the set M = gph éf is «
Lipschitzian manifold of dimension n in R™
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Proof.— In a local « max representation » of f'such as above. the Hessian
matrices V2g (x)are continuousin sand x, and their eigenvalues are therefore
uniformly bounded below as long as x remains in a compact set. Thus
it is possible locally to [ind a value y > 0 such that when pl is added 1o
all these matrices. one gets only positive definile matrices. The corres-
ponding functions gx) + (/2) | x |* arc then convex locally, and so is
Fle)+ (@'2) x |7 In other words, for any ¥ X there Is a i > 0 such that
the function f(x) + (u/2) | x|* is convex on somc neighborhood of .
Choose a compact convex neighborhood C of ¥ that is contained in a
neighborhood of the type just mentioned, The f(unction

(2.1) hix) = [0 + (/2 x 2 4 el ).
where ¢ is the indicator of C. is then closed proper convex with
(2.2 dhix) = éf{x) + e forall xeint C,

We know from Corollary 1 that gph @l is a Lipschitzian manifold of dimen-
sion n. The linear transformation (x. y) — (x, y + px), which obviously
is invertible, identifies the portion of gph &f lying over int C with the cor-
responding portion of gph dh. This shows that the portion of gph ¢f lying
over int C is a Lipschitzian manifold of dimension n too. O

3. TANGENT SPACES

Fora general closed set M < R*and a point x e M, there are two concepts
of tangent cone that have received much attention in nonsmooth analysis.
The contingent cone (or Bouligand tangent cone) 1s

Ky(X) = limsup 7' [M — %],
[
whereas the Clarke rangent cone 1s
Tu(¥ =liminl ¢ '[M — x].
L0
xieN)—¥
Both cones are always closed. but the Clarke tangent cone is also convex [9]
[23]: morcover
TyulX) = hm inf Ky(x)

xleM)—X
{sce Cornet [//] and Penot [/8]).
The concepts of set limits that are employed here arce the usual ones
(see Salinetti and Wets [27], for instance): for a sequence of nonempty
sets S, in R™ one has

(3.1) limsup S, = { w|3dw,e8S, such that wisacluster pointof { w, } 1,
b S atr &

{3.2) liminf S, = {w|3w, €8, such that wis the limit point of { w, } | .

el o
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GENERALIZED DERIVATIVES 173
(3.3) S=Im$§, if S=limsupS, =liminf§,.
V= V= ¥
The classical concept ol a (lincar) tangent space to M at X refers to a
subspace S of R™ such that actually

(3.4) S=limr '[M —X]

[

(in which case § = Ky{x) in particular). When such a subspace cxists,
we say M is smooth at x. If actually

d
I

{3:.5) S= TIm 1 '[M— x|

L
wishMi—X

(in which case also S = Ty(x)), we say M 1s strictly smooth al X

In applying these concepts to a Lipschitzian manifold, we shall need
to relate them Llo directional differentiability properties of a function
F:U — R" where U is open in R". A vector ke R"™ is the (one-sided)
directional derivative (in the « Hadamard sense ») of F at a point s U
wilh respect o a veetor i R if
» - Fia +th) — Flu)
(3.6) Im —

L0 r

—=h

=k.

One then writes F'(i; h) = k. It is said to be a strict directional derivative
if actually /

. Flu + th) — Flu)
(Bi:7) lim % =ik

i

(el

When Fis Lipschitzian, the limits h — hare superfluous in these formulas:
one can then just take h = I without changing the limit values.

Differentiability of F at v means that F'(ii; I) exists for all TeR” and
is linear as a function of h: the linear transformation h — F'(ii; h) is
what we denote by VE(W). We call F srrictly differentiable at w if the same
holds but F'(: h) is a strict dircctional derivative for all A

ProposiTioN 3.1. — Ler F: U — R where U = R"is open. Letue U
and T = F(u), so that (0, t)e M := gph F. Then

a) M is smooth al (w.T) if and only if F is differentiable at &, in which case
the tangent space to M at (W.T) is S = gph VF(u):
by M is strictly smooth at (u, v) if and only if F is strictly differentiable at u.

Proof. — Thesc facts are classical in nature. Their proof, which is leflt
to the rcader, is just a matter of expressing classical notions in the lan-
guage of set convergence (for which the article of Salinetti and Wets [27]
provides appropriale tools). |
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174 R. T. ROCKAFELLAR

TaeoreM 3.2, — Let F:U — R™ be Lipschitzian, where U < R" is
open. Let we U and T = ¥(m), so that (it, 7)€ M:=gph F. Then the Clarke
tangent cone Tyl T) is not just a cone bur a (linear) subspace of R* x R™,

One has (h. k)€ Ty(@, ) if and only if ¥'(5i; h) = k as a strict directional

derivarive. Moreover this is true if and only if

(3.8) lim VE(uwh =k,

uisl'|—=u
where U' = { ue U | F is differentiable at u }.

Proof. — According to definition (3.2) one has (h, k) e Ty(#@, T) if and
only if for every sequence (u,, »,) — (& 7) in M and every sequence t, | 0,
there is a sequence (h,, k,) — (h k) with (u,, v,) + t,(h,, k,)e M for all v,
Since M = gph F with F continuous, this condition reduces to the following:
For every sequence u, — % in U and every sequence ¢, | 0, there is a
sequence h, — h with

Flu, + t.h,) — Flu,) I

(3.9) -
[,

But F is actually Lipschitzan, so
| Fu, + t,h) — Flu, + 6, | £ A1, | h, — ||
fora certain modulus 4. The limit (3. 9) is therefore unaffected if b, 15 replaced

simply by h. Thus the condition is: for every sequence u, — u in U and
every sequence 1, | 0, one has

Flu, + t,h) — Fl(u,)
I,

= k.

In other words, (h, k)& Ty(u, ¥) if and only if

o Flu+ ) - Fu -
(3.10) 11m;: k.
: tl 0 T

u—u
which again by the Lipschitz property is equivalent to (3.7), the defining
condition for a strict directional derivative. Clearly too, (3.10) can be
writlen as =

. Fu)y—Fu —thy -

im—————— = k.

110 T

u'—=i
where v’ = u + th, u = «' — th, so if (h, k)& Ty(H, ) we must also have
(— h, — k)eTy(u. 7). We already know that Ty(#, ) is a convex cone,
such being true always of the Clarke tangent cone, so we can conclude
from this property that Ty(%, 7) is actually a subspace.

Now we need to verify (3.8) as an alternative criterion for (3,10). One
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direction is easy: if (3. 10) holds, then in particular (3.8) holds, inasmuch as
o . Flu+th) — F)
VEwh=Filu:h=lm ———
Lo i

for ue U’. The opposite direction of argument relies on Rademacher’s
theorem, 1. e. the fact that U’ differs from U by only a set of measure zero,
We can take h # 0 and assume for simplicity that U is a bounded open
cylinder whose axis is in the direction of h: There is an open interval |
containing 0, such that every we U is uniquely of the form w + th for
some (€] and w in the disk D = {weU|w.h=0}. The set of pairs
(w.i)e D x I such that w + rh¢ U’ 15 then of measure zero, and so too
must be its I cross-section for almost cvery w e D (as follows from Fubini's
theorem when applied to the integral expressing the volume of the set
in question). In particular, thercfore, there is a dense subset Dy of D such
that for every we D, one has w + the U’ for almost every e . Then the
set Ug={w+rthlweDg,tel} is dense in U and has the property
that for every ue Ug, the sct of reR with u + the U but u + th¢ U’ is
of measure zero.

Invoking now the assumption that (3. 8) holds, we consider arbitrarye = 0
and choose a corresponding ¢ > 0 such that ¥’ e U when |’ — u| < § and
|k — VFwh| =& when welU’, |u —u|<3d.

Next we choose « > 0 small enough that
|(u+th) —u| <6 when |u—%u|<2 and 12][0,2].

Then the set U = {ueUy| |u — %| < o } is dense in a neighborhood
of i and has the property that for all u € U§, one has for almost every t e [0, «]
that VF(u+th) exists and | £ —VF(u+th)h | £ e The function t — Flu+th)
is itself Lipschitzian and therefore is the integral of its derivative, which
18 VF(u + thh) almost cverywhere when we Uj and £ [0, o], as just scen.
Thus when we Uf and e [0, 2] we have

lidd

| VF(u + thhdr,

W

F(u + th) = Flu) +

so that _
-~ Flu+1th)—Fu 1/ s
g Rt~ - [ [k — VF(u + th Jde
i 0

o

with |k — VF(u 4+ thil | < ¢ in the integrand. It follows that

T F(u + th) — Flu)

_.\. g

1A
o

r

forallie [0, «] and u € U}, hence by continuity of F also for uin the closure
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176 R. T. ROCKATTLLAR

of Uj, L e. whenever |« — #| = « Since ¢ was arbitrary. this demonstrates
that (3.10) must hold. Thus (3.8) does imply (3.10). O

COROLLARY 3.3 Let F:U — R™ where U = R" is ppen. If 1eU
is such that F'(: h) exists as a stricr directional derivarive for every he R,
then T is in fuct stricely differentiable ar .

Proof. — An elementary compactness argument demonstrates that if
the limit in (3.7) exists for every h, then the difference quotients in (3.7)
must be uniformly bounded in norm when i belongs to the unit ball and ¢
belongs to an interval (0, ¢). This implies F is locally Lipschitzian. When F
is Lipschitzian around @, however, Theorem 3.2 is applicable and says
that the set

((h, k)| F'(u; h) = k strictly }

1s @ subspace of R" x R™ A subspace of such special type is the graph ol a
linear transformation from R to R™ if and only if its projection in the first
argument is all of R", |

CoroLLary 3.4, (Clarke [9]). — Ler F:U — R™ bhe Lipschiizian,
where U = R" is open. Let ueU and let U' = [we U|F is differentiable
atu b Then Vs strietly differentiable ar w if and only if u e U and the mapping
VE:u — VFu) is continuous ar u relarive ro U,

Proof. — This follows from Corollary 3.3 and the equivalences in Theo-
rem 3.2 Il

The main consequences of these results for Lipschitzian manifolds will
now be stated.

THEOREM 3.5. Let M be a Lipschitzian manifold of dimension n in R™,
and fet M* be the set of points xe M where M is smoorh, i. e. actually has o
rangent space Sylx). Then

a) M’ differs from M by only a ser of measure zero (with respect to n-dimen-
sional Hausdor(i measure), and for every xeM’ the tangent space Syl(x)
is of dimension n.

h) Ar every XM the Clarke rangent cone TylX) is actually a subspace of
dimension no greater than n, namely

Tulx) = lim inf Sy(x).
XM=

c) M is strictly smooth ar X if and only if Ty(X) has dimension n. This
is triee if and only if X e M’ and the mapping Sy 2 x — Sy(x) is continuous at ¥
relative 1o M.

Proof.— Representing M Jocally as the graph of a Lipschitzian lunction
on an open set in R" as is possible by definition, we get {a) as a conse-
quence of Proposition 3.1 (a). Then (b) follows from Theorem 3.2, while (¢)
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follows from Corollary 3.4 in combination with Proposition 3.1 (b).
(For a sequence of n-dimensional subspaces of R, the « lim inf » cannot

be n-dimensional unless it is actually a « lim ».) O
COROLLARY 3.6. — Let M = gph D, where D R* — R" is a maximal

monotone relation or one of the subdifferential multifunctions considered
in Corollaries 2.3, 2.4 or 2.3. Then the assertions (), (b) and (¢) of Theo-
rem 3.3 hold for M,

In the case of subdifferentials. Corollary 3.6 has important implications
for the theory of second derivatives of nonsmooth [unctions. These will
be traced in the next section. Another consequence can be stated imme-
diately, however. To do this we introduce for a multifunction D : R* — R”"
the notation

(3.11) domD = [ x|D(x) = ¢ . rgeD = {y|3x with yeD(x)}.
THEOREM 3.7. Let D:R" — R be as in Corollary 3.6 (or indeed.

any multifunction whose graph is a Lipschitzian manifold of dimension n),
Let Xedom D and ye D(x). Let A :R" — R” he the multifunction whose
graph is the Clarke tangent cone Ty(X. T), where M = graph D.

a) If Oeint (dom A). then X eint (dom D) and D is single-valued and
Lipschitzian on a neighborhood of X. In fact A is a linear transformation.
and D is strictly differentiable at X with VD(x) = A.

by If Oeint (rge A), then yeint(rge D), and D™" is single-valued and
Lipschitzian on a neighborhood of y. In fact A s a linear transformation.
and D1 is strietly differentiable ar v with V(D () = A L1
we myoke the [act that M is an n-dimensional Lipschitzian manifold (cf,
Proposition 2.2 and Corollaries 2.3, 2.4, and 2.5). According to Theo-
rem 3.5 (D), Tu(X, ¥) is a subspace of R® x R" having dimension at most 5.
Since dom A is by definition the projection of Ty(X, y) in the first component,
the condition 0 € int (dom Ajimplies that the dimension of Ty(, ) equals n.
Then by Theorem 3.5 (¢), M is strictly smooth at (¥, y).

Consider now. as in the definition of « Lipschitzian manifold » at the
beginning of § 2. a coordinate transformation @ that represents M locally
around (x, y) as the graph of 4 Lipschitzian function F: U — R” (with U
open in R"). Since M is strictly smooth at (%, 3), so is the graph of F at the
point (%, F(i)) which corresponds to (x. y); thus by Proposition 3.1 (b),
F s strictly differentiable at . Let o(u) = (&), n(u)) denote the point
(x, y)& M that corresponds to (i, F(u)). Then ¢, &, and 5 are Lipschitzian
on U and strictly dilferentiable at . Moreover the range of the linear
transformation Ve(u) is the image. under the derivative V&~ Y@ F(@)
of the inverse coordinate transformation, of the tangent space to gph F

Prooj. — Obviously (h) 1s just the application of (a) to D 1. To prove ()
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178 E. T. ROUKAFELLAR

at (@, F()), which is the graph of VF(u); thus it is Ty(X, y). The range of
the linear transformation V&(u) is therefore the image of Ty(x, ¥) under
the projection in the first component, and we know this to be all of R™.
Thus V&(ii) is nonsingular. By the inverse function theorem (in the Lipschit-
zian version of Clarke [10], for instance, since the Clarke generalized Jaco-
bian reduces to V&) in the present case) the inverse ¢! exists as a Lips-
chitzian function in a neighborhood of ¥ = &(z). Then locally around (X, ¥)
we have
(x, )eM = [x=&u)y=nw] = y=n& 'x).

But M = gph D. Therefore D reduces in a neighborhood of ¥ to a single-
valued Lipschitzian mapping, namely x: ¢~ ' Utilizing again the fact
that Ty(x, ¥) is a subspace of dimension n, and applying Proposition 3. 1 (b)
to D at ¥, we see that D must be strictly differentiable at X with VD(X) = A.

O

4. SECOND DERIVATIVES

In applying Theorem 3.5 to the graphs of the subdifferentials of convex
functions, saddle functions, or lower-C? functions, as is permissible by
Corollaries 2.3, 2.4, and 2.3, we gain insight into second derivative pro-
perties of such functions. We shall not attempt here to develop any general
theory of second derivatives that goes beyond the bounds of the conclu-
sions which can immediately be drawn in this manner. Nevertheless it
will be necessary to consider certain generalized limits of second-order
difference quotients in order to formulate our results.

The limit concept we need is that of epi-convergence, which corresponds
to set convergence of the epigraphs of functions. The theory of such conver-
gence can be found in Dolecki, Salinetti and Wets [12] (see also Wets [28],
Rockafellar and Wets [25]). The basic notions are as follows.

Suppose { g, } is a sequence of lower semicontinuous functions from R”
to the extended reals R. (The epigraphs

cpig, = {(xo)eR" a2 g0
are closed sets that determine the functions g, completely.) One says that
g = epi-lim sup g,
¥ o
if ¢ is given by
4.1) 2(¥) = lim [lim sup [ inf g.x)]] forall X,
&) 0 vern x=xl e

and one says that
g = ¢pi-lim inf g,
Yoo
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if g 1s given by

(4.2) glx) = lim [lim inf [ inf gux)]] forall X.

el 0 = \—Ylét
The first case corresponds to
epl ¢ = him inf [epi g,]
W=k
in the sense of (3.2), whereas the second corresponds to
epi g = lim sup [epi g.]
V= o

in the sense of (3.1). One says that

g = cpi-hm g,

if both (4.1) and (4,2) are true, 1, ¢ if

epl ¢ = lim [epi g, ]
in the sense of (3.3),
We shall also need the notion of a generalized purely quadratic convex
function on R® By tuis we mean a function expressible in the form

43 . { (1/2)x-Qx if xeN,
i = )
(4.3) glx) o T AN,

where N is 4 subspace of R” (possibly all of R*) and Q is symmetric and
positive sermidefinite. Our motivation for this concept is the following fact.

ProrositioN 4.1. — Let g be a closed proper convex function on R™
Then for the graph of the subdifferential éq to be a subspace in R* x R",
it is necessary and sufficient thar ¢ be a generalized purely quadratic convex
Junction (up to an additive constant),

Proof. — If g does have the form in (4. 3), then

dg(x) = Qx + dry(x) forall x
by [20, Theorem 23.8 ], where yy is the indicator of N and has dijy(x) = N*
for xe N, diyn(x) = ¢ for x ¢ N. This means that
yedg(x) < [xeN and y— QxeN'].
Then gph dq is indeed a subspace § = R" x R",

Conversely 1f gph ég is a subspace S, which by Corollary 2.3 must
be of dimension », let N denote the projection of S in the first component,
1.e.N = dom dq. Then N too is a subspace (in particular a relatively open
convex set), and N must then be the effective domain of g;

g(x) < 20 = xeN
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fapply [20, Theorem 23.47). This implies that
(4.4) fg(x) + N' = dg(x) forall x.
inasmuch as N- is 4 normal cone to N at every x & N. Thereforc
S=8n [N xN| =N},
Since dim S = ndim N + dim N, 1t lollows that the subspace

Sg = S [N % NJ has the same dimension as N, Thus it is the graph of
a linear transformation Qg : N — N, and onc has

.{ Qox + Nt if xeN,
|| (_b ll‘ _\'Ié h? i

cglx) =

Let g, be the restriction of ¢ to N. In terms of N rather than the larger
space R", we have Cgglx) = { Qux | s0 ¢q is a convex function that s actually
diffcrentiable everywhere mth \_q.;_] = Q. Then the function g, — ¢, where
¢ = ¢p0)), has to be purely quadratic:

golx) — ¢ ={1/2)x - Qpx lorall xeN,

and Qg has to be positive serudefinite. We can extend Qg to a positive
semidefinite linear transformation Q: R" — R" Then (4.3) holds for g —¢
n place of 4. ]

COROLLARY 4.2, — [f g is a generalized purely quadratic convex func-
tion on R, then so is the conjugate fimction g*.

Proof. — égq* = ¢q~ ' by [20] Corollary 23. 3 1]. Furthermore, when
0e dg(0) one has ¢(0) = 0 if and only if ¢*0) = 0, as follows immediately
from the formulas for conjugacy [20), Theorem 235 ]

In the sequel we shall be concerned with the second-order difference
quotients

(4.5 Acypdh)=

flx+th)—fix)—ty-h
2
TureoreM 4.3, — Ler f: R — R he a closed proper convex funcrion.
and let M = gph & For (2.7 M 1o he a smooth point of M. it is necessary
and sufficient that there exist a generalized purely quadratic convex func-
tion gz=:R" — R such that

(4.6) g7 = epi-lim A .
: tlu *
The stronger condition
(4.7) 475 = {,p! hm Asvs
(B _;)l_..\l}- (D]

characterizes (x, y) as a strictly smooth point of M.
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Proof. — The function A, ,,:R" — R is closed proper convex with
A, 0) =0 and
EA, =17 [Ef(x + th) — y].
Thus
(4.8) gph dAg ., =t "M —{x p)]-

The defining property for (x, y) to be a smooth point of M, namely

lim ¢~ M — (%.7)] =S

for some subspace S = R" x R", can be written by virtue of (4.8) as

(4.9) liHS [eph Az ;.1 =S.

Since cach of the functions Ao lor ¢ = (18 closad proper convex with
AL A0y = 0. the cxistence of the limit {—1 9) is equivalent to the existence
of a closed proper convex function gz; with g5 (0} = 0 such that (4.6)
holds (see Attouch [2]). Then ¢, must be a generalized purely quadratic
convex function by Proposition 4.1,

The strictly smooth case (4.7) falls out in the same way. ]

A generalized purely quadratic convex function ¢, satisfying (4.6).
when it exists, obviously serves as a kind of second derivarive function for f,
We shall then say that fis rwice differentiable in the generalized sense at X
relative Lo the subgradient 7= df(X). In the case of (4.7) we shall speak
of striet twice differentiability in the generalized sense.

Note that ¢, need not be [finite everywhere when xeint (dom ). It
is casy to verify, for instance, that dom ¢ ;- must be contained in the nor-
mal cone to the convex set ¢f(X) at v. When g5 5 does happen to be finite
everywhere, the epi-hinmiits i (4.6) and (4.7) are equivalent to poiniwise
convergence of the functions in question {cf. Dolecki, Salinetti and Wets [12]);
these difference quotient functions. being convex, must then actually
converge uniformly on bounded sets [20, Theorem 10,91

COROLLARY 4.4. — Let [ he a closed proper convex funcrion on R,
and suppose { is twice differentiable in the generalized sense at x relative
to the subgradient ¥ e cf (X), with .5 as the second devivative function. Then
the conjugare 1% is rwice c‘frj}i—'*rf’mfc:h!e in the generalized sense al v relarive
to the subgradient X € ¢f *(7), and the corresponding second derivative fime-
tion is the conjugate gz%.

The same holds also for strict twice differentiahility.

Proof. — Recall that 7/* = ¢f 7" and (g ; = dgos

COROLLARY 4.5, el f' he a closed proper convex function on R
and ler M’ be the set of nH (X. V) such thar v & &f (X) and [is twice differentiable
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in the generalized sense at X relative to y. For (x, 7) & M’ to be such that the
rwice differentiability is strict, it is necessary and sufficient that the cor-
responding second derivarive function satisfy

(4.10) gzz = epi-im g, ..

{x, 1M1= (X, %
Proof. — The functions g, , all vanish at 0, so (4.10) is equivalent to

gph dg=- = Jim gph ¢, .
= [x. =M= (E
(sec Wets [28]). Recognizing gph dg, , as the tangent space Sy(x, y) to
M = gph &f at (x, y), we need only invoke Theorem 3.5 to obtain the
desired conclusion,

CoroLLary 4.6, — Ler [ be a closed proper convex funciion on R,
and ler y = df (x). If the limit on the right side of (4.7) (where M = gph &f)
exists ar all, then in fact f must be strictly twice differentiable in the gene-
ralized sense at x relative to ¥.

Proof. — We know that the limit function g on the right side of (4.7)
exists if and only if the set limit

(4.11) 1111&1 gph dA, ;.

{20)eM— x5

exists, in which event the latter is gph dg (see Wets [28]; g is a certain
closed proper convex function). In view of (4.8), however, the limit (4.11)
is the Clarke tangent cone Ty(X, ¥), which is a subspace by Theorem 3. 5.
Then g must be a generalized purely quadratic convex function by Pre-
position 4. 1. 1

Cororrary 4.7 — Let [ he a closed proper convex function on R,
and let Ve Ef(X). Suppose thar [ is strictly rwice differentiable in the general
sense at x relative to ¥V, and that the corresponding second derivative func-
tion gz Is finite everywhere. Then there is actually a neighborhood of X
on which fis finite and continuously differentiable, and the gradient mapping Vf
is Lipschitzian; at X one has Vf(X) = ¥ and Vf strictly differentiable.

Proof. — This follows in the context of the preceding results by Theo-

rem 3.7 (a) as applicd to D = {f, O

COROLLARY 4.8. (Alexandrov’s Theorem). — Let f be a closed proper
convex function on R" Then at almost every X € int (dom f) there is a qua-
dratic (finite but not necessarily purely quadratic) function g such that

(4.12) Jx)=gdx)+ ol x — X)7).
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Proof. — Let D = &f. Then D is a maximal monotone relation (Corol-
lary 2.3) and
int (dom D) = int (dom f)

(see [20, Theorem 23.4]). By the theorem of Mignot [/6, Theorem 1.3],
D is differentiable at almost every Xeint(domf), the graph of VD(x)
being then, of course, the tangent space Sy(x, ¥) to M = gph D at (X, )),
where 7 is the unique element of D(x) = éf (X) (and consequently J = Vf(X).
cf. [20, Theorem 25.1]). Theorem 4.3 identifies this as the case where (4.6)
holds and the set gphdgsz; = Sw(X,¥) projects in the first component
onto all of R”, i. e. one has dom ¢z 5 = R Then the epi-convergence in (4. 6)
can be expressed as pointwise convergence

(4.13) gz = lim A, (h)

that is uniform on bounded sets (cf. the observation that precedes Corol-
lary 4.4). Condilion (4, 12) is just another way of writing (4.13) with this
uniformity taken into account. ]

Lower-C? functions such as appear in Corollary 2.5 enjoy almost the
same generalized second derivative properties as convex functions.

THEOREM 4.10. — Let £: X — R be lower-C?, where X is open in R”,
and let M = gph &f, where df is the Clarke subdifferential of §. Then the
conclusions in Theorem 4.3 and Corellaries 4.5,4.6,4.7, and 4.8 are valid.

Proof. — As demonstrated in the proof of Corollary 2.5, there is for
every ¥ € X a compact convex neighborhood C of ¥ and a number y > 0
such that the function hin (2. 1)is closed proper convex, and éh satisfies (2. 2).
One need only apply the results in question to A [

For saddle functions as in Corollary 2.4, there are complete analogues
of all the results in this section, but the type of convergence that describes
the limits of the second-order difference quotients is somewhat more
complicated. This type of convergence has becn developed by Attouch
and Wets [3] [¢] The details will not be given here,
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