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$here cl stands for closure and co stands for convex hull. Thus N. (jJ is atwavs a closed con!ex
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I tN',t ROD r- Cl IO\
IN 1973, CLARKE {21 introduced a concept of subgradient for nonconvex. cxtcndcd-flJal valued
Iunctions lvhich made possibie a far reaching generalization of the subgradicnt theory of
conv€r functioDs [8]. Subgradients in Clarke's serse have subsequenrly been srudied bv manl
authors in both finite and infinite-dimensional spaces: see [3] and [9] for expositions. Thcy
have especialh lurned out to be useful in analyzing problems of optimizarion. for instan!e rn
characterizins solulions and in obtaining conditions for stabiliry under perturbations of dara.
Central to this purpose arc the calculus rules that have been developed for expressirg rhe
subgradients o{ a given funcdon jn lcrms of the subgradients of other lunctions from which
it is conslrucied. For instance, a great man! optimizalion problems can be formulated ir term!
of ninimizing an extended-realvalued function / over R". and the subgradient condilon
0 € tf(-t) is rhen necessary for f to have a local minimum at i []3, p. 3311. The usefulness of
this conditjon obviously dcpends. however, on ihe strength of the rules that arc available for
calculatins df(i).

This paper is devoted to proving sharpcr or btoader vetsions of a number of such basic
calculus rules. N_ew theorems on Lagrange multipliers in problcms of consirained minimizaron
are obtained along the $ay. For technical reasons connected $'ith ihc nature of our approach
onl,! finite dimensional spaces are considered here, although advances in undcrlyjng theory
such as the recent results of Treiman l15l may eventually make possible some exiensions to
a Banach space setting.

A brief re\'ie!v ol basic notions will help to fix notation and ternlinology. The geomerric
route to defining subgradicnts, \ahich $as followed b,\' Clarke. depends on lirst defining cones
of normals to an arbilrarv closed sei C C R". Let us say that a vector ] € R' i.,, a praximuL
notmaltaCatapointtECiftort>0sutficientlysmall.thcuniquepointofCnearestto

' -(.' -,. "_d nro\ir. no-m'1 , loaar \ ..u. rhar .v -.!.l!'
ii.1:1, = 5 y i' u ti-irlng proximal nomal to C at if.

Then Clark.J's rolmdl conc to C at i is

N.(r): - cl co tidi),
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cone coniaining 0- It is known ihat N(i) contains some ) r. 0 if and only if rj is a boundary
point of C (cf. [10]).

Consider now a function f : R"+ R = R U {a-} and a poini t $here / is fi nite and rtictlr,
Lower semicontinuout. \'te mean by the latter that for some a=l(t) the function nin{/, d.}

is lower semicontinuous on a oeighborhood of i, or in olher $ords. that lhe epigraph sel

is closed relative to some neighborhood of (t./(:i)). rhe nornal cone rhr(t,f(-t)) is then
well defined and consists of certain vectors (Jr, ,) € R'r x R such that 4 = 

0. Clarke's set of
subgradienls of/ al :i is defined geometdcally as

epil= (jr, d) € R'r R &=/(jr)I (1.3)

,/(t):= {} e R' 0, -1) e N.e,/(t,/(r))}. (1.4)

Il/is convex. this is the usual subgradient set of convex analysis, whereas if/is stdcrly
differentiable at t it reduces to {V/(i)}. (In particular / is strictly differentiable at i if /is
continuously differentiable on a neighborhood of i; see Clarke [3. p. 30] for more on this
concept.)

It is useful somednres also to consider the set ol singulat subgndients of/ ar;. which N

aT(r):= {} € R. (},0)€N"prir./(r))} (1.5)

Clearly Af(t) is a closed convex set (possibly empty), and aT(t) is a closed convex cone
comaining 0. The directions ofthe rays comprising A-f(t) may be interprercd as the "elemenrs
of r/(i) uhich lie ar -" (cf. [2. Section 8]ra1(t) is the recession cone of a/(j) ]hen
afq) + E).

One has ,7(i) = {0} if and only if t/(i) is nonempty and bounded. \\,hich in tum holds
it and only il/is Lipschitz continuous on a neighborhood ofi (cf. 16l). ln fact the Lipschilz
nodulus.

/u' ) f(r )Lrpdjrl:= rrmsup i-
-i

Lrp,lrl = \uni | )rL'rl(r.)l
ll f: 6c fthe indicator of a ser C, 6c(.r): = 0 if x € C, e if x c C), rhen

a6.(r) = r-d.(i) = Nc(r).

The sets a/(i) and d?(i) can also be defined in a dual manner in ierms of a certain kind
of directional derivative erpression for/at t. This corresponds geometrically to at expressron
for N.(i) as the polar of a cefiain kind of tangent cone to C at i; see {31 and U1l. We shall
not need to go into rhis here, but the reader should bear in mind that all our rcsults have a

duai statement along such lines.
The chief tooi in oul approach is the exiended limit characterization of a/(i) and a?(i)

which was dern'ed ln lL2l and makes it possibie to reduce questions about these sets ro
questions about local minima. A vector ], € R' is said to be a p/orimal subgratlient of f aI t
if for some r> 0

f (x)=f(t)+t (:t i) /r ; I in a neishborhood ofj,

then salislics

(1.6)

(1.1)

0.8)



or equivalend,v

/(.) -r'(r t) + r t - t r has a local minimum at jr =i
It is 

^ 
timititlg ptoximat subgradietlt af f a\ i il there exist points ./+ i with /(/) -/(i) and

proximal subgradients )t at:rt such that 1i- 1,. tr is a singulat limiting ploximal subgratliPht

;f/at r if th; same holds. except lhai instead of yk--v one has 41i-1' for some sequence

ol numbers tk>0.1r+0. (Except in the trivial case of r=0, the latter is equivalent !o

)'t]'-)t'l and means that the sequence yr convetges to the "point at infiniry" in the

djrection of the ray {rr I = 
0}.) Let

;/(t): = {} -r, rs a limiting proxirnal subgradient of.fat t},

a'/(t)r = {} } isa singularlimitingproximalsubgradientof/att}

obviously 6l(i) is a closed set and a1(i) is a closed cone (a cone in R" being a set f such

rhat ry e ,( whenever ) € f, t > 0). We proved in [12] that

,/(r) = i_L (_r, 1) €i.0,,(r,./(r)) l,

a ,ir- r r, U'€ i , ti./r;rl
and consequently that 0 e i7(i) and

sf(t) = cr coli/(t) - 61(t)1,

a formula which can be inierpreted as sa,ving that 3/(i) is the closed con\'ex hull in the
extendedsenseol[8.Section17]ofrhepointsini/(t)andlhe'pointsatinfinity'reprcsented
b) ihe ra,!s in the cone a?(t). One also has

Elrensioas oi subsradictrl calculus Nilh a$li.alions to oplinizalion

aJ(r) r cl co 67(r)

al(.r) = cl co 6'l(r) when .f(t) = p

One actuauy has (ci. ll1, proposition 151):

af(.i)=calAfG)- 6'f6)l and if(t)=co;T(t) ifthe cone rT(t) is poinred. (1.16)

(Recail ihat a cone tr. coniainirs 0 but no! ncccssaril,! convex, is sald lo be 2.ln1td in thc
equation l + . . . + I,, = 0 lbr elefienis -li € K is possible only when r, = . . . = 1,, - 0.)

2 TECHN I CAL PRELIN'IINARIES

For use in subsequent arguments, we need to state several lcsults that are already known
or easily follow from results already kno$n.

PRoposrrroN 2.1. Lel P:R"'> li be iinite and strictlv lo$er semiconrrnuous.ar.' Suppose

ltl(t) and M'(li) are sets in R'' such that ru'(nl rs a cone and ap(t\C'\4(t) a r(a)c
c M"(t). Then

,p(r) = cl co[M(t) n ap(u) + M'(rt) n a'p(n)]

(1.e)

(1.10)

(1.11)

(1.12)

(i.13)

( 1.11)

(1.15)

c cr colM(t) + M-(,)1, G.1)



Ihus

M(.4n,p(n)+E tr ap(.n)+2.

Il M'(n) is pointed, rhen ir?(n) is pointed and one actually has

ap(u) - colM (.rL) .t ap(u) + M\r) n a-p(u)) .- calxl (ti) + M 1r l.
a- p(u) = colM -(tt) n d-p(r))l . co M 1, ).

ln particular, )t I4'(r) = [0] rhen a?(r) is nonemp!]r and bourded qirh ap@).coM(ii),
ard p is Lipschitz continuous on a neighborhood of , \\,iih

R',t R..{afr_LiR

,?(t) = cr cofM'(r) n a'p(r)) . d co M-(r) n ap@) = ea (2.2)

(2.3)

(2.5)

(2.6)

Lrp"lr)= sup,r z. (.2.1)

P/ool. All these conclusions arc apparenl lrom rhc basic fads abour ,t 6). a- t(.ti). ap(u)
and ,'p(t) that we revic\led in S€crjon 1i cf. Rockafellar [12 iheorem I ] aid [t1 propo\rtron
]sl. r
CoRcrl|,\RY 2.1. L Let E C R " be closed relalive to some neighborhood ol the pojnt r/ E ll.
5-pou.eU,,.-R i..con..ucn lh r\ /l -.l/tlr. lle

AE/r) = colM(r) n \F(rll cco.utt).

(2.8)

(2 e)

(2.i0)

Ndr) = ct co[.l/(!7) nN,(r)] .clco,rr(,7).

ThIs

,1.1(r) . N,(r) * {0} if ,\.(rj + {0}

If M(r) is pointed, then Nr(r) is poinred and one actually has

In particular. if M(r) : {0} then t € int E.

Proof. Let p = <tF |t\ proposition 2.1. I

Our mode of operation on several occasions i'ill be to define appropdate sets M(t) and
M'07) for a given functjonp, verlfy that,ip(tJ c Mlr) and a'f(r) c l.t'(n).rnd rhcn refer
to the conclusions of proposition 2.1.

Two results about the behavior of subgradienrs under limirs are recorded next.

PRoposrrloN 2.2. LeI f: R'- R be finite and srdciiy lo$er semicontinuous ar j. Ler .rr .- j
with /(-l ) +/(i), and supposc rit e 6/(rr).Ii + ). If; T(i) is pointed (as is true in parricular
\rhen d1(i) ={0}, i.e. when f js Lipschirz conrinuous in a neighborhood of i). rhen
_r e 4f(i).

PJ.odl. If iT(i) is poinred, then so is a/-(i) by proposition 2.1. Then the cone,\,.p,r(j..f(j))
must also be pointed by virtue of (1.4), (1.5), and the lact rhat aU the etements (l, r) of
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\"ri(-t, /(i)) have , = 
0. According Io [10, coro]lar,r 2 on p. 1;191. thc graph oithe mullifunlrilrn

\:.r/ is rhen closed ai (-r. f(t)). rhus lrom havins (_!r. 1) E xir.{ri. /(:r')), (ri./(-'r))-(-..i(t)),(r".-L)-(r'.-l). \re nav conclude thar (1. 1).,\""i(i.f(i)). i.c. r€
ir.f(i). I

For/Lipschitz continuous on a neighborhood ofi. ihe corclusion -r € 6l(i) in proposrron
2 2 r,as esrabLjshed originaLly b\' Clarke [1]. A generalization for/no! Lipschilzian !vas gi\ en
by Rockafeliar [10. corollari 3 to theorem 2]. The assunptions lhere lvere. in effecl. lhat
aT(i) is poinled and al(i)+ Z.

PRoposIrIoN 2.3. (Cl. [11. Proposilion 11].) Srppolc loL k= I l. ..th!t \r fulnrshes a

frnire local ninimum of 8 - l,i. where g:R, - R and ,r iR '- R nrc lo{er semicontiDuous
and no\\'here -. If ri>i "irh girt)-g(i) (linite) and ,r is Lipschitz continuous on a
neighborhood of r:i $iih

Lip,,,(rr) > rl. (2.11)

lhen 0 e ag(-t ).

Proaf. This diliers from [11, proposirion 11] onli in the substiturion of (2 1l) ior lhc
conditior that tii(r") is nonempty and sup{.2 .z€ah(:ri)J+0 The t$o conditions are
equivaleni by (1.7); recall tha!,4r is Lipschirz continuous on a neighborhood ofit if and only
if ae1(-rr) is nonempr,r, and bounded. I

Rulcs tbr calculatinc i(8 - i) in terms of dg and tl, are inportant in a munber of siruations.
and we shall provc a new one in Section 7. As a stepping stone ihe follo$ing known special
case will be needed.

PRoposlrro\ 2..1. (Cf. 1131.) Let 8:R'- R be lower semicontinuous. and let l1:R'+ R be
Lipschitz coniinuous in a neighborhood of i. a point where both r and l are finiie. Then

al.s - h)\i) . as\i) - al'(t ) d-(s + ft)(t) = ,r?(t). (r. r2)

P/oo./. The inclusion in (2.12) is asserted direcdy b)r [13, corol]ary 2 of theoren 21, but the
equation lor singular subgradienls requjres putting some separatc facts together. The cited
theorem also siles us in [13, (a.3)] ihe subdernadve inequalir.\,

(g + fr) 1(ir w) 
= 8 i(ir r,) - r'(ir w) for all r €R "

(scc l13l or [14] for the definition ol ihese expressiont, rvhere ,1(i;v) is finite for all x,
because l1 is locally Lipschitzian. This inplies

,-/? \g r/ l;:'/ 6-l.eR; r:rl l
The !rv(r sers in this inclusion 

'rhose 
polars are a'(g+l)(t) and A q(i).

respectively. (In nore detail: the epigraph of g1(i:.) is the closed conr,eri tangenr conc
Z.p,s(i,8(i)) in R" r R by [11, theorem 2]. and thc sci {w s 1(i; w) < '} is the projection of
this conc on R". The polar projection is then the ser of \'ectors ,r' such that Cr, 0) belongs to
rhe polar cone N.p,.(i. s(i)). 'rhich 

is a-g(i) b,v definition.) Taking polars on both smes of
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the inclusion we obtajn ii'(g + h)(t) c a'gG). But the opposite inequalily then follo\ls from
this facl as applied io g + i in place of g:

a's(r) = a'{s + h ,Xt) cd-(s + r)(t).
since -, ioo is locally Lipschitzian. Hence the equalion in (2.12) is correct. I

CoRoLLARy 2.4.1. Let I i R " + ./i be Lipschitz continuous in a neighborhood of i € C, where
C c R" is a closed set. Then

,(, + r.)(r) c ar(r) + N. (,i), ir'(l+6.)(r)=N.(r). (r.t)
P/ool. Appl), (1.8). I

CoRoLL-{Ry 2.4.2. (Cf. [11, proposition 5].) Let g:R'+ 1i be linite and stdctly lower semi-
conlinuous at i. and let ,4 bc confinuousl,r' differenliable on a neighborhood of :i. Then

a(s + rxt) = 6s(t) - {V,{(t)}, a1s + ftXi) = a"s('I). (2.11)

(2.1s)

(2.16)

Prool. One hasl1 Lipschitz continuous at i wiih ar(i) : {Vr(t)}. Apply (2.12) to I + I and

s:Gih)-h. a
Other cas€s besides corollary 2.1.2 where equality holds for the inclusion in (2.12) are

described in [13, theorem 2] but wilt not be required here. One case where equality holds that
has not previouslt' been noted is the following.

PRoposlroN 2.5. Let/(r,l') = g(.r) +l1(lr). $here g:R"- R and,:R'-R no$here have
the value -. If i is a point where I is finite and stdclly lower semicontinuous- and t is a

point uhere l? is finite and strictly lower semicontinuous. then

d/(r, r) = (as(r), al1(11')), ,7(i. r) = (a?(r), ,?(t')).

P/oof. We shall base ourseives on formula (1.f3). We demonstrate fiIst thal

Af(t, t],) : (As(;),;r(}})).

If L1r. u) € i/(i. t), $'e have tir, l) - Lr,, o), uhere (yt, rt) is a proximal subsradient. If /
at (.rr, l'i) with (rt, )'r) - (t, }l,) and/(.'t. r't) >/(i. lt). Then for cedain r > 0 the function

(r, w) +8(r) + r(w) ),k - rt -,,t]' - "l + rk(\ -:tk, + w wk /)

has a local minimum at (rr, wr). But this is the same as saying that the function

r+g(r) '1rfr -trl +rpr-rt2
has a local minirrum at .rr. while rhe function

- l1(,, - ;tl,r - rrl + rp w wL l

has a local minimun at w&. Thus / is a proxinal subgradient of g a! rr, and zr is a proximal
subgradienr of ,4 at wr. Slnce /(rr, wrl-/(-.,t') if and only if s(xr)+s(t) and l(|;)-
ft(l'') (due to ihe lo$er semicontinuiry assumption), \\e see that l, € as(t) and .z € dn(t).
Thus the inclusion C holds in (2.16). The proof of the inclusion I h essenlially a reversal of
this argument,
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One verifies similarly that

6T(r. t) c (i"s(r), i-l(tr)) = (;?(t),0) + (0. ;?(x.r.
; i,, w,.)l;'8rtr.nr .ln.; /lu r.

which inlplies (since the sets in question are cones containing 0) rhat

ca h'f(i, w) = co(t?(t), 6'r(''r. (2.17)

From (2.16) and (2.17) we obrain

cola/('', ,r) + a.a(t, t)l = col6](r, ra) + co A7(r, r)]
= (48(t), 6,1(li)) co (6?(t). A-l(tr))l

= co l(48(r). 6r(t ) + (i?(i), ,:r(n))l

= co (6s(t) . i?(t). ir(r) + e'ft(t,
= (co lis(t) + i's(t)1, co l6ir(rr,) - 6l1w)l)

and consequently by (1.13) that

t/(t, }') = (cl co lis(t) - i"8(t)1, ci co lar(l') + inoi,)l)

= (as(t), a,l(l]i,))

as claimed in the first pan of (2.15).

ll af(t.\t)=A, rhe second pan of (2.15) foliows from (2.17) via the generel formula

U.L). H ..f(t,tt) + Z 
^nd 

ah(ii + Z, and the recession cones in thc closcd convex sels

sl(i, lt). ,S(t). and irr(l' ). arc ,if(i. t). t-g(t) and a'r(ri), respectj\ely (cf. (l.1) and (1.5)r

for the theory of recession cones. see [S. Section 8i). Then rhe recession cone of (d8(t).
l]r(t)) js (r-g(i), d-frot)), so the second par! ot (2.15) is impLied b] the tust. I

CoRorLARy 2.5.1. Let C c R" and, C R- be closed sets, and let t € C. fi € r. Then

N.,,(i, lt) = (Ndi), N,(},r. (2.18)

Proaf. Take g= 6c,h= 6r in proposition 2.5. I

Finally we need to recall Clarke's concept of the "generalized lacobian" dF(i) of a locally
Lipschitzian mapping F:fi"+R'a! a point i. This is defined as the convcx hull ol ihe set

ofill nr r n matrices of the folm A = linrvF(-rr) \rhere VF(rr) is ihe Jacobian of F ai a point
jr'ar which F happens to be differcntiable and;rt>i. The ser ,F(rr) is nonempty and

compact. as well as conlex (cl. 13,2.61). In fact the Lipschitz modulus

Frr'r-Flrr
Lipdt), =limsup# (2.rq)

Lipdt) = ja 
).a. 

(2.20)
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For noiaiional convenience. 11e shall write

(2.21)

PRoPosIrIoN 2.6 l3l. Suppose h(x)=y fQ) qhere F:R'+R. is locatl], Lipschirzian and
) € R-. Then

ah(.i): ) aF(t) (2.22)

Pr.o(r/. Let S be the sc! of points r rvh ere lhe Jacobian VF(r) does not exisi. B! Rademacher,s
iheorem. S is of meaiur. 0 he.,r(e F ic locally Lipschitzian. For r e S. we havc fro) =
_r,VI(-l). The lunction ,t is irself locaily Lipschirzian. so Ai(j) is rhe closed convex hul of a
lcctols of theformlimVr(ii)forrres ri-i(see[8.theorem25.1]).Thusitisrhectosed
con!'c\ hull of all vecrors of rhe form _r lim lF(.rk) forrreJ.r'-r Thisisrhesamcas
)tt(i). I

Proposition 2.6 can be vjerJed as an elementary case of a chain rule of Clarke [3, rheorem
2.6.61 \\'hcre I is conposed wirh rhc mapping : + ) .z from R. to R.

3. BAS IC THEOREMS ON PERTURBATIONS
We now prove a result $hlch will be rhe key to a number ol new subgradjent formulas. It

crystallizes the basic principle used by the aurhor jn dedving Lagrange ]nutriptier rules in 111l
and [12].

THEoRENI 3.1. Let P iR" x R'+ R be lo\,r'er semicontinuous. and consider

(l. t)

aF(i)r-lAD Ae aF(r)l

rdF(i)-lrAAer-F(r)].

p(u): = nf,P(.x, u), x(u): = arsmlif('. u)

Let , be a point where p is finite and rhe following holds:

l4 > 0 and t> p(t) such that rhe set

lx l& $ith u - t = ,, 
P(r. u) 

= 
.y] is bounded

,v1a)r = I,J {y (0,1) e 6p(r,a)}.

M'(t): = Ll 
){r' 

(.0, )') e i)'P(t, n)1.

one has 6p(r) C M(r) and a'p(r) C M'(t). so all the assertions in proposition 2.1 are vatid.

Remark 3.1. The first person to develop inf compactness condirions tike (3.2) in order to
conclude the iower semicontinuity ofp in such an absrract sefting was Wets 116].

(3.2)

Then p is stdctlv lower semiconrinuous dt n. and for alt ! sutjsl]ng u , 
= Lp(.u)' a. r"e 'er Y{,,r :. nonemor} -no comDoct. \ 'ren r L)', ,s f l? -, uno ptual-

p(t), then rhe sequence {/} is bounded and all of its ctuster poirrs betong to ,Y(r). Moreover.
ibr

(:.3)
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P/?oi For arbitrary a < A. lhe se!

(3.4)

(r 7)

is bounded because the set in (3 2) is bounded. and i! is closed because P is lo\rer semicon
rinuous. Hence i! is .ompact. In particular, for nxed & and .! satisf\ing r n =, and
p(") 

= 
o= .! (e.g. L = , and d = a), the ser of points jr such thar (:r. 14 bclongs ro (3.1) is

compaci. so I(ll) is nonemptr and compaci. Thus {hcn a = a. the set {, € R'r' , t =
d] is the i age of the compact sei (3.1) under the projectio (r, ,)+ r and ir itself conpact,
hence closed. This tells us that the function u+ninlrr(!). l1l is Lower senicontiruous on a

neighborhood ol ,. in olhcr $ords, p ls striclly lorer semicontinuous at ,.
Consider no$' a sequence rr +, such thar t(Lk)+?,(t ) (frnite) Suppose./ e x(&{). For

li large enough thai r/r , =, and p('r{) 
= 

d, rhe sct ).(u') n included jn rhe ser in (.1.2)
($hich is bounded), so {./} is bounded. Let i be a clusrer poini of lri}: for simpliciiv of
notadon. \le can suppose rr+i. Wc ha\c P(xk. ut) = p(u- ) - p(i). and snrce P is lo\rer
semiconiinuous this implies P(i, , ) = 

pti ). Bui also t(t ) = 
P(t, t ) by the definition of /.

Th(r<fo,< Pri ,;) -tt,). .o rl-r. J.Y(rl.
Prool ol lhe iast slateneit of the theorem requires showing that the sets delined in (:.i)

sarisf,r ap(t ) c M ti ) and a'p(r) C,V'(t). Let l e ap(t )i for a ccrtain scquencc .rr + r {ith
p( k)- p(r) one has rr+-r \\ilh rr a proximal subgradient ot p ai ,i. i.c. cuch that tor
certain numbers rr > 0 the function

l(',,)€R'xR- u , =n,P(r.u)=dj

L+rlu) \,t.u-rk ut) (3.5)

has a local minimum ai Lr. \\rhen k is large enough lhar ui 17 =, and p(ur) 
= 

&. thcrc
exists .rr € I(&r). The function

(r.r)+P(r,&) | Ll +/ilL Llt) (3.6)

then has a local minimum at (/. Ilt), and so also does lhc funclion

(:f,,4+pG.,' (0,r,) (',,) -/,(_\,.,) (:r,.i,l I
ThLrs (0. ir) is a proximal subgradienr of P at (-rr. rr). As seen above. rhe sequence fti) is
bounded and has all ils cluster poitlis in I(r). Passing to subsequenccs, we can arrange that
.rt-te xt?). Then P(rr.llr)=p(Lt)-p(.r'):P(r,r). and since (0.rr) is a proriim.ri
subgradienr of P ar (ri, &i ) \lilh (1. rL) - 0. _r), lve conclude rhar (0. r.) € iP(-i, , ).

This proles the inclusio n ip(u) . M (n). Thc proof of ;'p(r) c M-(ll) is the sarne. except
r-o n.t(ao ^r I ., u e 1". ) -,./. . ,r. I

CoRoLLAR\ 3.1.1. For I as in lhcorcn 3.1. the assefiions of proposition 2.1 are also valid if
instcad of (3.3) one takes

M(r) = u 1_r (0,))eaP(i.,)1.

Mlrr) = U {) (0,_r)€r'p(i.r)}.
i.,{'']

In the special case qhere X(ri) consisrs of a unique i. this fJields

,rp(r).1] (0 _'.) € rp(-i.r)|. ,?(rr)c0 (0._r,) € r?(_.. r)]. (r b)
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P/orf. The first is true because iP(t, t) C aP(r. t) ard a'Pl.r. ,l C n Pli, iil. Ihe second
is true because ,P(t. t) and a-P(t, r) are closed convex sets \rith ;]P(i, 

'i) - ,l'P(i. t) =
aP(t, r). t

CoRoLLARy 3.1.2. Let , C R" x n'be a clos€d sei. and ler E be its proicction on R,rr

E={u x(u)+7,1, where I(u) =lx (x,u)=DJ. (3.9)

LetneEandsuppose

l, > 0 s ch lhat ihe ser

{]l:&\\i!h u & 
= r, 

(r, u) € rJ isbounded. (3 10)

Then E is closed relative to the neighborhood Iu u-n =rl. and for atl llet in this
neighboLhuud rhe set Xl, ) is compacr. Whenever:rr e X(&r) \r'ith /+ ,. then ihe sequence
f-r i. Lou-ded. ,nJ a or t.c.r.le-poin.,beo.gro Y,n/. MoreJ!er tor

M(.t) = U {_1, (0, r) €,'i,(i. r)}
tEx(rl

ali the assertions of corollary 2.1 2 are valid. and ihe same is true for

M(t):: U {_r (0._r) € N,(j. r)}.
i€xair

M(n\ =

M'(r): -

(3.11)

(:.12)

(r. n)

Prcol. Take P = d, in iheorem 3.1 and coroltary 3.1.1. I
The next rhcorem generalizes in several ways the main pefturbation resuli of It ]. theorem

21. The latter corresponds to rhe case 
'rhere/rs tocalh trp(ch[zL,rn as \c]t,r\ F. and C has

the special form in remark 3.2 beto\\,. The framcwork in [11] a o\ls for a broader class of
perturbations than the ones presentl,v under considerarion. howevcr. Such pefturbations can
also be treatcd at the new levcl of generaiit]- (see theorem 8.3), but only aftet we have
devcloped the machinery much further.

THEoREV 3.2. For closed sers C C R", and D C R., a locaily Ljpschitzian napping F:R.>
R- and lower semicontinuous funcrjon./:R,-R, consjder

p(r)l : inl,{f(r) F(r') + u €C.x =Dl,
x(L): = argmin,{f(-r) F(r) - u. C, x e Dl.

Let t bc a point $,here p is finite and rhe follo*ing holds:

:, > 0 and a> p(r) such thar rhe set

{r € r./(:r) 
= 

a.and lu \rirh u-, 
= 4. a(jr) - & E C } ir bounded f3.11)

Then? is strictly lower sedicontinuous ar t. and -1.(t) is nonenptl and compact. Nloreoler
for

1r EN.(r(i) +r) 0 e 6(f + d,)(j) +rrF(j)]

{} € Nc(r(j) + t) 0 € i-(/ + 6,Xj) +_r,dr(r) }.

U

U
(3.1s)



one has 6p(r) c,U(r) and e"p(t) c M'(r), so all ihe assertions in proposirion 2 1 are v'lid'

Remark 3.2. The condiiion F(.r) + & € C reduces io the standard constraint s,rstem in nirl-
ematical programming when

c = {l'= (r,, . r",)

r"=il lor i= 1.....s.1r;= 0 inrt =r + 1. /?1]. (-1 16)

Indeed. writiig F(.r) = (n(.r). . . . .i,,(-r) (with l:R'r+R Locally Lipschirzi.tn) and r=
(L,....r.). one has i:(.!) + !? € a if ard onl! ]f

r<0 for i=1.....r. r'l
r l.r r r r.....,n.

Then ift and t are such that these constraints are sathfied onehasforl=(!. .,v_d)

ihai
, -4 ror ; ' $,rh i (Y)-J 0

re \,(r(rj+ri) el '-^ '-l: (3 lt)
I 0 or ':\ *irl- /ri 'r t)

Of course if i e ini D (e g. if D = R"), the rern N;(i) js superfluous in (3 15)

Proof of thearem 3.2. Ler

Extensions olsubgradient calculus qnh aFtlications t. .ttimizrdon

|lr il /{' -&€( , D.
P(.,,a)=1

+ - orher$rse.
(3.1e)

Then P is lower semicontinuous, and p(u) and -Y(u) arc as in theorem 3 1 Also, condirior
(3.2) is satislied b,v (3.14). Herce the semlconrinuity properiies ir theorcn 3 1 hold for p(L)
and r(a).

We musl show that the sets in (3.15) include ip(t) ard;'P(r) respecrivel,! This \{jll prove

the iheorem.
Suppose fhatt*is a proximal subgradienl ofp atuk.uk+ a p(uk)- p(t) Then for cerlarn

rp > 0 the function (3.5) has a local Inininum at ur. we know ftom rhcorem 3 1 that whcn

,t is large enorigh there exists jrt € x(i1r). and that b,v passing to subsequences if necessary'

we can anange to have j!r+ i € X(t), so rhat

lG-) = p(u') - p(a) =./(i) (linire). (3.20)

The function (3.6) lhen has a local minimum at (-ti, rr) Serling l'=F(jr)+rr' tt=
F(t) - t and nr F(/) + ur+ t, we can express this as follows: the function

ft@.x)=t@ ytw -tr(.r)l -rr}l,-I(r) l' t + r(' ! ' + d({{,) + 6,(.') (3.2r)

has a local mininum at (rr, ri).
To prove ap(t) c M(t), we suppose -rr+ ] and $rite t = 8 + rk, where

s(lr.;l) = I--,, w 6.(w)l + r(r) +r 'F(i) - d,(r)1.

rz(w.;r) = (rt-r).f,' r(.r)l +rkw-F(r) wr-r(i1 '],

(3.22)

(3.23)



and note that
Lip,^or*,./) 

=,].t - l, 
(1 +LipF(rr))-0.

(The "quadratic' term in ihe definition of lk has Lipschitz modutus 0 ar (}lr.rk).) Then
g + l?* has a local mininrum at (wk. rr). and rh( h\pothesjs ot proto5itron .2 3 js srrr.dcd. so
'we obtain (0. 0) e agot, i). (Clearly 8 is tower semicontinuous, white l? is tinite evenrhere
and locall,v Lipschitzian Alihough g could have rhe value a somewhere if /did, rve do
kno\\' that /(i) is finite and / is lower semicontinuous. and rherefore rhat /(r) > € when
.r i 

= 
6. say. Redelining /(.r) = + - \'hen i - t > d would ensure rhat I is nowhere

- and i'ould iead to the same conclusion. since ,g(}t. j) is unaffeclcd bv anv modincetion
ul \ orr.ide ol , _(.!hborlooo cr I i. r.r 

.J

We next apply proposirion (2.5) ro reduce the condirion (0, 0) € ,18(r, j) to get 0 € rgr(Li l
and 0 € tgr(t) where g1(w) and gr(-r) are the rn'o ierms on the right in (3.22). Since ihe
{unction w+ J . }r is dilfcrentiable, \le have

tg (") = -], r ,ti.(t) = _r + N.(lt) (3.21)

by corollary 2.1.2 and (1.E). Thus 0 e tgr(}') if and onl), if _r € NdD) = IIc(r(r) + , ). while
0 € agr(i) means that 0 e a(./+ -r' F- dD)(i). Bur

t(l +r' F+ d,)(r) c a(/+ 6,)(i) + rdF(.r) (3.25)

bv proposirion 2.1. corollary 2.,+ 1. and proposition 2.6. We have demonsrated therefore lhat
ant ] € i?ti) belongs to one ol the sets in the union definins M(r) in (3.1-i). thus

To prove that ;?(r) C M-(t)- $c take rhe same reasoning down a stighrt), differenr parh.
Instead oi _rr+)€,Ap(r) \ve suppose tkrk+J=6-p(u), \\here rr " 0. The fact thar rhe
lurction ri in (3.21) has a locai mininum at (wr. rtl is inrerpreted as saying lhar rhe funcijon

.&(w r, a) = /,o+ d.ni(i, a) - tu)r.1,1, r(r)l
=4a r F(.r) - * + F(nr) , + 6c0,) + d,(jr)

r.... o.d rli .run'"1 ur.\,,(iJ). \\e $-irel s i"."he-e
s(".'. ") - | r, 'r,- or (l')] + t.r't (r") -.j,(r) + d.p,lr, a)1. (3.26)

itiL.t.u):r,a (ror' r).i' r(r)l -r,rrw F(r)-]li+F(rl I (3.26 )

Then 4 + ltr has a locat mintmun at (r,r ri./(rr)) wirrr (}1,r. ri. /(.rt)) - (Li. r. f(j)) a.d
r-ip;,(wr. ri,./(rr)) 

= 
r, + hli I (t + Lipr(r)) +0.

and we obtain from proposirion 2 3 rhat (0.0,0) e Af(r. i. /(j)). The latter reduces bv
proposition 2.s to 0 € d8,(t) and (0. 0) € dtz(r, /(j)). where s,("J and R)(r, o) are lhe r\\;
expressions in (3.26) Thefirsrconditionisagdinequi\ntcnrt,rl€,\r(Li)=_\.(F(\.1 ,)by
(3-2,1). On the other hand $e can $rite

grl-r.4 = r 'F(-r) d"p,{(r, d) for e.=l+ dD

and deduce ftom corollar! 2..1.1 and proposition 2.6 rha!

,s,(t,l(t)) c (r;r(t),0) +.\..,.(i./(r )).



T\e.,,. Lr\ "Ji l.t.,t.ft dr ., i i

The condition (0, 0) € at (i, /(t)) therefore implies the exisrencc of somc z e )tF(i) such
that (-u,0)€Ir. q(i,/(i)), i.e. -ze a'(t(i) (.f. (1.t). rhus it implies 0€
ir'(l + dn)(i) - ItF(i). This esiablishes that l,EM'(t) and firishes the prool ol the
lhcorem. I

Rrmdlk 3-3. The proof of rheorem 3.2 reveals that the same conclusions would hold if one
took in place of (3.15):

ru(a): = U {} €N.(r(-.) +r) 0 €a(/+}r- 6,)(i)}.iE!,j 
G.2j.)

\.,1 td. U '-r 1f1r.; -u)0 - ?\t )/ ^/t,l
Thls sct M!i) is sometimes smaller than the one in (3.15) (never larger), so the rcsul! is
slightlv sharper whcn stated in rhis way. (The sc! M'(r) is the same in (3.15) and (3.27) b]-
viftue of proposition 2.4.)

CoRoLLARy 3.2.1. Ifl is locaily Lipschitzian in iheorem 3.2. thc same conclusions hold with
(3.i5) replaced by

,v/(ri): : lJ 
) 

{_r € N. (F(r) + r) 0 e,/(i) +r,rF(r) + N,(r)}.

M-(r):= a 1)'€N.(f(i) -r) 0 € ),irr(r) +ND(i)}. (32E)

Proo, The sets (3.28) inciude the ones jn (3.15) in this case b_y corollary 2.1.1. I

R..t,tlA ) 1 I Jer. r. c.rcrmndnce, elaronree np tor "ll i. i1!1 rh rr

,0 + dD)(r) c rl(i) + N'(r) and a1/ - d,)(r) c d7(r) + N/,(r), (3.2e)

the conclusions of rheorem 3.2 also hold with (3.15) replaced by

M(r): = U,{r€N.(r(i) +r) 0€r/(r) +_'rr(i) -N,(i)},
(3.30)

v 'a,:- U rr( \ r/rir d)D-ott.x) -)./\rt \ \,./1.

since the latter sets are lhen larger. if anything. We will prove in corollary 8.1.2 that (3.29)
does hold if

J nonzero; € ,'/(t) with z € Nr(t). (3.31)

'1 ALTERNATIVE RESULT I\ LIPSCHITZ]AN C SE

A variant of theorem 3.2 can be proved in ihe case where rhe funcrion/is locaily Lipschirzr,rn.
It employs a derice that F. H. Clarke has made much of, and it leads, as we shall see in rhe
next section, to an alternative nulriplier rule wlth a slabilily properry thar can be helpful.

l,(.r) = dis(r, , ) = lnil j--r' (1.1)
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,t/> Lip/(t) and A,--r>LipF6) forall t€Z(r). (1.2)

THEoREM 4.1. Suppose in thsorem 3.2 that / too is locally Lipschitzian. Let .trr,,1r, and

t > 0, be numbers such that

and let A. aDd Ar be any lo&'er semicontinuous functions such rhal d, 
= 

A. 
= 

6. and dD 
=A, 

= 
6r. Then the assenions of proposition 2.1 are all valid also for

,r1(,): = u \\- n tl)t1rr )/ldJc(rffr-l/r

0 € af(i) +.)(rF(i) + [r,/- ) Lr]a^D(i)] (13)

,u'(,7): = U Iy€r)t ifi\,.(F(t) +t) 0€-lirF(i) - r,irt^r(i)]
lex(ril

Norc that lhe conclusions of theotcm 4.1 reduce to those of theorem 3.2 \r'hen A. = li( and

A, = 6,; the sets (4.3) are then the same as lhe ones in (3.15), since dA{r(F(i) + r) and

,AD(i) become the cones Nc(F(i) + r) arld ND(t). which are closed with respect to multi-
plication by positive scalars.ln orhercas€s. however. an extra feature is obtained. For instance
xhen A. and Ar are locall) Lipschitzian (as when Ac = d. and AD = dD), one has multi-
functioN AAc and ,AD that are ot closed graph. a properly not universall-r possesscd by the
multifunctions .\'c and r% whetr C and D are not coDl€x. (See [8] for the closed graph propeny
of ,Vc, Nr. in the convex case, and [10, p, 150] for B counl€r example in the nonconvex case.)

The foliowing fact *i11 be needed in thc proof of lheorem 4.1.

LEMMA (Clarke [3].) Suppose , gives a local minimrtn of 8(u) reluljve to t€t. where
ECR'is closed and 8 is Lipschitz contiruous or a aeighborhood of t. I4t i. > Lipr(r).
Tbcn i gives a locai unconstrained minimum of 8 + ,id[.

P/oof. For s> 0 sufficiently small, ,/. is a Lipschitz constant for g relative to the ball i - 2sB
(, = closcd unit ball), and a! lhe same timc t ninimizes I relative to E n (lj + 2dB). Consider

any u in i - €B aDd ler u'be a poini of E nearest to u. Then I n u'L=d/t)=lu-f =€. so D lies in rhe ball D+2t8. Ir tbllows that g(t ) = 8(t" ) = 
gG') - i o o j. so

(s + Llr)(r) = 
(s -,ldr)(o). r

Ptoof of theorem 4.1. We repeat rhe argument of lheorem 3.2 word for word unlil the point
of obsen'jng that the funcljon /k in (3.21) has a local minimum a! 0rft, rr). Here we nake a

change of lariables. substituting li - €z for u and r.' + *l for w*, xhere zr+ O. Th€ funcdon

q z.)t 'f') ) [r: Fr.rrl -",8 - Ft\' - ez' F{.\'

then has a local minimum at (zk,./ ) relative to the set A. x D, *here

A,= I, ft+ €ze Cl=E l[C - tt).

d^.(z) = € tdd.' ' €2) 
= 

E-radt n rz) =r ar(:).

Obviously E! is locally Lipsrhitzian wirh

Lipn*(z*.rr) 
= 

Ljp/(it) + lr [€ + Lip.(]t)1. (.1.7)

(The last term itr rhe formula for ft has Lipschitz modulus 0 at (zt,-yr)).

(1.1)

(4.5)

(1.6)



Eri.nsions olsubgradie.t calculos qiih apFlications to oPdnizad.. bt')

To prove that the set M(t) in (1.3) includes tl(u), we need only demonsirate no$'that if
u -, ue \are Lhe co.drr or' $hich acFne Yrrr rrl 'fied b) v rn 'erm. ol lh< poinr i -
lim1r. From )r - J $e get

Lip,,,(.7k, /) < Lt + )l/,/ foreachk

h (4.?) by virtue cf (4.2) and (4.4). The lenma above lhen asserts that the Locally Lipschilzian
functior

qk+ (Lf+ !\1F)dA,.,t)

on R')< R' has a local minimum at (;t,l). But

a+,aQ, i = Iaa,Ql + d o6)llrz

= 
d.i,(z) + d'(') 

= ^.a.(z) 
+ 

^'(')
with Ai. defined as in (,1.6). Therefore the function

Vk(z,r) = qk(z,x) + (ir + ]1.l.)[^,{Jz) + 
^'(')]

likewise has a local minimum at (zr, xr), so that

(O, ()) € alttk(zt, rk)

Write 4rr = g + lr. where (rcferring to (4 5))

sQ, x) = (lt + ) .lF)^r.(u) r.€,. -/(.') +).rG) - [(,lr+ r 1r)lr](;r), (4.8)

l(2,:r)=(r-rk) tez r(x)l +rk€z FG)-ak+F(xN) 1 (4.9)

Calculaling with proposition 2.4, we derive

(0,0) € ts(zt, r*) + ahtkk,xk).

l(rr, ri) e a8(zt,'t) wittr -(sr, u*) e aht(.2k, xr).

Bur rhen

(rr,rj&) l5 Liph"(:i, it) = ) )r(€+Lipr(.rt))-0,

so (ri,ur)-(0,0). since (.2r,'Ift)+(0,t) and s is Lipschitz continuous around (0,i1, r!
follows from (rr, rji) e as(z*, re) that (0, 0) € tg(o, i) (cf. proposition 2.2). We next apply
proposition 2.5 (and corollary 2.4.1) to translate the latter condition into

0e (.;.r+ ) LF)a^r.(0) - o,,

le alf +.r'F+().t+ y 1r)Arl(;).

Obser'e nos that -he definrrion 14.61 of Ar gire.

a^!.(0) = €-Llsa^c(t)l =a^.(r).

(4.10)

(4.11)

(.4.12)
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Condition (,1.10) lhus yields

-t, € s-r(i. ] i,iF)r^.(ri). (1.13)

At thc sane time, (4.11) nnplies via propositions 2.4 and 2.6 lhai

0 € a.I(i) - ]'aic(t) - [2i + :-L ,.Fla^d,f) (] 11)

In summary, if ,1,(+v 1661 (1.13) and (1.14) hold. so I€M(r) This establishes thal
Ap(n) c M(u ).

Thc argument demonstrarine a-p@)c M'(ia) differs onll slightly from rhe one jus! gilen
we look at lhe case \\here rdt-] !!ith lr l, 0. The funcrjon rrg* has a local minimum at

(zr, irr) relarivc to,4, ). ,, and

Lip,.",(zr.xt) 
= 

rr Lip,(ri) - rr-ttl(e+ Lipr(rrD,

which implics

Lip,-",(;r. rr) < l) ir, forlarge k.

Then bt the lcmma we ha!'e a local minimum of

tk$t + Y iFcla,'D

ar (:*.,t(.). hence also a local minimum of

vkQ. x) = Ek(z, x) + ),ir[^.{.(z) + AD(-r)]

at (zi.rr). where p*:a-rrrwith
sC.x)=Ir )AA,e) - Lr^ . zl + l! F- t I!LDIG),

h k(z, x) : A - t k!-L\ - [Ez - F (z)l - t *t k Ez - F (x) - 6;r + r'(r*) l]

(0,0) € rqu(:r. .!k) c ag(rt, rr) - dl(ri..rt)

and deducc that (0. 0) e ,8(0, i). from which the desired conditions

) e . r,lr 
_r' rac(F(r) - r) and 0 e)aF(t) - ) i.a^lj)

fo o\' and show that I € V'(t). !

Rem.r/4. The prool of theorem 4.1 shows lhat the conclusions would siill hotd if the conditions
defining M(r) and M-(i) {'er€ strenSthened lo

0ea[/+] F+(ir+ ) Lr.)Arl(i) and 0e t[).r+ r r.raD](t)

respectively.

5. LAGRANGE \IULTIILIER RULES

The vcctors ) appearing in theorems 3.1. 3.2, and 4.1 can be regarded as generalizcd
Lagrange m ultiplier vector associated with necessaly conditionsfor optimalit]. Such necessary
conditions in fact {re mns€quences of the theorems mentioncd, as $e now demonstnle, We



lirst presert a rule for a very gcncral optimization problcm dependlng or a paramet€r vector

THEoRrr'r 5.1. Le! t be a locall,! oprimal solution to the problem

mininize s(jr, t) over t € R". (5 1)

nhere 8:R" r R"i- li is lo$cr semicontinuous and g(i, ,) is ltuite. Eiiher supposc thar the
problem is calm at -t with respeci h pe urbations of rr. in the sense that

iG!,,t)+(r,r) \\i!h uN+n "nd sri;ri ) €rr',,I- . (s.2)

or suppose that i satisiies the conslraint qualification

/ nonzerot$ith (0. t) e d-g('r. t).

: I \,'.irh (0, _r,) € ,s(r, n).

Then

E{enions ol "ubghdienl .al.n[F rnh iltLicatnns r. .ttnniz]li.f

(5.3)

(s.1)

aP(.i.r) = as(t,r), ,-P(-t, ,) = d?(r, r). (5.6)

P/ool. Taking any ! > 0 small enough that -i givcs the minimum in (5 . 1) relalive ro the baLl

i:\ :r 1 = !1. $e ocf ne

P \ ,.r ,,l 
:],.....' 

i 
'] -'] u

(i.5)

and obsene that the hypothesis of theorem 3.1 js satislied. moreo|er with I(t) : li]. Thetl
corollary 3.1.1 furnishes the inclusions (3.8). \\'here 1(ll) = inf,P(.r. !). B,v corollar], 2.1.1:

If thc constraint qualificaiion (5.3) holds, we obrain i?t/) = {0} by (3.8). Then d?,(t) + Z.
so (5.4) must hold br- (3.8).

We must show this conclusion is also \alid if in pLace of (5.3) $e assumc (5.2). The latter
is equivalent to the assumprion that tbr small enough ! in definilion (5.5). one will hare a

P(u)=P(i) Pu u

for ceriain p > 0, €> 0. Then the funclion

r(u) = p(u) + (t(u). $here q(L)=p x ,,
has a locaL minimum at t. Sincep is stdcrly lower semicontinuous at t aDd { is Lipschilriin,
it follows from propositioD 2.4 that

0 
= 

ar(t). ap(a) +.tqlr).

In particular,p(r): O, and from (5.6) and (3.8) we can again conclude (5.1). I

We tuln now to the case of problems wirh explicit constraints.

(5.')



THEoRENT 5.2, Let i be a iocally optimal solution to the problem

minirnize/(r) subjecito F(r) + t € C. r €D.
$here f:R'+ .li rs 1o$,er semicontinuous wlth /(i) finite, FrR" + R'' is locall) Lipschitzian,
and C C R' and , c -R" are closed. Suppose elthcr that the problem is calm at t- in thc sense
lhar

!(jr'. !") - (t. t.) with r({i) + or e c. -ri € ,?, such th0t

,/f = 'i 
and [/(ri ) f(i)]l ut a - - -- (i 8)

or that i satisfies the consrraint qualilicarion

/ nonzero y e.\6(F(:) -r) with0 e 11/+ dr)(-r) +_rrr(i). (5.9)

Then

l_r e N.(r(r). &) *itho € a(t+ dD)(i) -),rF(i). (5.10)

Rematk 5.1. The subgradicnt condrtions in (5.9) and (5.10) can be replaced respectivelv b!

0€h"(f-yF+6D\$). 0e6(,t+_v,F:6D)(;i). (5.11)

to obbin a slightll sharpcr result. This is true because the proof siren belo\r works for any
sels M(.n) and M'(.r) lending \'alidlty to theorem 3.2. See remark 3.3.

Remark 5.2. If/ happ€ns to be locally Lipschitzian. rhe subgradient condirjons in (5.9) and
(5.10) can for the same reason be replaced respectivel! by

t.)dF(i)+ \F@). 0€al(i) +)rF(j) -N,(j). (5.12)

Sce corollary 3.2.1.

R?krark 5.3. More generally the subgradien! conditions in (5.9) and (5.i0) can be rcplaced
by

0 e a7(j) - )rF(r) + ,\lr). 0 € r/(r) -)ar(j) -Nlj). (5.13)

\\'henever /is such that

a'(/+ 6D)(i) cr7(r) +N,(r). 6(/ doxi) cdl(I) +ND(i).

Results in Sectior 8 will show thar this is correct \\hen i satisfies thc further constrarnt
qualitication thai

inonzerozeai/(t)with:€N,(t) (5.11)

(see coro[ary 8.1.2).

Proof of thearem 5.2, The argument parallels the proof of the preceding theorem, bul rhis
time we instead apply thcorem 3.2 to

p(l,l) : inJ.{l(.r) lr0) - u e C, x e Dl.
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whefe l(.r) =/(i) - r-i),b=Ix€D i i =lI. For small enough lihe set -Y(ri) con-

sists of just i. so

'Plu) -, -\,/.ir- ;r0C1 r ODrr\r- rA/r\'

ir'p(t) c {-} e NdF(i) + rr) 0 e i-(l- 6t)(-i) + }rr(t)}.
where by corollary 2.,+ 2: .(l- 6,)(i) = d(/- dn)(i) and a'(l + 6DX-t) = t1f+ DD)(i)

Thus ihe desired concLusion (5.10) wi fdlo\rif tp(t) =O Fufihermore the constr: nr

qualjficarion (5.9) implies a?(t) - {0}, which does ensure ap(r) + Z \cf ihe basic{ac's in

Secrion 1). The calmness condition (5.8). on the othcr hand. is equiralent to a ]o\\cr bound

of type (5.7) hoiding when i/ is sufliciently smi l, and this too ensures a/(t) + 0 as verified

in the preceding proof. I

Retnark 5.1. The case of theorem 5 2 that can be compared nosi easily with Lagrange

multiplier results aheady in the literature is rhe one \\here.f is itself locall,v Lipschitziar (cf

rernark 5.2) and the condirion F(x) + t - C replesenls a standard constraint slstem as

described in remark 3.2. This case was first treated by Clarke l5l in terns of generaljzed

subgradien!s but using a different iechnique that relied on Ekeland s l'ariational principle [6]
and did nor provide an interyrelation of ihe mullipliers in terms of the differential effecr of
certain periurbations. such as $,e have hele b,v vi ue of lhcorem 3 2 In Clarke's multiplier
rule ihe set -Llai(t) + i-dt,(i) appears in place of lhe smaller set laF(-l). $here -r 

:
lr,. ,t.) and F= (f,.. ..1.), but on the othcr hand a lnulriple of tdr(i) appcNrs in

place of the larger set r\b(i). Hirlart-Urrut,r l7l showed ho\\ ro consolidate the cxpres\ion

,r/(t) + lrri(t) + . . . - -v.a/,(i) to d(/+ )FXt). Rockafcllar [11] showed luriher that tlre

rule could be wdtten in terms of a(/ + l F + dD ) (cf rhe extension indicalcd in remark 5 L )

and be validated under a weaker calmness assun1prion fian Clarke's. nanel]' (5.8).

CoRoLLARy 5.2.1. Let t be a locally optimal solution to the problem

ninimizel(.ri) subi€cr-t € C,

$'herelrR" - R is lower scmicontinuous with./(t)finite, and C c R' is closed SupPosceirher

rhat the problen is calm at t in the scnse that

i/-iwithrr e c. [/(i') /G)yd,.('! - -,
or ihai i satisfies the constraint qualificarion

I nonzero I € Nc(i) wiih -) € a7(i).

Then

l) € N.(i) \rith ,r, € t/(t).

Prool: SpeciaLize theoren 5.2 ro D = Ii'- R'', F- idenriry, , = 0. I

CoRoLLARy 5.2.2. Let i be a locally optimai soluljon to the problem

ninimize/(i) subject to F(.r) = 0,



rhere F:R"' R'' is locally Lipschitzian. Suppose eilher that the problem is calm al i in rhe
sense that

F.r,+ '- wiih F(rr) +0and[/('r) l(i)]/ F(_rr) + -.
or that i satisfies the constraint qualificarion

I nonzero), € R.*ith 0 € dY(r) + yaF(r).

Then

lt € R''wilh 0 e ;/(r) + )dF(t).

Pr.ool. Specialize theorem 5.2 to D : R,. C: {0}. r = 0. I

CoRoLLAR! 5.2.3. Ler i be a localh optimal solution ro rhe problem

ninimize/(r) +8(F(x)) overall j cR,,.
where /:R" + 1i and 8: R'+ R are lower semicontinuous wiih /(j) and s(F(j)) finire. and
F:R"+ R'' is localty Lipschiizian. Suppose either rhar rhe probtem i\ crtm ar y rn rhe sense
tha!

y' ('r, *)- (r,o) inR" x R-withut + o and

[/(jr) - 8(F('r) +uk)-f(i) s(F(r))]/t,i >--,

or that i satisfies rhe consrraint qualification

i nonzero) € a-s(F(t)) wnh0 e aT(t) +)aF(r).
Then

3_r, € r8(r(r)) r.irh0 € al(i) il,dr(r).

Proof. Reformulate rhe problem as

mrnimi.e71r. u I ,ubjecr .o / 1'..7 -0.

where l(r, w):/(-r) + s(lr), F(.r. w) = F(r) 
'',. 

This has a local rninimum at (j,lt), where
li : ,F(i). Apply the prec€ding corollary and invoke proposirion 2.5 ro calculare il(-t. r) and
a"fc.ti). a

The nexfiheorem lurnishes an ahernativc torheorem5.2rhat allows for a differenftreahenr
of the constraint -! € , along the lires follo$'cd by Clarke 1121. as menrioned in remark 5.1.

TlrEoRENl 5.3. Let i be a locally optimal solurion to rhe problem

mxrimizel(r) subjed io F Q) +, e C..t € D,

where l:R" and F:R" - R' arc locally Lipschirzjan. and C c R- and , C 1t,, arc closed. Lel
,1.., ;iF and € > 0 be ant numbers such thar

,),r> Lipdj) andr.. €> Lip{t). (5.15)
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and let A.j and A, be an,v lower senicontinuous functions such that d( 
= 

A. 
= 

6c and d, 
=a, 

= 
d,. Then

l(a,J) + (0,0) with 4= 0,) € s '[4,1r+ ]lr,.l6A(F(t) + t).
and 0 € 4al(t) + )aF(t) + l4r.r+ l) ,irlaA,(t).

lf the calmncss condition (5.8) is fullilled, then one can lake 4 > 0 (hence ?]: 1)

P/ool. The pattem ofreasoning is identical to the proofoftheorem 5.2. except that iheorem
4.1 is invoked rarher than theorem 3.2. The conclusior is statcd slighily differently, however:
(5.16) is equlvalent to the assertion that if

! nonzero) e s L ) l''d^c(F(t) + t)
with0 €ldF(i) + ),iFa^r(''),

then

r)€s r[,i/+ ] .i.la^.(F(r) + r)
wirb 0 e irl(-i) +)r/(t) + [,i/= ],1.144,(t).

The case of the possible constraint qualilication (5.9) in theorem 5.2 is thus incorporated in
this version in anolher form. I

Theorem 5.3 turns into the multiplier rule of Clarke [3, lheorem 6.1.1] if we choose
A( = d., AI) = dD. and specialize C to thc case of relnark 3.2, so that the condiiion
F(.r) + n € C represcnts a mixed system of equaliry and irequality constraints of thc usual
sort. Clarke's resull. however, is also valid for -r belonging to a Banach space, nol just R'.

6, CONSEQUENCES OF THE PERTURBATION THEORE!1S

We tum no\r to the application of the preceding results to the development offurther rules

for subdifferentiation. We begin $'ith formulas ihai can bc dedved from thc perturbation

THEoREM 6.1. Consider

p(u) = inf,tl,) G(1) = ul,

.Y( ) = argnin.{f(r) G(r) =l'l1,

where /:R" - ii is lo$er semicontinuous and G: R'+ R'' is locally Lipschitzian. Let n be a
point where p is finite and the following holds:

fs> 0 and a> p(t) suchthai lhe set

{' /(i) = A C(r) t 
= 

€} is bounded.

(5.16)

(6.1)

(6.2)

Then p is strictll lo\\,er semicontinuous at , and -d(t) is nonempty and compaci. Moreover
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M(fr): =rJ)lieX(t) wiih ,/(i) nlsc(i) +Zl,
M"(r): - !r- :iex(r) wirh a'f(i) n!aG{t) +Al,

one has ep(t) c M(r) and a?(r) c M-(r). so all ihe asserlions in proposirion 2.1 are valid.

P/rof. Simply apply theorem 3.2 ro F: c.C={0},r=R"(i.e.,tD=0),andthegi\en
f..
CoRoLLARy 6.1.1. Let E: G(D), where DcR^ is closed and crR'>R- is localty Lip-
schitzian. Lei t e t be a poinr uhere tie following hotds:

(6.3)

(6.4)

(6.s)

ls > 0 such that the ser ft e D G(xt -, = slisbounded.

Then t is closed relative to some neighborhood of t, and for the cone

!rr(t):: Ir-liteG r(r) n, wirh Ni6).r.ri(l +A\
"ll le ar.cil.on.'n (oroll"r) 2. .I are \ahd.

Pr"of. Apply t}leoren 6.1 to /= dD, which gives p = dr. I

Our next resuh concerns the operation of infimal convolution of exrended-real,valued

THEoRETU 6-2. Consider

p(u) = inr {/'(r')+... +f,G,)xt+...+:t,=ul,
(6.6)

-Y(") = arsmin lf,(',) +... +t(ir,).rr +... +', = ul,

x'here, rR"'+ n is lower semicontinuous. (The convention - - - : @ is used to handle lhe
extended arithmetic in these formulas, when required.) Ler n be a point where p(n) is finite,
and suppose

fE> 0 and ry>p(t) such that rhe set

{(rr,...,r) /(rr) +... +1,(r) 
= 4 lr'+... +r, -a l= e}lsbounded. (6.7)

Then p is stdctly lower continuous at t and -L(t) is nonempty and compact. Moreover for

uln)t= c, .-U.,=,,,, lol,{t') n. . . n ,1,t".)l

M'lr):=t,. u.,r 
) 
1r7, (i,) n. . . n a:f,(r,)l

(6.8)

one has 6p(r) c M(r) and 6?(r) C M1r), so all tije assertions of proposition 2.1 are vatid.
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Ptoof. Fot r = (-r,, . . . ..r.) € (R'")' define /(r) = /r(rr ) + . . . + l;(jr,) and G(')=
xt+ ... + x,. The situation is thereb) reduced to that of theorem 6.1. l\foreover

a/G)=(al!G,)....,r1.(:r)). rT(')=(r7,0,)' .' 47.(r))'

by proposition 2.5. and lac(i) consists of jusi the vector (). . . ) ) € (R- )' The sets (6 3)

are therelore erpressed by (6.8) in this case, and the conclusions of theorem 6 1 gile us s'har

we want. I

CoRoLL,\Ry 6.2.1 . Let E = Cr + . . . C., \vhere CiCR''isclosed Let t € E be such thai

f€ > (l such that the set

{(r',.. ,r,) }:,e C,, r,+ +ir, , =6}isbounded (no)

Then C is closed relaiive to some neighborhood of t, and for

M(n):= U Ir.,(;,) n... iN.,(;.)l (6.10)

one has &(t) c Mti), so that all the asserliors of corollar), 2.1.1 are valid

Prool Take f = d1 in the theorem. I

CoRoLLARY 6.2.2. Consider

p(L) = inf s(r - jr), x(u) = aremins(a r), (6 11)

$here a C R"' is closed and g:R''+ R is lo\\cr semicontinuous. Let , be a point \\here r' is

finite and

la>rr(") and !-> 0 such that the set

{(.r. r) t€C, u-t =€.9(u ir) 
= 

a}isbounded (6 12)

Theng is stdctly lower semicontinuous at Ii and X(r), is nonempty and compact Moreo\'er
for

M6):= U N.{i) nrs(, t),
'=.ri) 

-' (6.13)

M'(r):= u N,{i) n r's(r-i),,l

one has a/(r) c M(t) and a'p(r) c M'ti). so lhat aLl the asscrtions of proposition 2 1 are

ralid.

P/oo./. Inthcoren6.2taker:2.11:6c,1:S.Inplace of-rr and rr \rrite :r and a n I

Remark 6.2. Choices of C tha! arc of particular interest in corollary 6.2.2 lbr general 8 are

C = sB (closed ball of radius s around 0) or C = R'1. which yield

p(,4 = inf g(0) or p(a) = inf g(u).
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Noteworthy choices ofg ior general Careg(u) = D andS(u) =i rr.Theseyieldt=.l.and
p = +di. respcctiv€l_v.

THEoREV 6.3. Letp(r) = min{i(L), . . . .tQ?l}. uhcte/ :R'- d is lolrer remrco0rnuous. Lel
, be a point wherep(n) is finite, and let J(r) = {i j4(t) = l(t)}. Thenp is lower semicontinuous,

one has ip(r) c Mtl) ard ;?0r) c M1t), so that all ihe conclusions of Proposition 2 i are

valid.

Prool.DefineP(r,u)=i(&)ifx=te{,,....m}cR,P(x,r):-orherwise.Theh!po!h-
esis of theorem 3.1 is then satisfied, and the conclusion of lhat theorcm lranslates into the
res'rit gi\€n here- (It actuall! yields a slightly_ stronger conclusion in which ii(n) and

a7(r) ar€ replaced h (6.14) by the smaller sets ar(r) and aY,(t).) !

CoRor-LARy 6.3.1. Let C=CrU...LlC., where C,cn'is closed. Let r€C and ler

(h.15)

(6.1J)

/ l, J = 1/ r e c,l. rnen c ts cLoseo. anu tor

M{'?): - -U,r, {r)

one has fc(t) c M(r), so the conclusions of corollary 2.1,1 hold.

Ptoof. Let f,= 6c in rheorem 6.3. I

7. CHAIN RULES

The subdiffereniiadon formulas that \r'e tackle nexl depend not onl-r on lhe perturbation
lheorems. bul at a crucial stage also on the Lipschitzian version of the Lagrarye multiplier
!ule. namely lheorem 5.3. This is because of a limiting process in the proof which requircs
a semicontinuity property that is available for elemenls salisfying the condilions in theolems
5.3. but nor nccessarily in the case of the conditions in thcorem 5.2. at leas! no! \\'ithoul
additional assumptions.

THrjoREMT.l.Letp(a)=g(c(a)),whereG:R'"+RdislocaLlyLipschitzianandgrR'r-,Ii
is lower semiconiinuous. Lei !i be such rhat p(i) is finite. Assume

v(r?):: U i.r('i). r4'(n\: U a-f,(a).

! nonzero) €a?(G(r)) \iitli 0€tac(t).

M(:t1): = a8G(n))dG(t). M'0;): = d?(G(rraC0i).

(7.1)

(1 .2)

one has ap(ri ) c M(t) and ;?(r) c ,l-r1t), so rhat all the assertions in proposirion 2.1 arc
valid.

Remark 7.1. Condition (7.1) can be stated dually as follows. in terms of the convex cone ,(
$hich is polar lo ,?(G(t)): for no ,4 € rc(t) can K be separal€d from the (linear) range



Extensions oi \uhgradienr calculus \|nh applicrrions to optimization 689

space of,,l. The chain rule pre\iously proved by the auihor in I13. theorem 3l requires ihat
6G(n) consists of a single A xhose range space meets int,(, a condilion lha! is obliousl]_
nore lcstrjclile. On the other hand, this earlier chain ruie is stated in a "direclionall),
Lipschitzian" form that holds true when R" is replaced by an infinite-dinensional space.

Proof of theorcm'7.1. \wile

r(,) = jnfl( (L', d) e epis, , G(&) = 0]

= inf{q(il. r, d) r(l],r,e) €c,(',,,,,d)€r},

q(u.L).^)= d.', c={0}, D=R-xepis, r(a.u.o)=c(r) D. (?.4)

Thc funclions q and F are locallt Lipschhzlan. and the minimizing se!.y(&) in (?.3) is trivial'
just the singlelon {(L. G(r), S(C(r)). Obviously p is lower semiconrinuous.

Suppose :i is a proximal subgradienr of p ai ur. where uk-n ,and p(uk)-p(a), r.e.
t(tJtut tt etCt;,t ue .hou 'r.r rnaL ir .? -:. r-en : e Mrl, r ". d. ;eJ n a 21.

For.orne'. n {e tr\e a o!d rrrn.mJm d. l'/ or lne rLn.tion

u-P(u) - zk u-tklu-uk),
and this amounts ro a local inimum at (4r, 6(llt), s(G("r))) for rhe tuncrion

( '.l)

over (a. 0, !r) e , sublect to I(ll. u. d) e C. We $'ish ro inloke rhe muttiplier rute in theorem
5.3 at this local minimum, and 

've 
can do so because I js localll' Lipschitzian:

Liprl( r, G(4*). s(c(&k))) = ?r +1+ z +1.

It is essential to rote in ihis rhat the sane values I, and ,ir can be made !o work for all k. if
chosen large enough. There h no need ro consid(r €, because \e take A, =.5, :6,. so thar
64.(il) is the norn1al cone !o lrl] ar 0, i.e. the \\'hole \pace R,. On rhe ortrer tand, \c take

The implication of theoren 5.3 rhen is thar rhere exists (4i. )r) + (0, 0) with 4i = 
0, such

that

(0.0,0) € ad u*, c(&r), s(c (,*))) + ) 
kaF(/. G(uk), s(c (uk)))

Fp@.o, a1 = cu- zt u+ ra u u!2 (7.5)

+ [nfu - :-k ),tla d DQk, Gtut ), s(G @k ) ) ). (7.6)

We can normalize to have (ap.yr) = 1. Thus by passing to subsequences if necessary, rve
can arrange that (rt, )") converges to sorne pair (4, ),) + (0,0) $'ith I = 

0.
In order to investigate the limiting condition satisfied by the pair (r. )), \1e apply rhe rules

of subdiffereniial calculus to the seis in (7.6). It is apparent ftom (7.5) lhar

afk(ut, G tu\. s(G (u\)) = (-,', o, r")l
Furthermorc from (7..1),

aF(uk. c ok), 8G@\)) = (ac(ur). - 1,0),

dD(u,D,4 = Lt{x, d) for E = epis.

(7.1)



Thcrefore (7.6) is equivalenr to

,Lzt € !-t a G( uk ), i rk, - nk) € lrL ) t + ].r,r'rlad.(oi. g0rrD. (7.8)

i7.,1)

(]. -4) €N" {(Gti),s(c(r))). i7.10)

rl,here the mullifunctions :)G and dd. arc ot 'closcd graph' because G and d. are locally
Lipschitzian (cf. propositions 2.2 and 2.6)i this is the crucial propert! rhat has been obiaincd
b,v invoking the more coaplicated multiplier rule in rheorem 5 3 rather than dle one in
rheorem 5 2.

Limit! may therefore be taken in (7.8). \\e get

,: €)ac(r), (_r, -a) € lr.i,+ .i ;d,ld.(t'.s(rt)).
where lt = C(,). Inas uch ds

cl u iirdE(r. G(l')) = N'6r, (](r))

(Clarke lSl). lhe second condiion in (7.9) yields

We knolv (4,_)) + (0.r1),4=0. If 4=tl. rhcn J+0 and the first condirion in (7.9) safs
0 € tac(r7), $hile (7.1(l) sa)s ) € r-g(Ct7)). This is impossible bt assumption (7.1). Hence
4>0,andrepl.rcingl,b,v4ryifrecessar,vnecanreducetothecasewhcrc4=1. 1h.n ,n.
6rsr condition in (7.9) sa,!s ze )-ac(n). \rhile (7.10) sars _!€af(6(r)). tn orher *ords.
? . grr,, r,I .C .; r l/tr.r.

A similar argumcnt covers the casc $here instead of ;l-:, rve rssume hzi+z with
d L 0 and aim at proving :€ r1.1-(ri). Then rit has a locat minimum at
tt.tJ't .ttc.u,.;1 '.Lr..'ot/.,.o.r 

-D /t, r.nl--{ . rd

Lip,.,,(,'. c(,!. s(G(,r))) = rpi + ru- :
Once .rsain we may apply ihe muLtiplier rule in thcorem 5.3 for fixed ,t. and 2.. and rhis lietds
the sane condiiion as in (7.6) but *ith ,rrr in place of the first ?11. lr can be assuned that
(Ir. _r") + (r. _r) + (0. {)), , = 

0. We reduce (7.6) as before using subgradienl calcutus. obtain,
ing lhis tinrc in place of (7.8)

,dr:'e l.irc('rr), (_r.t. rlrrt) e f l2 - _r,k .lrlidJ,rt. qoi,l)

for ri,'= G(ur). In the limir rhis -viclds

,. € jac(.u), (r,, 0) € Iri - ) .lrlrdF('i, s(}!))
\rhere the las! condition implies

0,0) € 
^'r(t, s(t)), i.e. ," € a's(G(n)).

If I = 0. then _r + 0 and (7.1) $ould be contradicled. Therefore ,> 0. and we can take
4 = 1 Thus we get the e stence ol some _l e 8-g(G(r)) such thar.:er,rc(r). and$c
conclude : E M-(, ). I
CoRoLLARy 7.1.1. Ler te E=|uC(u)€Dj= c r(D), where G:R,'+ R,ris tocaly Lip-
schitzian and D . n" is closed. Arsume

i nonzero ) €ND(G(t)) wilh 0e),rc(r) (7 11)
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Er(ensio.s oi subgr.drenr cilculus {nh applicrlrons 10 ofn'niTation

M(n) : N,,(Ct,i))ac(i) (1.t2)

onc has rtr(t) C M(ri), so that all the asse ions of corollary 2.1.1 arc valid.

Pl?oi Takc g: 6, in the theorem. I

R.naJ't 7.2. Especiall) interesting in corollary 7.1.1 is lhe case $here D = {0} 1hen with ihe
notation G(', : (q(a).....:'la)) e ndr e have

E = Iu s,(u) = 0 lor t= 1.. .,i'?]

(whcre each Sris iocall]' Lipschirzian ftom R- to R). Furthernore Nr(G(r)) = N,(0) = n'r
lor any t e t. so thc result says ihe following. If ihere does not cxist a veclor ] =
(I1,...,-rd) + (0,....0) \\irh

0€,[]rs + +)'',c-l(t)

(lhe larier condition bejng equil,aleni to 0 e 6C(t) by proposition 2.6). then for the set

\1'u,: lJ,,g ) ?,t,t)

one has r\;(r) c cl co ru(t) as s,ell as the other esrimates in corollar)r 2.1 1.

N{ore generelly in placc ol D = {0} one can consider

D={ri =(u,'....,r,,,{),....0) }r,=0 for , =1,.. .r}

-D=1ll s,(4=0 lori=1,....s. and gi(U)=0 for l=r+1,...,d]

Then for any , € t one has

.\r,(G(ri)) = {r )i= 0 lor i:1 .. i $ith s,(t) =0.

-1,=0 for i=1.....' rvithS,(t) <01

CoRoLi.ARy 1L.2. Let pftt): g(.G(r.r)). $here G:R''-Rd is locally Lipschitzian and

g:Rr- R is lorver semiconlinuous. If C is strjc!]}' differentiablc at , and

inonzero!e l*(G(a)) wilh tVG(t) =0,

ap(r) c ds(G(r))vc('l). ;?(t) c a?(G(t))vc(t)

P/rol The set ic(r) reciuces in rhis case to tbc single matrix /i=VG(r) The sets

ag(c(u))i and a?(c(t))A are then convex, in iact closed because of (7 13) (cf [t, theoren
9.11)r for t - C(r). r'g(]i) is the recession conc of rhe closed convex sel ag(t) + i-80t') is

al*ays equal to dSoi) by these definitions. The conclusions of proposition 2.1, which lhc

(r.13)

(7.11)



theorem guaranlees. then yield

ap(.n\ c cl co lM@) ' M '(t)l = d colas(t)j = t1(t)i{ l
.lcullos,f i i srr'lAl-Llcolas,r,Al ;st4 jA

If ap@)+Z, i! follows from this inclusion ihar rhe recession cone of a?(r). .l\'hich is
6-l(r), is_included in the recession cone of ts(li),l. which (by (?.13), cf. [8, theoren 9.1])
ls a''eln)A. If ap(.t) = ta, one gets the same result via proposiiion 2.1:

.'p(t) c c1.a M -(r) = d co [a-8(r)i] = d?(r)A.
Either \\'av, the inclusions (7.1,1) are both correct. I

CoRoLLARy 7.1.3. Let G:R'+ Rd be locally Lipschirzian. and let , C nd be closed. Suppose
te E: Iu G(u)€DJ= G '(r) is a poinr where Gis strictt,! differentiabte and

i nonzerol, e N,(G(t)) with tvc(r) =0 (7.1s)

Thcn

^,,(r 
) .N,(G(r))vG(r). (7.16)

Proo.l This is the case of the preceding corollary where g is the indicalor 6r. I

CoRoLLARy 7.1.1. (Clarke [3, p. 72].) Let p(u) = g(G(u)), where c:R,.+Rr is iocalt,v
Lipschjtzian and siR'+ R is locaily Lipschiizian around C(t) for a ce aln,e R-.Then
I is locally Lipschitzian around , with

(1.t7)

(7.18)

31(r) c coIds(G(,D rG(r)].
If in fact 8 is strictlt' ditTerentiable at G (/?), lhen

dp(,I \g(L,(rJldu(, ).

PJ.ool. The assumption of Lipschitz continuity on g means thar d'g(c(r)) = {0}; also. rhe
conver set,8(G(t)) is nonempty and compact. Condrtion (7 1) is sarislied \acLrou\h in rhis
case, and one has M-(r) : {O} in (:.2). The last pafi of proposition 2.1 ihen asserts that p
is locally Lipschitzian around n (actuall), this could also be verilied directly) and (7.17) holds-
If g is slrictiy differentiable at G(r). the set ag(G(t)) consisrs of a singlc vector Vg(C(r)).
and since ic(r) is a convex set of malriccs the convex hull operaiion in (7.17) can be
dropped. r

The resuli in corollary 7.1.4 is just a special case of a more general chain rule for locally
Lipschitzian mappings which can be dedved by the same method.

CoRoLr-\Ry 7.1.5. (Clarke [3. p. 75].) Let F(u)=H(G(u)), where G:R-+Rd and
HiR"+Rq are locally Lipschirzian. Then Fis locallt Lipschitzian and for a]u one has

a F(tt)D . co taH (G (u))ac(u)lu for , €R- (7.1e)
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P/ool. For arbitrary .z e Rq apply corollary 7.1..+ to g(lr): z H(w). Draw thc conclusi,rn
that z F is locally Lipschitzian nith

a(z F)(.u). cala(z HXG(')rc(t)l
= co l(zaH (?FL))dc(n)l = ;( co Irfl(s(r)) iG(, )]). (7.20)

Theiefore F is locally Lipschitzian and A(z F)li) = zAF(.n) (proposition 2.6). The lafter,
togelher wilh (7.20) for all.2, implies (1.19). r

CoRoLLARy ?.1.6 t-et p(a):gf(u)). rlhere /:R'+R is locally Lipschitzian and E:R+
R is lower semicontinuous. Le! 17 be a point such ihat E is finite at l(t) and 0 € d/(r). Then
for

M(n\= a(rj@)).)f (.1). 
^a'@): 

= a-E(f(r)) af(r), (1.2t)

one has 6p(t) c trt(r) and a?(r) . M'(r). so rhat all rhe asserrions of proposirion 2.1 are
valid.

If E is nondecreasing on R. or ifl is strjctl!, differentiable ai r?, then

lwhcre in |he second of these cascs rl(r?) reduces to Vf(r7)).

Praof. Take G = f. g: q (the case ol Rr = R). Specialize rheorem ?.1 and corolary 7.1.2.
Obse e that when I is nondecreasing. the sets aE(/(r)) and A"q(/(r)) are subinre^ats of
lu.!r .o U,rr"rd 1t trin l'.2lrare con\(\. T\en rhe con\e\ hull ope-atron r.
superffuous I

8 OTHER SUBCRADIENT !OR\IULAS AND A PARAMETRIC NlULTIPI,IER RULE
The chain rules in theorcm 7.1 and its corollaries lead to other rules of subdifferentiation

through the technique of reprcsenting a given kind of function as the composition of some
other function with a Lipschirzlan lransformation. We demonstrare this first wirh a gencral-
ization of the rule for subgradients olsums offunciions (c{. proposition 2.,1and more generaliy
[13. theorem 2]).

THEoRET{ 8.1. Let/=i +... -f. *here./.R'- F r\ LoweL semiconrinuous. rnd tct j be
a point where all the lunctions /i are finire- Suppose

ap(r) c aEff@))af(u), a'p(r) c a-q(f(t))af(r) (.'7.22)

bte a-f,(i) $irh )L =... +_r,=0, excepi tr=. =I.=0 (8.1)

Then

(8.2)

P/oof.Defineg(LL,...,r.)=gr(ur)r.+9.(ll,)on(R")'.anddefineGrR,'+(R,),by
cltl) = (.u, .. . . &). Then /(ll) = s(G(u)), and we are in the rcatm of corotlary 7.1.2 wirh
assumpiions (?.13) fullilled at l'l -t- (A vcctor _r, of rhe kind forbidder in (7.13) woutd
correspond to an r-tuple (f1. . r,.) € (R")'of the kind forbidden in (8.1).) The inctusions
]n (7.1:1) reduce forp =/ro the on€s in (6.2). I

al(r) c di(r) +... + a/,(r).

a'l(i) c a'f\(.i) + . . . + a'f,(i).



Rematk 8L Proposition 2.1 is. of course. the case of iheorem 8.1 where li:8.t=,.
a'f)(i) = lll Ir general lor r=2, condition (S t) means that rhe nonemp!_,- convex cones
,, = {" "f,11;; "l < - }. rrhere /j (ir 'r) is the directional subdireciive delined in 11.11. cannot
be separated: tli(i) is the cone polar to ,! (cf. argument used in proving proposlrion I +)
ln particular , and Dr cannot be separated il ,, f,inr D: + Z. In this case the formulas lor
ir(i +.t)(i) and ir'(i /:)(i) are covered bl theorem 2 of [13], a result which rs lalid in
infinite'dinensional spaces and also provides conditions under which equali!-r holds in (8.2).
The iechnique of proof used here. \\'hile it allows a weakening of the separadon h--po!hesis
in a finiic-dimcnsional settjng. does nol sccm to provide conespondjng resuhs about ihe
posslbility of equalltv.

CoRoLrARy 8.1.1 Leti=C=Cr1-...aC. wh€re CrCR'iscloled S ppos€

ilr.N.(t) with _!r +.. +).=0, excepot=... =,1.=0.

Then

N.(i) cN.,(r) +... +N.Ii).

Pr.oof. Take, in thcorem 8.1 to be the indicator lurction 6., cf. (1.8). r

(8.3)

(s.1)

CoRoLl-ARY 8.1.2. Lei /tR" - R be lower semicontinuous and let , C R" be closed. Le!
i e l] bc a poiDt where /is linite and such thai

/ nonzero: € r'.I(.) u,irh z€N,(i).
Then

t(l+ 6,)(i) c r/(t) + N,(r) ,1/+6D)(-r)ci]'t(r)+Nli).

P/ool. Ihis spccializes the theorenr again in terrns of (1.8). r

CoRoLLARy 8.13. Let ,a(j) =/(r) g(F(i)1. uhere /:R - R . d g R -R arr toxer
semicontinuous, and F:R'+ Rri is continuously ditfcrcnriable Let i be a poinr rvherc , is
finite, and suppose

inonzero_r, e a-s(1.1-t;) with 0 € i7(r) +_rVF(i).

Then

ah(t). al(i) + rs(r(i))v,F(r). a'h(t) c aTG) + 38(r(i))rr(r).

P/oo/. This combines lhe nro function case of theorem 8.1 $'ith ihe chain rule in corollarr
1.1.2. a

CoRoLLARy 8.1.:1. Ler E=DaF 1(C), wtrere raR,,and CatR,,are closed scts. and
F:R"+ R^ is continuously diflercnriable. Let -t be a poinr ol E such thar

/nonzero_r' e N6(F(r)) $ith u€N'(t) +_rivI(t). (8.5)



Prool. Take I = {t, and g = 6. in corollart 8.13 r

Renark 82. In terms of the poLars of rhc cones Nr(t) and Nr(F(-l)). which are lhc
tengeni cones rrr(t) and r.(F(i, Gee Clark€ 13, p 511), lhe assertion of corollarl'E.1'1
yields lhe follo\\ing: jf ihe conlex concs r( (F(-.)) and lF(i)ID(t) ca ot be scparated (i e.

if 7rlFl.r)) YF(t)?'(i) is all of R"). then

z.(i) r z,(i). vr(i) ir.(F(i))

(the invenc beinq taken ln the sense of ai inlerse multifunclion. noi n€cessarily single
valucd). This result has been proved br Aubin [1. Section 1].

P/ooi This specializ€s thc thcorem again h lerms of (1.8). I

THEoRENT E.2. Ler rrt4 = g(-r. ll). ihere I.R R - R rs lowet \emiLrlntmuou\ dnd i E
R" is 6xed Let t € R"' be such thal g(i. t) is iinitc and

! nonzero: \\rth i.:,rrlL glr.r.l.

,p(t) c {_r lu wiih (.-,_r) e ;s(t, t)},
,-p(t) c {}' :: \rith (:._r) € i'e(t. t)J.

Erten\nrns ol sub.!r.drent cilculu( Rnh attli.ati.rs t. ottnnizati.n

(8.6)
Then

NF(i) c xD(i) + N.(r(j))lF(i).

(8.7)

(r.r)

P/,o.| Defin. G rR"'- R" r R'' b.v c (4 - (-!, r./). Thenp(r4 = s(c tr)). and th. hlpolhcsi!
of corotlar] 7. l 2 is satislicd: ore has (.:. _r )lG(r) : _r., so this image is 0lor a nonz€ro elcmcnr
(.-. r ) of ti(i. , ) il and onlt iI the elemen! is ol the lornl (:. 0) \rith : + 0. Relations (7 ll)
rum inio (E.8). I

Renatk 8.3. Theorem 8.2 slrengthens oul prelious result on this matter in lrI. proposrrion
41. \rhich gave these conclusions onl) under tbe additional assumplion that A-8(t, t) is ponrted.

CoRorLARl 3.2.1. Let I: {u (i.r) € D}, nhere D CRi x Rfr is closed andi e R' is firied.
Lei i e n"' be such that (i. ri) €, and

(8.e)

(8.r0)

3- nonzero.z lvirh (:,0) € N,(t, t).

.\''(t ) c {} l; wiih (:. i) e N,(i. t)}
P/ool Takc g = 6, in theorem 8.2. Thcn p = 5u. I

CoRoLr-\Ry 8.2.2. Let t = {u € R'' l(u) = 
0}, $here/: R'+ R is lower scmicontinuous. Let

t bc a point where l(r) = 0 but 0 € tl(r). Then

l t\.(r\ - U)."[([)l itut.



IJ96 R T. RoC(ELLAR

Prool. We shall inloke the preceding corollary. Let D=epi/cR,,xR, so rhat E:
{ i(u,0) e D}. Recall that

N'(t. 0) = N.n,/(r,f(r))

It .t,r/,rr. -,rI . (d/\.,).0).t.0 I

There does not cxist z+0 with (0.2)eN,(r,o), for rhen there would exist,tr>o with
(0, -,t) € ND(t,0), and we would have 0 € 6/(t). contrar]' to hlpothesis. Thcrcfore

N.(t)c0 l,r€R with (1, -r.) €N,(t,0)].

This inclusion reduces to the one claimed. I

The normal cone estimate in corollary 8.2.2 generalizes the resuli oblained by the author
in [13, theorem 5]. That result, valid in an iniinite dimensional setting, requires rhal / be
directionally Lipschilzian at 17, a condition equivaient in ihe finite-dimensionat case to 6/(r)
being nonempty but not including anl' whole line. Ho\revel, that version also provides a
criterion for the inclusion to hold as an equaiion.

Our final result is an extension of theorem 3.2 ro a more general class of perrurbations.

THEoRENT 8.3. Consider

p(u) = inr,{f(x,u)iF(x, &) e c, ('I, )e,}.
x(a) = aremin. {i (r. a) F(x,u)e C,(x,u)eD},

(8.11)

where CCR- and rCR'xR'are closeal, F:R'xR'+R'is locally Lipschitzian, and

/:R'x Rd+R is lo\.i'er semicontinuous. Suppose n is a point wherep(r) is finite, and that

f €> 0 and a>p(t) suchthartheset

l(x,u) f(x,u)=tj',F(r,u)eC.(r,u) €r. ll t I = 
€l is boun{]ed. (8.12)

Then p is sldcd! iower semiconlinuous at 17, and X(n) is nonempty and compact. If in
addition each such i € -Y(r) satisfies the constraint qualification

/(21, t)') € ,7(r, r), (...1)e^'1(i,r), ) e ',(Fti,r).) (8.13)

such that (.2 , ur..7r. u:, r) + (0,0. u.0.0) but (2, :,. , + rr) € _raF({, t), then for

M(r) = {{jllr € Nc(r(i. r)) wirh

(0, u) € a/(t, r) +r6F(i,r) +N,(i,t)1.

M'(r) = ll,ll) eNc(r'(r, r)) with (8.11)

(0. u) € dT(i, ,) + lirF(i, ,) + N,(i, r) l

one has 6p(r;) c M(d) and A'p(r) C M*(t), so all the assertions of proposition 2.1 are valid.
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/,\.rr il r(.r.,?)€,.(i."J -n.
P(r. a) I (8.ls)

' . orhen\rre.

Then P and p fit the partern of iheorem 3.1, all the assumptions in rhat result being fulfilled.
what we need to demonstrate is tha! under (8-3). every pair (0, u) € tP(i, r) satisfies the
condition

ll e N.(r(i, r)) wirh (0.IJ)€al(t,r)+)aF(t,t)+N,(t,r). (8.16)

while ever]' (0. r) € d-P(t, t) satisfies the corresponding condition where a7(i. t) appears
in place of a/(i, t). To ihis end we write PG, u) : s(C(.r, Il)), *'here

G(t, u) - (.r, u. r, u, F(r, u)) €R" x Rl t R" /. Rt x R^. (8.1?)

glxl. uL, rz, uyw) =.i(.r,,Il,) + d,(.rr.u,) +b.(w).

The chain rule in theorem 7.1 \\ill be applied. We note that

a7GG.r)) = (aJG, ). N,(;. ,), Nc(r(r, ,r),
a's(G(t,u)) = (d7(r, r),N,(r, r).NdI(r, r))). (8.18)

on tle other hand.

lz1, D1, zj. L\. !)ac(t, tt) =(21-?1u1+,t + r aF(I,n).

Assumption (7.1) in theorem 7.1 thus becomes (8.13), ilhich is assumed here. It follolvs that

eP6, r) ..s(G(t, n)) aG lt, i),
A" P(i , ,) c a" E(G (, , ,)) aG(, , ,) ,

and by virtue of (8.17) and (6.18) thh is all $e had to sho*. I

Rematk 8.1. Theorem 8.3 reduces ro the versior of theorem 3.2 in remark 3.4 in the special
case where Rd = R', F (x, u) = Ft)(t) + u. f Q, u) = /0(jr),, = D0 x R-.

THEoR-EN1 8.4. (Parametric multiplier rule.) Let t be a locally optimal solution to ihe problen

mininize/(i, t) over allrsatisfying F(jr, r) e C, (.x, r) e D,

lrhere CcR" and DcR^xRd are closed, F:R':Rd+R'is locally Lipschitzian. and

f.R" tRd+R is lower semiconiinuous. Suppose /(i,t) is finite and eilher that the
probleln satisfies the calmness condition

/(l ,u\-(i,r) rvith F(.rr. ar) .c.(xk,uk) =D.
sucj]thatLr=, and [/(.vr, uk) f(t..t)ll L|- -. (8.19)

or that t satisiies the constrajnt qualification (8.13). Then

3_r € A'.(r'(t, r, and D€Rd with

(.0. r,) e af(t.r) + !aF(i,u) + N/t,t). (8.20)



Prool. The argument is the same as the prool of iheorem 5.2- but wirh rheorenr 8.3 used
in place of theorem 3.2. I

Re ark 8.5.ln the special casc meniioned in remark 8..i, the mrltiplicr rule in rheorem 8..1
reduces to the one of theorem 5.3 as cxpanded in renark 5.3. The new resulr gcneralizes the
paramelric multiplier rule given b! the aurhor in ll l. rhcoreln 21.
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