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1. INTRODUCTION

In 1973, CLARKE [2] introduced a concept of subgradient for nonconvex, extended-real-valued
functions which made possible a far-reaching generalization of the subgradient theory of
convex functions [8]. Subgradients in Clarke’s sense have subsequently been studied by many
authors in both finite and infinite-dimensional spaces; see [3] and [9] for expositions, They
have especially turned out to be useful in analyzing problems of optimization, for instance in
characterizing solutions and in obtaining conditions for stability under perturbations of data.
Central to this purpose arc the calculus rules that have been developed for expressing the
subgradients of a given function in terms of the subgradients of other functions from which
it is constructed. For instance, a great many optimization problems can be formulated in terms
of minimizing an extended-real-valued function f over R", and the subgradient condition
0 € df(%) is then necessary for f to have a local minimum at & [13, p. 333]. The usefulness of
this condition obviously depends, however, on the strength of the rules that arc available for
calculating df (%).

This paper is devoted to proving sharper or broader versions of a number of such basic
calculus rules. New theorems on Lagrange multipliers in problems of constrained minimization
are obtained along the way. For technical reasons connected with the nature of our approach
only finite-dimensional spaces are considered here. although advances in underlying theory
such as the recent results of Treiman [15] may eventually make possible some extensions to
a Banach space setting,

A brief review of basic notions will help to fix notation and terminology. The geometric
route to defining subgradients, which was followed by Clarke, depends on first defining cones
of normals to an arbitrary closed set C C R". Let us say that a vector v € R" is a proximal
normal to C at a point £ € C if for 1 > 0 sufficiently small, the unique point of C nearest to
¥+ 1ty (in the Euclidean norm) is £. It is a limiting proximal normal if there exist points
x* € C, x*— £, and proximal normals y* to C at x*. such that y*— v. Let

Ne(2): = {y|y is a limiting proximal normal to C at £}. (1.1)

Then Clarke’s normal cone to C at ¥ is
Ne(x): =clco N{(x), (1.2)

where cl stands for closure and co stands for convex hull. Thus N¢(#) is always a closed convex
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cone containing 0. It is known that N¢(X) contains some y # 0 if and only if £ is a boundary
point of C (cf. [10]).

Consider now a function f:R"— R = R U {==} and a point ¥ where f is finite and strictly
lower semicontinuous; we mean by the latter that for some &= f (i) the function mini{f, &}
is lower semicontinuous on a neighborhood of %, or in other words, that the epigraph set

epif={(x,®) ER" X Rlaz f(x)} (1.3)

is closed relative to some neighborhood of (%, f(£)). The normal cone Ny#(¥£, f(¥)) is then
well defined and consists of certain vectors (v, n) € R* X R such that n = 0. Clarke’s set of
subgradients of f at % is defined geometrically as

0f (¥): = {y €R"|(y, =1) € Newis(£. f (%))} (1.4)
If f is convex, this is the usual subgradient set of convex analysis, whereas if f is strictly
differentiable at £ it reduces to {Vf(%)}. (In particular f is strictly differentiable at 7 if f is
continuously differentiable on a neighborhood of #; see Clarke [3,p. 30] for more on this
concept. )

It is useful sometimes also to consider the set of singular subgradients of f at ¥, which is

7f(x):={y ER" (y.0) EN(x. f(X))} (1.5)

Clearly af(£) is a closed convex set (possibly empty). and #*f(%) is a closed convex cone
containing 0. The directions of the rays comprising d“f(%¥) may be interpreted as the “elements
of af(#) which lie at =™ (cf. [2, Section 8]; 3“f(£) is the recession cone of df(f) when
o () % 9).

One has 87f () = {0} if and only if 4f(¥) is nonempty and bounded, which in turn holds
if and only if f is Lipschitz continuous on a neighborhood of £ (cf. [6]). In fact the Lipschitz
modulus.

LipA#): = lim SupM (1.6)
: J.’I—*.f_ X )C|
then satisfics |
Lip(t) = sup{|y||y € af (%)}. (1.7)
If f = 8¢ (the indicator of a set C, é¢c(x): =0if x € C, = if x € C), then
30c(X) = a70c(X) = Ne(X). (1.8)

The sets df (%) and a”f (%) can also be defined in a dual manner in terms of a certain kind
of directional derivative expression for f at x. This corresponds geometrically to an expression
for N¢(x) as the polar of a certain kind of tangent cone to C at £; see [3] and [11]. We shall
not need to go into this here, but the reader should bear in mind that all our results have a
dual statement along such lines.

The chief tool in our approach is the extended limit characterization of 3f (£) and 4 *f ()
which was derived in [12] and makes it possible to reduce questions about these sets to
questions about local minima. A vector y € R" is said to be a proximal subgradient of f at £
if for some >0

fx)=f(x)+y - (x —%) —r|x — %7 in a neighborhood of %,
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or equivalently
flx) =y (x —%)+r|x — %" hasalocal minimum atx =%,
It is a limiting proximal subgradient of f at % if there exist points x*— & with f(x*) — f(£) and
proximal subgradients y* at x* such that y*— y. It is a singular limiting proximal subgradient
of f at £ if the same holds, except that instead of y*— y one has 7,y*— y for some sequence
of numbers £, >0, fr— 0. (Except in the trivial case of y =0, the latter is equivalent to
v4/ v¥l— y/|y| and means that the sequence y* converges to the “point at infinity” in the
direction of the ray {rv r = 0}.) Let
f (x): = {y |y is a limiting proximal subgradient of fat X}, (L9
8%f(x): = {y|y is a singular limiting proximal subgradient of fat x }. (1.10)

Obviously &f (%) is a closed set and 6%f(%) is a closed cone (a cone in R" being a set K such
that ry € K whenever y € K, ¢ > 0), We proved in [12] that

3 () = {y|(v. =1) ENgir(Z. F)}, (1.11)
87 (&) = {y|(3.0) € Npys(Z. fFE)) 1 (1.12)

and consequently that 0 € 7f(x) and
af (%) = cleo[df (%) ~ 6 °F(%)], (1.13)

a formula which can be interpreted as saying that 8f(¥) is the closed convex hull in the
extended sense of [8. Section 17] of the points in 4f (%) and the “points at infinity” represented
by the rays in the cone ¢ “f(x). One also has

8= (%) D cleo 87 (%) (1.14)
and
87f(x) =clco d*f(x) when af(x)=¢. (1.13)
One actually has (cf. [11, proposition 15]):
af (x) = coldf (%) = 4*F(%)] and &f(x) = cod™f(¥) ifthecone d*f(%)ispointed. (1.16)

(Recall that a cone K. containing 0 but not necessarily convex. is said to be pointed in the
equation vy + ... + ¥, = 0 for elements y; € K is possible only when y, = ... =y, =0.)

2, TECHNICAL PRELIMINARIES

For use in subsequent arguments, we need to state several results that are already known
or easily follow from results already known.

PROPOSITION 2.1, Let p:R™— R be finite and strictly lower semicontinuous at @. Suppose
M(z) and M*() are sets in R™ such that M*() is a cone and dp(i) C M(a), d"p(i) C
C M*(ir). Then

ap(a) = cleo[M (@) Nap(u) + M=(a) Na“p(a)]

Cclco[M(&) ~ M™(u)]. (2.1)
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and
a*p(i) =clco[M™(it) Mo p(i)] CclecoM™@) it dp(a) =49, (2.2)
Thus
M@ nap(a)=¢ it o) =2, (2.3)
If M™(i) is pointed, then "p(a) is pointed and one actually has
ap(it) = colM(m) Map(@) + M™ (@) N 8"p(a)] Cco[M(a) + M H(n)], (2.3)
d°p(i) = co[M™(&) N a"p(i))] C coM (i), (2.6)

In particular, if M*(i1) = {0} then ap(a) is nonempty and bounded with ap(i) C co M(a).
and p is Lipschitz continuous on a neighborhood of & with

Lip,(d) = sup |zl (2.7)

e M)

Proof. All these conclusions arc apparent from the basic facts about ap(@), 8% p(i). dp(i7)
and ”p(i) that we revicwed in Section 1; ¢f. Rockafellar [12, theorem 1] and [11. proposition
15]. H

COROLLARY 2.1.1. Let E'C R™ be closed relative to some neighborhood of the point & € E.
Suppose M (i) € R™ is a cone such that N.(2) C M(i1). Then
Ne(i) =cleo[M(iz) N Ne()] CclecoM(it). (2.8)

Thus

M(@) N Ng(@) ={0}  if Ng(a) = 0L (2.9)
If M (@) is pointed, then Ng(i2) is pointed and one actually has

Ne(id) = co[M () NNg(d)] CcoM(@). (2.10)
In particular, it M (i) = {0} then e Eint E.

Proof. Let p = Og in proposition 2.1. H

Our mode of operation on several occasions will be to define appropriate sets M (i) and
M=(a) for a given function p, verify that dp(#) C M (%) and §p(i1) C M*(i1) and then refer
to the conclusions of proposition 2.1.

Two results about the behavior of subgradients under limits are recorded next.

PROPOSITION 2.2, Let [:R"— R be finite and strictly lower semicontinuous at ¥. Let X f
with f(.x:‘t) — f(¥), and suppose y* € 4f (x*), y*— y. If d*f () is pointed (as is true in particular
when 4%f(f) ={0}, i.e. when f is Lipschitz continuous in a neighborhood of ). then
yEaf(x).

Proof. If 3*f (%) is pointed, then so is af (%) by proposition 2.1. Then the cone Nepi(%, f(%))
must also be pointed by virtue of (1.4), (1.5), and the fact that all the elements (y, n) of



Extensions of subgradient caleulus with applications to oplimization H6g

Nepif( £, f(£)) have n = 0. According to [10, corollary 2 on p. 149], the graph of the multifunction
Nepiy is then closed at (¥, f(%)). Thus from having (%, —1) € Nepp(x*, /(")) (%, f(x*)) —
(£.f(x)), 5. -1)—=(y.-1), we may conclude that (y,—1) € N (& f()). ic. y&E
of(f). ®

For f Lipschitz continuous on a neighborhood of £, the conclusion y € df() in proposition
2.2 was established originally by Clarke [4]. A generalization for f not Lipschitzian was given
by Rockafellar [10, corollary 3 to theorem 2]. The assumptions there were, in effect. that
a7f (%) is pointed and of (¥) = <.

ProPOSITION 2.3. (Cf. [11. Proposition 14].) Suppose for & =1,2,....that x* furnishes a
finite local minimum of g + &;. where g:R”—)R and h: R"— R are lower semicontinuous
and nowhere —o, If ¥*— 7 with g(x*)— g(£) (finite) and /, is Lipschitz continuous on a
neighborhood of x* with

Lips, (x*)— 0, (2.11)
then ) € dg(x).

Proof. This differs from [11, proposition 14] only in the substitution of (2.11) for the
condition that 8k.(x*) is nonempty and sup{|z||z € 6k (x*)}— 0. The two conditions are
equivalent by (1.7); recall that Ay is Lipschitz continuous on a neighborhood of x* if and only
if dhi(x*) is nonempty and bounded. M

Rules for calculating d(g — /) in terms of dg and 8/ are important in a number of situations,
and we shall prove a new one in Section 7. As a stepping stone the following known special
case will be needed.

PROPOSITION 2.4, (Cf. [13].) Let g: R"— R be lower semicontinuous. and let i: R"— R be
Lipschitz continuous in a neighborhood of £, a point where both g and /i are finite. Then

a(g + M) C ag(®) + an@), 87(g + h)(E) = 37(%). (2.12)

Proof. The inclusion in (2.12) is asserted directly by [13, corollary 2 of theorem 2], but the
equation for singular subgradients requires putting some separate facts together. The cited
theorem also gives us in [13. (4.3)] the subderivative inequality

g+h(Ew)=gl(®w) =k "(f:w)  forall weR”

(sce [13] or [14] for the definition of these expressions), where i '(%; w) is finite for all w
because A is locally Lipschitzian. This implies

WeER " (g+MTxw)<=}D{weR"g!(®:w) < =}.

The two sets in this inclusion are convex cones whose polars are ¢7(g + A)(f) and d7g(%).
respectively. (In more detail: the epigraph of g'(#;+) is the closed convex tangent conc
Tepie(%. g(%)) in R* x R by [14, theorem 2], and the set {w|g ' (¥; w) < =} is the projection of
this cone on R". The polar projection is then the set of vectors ¥ such that (v, 0) belongs to
the polar cone Nyy(%, g(¥)), which is 3"g(¥) by definition.) Taking polars on both sides of
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the inclusion we obtain d™(g + A)(X) C 8”g(xX). But the opposite inequality then follows from
this fact as applied to g + & in place of g:
3°g(%) = 0(g + h — W)(¥) C a™(g + h)(x).

since —# too is locally Lipschitzian, Hence the equation in (2.12) is correct. B

COROLLARY 2.4.1. Let h: R"— R be Lipschitz continuous in a neighborhood of ¥ € C. where
CC R"is a closed set. Then

Ak + Se)(X) Cah(F) + Ne(x), 87(h + 0c)(%) = Ne (X). (2.13)
Proof. Apply (1.8). H

COROLLARY 2.4.2, (Cf. [11, proposition 5].) Let g: R"— R be finite and strictly lower semi-
continuous at £, and let & be continuously differentiable on a neighborhood of #. Then

ag +h)(x) = 0g(x) ~ VAx)L  97%(g + M(F) = 0%g(x). (2.14)

Proof. One has h Lipschitz continuous at £ with 84(%) = {VA(%)}. Apply (2.12) to g + 4 and
g=@Eg+h—-h &

Other cases besides corollary 2.4.2 where equality holds for the inclusion in (2.12) are
described in [13, theorem 2] but will not be required here. One case where equality holds that
has not previously been noted is the following.

PROPOSITION 2.5, Let f(x, w) = g(x) + A(w), where g:R"— R and h:R™— R nowhere have
the value —=. If ¥ is a point where g is finite and strictly lower semicontinuous, and w is a
point where h is finite and strictly lower semicontinuous, then

of (3 %) = (3g®), 0h(7)).  0F(E W) = (0%(@), 6h(w)). (2.15)
Proof. We shall base ourselves on formula (1.13). We demonstrate first that
af (x, w) =(dg(®), dh(W)). (2.16)

If (v, v) € 3 (%, W), we have (v*, v%) = (v, v), where (%, v*) is a proximal subgradient. If f
at (x*, w*) with (x*, w*)— (%, w) and f(x*, w*) — f(%, w). Then for certain 7, > 0 the function

(x, W)= g(x) + h(w) — ¥y x —x*] = 2" [w = w ] +r( x =x P+ jw —wt?)
has a local minimum at (x*, w*), But this is the same as saying that the function
x—> g(x) =y =] + relx — x*f
has a local minimum at x*, while the function

w— h(w) = 2w — w¥] + relw — wH P

has a local minimum at w*. Thus y* is a proximal subgradient of g at x*, and z* is a proximal
subgradient of A at w*. Since f(x*, w*)— f(£, W) if and only if g(x*)— g(¥) and A(w*)—
h(W) (due to the lower semicontinuity assumption), we see that y € dg(¥) and z € dh(w).
Thus the inclusion C holds in (2.16). The proof of the inclusion D is essentially a reversal of
this argument.
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One verifies similarly that
a7f(x.w) C (67g(%), 07h(w)) = (67g(x), 0) + (0. 37h(W)).
3°f (%, w) D (87g(x), 0) U (0, §"h(w)),

which implies (since the sets in question are cones containing ) that
co 8%f (%, w) = co(d7g(x). 9°h(w)). (2:17)
From (2.16) and (2.17) we obtain
co[&f (%, W) + 87F(%k, )] = co[If (X, W) + co % (x,w)]
= [(4g(x), 9h(w)) + co (3"g(%). 3"A(W))]
= co [(6g(x). dr(w)) + (87g(%), 37h(¥))]
= co (dg(x) + 67g(%), dh(W) + d"h(W))
= (co [9g(%) + 87g(2)], co [0h(w) = oh™(W)])
and consequently by (1.13) that
af (%, w) = (clco[dg(®) ~ 67g(%)], clco [dh(w) + 4"h(W)])
= (3g(x), 3h(W))

as claimed in the first part of (2.15).

If of (. w) = I, the second part of (2.15) follows from (2.17) via the general formula
(1.13). If af (%, w) # & and oh(w) = &, and the recession cones in the closed convex sets
af (%, w), ag(x). and ah(w), arc &*f (£, w). 8”g(¥) and 9"h(W), respectively (cf. (1.4) and (1.5);
for the theory of recession cones, see [8, Section 8]). Then the recession cone of (dg(x).
dh(w)) is (97g(x), 3"h(Ww)), so the second part of (2.15) is implied by the first. H

COROLLARY 2.5.1. Let CC R" and D C R™ be closed sets, and let & C, w € D. Then
Nexp(E, w) = (NA£), Np(w)). (2.18)

Proof. Take g = 6¢, h = ép in proposition 2.5. H

Finally we need to recall Clarke’s concept of the “generalized Jacobian™ dF(%) of a locally
Lipschitzian mapping F: R"— R™ at a point #. This is defined as the convex hull of the set
of all m X n matrices of the form A = lim, VF(x*) where VF(x*) is the Jacobian of F at a point
x* at which F happens to be differentiable and x*— %. The set 9F(x*) is nonempty and
compact, as well as convex (cf. [3, 2.6]). In fact the Lipschitz modulus

|F(x') = F(x)

Lipg(%): = lim sup - ] (2.19)
satisfies
LipH%) = max [A| (2.20)

AEAF(T)
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For notational convenience, we shall write

aF(x)v = {Av|A € 0F (%)}
YaF(&) = {yA|A € 9F(%)]. (2.21)

PROPOSITION 2.6 [3]. Suppose f(x) =y F(x) where F:R"— R™ is locally Lipschitzian and
¥y € R™ Then

oh(%) = yaF(%). (2.22)

Proof. Let S be the sct of points x where the Jacobian VF(x) does not exist. By Rademacher’s
theorem, S is of measurc (0 because F is locally Lipschitzian. For x € S, we have Vh(x) =
yVF(x). The function A is itself locally Lipschitzian, so 8k(#) is the closed convex hull of all
vectors of the form lim VA(x*) for x* &€ S, x*— ¥ (see [8, theorem 25.1]). Thus it is the closed
convex hull of all vectors of the form ylim VF(x*) for x* &€ §, x* — ¢. This is the same as
ViE(E). ®

Proposition 2.6 can be viewed as an elementary case of a chain rule of Clarke [3, theorem
2.6.6] where F is composed with the mapping z— y -+ z from R™ to R.

3. BASIC THEOREMS ON PERTURBATIONS
We now prove a result which will be the key to a number of new subgradient formulas. It
crystallizes the basic principle used by the author in deriving Lagrange multiplier rules in [11]
and [12].
THEOREM 3.1. Let P:R" X R™— R be lower semicontinuous, and consider

plu): =inf.P(x, u), X(u): = argmin, P(x, u). (3.1)

Let & be a point where p is finite and the following holds:

dn > 0and &> p(@) such that the set
{x|3u with |u = &| = n, P(x, u) = a}is bounded. (3.2)
Then p is strictly lower semicontinuous at @, and for all u satisfying |u — @ = 5, p(u)
= @, the set X(u) is nonempty and compact. When x* € X(u*) with u*— a and p(u*)—
p(u). then the sequence {x*} is bounded and all of its cluster points belong to X (i ). Morcover,
for

fad
[¥%]
Ry

M(a): = _EEL)_(J[E] {y(0, ) € 4P(x, @)}, (3.

M*@a):= U {y/(0,y) € &P, a)},
¥

ieXin
one has dp(ir) C M (i2) and §*p(i1) C M*(i2). so all the assertions in proposition 2.1 are valid.

Remark 3.1. The first person to develop inf-compactness conditions like (3.2) in order to
conclude the lower semicontinuity of p in such an abstract setting was Wets [16].
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Proof. For arbitrary a < &, the set
{(r,u) ER" X R™||lu — | =n, P(x.u) = & 3.4)

is bounded because the set in (3.2) is bounded, and it is closed because P is lower semicon-
tinuous. Hence it is compact. In particular, for fixed u and o« satisfying v — 4 =75 and
plu)=a=a (e.g. u=1 and a= &), the set of points x such that (x, u) belongs to (3.4) 1s
compact. s0 X(u) is nonempty and compact. Thus when a = &, the set {u ER™||u —id| =
) is the image of the compact set (3.4) under the projection (x. u)— « and is itself compact,
hence closed. This tells us that the function u— min{p(«). ¢} is lower semicontinuous on a
neighborhood of . In other words, p is strictly lower semicontinuous at .

Consider now a sequence u*— i such that p(u*)— p(#) (finite). Suppose x* € X(u*). For
k ) 1s included in the set in (3.2
(which is bounded), so {x*} is bounded. Let ¥ be a cluster point of {x*}: for simplicity of
notation, we can suppose x*— £. We have P(x*, u*) = p(u*)— p(ii). and since P is lower
semicontinuous this implies P(£, 4) = p(a). Burt also p(i7) = P(*, @) by the definition of p.
Therefore P(%£.11) = p(i). so that £ € X (i).

Proof of the last statement of the theorem lequizes showing that the sets defined in (3.3)
satisfy dp(1) C M(a) and §p(i) C M*(a). Lety € op(i#): for a certain %quancc w*— i with
pu )—)p(u) one has y*— y with ¥* a proximal subgradient of p at u* . such that for
certain numbers r; = 0 the function

LA

w—plu) — 5w+ ry|u — u*F (3.

rn

)

has a local minimum at «*, When £ is large enough that |u* — | = n and p(u*) = a. there
exists x* € X(¢*). The function

(x, 1) = P(x, 1) —u® u+ri|lu —utf (3.6)
then has a local minimum at (x*, »*), and so also does the function
(1) = Plx,u) = (0,95 - (x.u) =rg)(e. ) — (x5 u® P

Thus (0, y¥) is a proximal subgradient of P at (x*, u*). As seen above, the sequence {x*} is
bounded and has all its cluster points in X (i7). Passing to subsequences, we can arrange that
x*— %€ X(a). Then P(x'-', g p(u")—>p(zj) = P(%,@). and since (0,y*) is a proximal
subgradient of P at (x*, u*) with (0, ¥*)— (0, ¥). we conclude that (0, y) € 4P (%, ).

This proves the mclusmn dp(@) C M(ix). The proof of §*p(ii) C M*(i1) is the same. except
that instead of y*— y one has ry*— v, 0, | 0. H

CoROLLARY 3.1.1. For p as in theorem 3.1, the assertions of proposition 2.1 are also valid if
instcad of (3.3) one takes

M(i) = EJ {y[(0.y) € aP(x. 2)}.

XEA(d)

M) = U {v[(0,y) € o"P(, a2)} (3.7)

rEXE)
In the special case where X (1) consists of a unique £, this yields

ap(a) C{y (0,y) € aP(%, i)}, o*p(a) C{y[(0.y) € a°P(%. a2)}. (3.8)
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Proof. The first is true because dP(%, 1) C P(%,a) and 3*P(£,d) C §™P(%, il). The second
is true because AP(%, 1) and a"P(f, ) are closed convex sets with dP(%, i) + 8*P(x, 1) =
9P(%, ). H
CoROLLARY 3.1.2, Let D C R" X R™ be a closed set, and let E be its projection on R™

E={u|lx(u) =2}, where X(u) ={x|(x,u) €D} (3.9)
Let # € E and suppose
31 = 0 such that the set
{x|Juwith \u — & =n, (x,u) € D}is bounded. (3.10)

Then E is closed relative to the neighborhood {L§||u — 4 =79} and for all u € E in this
neighborhood the set X (u) is compact. Whenever x* € X (1*) with u* — i, then the sequence
{x*} is bounded, and all of its cluster points belong to X (4). Moreover for

M@):= U {y|(0,) € Nz 2)) (3.11)

FEX(H)
all the assertions of corollary 2.1.2 are valid, and the same is true for

M@):= U {p(0,y) € Np(z, )} (3.12)
fE XA
Proof. Take P = &p in theorem 3.1 and corollary 3.1.1. &

The next theorem generalizes in several ways the main perturbation result of [11, theorem
2]. The latter corresponds to the case where f is locally Lipschitzian as well as F, and C has
the special form in remark 3.2 below. The framework in [11] allows for a broader class of
perturbations than the ones presently under consideration, however. Such perturbations can
also be treated at the new level of generality (see theorem 8.3), but only after we have
devcloped the machinery much further,

THEOREM 3.2. For closed sets CC R™ and D C R", a locally Lipschitzian mapping F: R"—
R™ and lower semicontinuous function f: R"— R, consider
p(u): = inf{f(x)|F(x) +u €C,x €D},
X(u): = argmin{f(x) |F(x) ~ru € C,x ED}. (3.13)
Let & be a point where p is finite and the following holds:
dn>0 and a> p(a)such thatthe set
{x € D|f(x) = @and Ju with \u — 2| =y, F(x) = u € C}is bounded. (3.14)

Then p is strictly lower semicontinuous at #, and X (%) is nonempty and compact. Moreover
for

M(a): = feL;me {y EN(FE) +2) |0 €4(f + Op)(X) +yaF(%)}

M*@):= U {y €Nc(F(%) +1)[0 € a(f + 6p)(®) +yoF(2)},

FEX()
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one has dp(22) C M (i) and 8%p(i1) C M*(i1), so all the assertions in proposition 2.1 are valid.

Remark 3.2. The condition F(x) + u € C reduces to the standard constraint system in math-
ematical programming when

C={w= (W ....%u)|
w,=0fori=1.....s,w;=0fori=s+1.....m} (3.16)
Indeed. writing F(x) = (fi(x).. .. .fu(x)) (with fi:R"— R locally Lipschitzian) and u =
(141, ... Uny). one has F(x) + u € C if and only if
; |‘:~' for i=1..... 5. 347
{(x) + u; 3.17
|=J for i=s+1.....m. :
Then if # and & are such that these constraints are satisfied, one has for y = (y1, . . . . ¥n)

that
(= 0 for i=s with fi(£)+a,=0,
Ly

ENA(F(E)+u)e
¥ (FE ) ;=0 for i=s with fi(£)+ ;<0

(3.18)
Of course if # €int D (e.g. if D = R"), the term Np(¥) is superfluous in (3.15).

Proof of theorem 3.2. Let

Pe ) (flx) if Fixy+uel xeD, 3.19)
Nl )= iy 1
' iT' o otherwise.

Then P is lower semicontinuous, and p(u) and X (u) are as in theorem 3.1. Also, condition
(3.2) is satisfied by (3.14). Hence the semicontinuity properties in theorcm 3.1 hold for p(u)
and X (u).

We must show that the sets in (3.15) include dp(i) and 6*p(ii ) respectively. This will prove
the theorem.

Suppose that y* is a proximal subgradient of p at u , ¥ — i, p(u*)— p(d). Then for certain
rp > () the function (3.5) has a local m1mmum at u* V\e know from thecorem 3.1 that when
k is large enough there exists x* € X(v*). and that b} passing to subsequences if necessary,
we can arrange to have x*— ¥ € X (@), so that

f(x*) = p(u*) = p(a) =f(%) (finite). (3.20)

The function (3.6) then has a local minimum at (x*,u*). Setting w= F(x) +u, w=
F() + & and w* = F(x¥*) + u*— i, we can express this as follows: the function

fellw,x) = f(x) =y w = F(x)] = 7ejw = F(x) —w*+ F(x*) [+ 6(w) + dp(x) (3.21)

has a local minimum at (w*, x°).
To prove dp(ii) C M (&), we suppose ) y*— y and write f, = g + hy, where

gw,x) =[-y w+ 8cW)] + [flx) +y -F(x) + dp(x)], (3.22)
hilw, x) = —(y* = y) < [w — F(x)] + rie|lw = F(x) —w*+ F(x®) [3 (3.23)
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and note that _
Lipy, (w*, x*) = [y* = y|(1 + Lip(x*)) — 0.

(The “quadratic” term in the definition of /i, has Lipschitz modulus 0 at (w*, x*). ) Then
g + hy has a local minimum at (w*, x*), and the hypothesis of proposition 2.3 is satisfied, so
we abtain (0, 0) € dg(w, ©). (Clearl) g is lower semicontinuous, while /£ is finite exer}*\ahere
and locally L-ipschitzian, Although g could have the value — somewhere if f did, we do
know that f(x) is finite and f is lower semicontinuous, and therefore that f(x) > —% when
x — %| = 6, say. Redefining f(x) = +o when |x — ¥| > 0 would ensure that g is nowhere
— and would lead to the same conclusion, since dg(’, %) is unaffected by any modification
of g outside of a neighborhood of (W, £).)

We next apply proposition (2.5) to reduce the condition (0, 0) € ag(, £) to get 0 € ag,(iw)
and 0 € dg2(W), where gi(w) and g(x) are the two terms on the right in (3.22). Since the
function w— —y + w is differentiable, we have

agi(w) = —y + d0(W) = —y + Ne(w) (3.24)
by corollary 2.4.2 and (1.8). Thus 0 € ag,(w) if and only if y € Ne(Ww) = Ne(F(%) + 1), while
0 € dg2(£) means that 0 €E4(f + vy - F+ dp)(X). But

(f+y F+p)(x) Ca(f+ 8p)(x) + yaF(x) (3.25)

by proposition 2.4, corollary 2.4.1. and proposition 2.6. We have demonstrated therefore that
any ¥ € ap(ii) belongs to one of the sets in the union defining M (i) in (3.15). Thus
op(u) C M(a).

To prove that 8%p(a) C M.(&). we take the same reasoning down a sthth different path.
Instead of y,— y € dp(d) we suppose " e 0*p(i), where # o 0. The fact that the
function f, in (3.21) has a local minimum at (w*, x*) is interpreted as sq} mé that the function

fillw.x, @) = na + Sepir(x, @) — ty* - [w — F(x)]
+ ferg|w = F(x) = w4+ F(x*) P+ 8c(w) + Op(x)
has a local minimum at (W, £, f(£)). We write f; = § + /. where
gw.x, @) =[—y w+ 0c(w)] + [y F(x) + 8p(x) + Seps(x, a)], (3.26)
helw.x, @) = i — (¥ — y) - [w = FQ)] = txr w — F(x) — w5+ FeH) B (3.26')
Then g + A has a local minimum at (w, x*. f(x*)) with (w%, x*. f(x*)) = (i%. £, f(£)) and
Lips, (", %, F(x*)) =tx + |ny* = y|(1 + Lips(®)) =0,

and we obtain from proposition 2.3 that (0,0, 0) € 8g(w, £. f(£)). The latter reduces by
proposition 2.5 to 0 € 8¢,(w) and (0, 0) € 3g2(%, f(£)). where g;(w) and g:(x. ) are the two
expressions in (3.26). The first condition is again equivalent to y € Ne(w) = No(F(%) = i) by
(3.24). On the other hand we can write

Bl @) =y Elx) + il @) for g=f+ 8,
and deduce from corollary 2.4.1 and proposition 2.6 that

ag:(%, F(2)) C (voF(¥),0) + Ny (X, F(Z)).
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The condition (0, 0) € 9g.(%, f(x)) therefore implies the existence of some z € yaF(£) such
that (=2z,0) € N (£, f(£)), le. —z€d8%@(¥) (cf. (1.5)). Thus it implies 0€&
d°(f+ 0p)(¥) T ydF(x). This establishes that y € M™(7) and finishes the proof of the
theorem. &

Remark 3.3. The proof of theorem 3.2 reveals that the same conclusions would hold if one
took in place of (3.13):

M(@): = U {y € Ne(F(x) +2)|0 € a(f + yF + 8p)(x)},

FEX{(q)

M(@):= U {y €Nc(F(x) +2) [0 € 0°(f + yF + 65)(5)}

This set M (u) is sometimes smaller than the one in (3.13) (never larger), so the result is
slightly sharper when stated in this way. (The set M*(@) is the same in (3.15) and (3.27) by
virtue of proposition 2.4.)

COROLLARY 3.2.1. If f is locally Lipschitzian in theorem 3.2, the same conclusions hold with
(3.15) replaced by

M@a): = | {yEN(FE)+a)|0 EE) +yoFE) + Np(F)h

EXim
; g ; R (3.28)
M™(a): = L{J {VEN(F(x) =a)|0 EyaF(¥) + Np(f)h
FEX(G

Proof. The sets (3.28) include the ones in (3.15) in this case by corollary 2.4.1. B

Remark 3.4. Under any circumstances guaranteeing for all £ € X (1) that
G(f+ Op)(%) Cof(x) + Np(x) and &%(f+ 6p)(x) COF(R) + Np(x), (3.29)

the conclusions of theorem 3.2 also hold with (3.15) replaced by

M@a): = | {yeEN(F@®)+a)l0E€af(£)+yaF(F) + Np()},
redin) (3.30)
M) = Uy € Ne(F() +2)[0 € 0F(%) +yaF(E) + Nu(®)},

since the latter sets are then larger, if anything. We will prove in corollary 8.1.2 that (3.29)
does hold if

3 nonzero z € 9°f(%) with —z € Np(x). (3.31)

4, ALTERNATIVE RESULT IN LIPSCHITZIAN CASE

A variant of theorem 3.2 can be proved in the case where the function fis locally Lipschitzian.
It employs a device that F. H. Clarke has made much of, and it leads, as we shall see in the
next section, to an alternative multiplier rule with a stability property that can be helpful.
Here we set

dp(x) = dist(x, D) = min |x — x'|. (4.1)

xeh
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THEOREM 4.1. Suppose in theorem 3.2 that f too is locally Lipschitzian. Let A, Ar, and
n > (), be numbers such that

Ac> Lipf(®) and Ap—n> Lipfx) forall x & Z(a), (4.2)

and let Ac and Ap be any lower semicontinuous functions such that d. = A¢ = éc and dp =
Ap = 8p. Then the assertions of proposition 2.1 are all valid also for

M(a): = ;LJ'(J, {yen ' [4+ |y iloAc(F(x) +a)|

0 € af (%) + yaF () + [Ar+ |vIAFoAp(E)} (4.3)
;M."(_I?)I = '-Eg'] {}' € ?}'_1!}’ /»pa:ﬁ{(f:(i) i ﬂ) 0 E}'dF{i) =t i}-‘ M}-ﬂ.’lg[i}}

Note that the conclusions of theorem 4.1 reduce to those of theorem 3.2 when A= §¢ and
Ap = Op; the sets (4.3) are then the same as the ones in (3.15), since dA(F(£) + @) and
3Ap(%) become the cones No(F(¥) + @) and Np(¥). which are closed with respect to multi-
plication by positive scalars. In other cases, however, an extra feature is obtained. For instance
when Ac and Aj are locally Lipschitzian (as when A¢ = dc and Ap = dp), one has multi-
functions dA¢ and dAp that are of closed graph. a property not universally possessed by the
multifunctions N and Np when C and D are not convex. (See [8] for the closed graph property
of Ne, Np, in the convex case, and [10, p. 150] for a counter example in the nonconvex case.)

The following fact will be needed in the proof of theorem 4.1.

LemMma (Clarke [3].) Suppose o gives a local minimum of g(v) relative to v € E, where
E CR" is closed and g is Lipschitz continuous on a neighborhood of . Let A> Lipy(&).
Then © gives a local unconstrained minimum of g + Adg.

Proof. For > ( sufficiently small, A is a Lipschitz constant for g relative to the ball § + 2eB
(B = closed unit ball), and at the same time § minimizes g relative to E N (5 + 2¢B). Consider
any v in § = &B and let v’ be a point of E nearest to v. Then |5 — v'|=de(v) S|v — 5/ =
e, s0 v lies in the ball 5+ 2¢B. It follows that g(v)=g(v')=gv)=4iv—v'|, so
(g + Ade)(D) = (g ~ Adp)(v). B

Proof of theorem 4.1. We repeat the argument of theorem 3.2 word for word until the point
of observing that the function f; in (3.21) has a local minimum at (w*, x*). Here we make a
change of variables, substituting # + &z for w and W + &z* for w*, where z*— 0. The function

@z, %) = f(x) — y*[& — F(x)] + relez — FG) — &* + F(x) P (4.4)

then has a local minimum at (z*, x*) relative to the set A, X D, where
A.={zlw+ e €C}=e[C-w], (4.5)
da2) =eld(w+ &)= e Adw + &) =: As[2). (4.6)

Obviously ¢ is locally Lipschitzian with
Lip, (25, x*) = Lips(x*) + |y*|[£ + Lips(x")]. (4.7)

(The last term in the formula for g has Lipschitz modulus 0 at (z*, x¥)).
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To prove that the set M () in (4.3) includes dp(u), we need only demonstrate now that if
y¥— y we have the conditions which define M () satisfied by y in terms of the point £ =
lim x*. From |y*| — |y| we get

Lipg, (25, x*) < As+ |y|A; foreachk

in (4.7) by virtue of (4.2) and (4.4). The lemma above then asserts that the locally Lipschitzian
function
QC:.R' ‘I’ (;‘L,*_h |};‘ )h"_)dAfXD

on R™ x R™ has a local minimum at (z*, x*). But

daxp(z,%) = [daf2)* + dp(x)*]*?
= da(2) + dp(x) = Aa(2) + Aplx).
with A, defined as in (4.6). Therefore the function
Yz, x) = @iz, x) + (A + |y [Ap)[A4(2) + Ap(x)]
likewise has a local minimum at (2%, x*), so that
(0,0) € ay(z*, x*).
Write i = g + k.. where (referring to (4.5))
glz,x) = (A + |y|An)As(z) =y ez~ fx) +y Flx) ~ [(Ae+ by [Ap)A D)), (4.8)
hlz.x)=(v =y [z —F(x)] +rile —F@x) — "+~ F(xH [ (4.9)

Calculating with proposition 2.4, we derive

(0,0) € ag(z*, x*) + oh 25, x¥).
In other words,
3(s*, v*) € ag(z%. xF) with  —(s v*) € ahu(z5 x5).
But then
(5%, 0%) | = Lipy (2", x*) = |y — y¥|(e + Lipsx*)) =0,
so (5%, v*)— (0.0). Since (z*,x*)— (0.%) and g is Lipschitz continuous around (0, %), it

follows from (5%, o*) € ag(z*, x*) that (0, 0) € dg(0, £) (cf. proposition 2.2). We next apply
proposition 2.5 (and corollary 2.4.1) to translate the latter condition into

Ap)oAs(0) — ey, (4.10)

0 (At |y
0Edf+y F+(Ar+ |y|Ar)Ap](E). (4.11)
Observe now that the definition (4.6) of A, gives

3A4,(0) = e ' [edA(W)] = dA{W). (4.12)
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Condition (4.10) thus vields
y € €7 (As+ [¥|AF)8A(W). (4.13)
At the same time, (4.11) implies via propositions 2.4 and 2.6 that
0 € of(%) + yoF (%) = [As+ |y | AF]0AD(E). (4.14)

In summary, if y*— y then (4.13) and (4.14) hold, so y € M(a). This establishes that
ap(w) C M(a).

The argument demonstrating *p(&) C M (i) differs only slightly from the one just given.
We look at the case where ty*— y with ¢, | 0. The function ¢ has a local minimum at
(zF, x*) relative to A, x D, and

Lipy(2¥, %) = Lips(x*) + [1:3*[(£ + Lip#(x")),
which implies
Lipye (25, x*) < |ylir forlarge k.
Then by the lemma we have a local minimum of
tupr + |y Arda xp
at (2%, x*), hence also a local minimum of
We(z, %) = @u(z, %) + [y|As{A4(2) + Ap(x)]
at (2%, x*), where yy = g = h; with
gz, %) =[|y|2rhs(2) = &y - 2] + [y  F + |y [AsAp] (%),
hi(z,x) = (v — to*) - [e2 — F(2)] + tirx '€z — F(x) — e2*+ F(x*) |}
As before we get
(0,0) € aylz* x¥) C ag(z* x*) = shyz* x*)
and deduce that (0. 0) € ag(0, £), from which the desired conditions
yE e 'Ary|dAc(F(®)+4) and 0EyiF(x) = ly|AroAp(x)
follow and show that yE M™(iz). B
Remark. The proof of theorem 4.1 shows that the conclusions would still hold if the conditions
defining M (i) and M™(i) were strengthened to
0€d[f+y-F+ (is+|y|Ar)Apl(£) and 0Ed[y-F+ |y[irAp](¥)
respectively.

5. LAGRANGE MULTIPLIER RULES

The vectors y appearing in theorems 3.1, 3.2, and 4.1 can be regarded as generalized
Lagrange multiplier vectors associated with necessary conditions for optimality. Such necessary
conditions in fact are consequences of the theorems mentioned, as we now demonstrate. We
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first present a rule for a very gencral optimization problem depending on a parameter vector
u.
THEOREM 5.1, Let £ be a locally optimal solution to the problem

minimize g(x, ) overx ER", (5.1)
where g:R" x R™— R is lower semicontinuous and g(¥, @) is finite. Either suppose that the

problem is calm at £ with respect to perturbations of &, in the sense that

A, u) - (F. &) with wp# 4 and g, {LJ __f_[x' ) s —mx, (3.2)

or suppose that ¥ satisfies the constraint qualification
# nonzero y with (0, y) € 87g(*. ). (5.3)
Then
3y with (0, v) € dg(x, i), (5.4)

Proof. Taking any x4 > 0 small enough that £ gives the minimum in (5.1) relative to the ball
{x|lx — #| = p}, we define

A

gx.u)+|x—%? if x-%=u

_—
Ln
L 5

S

Plx.u)= {

— o otherwise

and observe that the hypothesis of theorem 3.1 is satisfied, moreover with X (11) = {x}. Then

corollary 3.1.1 furnishes the inclusions (3.8), where p(u) = inf,P(x. u). By corollary 2.4.2:
aP(x.a) = ag(x, ). a"P(x, ity = a"g(x,a). (5.6)

If the constraint qualification (5.3) holds, we obtain a"p(i) = {0} by (3.8). Then dp(a) # .
so (5.4) must hold by (3.8).

We must show this conclusion is also valid if in place of (5.3) we assume (5.2). The latter
is equivalent to the assumption that for small enough u in definition (5.5), one will have a
lower bound

pw) = p(i) — plu —da when |u—d/=¢ (5.7)
for certain p >0, £ > 0. Then the function
r(w) = p(u) + g(u), where g(u) = plu —al.

has a local minimum at @. Since p is strictly lower semicontinuous at # and g is Lipschitzian,
it follows from proposition 2.4 that

Deadr(a) Cap(a) + ag(a).

In particular ap(@) = J, and from (5.6) and (3.8) we can again conclude (5.4). H

We turn now to the case of problems with explicit constraints.
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THEOREM 5.2, Let £ be a locally optimal solution to the problem

minimize f(x) subjectto F(x) +a € C,x €D,

where f:R"— R is lower semicontinuous with f(¥) finite, F: R" — R™ is locally Lipschitzian,
and C C R™ and D C R" are closed. Suppose either that the problem is calm at 7. in the sense
that

A(x*, u¥) — (%, 1) with F(x*) + u* €C.x* €D, suchthat

u* # @and [f(x*) = f(®))/ [u* = &t| = ==, (3.8)
or that x satisfies the constraint qualification
Anonzeroy € N F(x) — @) with0 € *(f + p)(x) + yaF(x). (5.9)
Then
3y € N(F(x) + u) with0 € 4(f + dp)(&) + yaF (). (5.10)

Remark 5.1, The subgradient conditions in (5.9) and (5.10) can be replaced respectively by
0 € 0*(f + yF + dp)(x), 0 €Ea(f + yF + dp)(x), (5.11)

to obtain a slightly sharper result. This is true because the proof given below works for any
sets M (i) and M“(a) lending validity to theorem 3.2. See remark 3.3.

Remark 5.2. If f happens to be locally Lipschitzian, the subgradient conditions in (5.9) and
(5.10) can for the same reason be replaced respectively by

0EyaF(%) + Np(®), 0 E (%) +yoF(x) ~ Np(E). (5.12)

Sce corollary 3.2.1.

Remark 5.3. More generally the subgradient conditions in (5.9) and (5.10) can be replaced
by

0 € a7f(x) + yaF(x) + Np(®). 0 Eof(%) + vaF(%) + N p(¥). (5.13)
whenever f is such that
°(f+ Op)(X) Ca™f(x) + Np(%),  a(f— 6p)(¥) Caf(x) + Np(x).

Results in Section 8 will show that this is correct when ¥ satisfies the further constraint
qualification that

3 nonzero z € 3”f(%) with —z € N (%) (5.14)

(see corollary 8.1.2).

Proof of theorem 5.2. The argument parallels the proof of the preceding theorem, but this
time we instead apply theorem 3.2 to

p(u) = inf{f(x)|F(x) +u € C,x € D}.
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where f(x) = f(x) = |x — >, D = {x € D||x — | = p}. For small enough  the set X (i) con-
sists of just 1, s0

ap() C{y € N{F(%) +2)!0 € a(f+ 6p)(x) +yoF(x)}
#°p() C{y ENAF(X) +2)|0 € 37°(F+ 8p)(X) + yaF(x)},

where by corollary 2.4.2: a(f+ 8p)(¥) = a(f ~ 6p)(¥) and 3(Ff + Sp)(¥) = 8"(f + 6p)(%).

Thus the desired conclusion (5.10) will follow if dp(si) # &. Furthermore, the constraint
qualification (5.9) implies 8"p(&) = {0}, which does ensure ap(@) # & (ct. the basic facts in
Section 1). The calmness condition (5.8). on the other hand. is equivalent to a lower bound
of type (5.7) holding when u is sufficiently small, and this too ensures ap(a) # 0 as verified
in the preceding proof. B

Remark 5.4. The case of theorem 5.2 that can be compared most easily with Lagrange
multiplier results already in the literature is the one where f is itself locally Lipschitzian (cf.
remark 5.2) and the condition F(x) + & € C represents a standard constraint system as
described in remark 3.2. This case was first treated by Clarke [5] in terms of generalized
subgradients but using a different technique that relied on Ekeland’s variational principle [6]
and did not provide an interpretation of the multipliers in terms of the differential effect of
certain perturbations, such as we have here by virtue of theorem 3.2. In Clarke’s multiplier
rule the set yidfi(£) ~ . . . + ymdfu(%) appears in place of the smaller set ydF(x), where y =
(Vis---o¥m) and F=(fi..... fu), but on the other hand a multiple of ddp(¥) appears in
place of the larger set Np(#). Hirtart-Urruty [7] showed how to consolidate the cxpression
Af(2) + y19f1() + . ..+ ymdfu(®) to a(f + yF)(£). Rockafellar [11] showed further that the
rule could be written in terms of 8(f + vF + 8p) (cf. the extension indicated in remark 3.1)
and be validated under a weaker calmness assumption than Clarke’s, namely (3.8).

CoOROLLARY 5.2.1. Let x be a locally optimal solution to the problem

minimize f(x) subjectx € C,

where 7: R”— R is lower semicontinuous with f() finite, and C C R" is closed. Supposc either
that the problem is calm at ¥ in the sense that

Ax*— 2 withx* € C, [f(x*) — f(x)]/d c(x*) = — =,
or that & satisfies the constraint qualification
A nonzero y € Ne(X) with —y € a*f(%).
Then

dy € Ne(x) with —y € 3f(x).

Proof. Specialize theorem 5.2 to D = R* = R™, F=identity, u=0. B

COROLLARY 5.2.2. Let £ be a locally optimal solution to the problem

minimize f(x) subjectto F(x) =0,
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where F: R"— R™ is locally Lipschitzian. Suppose either that the problem is calm at 7 in the
sense that
Ax"— z with F(#*) # 0 and [f(x*) — F()]/|F(x*) | = —=,
or that X satisfies the constraint qualification
A nonzeroy € R"with 0 € 9°f(%) + yaF ().
Then
dy € R"with 0 € 9f(x) + vaF(x).

Proof. Specialize theorem 5.2to D=R", C={0},u=0. B

COROLLARY 5.2.3. Let £ be a locally optimal solution to the problem
minimize f(x) + g(F(x)) overallx ER",

where f1R"— R and g: R™— R are lower semicontinuous with f(x) and g(F(x)) finite, and
F:R"— R™ is locally Lipschitzian. Suppose either that the problem is calm at £ in the sense
that

A(u) = (8,0) inR" X R™ withu* # 0 and

[f(5) + g(F(x*) +u¥) = f(2) —g(F@)))/ lu*| - ~,
or that £ satisfies the constraint qualification

A nonzero y € °g(F(x)) with 0 € 8%f(x) + vaF(%).
Then
dy € ag(F(x)) with0 € af (%) + yaF(x).

Proof. Reformulate the problem as
minimize f(x, w) subject to F(x, w) =0,

where f(x. w) = f(x) + g(w). F(x, w) = F(x) — w. This has a local minimum at (X, W), where
W = F(%). Apply the preceding corollary and invoke proposition 2.5 to caleulate df(%, w) and
g f, w). H

The next theorem furnishes an alternative to theorem 3.2 that allows for a different treatment
of the constraint x € D along the lines followed by Clarke [12]. as mentioned in remark 5.4,

THEOREM 5.3, Let £ be a locally optimal solution to the problem
minimize f(x) subjectto F(x) +a € C.x €D,

where i R" and F:R"— R" are locally Lipschitzian, and C C R" and D C R" arc closed. Let
As, Apand e 0 be any numbers such that

¢ Lipd ) and Ar — &> Lipp(¥), (5.1%)
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and let A, and Ap be any lower semicontinuous functions such that de = Ae = 8- and dp =
AD s (‘j;). Then

A(n,v) # (0,0) withn= 0,y € e [nis+ |y AfJOALF(x) + &),
and 0 € ndf (%) + yoF(x) + [nAs+ ¥ |Ar]oAD(X). (5.16)

If the calmness condition (5.8) is fulfilled, then one can take n > 0 (hence n=1).

Proof. The pattern of reasoning is identical to the proof of theorem 5.2, except that theorem
4,1 is invoked rather than theorem 3.2. The conclusion is stated slightly differently, however:
(5.16) is equivalent to the assertion that if

Anonzeroy € ey | ApdA(F(Z) + &)

with 0 € yaF (%) + |v

‘;LF(:JAD(‘Z)!
then
y € e[ Ar + [y|Ar]dA(F(x) + &)

with 0 € af (%) + yaf(x) + [A;+

¥ /‘F]dﬁp(i)

The case of the possible constraint qualification (5.9) in theorem 5.2 is thus incorporated in
this version in another form. M

Theorem 5.3 turns into the multiplier rule of Clarke [3, theorem 6.1.1] if we choose
A¢=0¢, Ap=dp, and specialize C to the case of remark 3.2. so that the condition
F(x) + 2 € C represents a mixed system of equality and inequality constraints of the usual
sort. Clarke’s result, however, is also valid for x belonging to a Banach space, not just R".

6. CONSEQUENCES OF THE PERTURBATION THEQREMS

We turn now to the application of the preceding results to the development of further rules
for subdifferentiation. We begin with formulas that can be derived from the perturbation
theorems alone,

TeeEOREM 6.1. Consider

plu) = inf {f(x)
X(u) = argmin{f(x) G(x) = u}, (6.1)

Gix) = u},

where f:R"— R is lower semicontinuous and G:R"— R™ is locally Lipschitzian. Let @ be a
point where p is finite and the following holds:

de> 0and &= p(i) such that the set
{x|f(x) = &, |G(x) — a| = e} is bounded. (6.2)

Then p is strictly lower semicontinuous at & and X (# ) is nonempty and compact. Moreover
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for
M(u): ={y/3x€ X() with o (%) NysG(E) =T}
M*(m): ={y|3x€ X(@) with &F(F) NysG(E) =},

(6.3)

one has dp(z) C M(ii) and dp() C M*(21), so all the assertions in proposition 2.1 are valid.

Proof. Simply apply theorem 3.2 to F= —G, C={0}, D = R" (i.e. p =0), and the given
f B

COROLLARY 6.1.1. Let E= G(D), where D C R" is closed and G:R"— R™ is locally Lip-
schitzian. Let & € E be a point where the following holds:

de > O such that the set {x € D||G(x) — a| = &} is bounded. (6.4)
Then E is closed relative to some neighborhood of @, and for the cone
M) =1{y 3Ixe G (a)ND with Ny#) NysGE) =T} (6.5)

all the assertions in corollary 2.1.1 are valid.
Proof. Apply theorem 6.1 to f = 8p, which gives p=6;. H

Our next result concerns the operation of infimal convolution of extended-real-valued
functions.

THEOREM 6.2. Consider
pluey= dnf {fl) Fas TFE) By +onn Fxp=u},
Xpssaake (ﬁ(‘))
X(u) =argmin{fi(x;) +... +F ) |k +. .. +x,=ul

where f;: R™ — R is lower semicontinuous. (The convention » — % = = is used to handle the
extended arithmetic in these formulas, when required.) Let @ be a point where p(i7) is finite.
and suppose

de>0 and a> p(a)such that the set

e o x) i) +oo s+ flx) =& o+ +x,—u|=¢}isbounded.  (6.7)
Then p is strictly lower continuous at # and X (i) is nonempty and compact. Moreover for
M(a): = E_JJ_ o LG O N af ()]
(£ B0 S0 6.8)
M a): = U-.:Xm [07f(2) M. N aflE,)]

one has dp(i1) C M(a) and § p(d) C M™(i2), so all the assertions of proposition 2.1 are valid.
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Proof. For x=(x,....%)E(R™) define f(x)=fi(x;)+...+f(x,) and G(x)=
x; + ...+ x,. The situation is thereby reduced to that of theorem 6.1. Moreover

af(x) = (8falx1)s . . . . F(x)). G ) = (8F 18 Vs s B EA )

by proposition 2.5, and ¥9G(£) consists of just the vector (y,...,y) € (R™)". The sets (6.3)
are therefore expressed by (6.8) in this case, and the conclusions of theorem 6.1 give us what
we want. H
COROLLARY 6.2.1. Let E=C; + ... = C,, where (; C R™is closed. Let @ € E be such that

e = 0 such that the set

{xi,....x) X ECy X1 +... +x,—i| = g isbounded, (6.9)
Then C is closed relative to some neighborhood of #, and for

M(a):= U, _ [Ne(@) N NNE)] (6.10)

TXTI

&

n’

one has Ng(i) C M(i7), so that all the assertions of corollary 2.1.1 are valid.
Proof. Take f; = 8¢ in the theorem. B

CoOROLLARY 6.2.2. Consider
p(u) = inf g(e —x),  X(u) = argming(u —x), (6.11)
xeC e
where C C R™ is closed and g:R™— R is lower semicontinuous, Let @ be a point where p is
finite and
Ja>p(u) and &> 0such that the set
{(x,w)|xEC, u—u|=eglu—x)= &} isbounded. (6.12)
Then g is strictly lower semicontinuous at 7 and X (i), is nonempty and compact. Moreover
for

M@@): = ,chx%:) Nd®) nagla — %),

(6.13)
M*@): = y__)f\-’c(,f) N &g — ),

one has dp(ii) C M (@) and d"p() C M*(i1), so that all the assertions of proposition 2.1 are
valid.

Proof. In theorem 6.2 take r = 2, fi = ¢, f2 = g. In place of x; and x; write x andu —x. B

Remark 6.2. Choices of C that arc of particular interest in corollary 6.2.2 for general g are
C = B (closed ball of radius £ around 0) or C = R?Y, which yield

plu) = mT _g(u) or plu)= ll;!f g(v).

v-uEE
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Noteworthy choices of g for general C are g(v) = |v| and g(v) = #|v|*. These yield p = dc and
p = 3d%. respectively.

THEOREM 6.3. Let p(z) = min{fi(), . . . . f()}, where f;: R*— R is lower semicontinuous. Let
i be a point where p(&) is finite, and let I(@2) = {i|fi(#) = f(i)}. Then p is lower semicontinuous,
and for

M@):= U of(a), M*@m):= U o¥(a), (6.14)

i=la) =]

one has dp(i1) C M (i) and *p(a) C M*(i1), so that all the conclusions of proposition 2.1 are
valid.

Proof. Define P(x, u) = f(u)ifx =1 €{i,...,m} CR, P(x, u) = = otherwise. The hypoth-
esis of theorem 3.1 is then satisfied, and the conclusion of that theorem translates into the
result given here. (It actually yields a slightly stronger conclusion in which df(ix) and
*f{(i1) are replaced in (6.14) by the smaller sets of,(i7) and 6*f(z).) W

COROLLARY 6.3.1. Let C=C;U... U, where C;C R" is closed. Let # € C and let
I() = {ilu € C;}. Then C is closed, and for

M(a): = EEL%_‘} Ne(a@) (6.13)
one has Ne(i1) C M(i1), so the conclusions of corollary 2.1.1 hold.
Proof. Let f; = d¢, in theorem 6.3. B

7. CHAIN RULES

The subdifferentiation formulas that we tackle next depend not only on the perturbation
theorems, but at a crucial stage also on the Lipschitzian version of the Lagrange multiplier
rule, namely theorem 3.3, This is because of a limiting process in the proof which requires
a semicontinuity property that is available for elements satisfying the conditions in theorems
5.3, but not necessarily in the case of the conditions in theorem 5.2, at least not without
additional assumptions.

THeEOREM 7.1, Let p(u) = g(G(u)), where G:R™— R% is locally Lipschitzian and g:R“— R
is lower semicontinuous. Let # be such that p(z) is finite. Assume
Anonzeroy € a°g(G(a)) with 0€ydG(a). (7.1)
Then for the sets
M(z): =ag(G@))aG@), M a): =a"g(G@))sG(n), (7.2)
onle_dhas dp(i1) C M (@) and 3 p(sF) C M*(@), so that all the assertions in proposition 2.1 are
vald.

Remark 7.1. Condition (7.1) can be stated dually as follows, in terms of the convex cone K
which is polar to %g(G(i)): for no A € 3G(a) can K be separated from the (linear) range
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space of A, The chain rule previously proved by the author in [13, theorem 3] requires that

dG (i) consists of a single A whose range space meets int K, a condition that is obviously
more testrictive. On the other hand, this earlier chain rule is stated in a “directionally
Lipschitzian™ form that holds true when R" is replaced by an infinite-dimensional space.

Proof of theorem 7.1. Write
plu) =infla (v, ®) €Eepig, v — G(u) =0}
=inf{g(u,v, @) |Flu,v,a) €C,(u,v, a) ED}, (7.3)
where o
eu,v.a)=a, C=1{0}, D=R"xepig, Flu,v.a)=G(u) v (7.4)

The functions ¢ and F are locally Lipschitzian, and the minimizing set X (u) in (7.3) is trivially
just the singleton {(u. G(u), g(G(1)))}. Obviously P is lower semicontinuous.

Suppose s a proximal subgradient of p at u*, where u*— i and p(u*)— p(a), i
g(G (")) — g(G(&)). We show first that if 28— z then € M(i) as defined in (7.2).

For some r; > () we have a local minimum at u* for the function

u—plu) —z% u +reju — u*?
and this amounts to a local minimum at («*, G(u*), g(G(1*))) for the function

Flu,v,e)=a—zFu+r|u—uP (7.5)

over (u, v, &) € D subject to F(u. v, a) € C. We wish to invoke the multiplier rule in theorem
5.3 at this local minimum, and we can do so because f; is locally Lipschitzian;
Lips,(u*, G(u*), g(G*)) = |z¢ + 1 = |z| +1

It is essential to note in this that the same values A¢and Ap can be made to work for all &, if
chosen large enough. There is no need to consider &, because we take Ae = 8¢ = &, so that

dAc(0) is the normal cone to {0} at 0, i.e. the whole space R, On the other hand, we take
AD =5 dD.

The implication of theorem 5.3 then is that there exists (1. y*) # (0, 0) with 1, = 0, such
that

(0.0,0) € neafulu, G(*), g(G ")) +y*eF (u* G(u*), g(G(u*))
[mds = [y 2e]adn(ut, G(u*), g(G(ub))). (7.6)

We can normalize to have |(n, v*)| = 1. Thus by passing to subsequences if necessary, we
can arrange that (7, y*) converges to some pair (17, v) # (0, 0) with n= 0.

In order to investigate the limiting condition satisfied by the pair (1, y), we apply the rules
of subdifferential calculus to the sets in (7.6). It is apparent from (7.5) that

of(u*, G (u*), g(G (")) = {(—2" 0, n)} (7.7)
Furthermore from (7.4),
aF(u*, G(u*), g(GW*))) = (8G(u¥), - 1,0),
dp(u, v, @) =dglv, @) for E =epig.
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Therefore (7.6) is equivalent to

mzt €y aG(u*), OF, —m) € [mAs+ [yF

Arlad e (wh, g(w*)). (7.8)

where the multifunctions G and adg are of “closed graph” because G and dg are locally
Lipschitzian (cf. propositions 2.2 and 2.6): this is the crucial property that has been obtained
by invoking the more complicated multiplier rule in theorem 5.3 rather than the one in
theorem 5.2,

Limits may therefore be taken in (7.8). We get

nz €EvaGu), (v.—n €[nir+ v|ielad (W, g(w)). (7.9)
where w = G (). Inasmuch as
cl UL iade(w, G(w)) = Ne(W, G(w))
(Clarke [9]), the second condition in (7.9) yields
(¥, =1) € Ny (G (@), 8(G(2))). (7.10)

We know (77, ) # (0,0), = 0. If =0, then y # 0 and the first condition in (7.9) says
0 € ydG (i), while (7.10) says y € 8"g(G(@2)). This is impossible by assumption (7.1). Hence
n >0, and replacing y by #™'y if necessary we can reduce to the case where 7= 1. Then the
first condition in (7.9) says z € yoG (), while (7.10) says y € ag(G(i)). In other words,
z€ag(G(a))aG(a) = M@@).

A similar argument covers the case where instead of zF— z, we assume 1z — z with
v 0 and aim at proving z& M*(i). Then fi has a local minimum at
(W*. G ("), g(G(u*))) relative to (u, v, ) € D, F(u, v, o) € C. and

Lips (%, G(u*), g(G(u*))) = [riz¥| + te— |2 |.

Once again we may apply the multiplier rule in theorem 5.3 for fixed A;and Af, and this yields
the same condition as in (7.6) but with e, in place of the first #,. It can be assumed that

(Mes )= (1, ) # (0, 0), n= 0. We reduce (7.6) as before using suBgradient calculus, obtain-
ing this time in place of (7.8)

Mzt €y46G(t), (v —ma) € [k y¥[Adod v’ g(w))
for w* = G(u*). In the limit this yields
nz €yéG@), (r.0) €[nA+ |ylidade(w, g(w)),
where the last condition implies
(v,0) € Ne(w, g(w)), ie ye€de(GH)).

If » = 0. then y #0 and (7.1) would be contradicted. Therefore n> 0. and we can take
n=1 Thus we get the existence of some y € 8"g(G(a)) such that z € yaG(i1), and we
conclude ze M™(a). B

CoROLLARY 7.1.1. Let @ € E = {u/G(u) € D} = G~'(D), where G:R"™— R is locally Lip-
schitzian and D C R is closed. Assume

4 nonzeroy € Np(G(a)) with 0€E€yaG(a). (7.11)
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Then for the set
M) =Np(G(a))eG(i) (7.12)

one has Ng(zz) C M(i1), so that all the assertions of corollary 2.1.1 arc valid.
Proof. Tuke g = dp in the theorem. ®

Remark 7.2. Especially interesting in corollary 7.1.1 is the case where D = {0}. Then with the
notation G(u) = (gi(u). ..., gsu)) € R? we have

E=1u

glwy=0for i=1,...,m}

(where each g is locally Lipschitzian from R™ to R). Furthermore Np(G(#)) = Ny(0) = R4
for any 4 € E. so the result says the following. If there does not exist a vector y =
(Mg o 2 Vad E (R, v o 0) with

0e r}[}’léﬂ T s “}ng"n](a)

(the latter condition being equivalent to 0 € 4G (@) by proposition 2.6), then for the set

"‘/f(ﬂ) = y-g-‘?! 6’[}'131 Tl T .v’-'fl_. m]{ﬁj

one has Ng(i1) C clco M (i) as well as the other estimates in corollary 2.1.1.
More generally in place of D = {0} one can consider
D={w=(wi,... wy0...,0)|w;=0 for i=1,...,58}
50 that

E={ulgw)=0 fori=1,....s, and gfu)=0 for i=s+1,...,d}

Then for any i € E one has
Np(Gla))=4{yv y;=0 for i=1....,5 with g(a) =0,
yi=0 for i=1,....5 withg(a) <0}
CoroLLARY 7.1.2. Let p(u) = g(G(u)). where G:R"— R* is locally Lipschitzian and
g:R4— R is lower semicontinuous. If G is strictly differentiable at & and
Anonzeroy € 0°g(G(m)) with yVG(ir) =0, (7.13)
then
ap(i) C ag(G()VG @), a"p() Cag(G(w))VG(u). (7.14)
Proof. The set dG (i) reduces in this case to the single matrix A = VG(&). The sets
ag(G(1))A and 3°g(G(71))A are then convex, in fact closed because of (7.13) (cf. [8, theorem

9.1]): for w = G(it). 8“g(W) is the recession cone of the closed convex set dg(w) + #7g(Ww) is
always equal to 9g(1) by these definitions. The conclusions of propesition 2.1, which the
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theorem guarantees, then yield
dp(@) Ccleo [M() = M™(iz)] = cleo[ag(w)A — a7g(Ww)A]
= cleo [[ag(#) + 7g(W)]A] = clco [ag(w)A] = sg(W)A.

If op(z) # 2, it follows from this inclusion that the recession cone of dp(i). which is
d"p(#), is included in the recession cone of dg(w)A, which (by (7.13), cf. [8. theorem 9.1])
is 97°g(w)A. If ap(a) = &, one gets the same result via proposition 2.1:

d"p(@) CclcoM™(it) = clco [07g(W)A] = a%g(w)A.

Either way, the inclusions (7.14) are both correct, ®

CorOLLARY 7.1.3. Let G: R™— R? be locally Lipschitzian, and let D C R% be closed. Suppose
A€ E={u|G(u)€ D} =G !(D) is a point where G is strictly differentiable and

4 nonzeroy € Np(G(z)) with yVG(a) =0. (7.15)
Then
Ne(@) CTNp(G (1)) VG (a). (7.16)

Proof. This is the case of the preceding corollary where g is the indicator §,. B

CorOLLARY 7.1.4. (Clarke [3, p. 72].) Let p(u) = g(G(u)), where G:R™— R is locally
Lipschitzian and g:R“— R is locally Lipschitzian around G (i) for a certain # € R™. Then
p is locally Lipschitzian around & with

ap(a) C co[ag(G(a))iG (@)]. (7.17)
If in fact g is strictly differentiable at G (&), then
ap(a) C Ve(G(a))oG (@). (7.18)

Proof. The assumption of Lipschitz continuity on g means that 8“g(G(a)) = {0}; also. the
convex set 9g(G (i1)) is nonempty and compact. Condition (7.1) is satisfied vacuously in this
case, and one has M™(i) = {0} in (7.2). The last part of proposition 2.1 then asserts that p
is locally Lipschitzian around # (actually this could also be verified directly) and (7.17) holds.
If g is strictly differentiable at G (&), the set 4g(G (#)) consists of a single vector Vg(G(i)).
and since 4G(ii) is a convex set of matrices the convex hull operation in (7.17) can be
dropped. H

The result in corollary 7.1.4 is just a special case of a more general chain rule for locally
Lipschitzian mappings which can be derived by the same method.

CoroLLary 7.1.5. (Clarke [3, p. 75].) Let F(u) = H(G(u)), where G:R™— R? and
H:R“— RY are locally Lipschitzian. Then F is locally Lipschitzian and for all 7 one has

aF(f)v Cco [aH (G (u))aG(u)]v for v ER™ (7.19)
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Proof. For arbitrary z € R? apply corollary 7.1.4 to g(w) = z- H(w). Draw the conclusion
that z » F is locally Lipschitzian with

3(z+ F)(@1) C co[(z - H)(G (@) 0G(a)]
= co [(z0H (g(1))aG(a)] = z(co[aH (g(#)) 4G (@)]). (7.20)

Therefore F is locally Lipschitzian and d(z » F)(a) = zdF () (proposition 2.6). The latter,
together with (7.20) for all z, implies (7.19). H

CorROLLARY 7.1.6. Let p(u) = ¢(f(u)), where f:R™— R is locally Lipschitzian and ¢:R—
R is lower semicontinuous. Let & be a point such that ¢ is finite at f(zz) and 0 € 3/(:). Then
for

M(a): =g (f()af(@).  M@): = 3 p(f()) o (@), (7.21)
one has dp(#) C M (@) and §*p(a) C M*(%), so that all the assertions of proposition 2.1 are
valid.

If ¢ is nondecreasing on R, or if f is strictly differentiable at &, then

ip(a) Cog(f(@)af(a).  o%p(a) C o g(f(a))of (@) (7.22)

(where in the second of these cases df(7) reduces to Vf(ii)).

Proof. Take G = f, g = @ (the case of RY = R). Specialize theorem 7.1 and corollary 7.1.2.
Observe that when ¢ is nondecreasing, the sets dg(f(i7)) and 3 ¢(f(i2)) are subintervals of
[0, ), so M(z) and M™(%) in (7.21) are convex. Then the convex hull operation is
superfluous, H

8. OTHER SUBGRADIENT FORMULAS AND A PARAMETRIC MULTIPLIER RULE

The chain rules in theorem 7.1 and its corollaries lead to other rules of subdifferentiation
through the technique of representing a given kind of function as the composition of some
other function with a Lipschitzian transformation. We demonstrate this first with a general-
ization of the rule for subgradients of sums of functions (cf. proposition 2.4 and more generally
[13, theorem 2]),

THEOREM 8.1. Let f=f; +... = f,, where f;:R"— R is lower semicontinuous, and lct £ be
a point where all the functions f; are finite. Suppose
Ay; € 0%i(x) with y +...+y,=0, except y;=...=y,=0. (8.1)
Then
af(x) Caf(x) + ... +af.(%).
§7f(%) Cof(x) +... + 37 (%) (8.2)
Proof. Define g(u, . .. ,1,) = gi(u1) = ... + g(u,) on (R"Y, and define G:R"— (R") by

G(u) = (u,....u). Then f(u)=g(G(u)), and we are in the realm of corollary 7.1.2 with
assumptions (7.13) fulfilled at u=%. (A vector y of the kind forbidden in (7.13) would
correspond to an r-tuple (yi,...,y,) € (R") of the kind forbidden in (8.1).) The inclusions
in (7.14) reduce for p = f to the ones in (8.2). H
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Remark 8.1. Proposition 2.4 is, of course, the case of theorem 8.1 where fi=g.fr=h,
d"f2(#) = {0}. In general for r= 2, condition (8.1) means that the nonempty convex cones
D;={w|f! (%; w) < =}, where f;/ (&: w) is the directional subdirective defined in [14], cannot
be separated: ¢”f(x) is the cone polar to D; (cf. argument used in proving proposition 2.4).
In particular D and D, cannot be separated if D, M int D, # &, In this case the formulas for
a(fi + £)(%) and 0°(f) + f2)(¥) are covered by theorem 2 of [13], a result which is valid in
infinite-dimensional spaces and also provides conditions under which equality holds in (8.2).
The technique of proof used here, while it allows a weakening of the separation hvpothesis
in a finite-dimensional setting, does not scem to provide corresponding results about the
possibility of equality,

CoroLLaRY 8.1 1. Letxe C=C,N...NC,, where C; C R" is closed. Suppose
Ay, E Ne(x) with y,+...+y,=0, excepty;=...=y,=0. (8.3)
Then
Ne(#) CNe,(2) +... + Ng(%). (8.4)

Proof. Take f; in thecorem 8.1 to be the indicator function ¢, cf. (1.8). H

CoROLLARY 8.1.2. Let f:R"— R be lower semicontinuous and let D C R" be closed. Let
X € D be a point where fis finite and such that

A nonzero z € 87f(x) with —z & Np(x).
Then
o(f + 0p)(%) Caf(x) + Np(x),  @7(f+ 6p)(¥) Cf(x) + No(2).

Proof. This specializes the theorem again in terms of (1.8). B

CoroLLARY 8.1.3. Let h(x) = f(x) ~ g( F(x)), where [1R"—R and g:R" — R are lower
semicontinuous, and F:R"— R™ is continuously differentiable, Let & be a point where £ is
finite, and suppose

A nonzeroy € 9"g(F (%)) with 0€ d*f(z) + yVF(x).
Then
dh(x) C of(x) + Ve(F(x))VF (%), *h(%) C o F(x) + dg(F(x)) VF(x).

Proof. This combines the two-function case of theorem 8.1 with the chain rule in corollary
712, HE

CoROLLARY 8,1.4. Let E=DNF C), where DC R" and CN R™ are closed sets, and
F:R"— R™ is continuously differentiable. Let ¥ be a point of E such that

Z nonzeroy € No(F(2)) with 0 &€ Npx) +yVF(x). (8.5)
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Then
Neg(x) CNp(£) + ;-’\-“,_«;(F(f))?ﬁ(f). (8.6)

Proof. Take f= 6p and g = & in corollary §.13, H

Remark 8.2. In terms of the polars of the cones Np(x) and ,-\"(-(F(.f}). which are the

tangent cones Tpp(£) and Te(F(£)) (see Clarke [3, p. 51]). the assertion of corollary 8.1.4
yields the following: if the convex concs T F(£)) and VF(£)Tp(¥) cannot be separated (i.e.
it To(F(£)) — VF(x)Tp(x) is all of R™). then

Te(%) D Tp(®) N VF(E) 'Te(F(X))
(the inversc being taken in the sense of an inverse multifunction, not necessarily single-
valued). This result has been proved by Aubin [1. Section 4].
Proof. This specializes the thecorem again in terms of (1.8). H
THEOREM 8.2. Let p(u) = g(£. u). where g:R" X R™— R is lower semicontinuous and i €
R™is fixed. Let & € R™ be such that g(£, @) is finite and
A nonzeroz with (z,0) € a*g(x. a). (8.7)
Then
ap() C{y|3z with (z.y) € ag(x, @)},
*pla) C{y|3z with (z.y) € a%g(x, &)} (8.8)
Proof. Define G: R™— R" x R" by G (u) = (%, u). Then p(u) = g(G(u)), and the hypothesis
of corollary 7.1.2 is satisfied: one has (z, v)VG (&) = v, so this image is 0 for a nonzero element

(z.v) of @"g(%. @) if and only if the element is of the form (z. 0) with z = 0. Relations (7.14)
turn into (8.8)., @

Remark 8.3. Theorem 8.2 strengthens our previous result on this matter in [11, proposition
4], which gave these conclusions only under the additional assumption that 6*g(x, i) is pointed.

COROLLARY 8.2.1. Let E = {u|(%. u) € D}, where D C R" X R™ is closed and ¥ € R" is fixed,
Let & € R™ be such that (£,4) € D and

A nonzeroz with (z,0) € Np(x, @t). (8.9)
Then
Ne(@@) C{y|3z with (z,y) ENp(E, @)k (8.10)

Proof. Take g = 8p in theorem 8.2. Thenp =9z, B

COROLLARY 8.2.2. Let E = {u € R"|f(1) = 0}, where f: R™— R is lower semicontinuous. Let
i be a point where f(a) = 0 but 0 € 4f(i2). Then

 Ne(a) C {Uﬂ ).af{a)] U 87 (i).
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Proof. We shall invoke the preceding corollary. Let D =epifC R™ X R, so that E =
{u|(u, 0) € D}. Recall that

Np(#, 0) = Negis(a. f(2))
= | U@, -1 |u (67 @), 0).

There does not exist z # 0 with (0, z) € Np(a, 0), for then there would exist 2> 0 with
(0, —A) € Np(#, 0), and we would have 0 € df (&), contrary to hypothesis. Therefore

Ne(@) C{y|3A€R with (y, —=1) € Np(a,0)}

This inclusion reduces to the one claimed. H

The normal cone estimate in corollary 8.2.2 generalizes the result obtained by the author
in [13, theorem 5], That result, valid in an infinite-dimensional setting, requires that f be
directionally Lipschitzian at #, a condition equivalent in the finite-dimensional case to af(u)
being nonempty but not including any whole line. However, that version also provides a
criterion for the inclusion to hold as an equation.

Our final result is an extension of theorem 3.2 to a more general class of perturbations.

THEOREM 8.3. Consider
p(u) =inf {f(x,u) | F(x,u) €C, (x,u) ED},
X(u) = argmin, {f(x, ») |F(x,u) €C, (x,u) €D},

(8.11)

where CC R™ and D C R" X R“ are closed, F:R" X R“— R™ is locally Lipschitzian, and
f:R" X R*— R is lower semicontinuous. Suppose & is a point where p(d) is finite, and that

Je>0 and &= p(a) suchthatthe set

{(x,)|f(x,u) =& F(x,u) EC,(x,u) ED, |u —it| = ¢} is bounded. (8.12)

Then p is strictly lower semicontinuous at @, and X(#) is nonempty and compact. If in
addition each such ¥ € X(4) satisfies the constraint qualification

A(zi.v1) € 37f(x,0), (z2,02) ENp(¥,4), y EN(F(x,2)) (8.13)

such that (zy, vy. z2. v2, y) # (0,0, 0, 0, 0) but —(z; = 22, vy + v2) € yaF(X. &). then for
the sets

M(a) ={v|3y EN(F(z,a)) with
(0, v) € of (7, 11) + yoF (. 1) + Np(%, 7)),
M) = {v|3y € Ne(F(%, @) with (8.14)

(0.v) € (%, @) + yoF (%, 4) + Np(%. 4)}

one has dp() C M (@) and 8*p(i) C M™(@), so all the assertions of proposition 2.1 are valid.
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Proof. Define

Px. u) {f(x, w)y if Fx,u)€C, (x,u) €D, (8.15)

—+ = gtherwise.

Then P and p fit the pattern of theorem 3.1, all the assumptions in that result being fulfilled.
What we need to demonstrate is that under (8.3), every pair (0, v) € dP (%, ) satisfies the
condition

Iy E Nc(F(%,@)) with (0,v) € of(x,a) +yoF(x,a) +Np(x, &), (8.16)

while every (0, v) € 4*P(%. i) satisfies the corresponding condition where §7f(%, 1) appears
in place of af(%, ). To this end we write P(x, 1) = g(G(x, u)), where

Gx,u) = (x,u,x,u, F(x.u)) ER"XRIXR"XR4XR™ (8.17)
g(xy, g, X3, U, w) = flxy, uy) + Op(xa, uz) + Se(w).
The chain rule in theorem 7.1 will be applied. We note that
6g(G(x, ) = (of (%, u), Np(*, &), N F(%, 1)),
7g(G(x,a)) = (87f(%,2), Np(x, &), No)F(¥, 2))). (8.18)
On the other hand,
(z1. 01, 22, 02, VYOG (£, 8) =(z1 T 22,01 T 02) TYIF(E, 7).
Assumption (7.1) in theorem 7.1 thus becomes (8.13), which is assumed here. It follows that
6P(%, i) C 3g(G(x, 2))oG (%, i),
6“P(%.7) C 8*g(G(%, u))dG(x, a),
and by virtue of (8.17) and (8.18) this is all we had to show. B
Remark 8.4. Theorem 8.3 reduces to the version of theorem 3.2 in remark 3.4 in the special
case where RY= R™ F(x,u) = Fy(¥) + u, f(x.u) = fu(x), D = Dy X R™.
THEOREM 8.4. (Parametric multiplier rule.) Let £ be a locally optimal solution to the problem
minimize f(x, 1) over all x satisfying F(x,4) €C, (x,2) ED,

where CCR" and D C R" X R? are closed, F:R" x R®— R™ is locally Lipschitzian, and
fiR"x R*— R is lower semicontinuous. Suppose f(¥,#) is finite and either that the
problem satisfies the calmness condition

A(x*. u*)— (2,2) with F(x*,u*) €C, (x* u*) €D.
suchthatu* # 4 and [f(x*, &) —f(z,2))/ |u* —a|— —=, (8.19)
or that £ satisfies the constraint qualification (8.13). Then
Jy E N(F(x,i1)) and v €R? with
(0, ) € 9f (%, &) + yaF (%, u) + N £, @). (8.20)
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Proof. The argument is the same as the proof of theorem 5.2, but with theorem 8.3 used
in place of theorem 3.2. B

Remark 8.5, In the special casc mentioned in remark 8.3, the multiplier rule in theorem 8.4
reduces to the one of theorem 5.3 as expanded in remark 5.3. The new result generalizes the
parametric multiplier rule given by the author in [11, theorem 2].
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