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A pa.amererized nonfirea. progrann re p.oblem is considered in Fhi.h the objective and

constraint iuncrions are twice .ontintonsly difierentiable Under the assumplion rhat certlin
nultiplier yecto.s appearing in eeneralized second o.der naesary condnions lor lcal oprinalnv
actually saiiiy the weak suficient condition lor local oPtinalitv b.sed on the alsne'led
Laqransi.n, it n stown that the optinal value in the problen. as a function ol the paranetetr.

is dnectionally difrerenliable. The dnccdonal derivatives are extre$cd b-v a nininax tunula
$rr.l.rr"alle. _eor(oru f eilil{ort\pro dnni16

(.:y w,r.lr: Marsi..l Vahes, Pa.aoehic Oprinization. Se.ond Order Optimalitt Conditions

1, lntroduction

For parameter vectors ,:(rr,...,4) ranging over an open set VcR/. we

consider the problem

minimize /o(u, r) oler all re RN such that

- f<0 for i:1,. .,r,
' l=0 for i=r+1, ..,n.

(P,.)

where, is for t:0,1...., m a function ol class 6'1 on vxR". The infimum in this

problem is denoted by p(o) and the set of optimal solutions by x(o):

p(1,)=inf(P.), x(u):arsrnin(P,).

Our ain is to esiablish a formula for the directjonal derivatives of p at ?J in terms

of Lagrange multiplier vectors associated with the elements, of X(0).
To simplify matters and concentrate on the main issues, we make the following

inf-boundedness assumption: for each t€ V and oeR, there is an s>(l such that

the set of (q i)€ VxR" saiisfying

lr ; < a, /o(r, .r) < d,

/,( D.'l) < E tor i=1....,r. li(o, r)l< 6 ror r="*t,...,., 
(1'1)
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is boundcd. This assumption will be useful in se!eral ways, but it ensures in particula.
that / is a lo'er semicontinuous lunction on V which n owhere takes on ir(rlthough
it may take on +.o, namely lor each lJ such that (P.) has no fealible solutiors), and
that X("-) is a nonempty compact sei for each , such that p(r) <..).

The lunction I is said io have one-sided directional derivatiles in the or./i,?dry

In thc case \rhere (P.) is a conver programmirg problem and rhe Mangasarian-
FroDovitz constrainr qualification is satislied. a minimax lormula ol Gol\htein [5]
gives derivatives r'(l]i k) ln the ordinary sense. Gaulin and Dubeau l3l halc
complemented this in rhe nonconlex case by providing a iffnula hr p'(r; k) when
ihere is a unique lirsForder multiplier vector associated \!ilh each :rEX(r). and
b_v upper and lower bounds tor p'(rt l) nore generallv. Rockafellar [16] has shown
that these results rcmaiD true undcr wcaker constraint qualifications. and that they
actually yield derivatives in the Hadamard sense.

So far- ro one has denonstrared rhe existence of p'(Di i) h rhe nonconvex case

whereLagra ge multiplier vectors are not necessarily unique, nor have second order
conditions been used in connection $irh such vedors in order to strengthen the
knolvn fornulas. Both tasks $ill be undernken here.

To get around nonconvexit_l, we shall take advantage of the fact that a saddlc
point exprcssion of optimaljty is possible \lithoLrt convcxity alsumptiols. if the
ordinrry LagraDgian for (P.) is replaced by thc (quadratic-tlpe) augnrcntcd
Lagrangian 11.11. For the second-order rcfincmcntl, $,e shall make usc of nc\r
multipiier sets which we have inrroduced in ll7l. These difier from previously
delined second order mxtllplier sels in being upper semicontinuous in their depen
dence on .r and r. rs well as ha!ing other laluable properties. For sinplicity in this
introduction, howcvcr. $e postpone discussion of such sets until Section 2 aird locus

on thc lc.sion of our mdin relult which can be srated in terms of more familiar
multiplier conditjons.

'Ihe ordindry Lagrangian lor prornen (P,) is

p't.r t) = liT
p(L+ tk) p\x)

exist. and in the Hddarldld r?irJe if thes€ limits can in fact be taken as

. p(ir + rk') p(r)

l(r.rl.))=/o(r..r)+ t )ji(,.,,) for ]: (rr,.. . ,l-).

v./(r, :!. ]):0,
lr>0 lor ;:1,...,r. with },=0 if ;E11r,.rJ.

(1.2)

( 1.3)

( 1..1)

(1. -i)

( 1.6)

The fir st-order m ultipli er set Y'( r. .t ) associa led with any l' € V and feasible solution
i 1!) (P") conlists ol dll thc vcclors l e R"' (il any) such that
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l(1,.j)={t.t1.,rl r(r,:r):0} (active sct of indicet.

Thc si'rg&l.r/ llrst order multiplier set Yi(o,:r) is deline.l in the same way,
that I is replaced by thc sil,guldl Lagrangian
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(1.7J

(1.8)

(1.e)

(1.10)

(1.r 2)

Both y'(r,:!) and Y;(l,.r) are pol,vhedral convex sets. of course, and Yi(r,, r) is
a cone containing 0. (For technical purpolcs. rhe two sets are dcfined ro be ernpry
if :r is not leasible.l

The condirion Yi(r.,:r)={0} is a constrnint quaiification equivalent by dualirv to
the one of Mangasarian and Fromovitz l9l. For a locally optinal srturion j ro (p"),
it hdds il and only if Yr(r,, ir) is nonempt) and compact, rs i\ wetl known t2l. Thus
in particular. 

^ 
necessary con.lition for the local oprnnalry ol .r in (p,), if ihe

constraint qualification in question is satisfied ar .r, is the exisrencc of a vector
I€ Y1(!, r). Second ordcr lnutriplier sets wirh parallel propertics, except for con-
vexity, will be described in Section 2.

The augmented Lagrangian lor (P,) involves a penalrv parameter /> 0 and js

lad\,,. /,.r.',-2 : /,r\,1

r,,(,.,:!, _!) = t J,i(r,, r).

*l,i, ttr, * 'r,t,, 'ttl I)i+,i(r,x)F),

tdl- = mar{a,0} ror d eR.

has a local minimxm at x. \\'here

.I0(r,.r. )) = {i e J(,,.r1 I < t< j,itu, -!)- 0, } =0}.

1,(,,:! rl = I(u,,)\.Io(r., x, r).

{This lonnula is sligh tly djfierent in appearancc from the one in rroduced in I I 3, I 4].
but amounts ro thc same thing.) A Locally augmentable iiultjplier vector tur (p,.)
at r is a vecbr !. R"' such ihat, fol r sufficienrtl, large. (.r, r) is a local saddle point
of l(u.,,, at (r, )). The sct of all these \1ill be denoted b-v Y"(,-, :r); one has

I E y"(r, -r) if and onh il r. Yr(r, r) and, for I sufiicjcntly targe, the funfiion

1(,., .,r-,,tr(,, )r) ( 1.11)rr*i( ,,r.,, rrr,, lt*

Thus Y'(r, :y) is a convex subset of )'1(r, .r), but y"(r. -r) is not necessarily ctosed.
A sullicient nndirion fo. the locat oplimatitr of r in (P.) is the exisience ot a vecror
r e Y'(,, r) [1a].
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when (P,) is a convex prosrammiDg problem, i.e. the function i(.,, ) is convex
on R" lor t = 0, 1,. . ., s and aline (linear+constano for t = r + 1, .., rn, one sirnply

has y"(r,'r): f''(.,, j), and this set is the same lor every 'r€X(r), coincidlng
namely with the set Y(u) optirnal solutions ,'- to the ordinary dual or (P,) lt3l.
For the nonconvex case. it $,ill help in clarilying the nature of the results beiow if
we recall briefly the relaiionship between y'(", r) and the molt familiar kind oI
second order oprimalit"! conditions. Let us associare 'liih any feasible solution x to
(P,) the pol]'hedral convex cone

w(r. r):{ ER'lv,r(r, i) }r<0 for'=0 and ;€r(r, 'I).t1, sl,

v,i(?,,.!) lr=0 for i=r+1,.... nl.
wbich ior any I € Y'(0, ir) .an also be expressed equivalently as

wlr,:r) ={w€ R' v.r(r,:r) . )! <0 lor t = 0 and te l.(N, jr. ),),

!.t(r,, 'I) w=0 for i€ rj(,",-t.l)1. (1.11)
Let

y'(lJ,r)=1)e Yr(.,. jr) w v;,1(,,r.r)w>0 rorali lr€ lv(N,:r)1,
(1.1s)

l';(1,, r) ={} E Y;(r, r) w v:.lo(r,:!})w>0forall },€rv(,.,')},
( 1.16)

Yl(,,n)={}€ v1(,.,-!) }' !i.l(u,ry)w>0forallnonzero 1'E wl"-, r)}.
( 1.1?)

obviouslythesetsv'1(,,x)andv3(r,-r)aredosed,andI';(,,r)isaconecontainins
0. The condition YI(N,x)tOi! ecessan forthe local optimality or:r in (P,)under
certain constraint qualifications (cf. 16, 7, 101), but the assumption thai Yi(o, :r) = {0}
is not adequate for this conclusion, in contrast to the situation for vl(r,r) and

Yl( u, r). (More will be said on this matter in Section 2.) The condition on Yl( r, jy) I
0 i! always sll,fidi€nr for the local optimalitJr of 'r in (P,), but it goes beyond the
condition v'(r, r) * 0 by implying also that .! is rl/icr. in the sense that there is a
neighborhood of :! cortairiDg no other feasible solution r' to (P.) with /o(u, r') <
lo(,,:r) (cf. [6, ?, 10]). one has

Yi(,,r)c Y"(r,:r). Y2(,-,r), with cl Yl(r',r)=s1 v'1r' *1

= Y'z(.,, jr) jl Y1,G, ') +A (l.l8)

(cl. [14, rheorem 6] and 117, Renark lollowins Propositrcn sl).
ln the result we now state, we denote by ri C the relatiDe interior ol d coNex set

C 112, Section 61.

Th€orem 1. Suppose I is a Dectot such thdt (P,) hds leasible solutions, anll eDery

optimal solutio )t . x (L)J satislies the .onstni t qualifcation YiO, r.) : rpj and has

0.13)

ri Y'(t,. 'I) - Y"(,, r) (1.1e)
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Then p possesses fnite one sided diectional deti\atiDes at L) in the Hadanntul sens?.

and in fa.t for e\er| k eix't

p'(rt k) = rnin nax V.l(r,, r, y) k. (1.20)
r.r(r) !.Yriojl

The set ri Yr(r., r) in assumption ( L l0) can be given a more direct description.
Let

1+(r,, jr) = {t e.I(r, i) Y,i(o, .r) . }r - 0 ror all w € lI/(r, i)}. 0.21)
Then

r*(r.1)={i.tl,rl lr. Yl(,-,-!) with ),>0}u{r+1,...,m}, l1-22J

riY'(r,:r):{}€yl(N,:r) -\,,>0foralliel*(r.:r).[1,s]]. (1.23)

Note that the index sets (r.r2) h the definition of y'(r,. r) reduce to

1,(o, ir, y) : 1*(r, :r) and ro(r,, -r, t) = 1(l,, -!)\1*1,. n) ror all ) € ri Yr(,, r).
\1.21)

Assumption (1.19), together \rith the constraint qualification, implies of course br
(1.18) that )"(l,, jr)= Yr(r, i).

Corollary 1. Ler D be a xcr.t such that ( P") has leasibLe solutions, and eDery aptimal
solution x E X lD ) stttisfies the constaint qualifcario Ytr6,x)=I0l and has

ri Y1(r. r) c y1(tj., i) (1.25)

Then the &nclusions of Theoren 1 are DaLid, moreoDet with X(.x) consisting al only
liniteLy many paints.

Corollary 1 is obtained by invoking (1.18) in condition (1.19). The reason X(.,)
must be finite in this case is that any:r€X(r) having yi(r,x)+0 must be an
isolated point of X(l,), in accordance \1ith rhe remarks above. Sincc x(r,) is compact
under our inf-boundedness assumption, there can be onl) finitcly many such points.

Corollary 2. Let L be a uctot such that (P,) has leasibLe solutions and is a cont)e\
prcgnmmins prcblen. Suppose the constaint quatiliLation Yltl\ x) =\ol is satislied

for same x E X(x). Then the conclusions of Theorcn t hold, morcoLet Nith XID) a
conuex set (hence consisnng of injinitely ru y points. unless it 8 a singleton), and
Ytlx, x) the sane lor euery r e X(r).

This folbws from the fact. noted earlier, that in the convex case. Yl(r., r) ard
Y'(r, 'r) coincide for each .r e X(r) with the set Y(r,) of optimal solutions ro the
ordinary dual to (P,). Note, incidcntally, that rhe direciional derivative lorrnula
( 1.19) rhen reduces to a minimax in (.r, )) relative ro a product of compaci convex



218 R.T Ro(kafell.n I Dillete idhiLitt .|.?tindl talues

sets X(r) and v(rJ). The expression v.,l("-. j! ]) t turns out to bc alinc a! a

function of r. X(r) for each l: Y(") as nell as afine as a furction of t. v(r)
lor each \ Ilrl..o hdr r .,LlJl. no nr e\(r e\r\.\.

Corollary 2 is closely related to the margi al value theorem of Gol'shteh 15,
Section 7l (see also Hogar f8l) for conlex programning problems. Go1\htein's
result is in some respects nore general: lhc lunctions, do not have to be dilterenti-
able in -r, and an abstracr constraint r.C can be present. On the other hand,
Corollary 2 brings the conclusion that the deivatives exist not just i the ordi ary
sense but the Hadamard sense. Furthermore, it inrposes convexity only on (P.) lor
thc r1 in.tucstion. nd n ccessarily for neighboring parameter value!. For an ertcnsion
of Col'shtein's thcorcnr to nonsmoolh convex {or iinear) programming problens
with primal and dual optimal $lution sets not necessadly bounded. see [17, Theorem
,ll.

2. Secotrd-order results

The first order nrultiplier multifunction Y':(r, r) i YI(u,r) has closed graph:

if rr e )'t(rt,.rr) and (rr, rr. yr)' (r, r. )), u E r', then ) E vr(r,.r).

The sane hotds for LJ. Furthermore, at any ( r. ir) where the constraint qualification
vl(r,r)={{)} is satisfied, YL is not onl}' nonempty compact vaiued, as already
noted. bur also ldcdll) bounded (cr. [3f). Local boundedness of vr at {a,:L) neans
that therc is a bounded sublet oi R- which. for every (r'.'r') in sone neighborhood
of (r, r), includes t''(r', ir'J. No such properties hold. horveler, for the second-ordcr
multifurctions Y2 and Yi, or for Y".

We proceed now to describe second-ordcr multiplier nultifurctions $hich do
have such properries. ln terms ol these we will be able to derive new upper bounds
for Hadamard directional derivatives and elentually prove a tightcr result than thc
one stated as Theorern l- The modified second-order conditioN are based on
de\el',pirer'. ir -

Wc shall makc usc of the concept of a sequence of subspaces M/ of R" ..,nr,srgirg
to a sublpacc M ir thc scnse that

lim dist(Ml :)=dist(rv..:) for alt z € R".

where dist'denotes Euclidean distance. (See [18,19] for results on thie kind of
conversence.) For each feasible solution .r to (P.),let J1(N, r) denote the collection
of all sutrspaces M erpressible ir thi! ivay as limits ol subspaces Mr of the following

r.? ih R ll,,..r, , -0.or-1,./ r..r,. qhee r:.r ,\r. j/.
(2.1)

Every M e,/l(r, -r) has dimension at least , /(r, .r) . where I(r, ir) is the nurnber
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of indices in /(r,, r). Furthermore, every ,L/€ /l(r', -!) is included in the subspace

z(r..r)={l'€R'lv,r(lJ,i)w=0iorall;E1(r,.r)}, (2.2)

zlr, r\ c w(L x) if Yl(,,i)+t).
The multiplier sets we shall be concerned $ith are

i1D. ')={}€ )''("-, r) tM e-tt(r,,:c)

uith 11'. Yl.11r,:r, )) }r > 0 for all }!€M},

i;("', r) ={}€ vl(r,, :r) l:we .r(u, r)

(2.3)

\2.4)

(2.s)rvith w. vl.lo(,-, r I), > 0 for all }!eMl.
It is evident from (2.3) thar

y1r,r). tlr,r) and y;(qr). i;(,,, \rhen yz(I),t)t0. (.2.6)

The set i;(!..r) contains 0 (whcn jl i! fca\iblc ror (P,.)). but neither i'(r..:r) nor
ii(u, r) neea u convex.

Theorem 2. rhe second odet muhptier sets iz(x, x) ana iilx, x) arc ctosed, and
in fact the muhifunctions i' ana ti arc of dosed snpL Fot a locally optimal
solution t ro (.P,,) one has i2(x, x) nonemp, and conpact if ill'J, x) = \01.

h pdrtiLula\ a ne.essdrJ tondition fot the lo.trl optimLtlit:- of :e ii (P,), if tlrc
co straint qualifrtdtion i;(r,x)={il} is satislie(l, is the eisten,:e ot' a xe':tu ye
i'(,, n.

Proot. We deri!e this trom results in l17l by way of a simple reformulation. Consider

the problem

nininizeri()'. 'I) over al1 (r'. r)€ vxR" satisl-ving

l<0 torr=1.....r.llr I)+,1
l-u ,o- i -'- l, ..,,!,

gt(r'. r) + ur = 0 forl=1,...,d,
where (ll,,...,l],,,) = ! ER". (r1....,,,):reR'r, and

s'(.r', jr): -ij for j!' = ('I1, . . . , .rl,) E Rd.

(F,.,)

12.'7)

Clearl), (P") can be idertified with 14,.). The int-boundcdnc!! condition (1.1)
.ole\p' no. r". ,:rniLr bllnk.L conJi ..'n rn r- . .t(cL.i,,eJ Lo P; , lhe rl-eor\
rnll- 1*.\iar(. eirr e:rch,er.i 'le,olurior',. ' rorP urhr ,r'a par-,.
nlultiplier sets l('?(ll, ?],.r',.r) an.l ,(;(ll, ?],:,;', 'I) which tor , =0 work out to

,< r(0, r, -r'..r) = {(r v"t(o,r1)) }€ir(..r)},
Ki(o,u,r',:!)={(}.!"r.,(r..,:r,-v))-rei3(u,-r)}. (28)



We need ollly apply 117, Proposition 6 and Theorem Tl to dra$ the desired
conclusions. n

Of course the necessary condition in Theorem 2 has a form iailored to the
parameterization in terms of ,, which is the subject of aftention here. This para-
meteization could be suppressed, and one would then have a tighrer resuh on local
opiimality for a fixed problem. See [17, Section 5], where a much wc.tker coNtraint
qualilication is developed for that purpose and connections with second order
condirions involving the set Yr(1),'r) in Secrion 1 are explored. Of course i'?(r, i)
coincides with y'(.,, r) and y1(r., x) when (P.) is a conver progranning problem,
and thi! is also true (by 117, Theorem 9l as applied io rhe relormulated problem
(4..) above) when the following condition is satislled: r is a locally optimalsotution
to (P") such rhat for each vector lr satisfying r, = I and (for the jndex sct I*(r, j)
in (1.21)-(1.2,1))
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ror i E 1(lJ, :r)\.r*(1l. i),
lor t€l*(r,:r),

i'?(,, r). cl Y'(lJ, r).

P'(.';n =.31. 
.-max, 

v,.r(,,, r, y) L

|'-t)

there is a sequence :rt + :r with /.(r rr) = 0 for all i e l*(,. r) and ('Ir - i)/lrt r -,
A simple emmple in 117, Section 5l sho\,ts, on the other hand. thar irta,:r) can
be muchsmaller than yi(r, r) and providemuch sharper information about proper-
tic! of the optinal value p(u).

The following thcorem, which will be proved in Secrion 3. can be sceD as a
sharpened form of Theorem 1.

Th€orem 3. Suppose x is a Lectar s ch that (P,) has feasibLe solutians, and eLery
optimal solution xe Xlr) satisfes the constrcint qualifications i?;( x, x): IA\ and has

Then p possesses lnite one-sided dnecianal deriDatiYs at t in the Hadamad se se.

an.l in Jact fot eEtr k.Rd

(2.9)

12 lol

rhis implies Theoren 1, becaurc iz(r,r). Yr(o,r) and iit,,,l. vi,t,, rt
Assunption ( 1.19) is more restrictive than (2.9), because ii implies

cl v"(,, r) r cllri 1't(r..r)l= vl(r,.rl.
(For a closed convex sct C, one always has cllrl C] = C, cl. lr2, Section 61.)

Correspondjng to Corolla4 1 ot Theorem 1, we have rhe following.

Corollary, Let x be a Dectot such that \P,) has feasible solutions, and etery optimat
solution x . X l.D) satisfes Ae @nstraint qualifcation iil x, x) = loj an(t has

i:(,, r1cct ri( o,.rr. (2.11)



Then the conclusions of Theoten 3 arc lalid, morcow wilh Xlr,) consistins of only

linirely mary points.

We shaii also prove in Section 3 a complementary result.

Theorcm 4. Let b be a te.tat such that (P") has leasible salutions Suppose that for
each xeX(D) the constrcint qualilication i;(u,r-{0} is satisfed, anA he set

t2\1', x) a.tually .onsists af a sinsle rccrot y(r.) Then p has fnite one-sided detixatircs

at x in the Hadamard sense, and in lact t'ot eLery k E[Na
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p'(,; t) = ,min J 
v,1(r, i. y(r)) ' k. (2.12)

vp(N) =v,l(,, r, y). (2.13)

Theorem 4 tightens a series ol resuits of Gauvin and Tolle [4], Gauvin l2l, ard
Gauvin and Dubeau [3]. Ttese deal with the case where y(1) is not just the unique

elemenr of Y2(r. al. but ol Y1(o.r).

Corollsry. Let a be a rcctot such that (P,) has a unique optimal solution x and a
untlue muhiplier t)ectot J e i2l1i, x). Il rhe constraint qualilcation i3(r,, r) = {O} ;s

satislied, then p is dillercntiable at x with sradient

The corollary is the case of Theorenr 2 where X(r) is a singieton. It may be

compared with the classical result that if the ttrong' second order optimality
conditions for (P") are satisfied at n, then (2.13) holds, provided lhe optimal value

function is redefined in terms oi locai optima reiative to a certain neighborhood of
:r (ct. Robinson [11]). The strong' optimality conditions require the existence of
sorne y: Yl(a, x) which has ), > 0 for every aciive inequality constrainti in addition
the vectors !,i(r,'I) lor iEI(o,t) nust be linearly independent- Under these

circumstanccs :! is rn isolated point of X(r), and ) is ihe unique element not only

ot i'(o,r), but or Y'(o,:r). A stronser conclusion can then be drawn: the
(redefined) function p is of class Cr in a neighborhood of r,.

3. Upper and lower estimates

The lormulas in Theorems 3 and ,l rvill be derived from more general estimates

for the rpper and lover Ha.lamad detiLatiu.

P(L+tk) P(t')

Dt r+ tk't D( Dip-(r': /r):liminf a,
' rt I

(3.1)

(.3.2)
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as well as, in cases where p is Lipschitz conlinuous. ihe Cldlte deri,"drirer (11. 151)

t"(!r r)=limsup
pllJ + tk') plr')

(3.3)

p"irik)= n]ar mar v"l(r.,:r,r) k.
r.r ,, rit,(i,r)

(3.,t]

Lipschitz continuity of / in a neighborhood ol o means that iol sone constari d :' 0

lp(r'l p(r,')i< " ," u'

lorall t'and !-" in the neighborhood in question. lhe theljnit(3.3) is bounded
above by a]/. , and ihe limir is uMfiected if the condltion k'i I is dropped and
o-r.'ipl) .r<. { - I ,r h( Jifleren.e qr o e L

Theo.em 5. Let I Dd a ,etnn su.h that lP,) has ledsihle salutions. and eN^ optjmdt
solutio x E Xlr) salisies the consraitu qualiliutu)n til:l. r):IA . Then p h tinite
and Lip'&itz continuou\ an a neishbothaoLi .f u, and for e]ery k =[Ne

Proof. Thi! is jLrst a matter ol applying a correspondnrg result ll7, Corollary to
Thcorcm 6l to rhe relornulatcd problem (P,, ,.1 introduced in thc proof of Theorern
L Ler rheop. ril ',lu. r.'A Iei,. '.d .rheJpr nJr ,.,1 ion.er .<\ &.,1
l-. ci.ed r<.u .). hur .t (,e) ot'ri dl .ourr,' \,.,1 o rP .,.,..n..
Xi(0, o, -r', :r):{(0,0)}, then , is Lipschilz continuou! on a neighborhood ol (0. ,)

t"{!, r,;,1, L)= max mqx [r.l+]'. tl.
rr .rrix(0,, ) ir r')!(1.,,,i i l

Hcre Krl0. u. jr'. l) and L;(0, |], r', ,) are gilen by (2.8). and

(1. s)

The condirion Kilo. ,, 'I . :r):{((1. {))} is equivalcnr. lor (r', .r) E t(0. r), to our
constraint quatificarjon ii(r.,:r)= {0}. so wc scc thar t is indeed Lipschirzian a.ound
({), r). (3.5) does hold, and

p'10.1";h,k)=. max max l).1+!,1(r,r.r) tl...rr'i r=t'{,..,)

Since r(0, )=t. \\e have p Lipschitz conlinuou! around r and

plu' + th'. 
"^' 

+ tk') p\ ', r')
I

t(0,,-'+rt') p(0, ll')

( Lh)

(r.7t

,'(0, !;0, k) = linrsup

1i'[ ),n] Lr

This, conbined with (3.7), yields (3.a). !

=P'1,-; k)
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The precedins resr t seneralizes one of Gauvin and Dubeau l3l ior first-order
multiplicr oonditions. An eritension to nonsmooth programning problems may be
round tu 1161.

(3.8)

(:1.9)

Theorem 6. L.t 
"^ 

be a 1)e.tot such that I P,,) has feasible salutions, and e 
"^'! 

tl opiimdL
solution x E X ( x) satisfie\ the rc siait ElaLifcatian i3( \ 1): Iaj. Then fot eYry
k etit'l the Hadamard semideiwtircs p+ (\ k) and p-Gt k) are jinite, dnd

/*(r: k)< inl max v,l(r,-!,))

p*(r: l)= min mh I,l(r,I'_r)
rexr!) r. t:rr.ri

Proof. The finiteness of p'(r; k) and p*(rj kl stems lrom the Lipschitz contin iry
of p around I as ensured by Theorem 5. Tackling the proof ol ( 3.9) first. we obseNe
that a changc of notation lrom I to k tu.ns th. iask into one ol verifying whether

p+(r; /r) = max mar !,,1(r, :t, l) . k
rLr(f) yct14r)

holds for all /r ERr. But this inequality is a consequence of the one jn Theorem 5,

prr t-p!r-,( p(u - tk )- p(t )
-p,': {L-rm<Lp 

I

Asfortheestimate(1.8),weshallalsoderiveitlromlheorem5.butbvalocalization
argurnent. Fix any i E X(r) and replace lo in (P") by

/,,(!,:!)=lo(r,r)+ r iI.
'rhis nodificatio does not change thc mulliplier sets i1r, i). i3(r, i), or otherwise
upset any of oxr assu ptions. but it makes i into thc rnlt optimal solution and
replaces p by another lowcr lcmicontinuous runction l>1 havhs l(r) =p(r).
Applying Theorcm 5 to the modified problem, wc obtain for all t E Ra

i"(N;k)< max !./(r. i 1') t.

Since i > p bur i(r,) = p(r), we also havc

. i,.u - t\ i') it'tl. i't, -'::i"

plr +,t') p(r)
=1'(ur /L),

p-(rl k)< max v,l(r,.Lr) L.

This being true for arbitrary i€X(,-), we obtain (3.8). .



221 R.T R.tkdJelLat I DilJaft"tidbiln! af opnhal raltles

Proor of l heorem 4. l.e1)f',,he.Fnl lheoremo 's"..Fedq,rh i 'r'. r .,) J l
(singleton), so that

max V,l(.,r.y).k= Inin v"(r,,r,y) k:v,l(r,.!y(r)) &
r -; r' ( u.rr '.Y1!,r)

ior all k E Rd. Therefore

p*(r1; l) < int Y,l(,,a)(:r)).k<p*(rJ; k).

This gives thc existcncc of Hadamard derivatives satisfying (2.12). The iniimum
over X(r) i! acrualll attained, because x(r) is compact and v,l(r,:r.](x)) is

continuou! relative to r E X("-). Indeed, )(.i!l is continuous relative to r E X(r,) by
the closedness and local boundedness of i2 in Theorem 2. I

Theorcm7, Let I be a rectot such that (P") has leasible solutians and erery x E X(r)
has Y"(.r. x) + b- Then t'ot eDetr k E[44 therc k an ie xt.L) such that

F.l0)

(3.11)

Proof. Fix any k € Rr. we can suppose rhat p+(r; k) < dr, for otherw*e (3.10) and
,l.ll, hola rnriall) B) oehiil|oi^f,.r.k, rleree\*r .equence' d -k"no r,,n

p=(,; k)>r,l(r, { )) k t'ata yeY"(!,i).

p*lr; k)> tnt sup v,l(r,.r, )) ft.
r.x1r) r. Y"1r,)

co> tp( I + r,ki)-p(")l/ tj) p+(D; k).

Then in particular

, + rj&/'lJ and r>p(r+tkr)>p(ll),
so by our inl-boundedness assumption (1.1) the set X(, + lkr) is nonemptlr lor all

/. For arbitrarily chosen :rre X(r+ trtr) we have

f t)( r + tjkt, l ) : pt,1) + tjkt ) : p( r),

continuity of every i.
In order to prove the theorem, it will sumce to show that (3.10) holds for

:r. In view of (3.12), this amounts to demonstrating for arbitrary t€ Y"(r, t)

(3.12)

(3.13)

t r, +,.*.,'rl- o for r=1" !
' t:0 fori=s+1,...,m. 13.1,1)

from which it follows (again by our inf-boundedness assumption) ihat the sequence

{'Ir} is bounded. Passing to subsequences if necessarv, we can reduce everything to
ihe case where iyrconverges to some ir-. Then i€ X(r,) by virtue of (3.14) and the

this
that

.t s)lim Ip(r+ r,ki) p(u)]/r;>v,,1(a,i j).k. (l
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We know fron the definition of l"(r,t) in Section 1 that the condition t,:
Y"{r, t) entails

]"'>0 lort=1....,s rnd tr(!-,t):0 lori=1,...,in (3.16)

and the exiltence ol some r> 0 and neighborhood U ol t such that

L(.t. r. x, )n)> Llt,t. r, i) for all re LI (3.17)

Since tEx(r) ard r/€x(,+tki), we have

L{a 0, ! t): if(r, i) = pl0),

/ r.r-r,1 .r..), 1. r'tl.)'-D'tttA.
Therefore

lp(r + ttkj) plr))/ t j > [L(r, r + t ]kt, nt, t) L(.t. r. x, t)ll t l
'lr'.."-'\.r') -1,, \ i'r I IIN

for all j large enorgh lhat.rr belongs to the neighborhood U in (3.11). But r is a

continuously dilTcrcntiable lunction of all its variatrles, accordingtu its lormula (1.9)
(because each, is conlinuousl), diilereniiable). The mean value thcorcm can

therefore be used to write the last diflerence quotient in (3.18) as

\,,L(t, x+ ajkt, xi, t) tt lor 4€(0.1).

]lT tp(,-+ 4k') -p(D)l/t>v.r(4,, r, t) k, (3.1e)

where lrom (i.9) and (3.16) one calculates

v,,r(r. r, i, t) =v,l(r.:r, t).

Ir vie$ of (3.12), inequalit,\' (3.19) is now seen to be the same as the desired

inequality (3.11). a

Proof or rheorem 3. Since i3(r, r): {0}. we have i'(r, r) + 0 by rheoren 2.

Assumption ( 2.9) then impljcs v " ( .-, :!) I 0. Theorenr s 6 and ? 
Lare 

both applicable

The desired formuta (2.10) is the conbination of (3.8) and i3.10). n
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