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A parameterized nonlinear programming problem is considered in which the objective and
constraint functions are twice continuously differentiable. Under the assumption that certain
multiplier vectors appearing in generalized second-order necessary conditions for local optimality
actually satisfy the weak sufficient condition for local optimality based on the augmented
Lagrangian, it is shown that the optimal value in the problem, as a function of the parameters,
is directionally differentiable. The directional derivatives are expressed by a minimax formula
which generalizes the one of Gol’shtein in convex programming.
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1. Introduction

For parameter vectors v=(v,..., t,) ranging over an open set V<=R® we
consider the problem

minimize fy(v,x) over all xeR" such that

fori=1,...,4,

o o{ S (P

fori=s+1,...,m,
where f is for i=0,1,..., m a function of class %” on V XR" The infimum in this
problem is denoted by p(v) and the set of optimal solutions by X (v):

p(v)=inf(P,), X(v)=argmin(P,).

Our aim is to establish a formula for the directional derivatives of p at v in terms
of Lagrange multiplier vectors associated with the elements x of X(v).

To simplify matters and concentrate on the main issues, we make the following
inf-boundedness assumption: for each i€ V and a R, there is an &> 0 such that
the set of (v, x) = V xR" satisfying

[o—0|l=e,  folv,x)=a,

(1.1
filv,x)<efor i=1,...,s, |fi(v, x)|<e fori=s+1,...,m, ()
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214 R.T. Rockafellar /| Differentiability of optimal values

is bounded. This assumption will be useful in several ways, but it ensures in particular
that p is & lower semicontinuous function on V which nowhere takes on —oo (although
it may take on +o0, namely for each v such that (P,) has no feasible solutions). and
that X {v) is a nonempty compact set for each v such that p(v) <,

The function p is said to have one-sided directional derivatives in the ordinary
sense it the limits

. (v+tk)—plv)
p’{z;;k}=li1}]1‘r”f)p{' (1.2)
exist, and in the Hadamard sense if these limits can in fact be taken as
(v+1tk')—plv
i w (1.3)
AR

In the case where (P,) is a convex programming problem and the Mangasarian—
Fromovitz constraint qualification is satisfied, a minimax formula of Gol’shtein [3]
gives derivatives p'(v; k) in the ordinary sense. Gauvin and Dubeau [3] have
complemented this in the nonconvex case by providing a formula for p'(z; k) when
there is a unique first-order multiplier vector associated with each xe X(v), and
by upper and lower bounds for p'(v; k) more generally. Rockafellar [16] has shown
that these results remain true under weaker constraint qualifications, and that they
actually vield derivatives in the Hadamard sense.

So far, no one has demonstrated the existence of p'(v; k) in the nonconvex case
where Lagrange multiplier vectors are not necessarily unique, nor have second-order
conditions been used in connection with such vectors in order to strengthen the
known formulas. Both tasks will be undertaken here.

To get around nonconvexity, we shall take advantage of the fact that a saddle
point expression of optimality is possible without convexity assumptions, if the
ordinary Lagrangian for (P,) is replaced by the (quadratic-type) augmented
Lagrangian [14]. For the second-order refinements, we shall make use of new
multiplier sets which we have introduced in [17]. These differ from previously
defined second-order multiplier sets in being upper semicontinuous in their depen-
dence on x and v, as well as having other valuable properties. For simplicity in this
introduction, however, we postpone discussion of such sets until Section 2 and focus
on the version of our main result which can be stated in terms of more familiar
multiplier conditions.

The ordinary Lagrangian for problem (P,) is

o x.v)=fole. x)+ E vifile.x) for y=(y,....Vml (1.4)
i=1

The first-order multiplier set Y'(v, x) associated with any v € V and feasible solution
X to (P,) consists of all the vectors yeR™ (if any) such that

V(v x, v)=0, (1.5)

vi=0 fori=1,...,s, with w=0if ig (v, x), (1.6)
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where
Ho,x)={ie[l,m]|fi(v.,x)=0} (active sct of indices). (1.7)

The singular first-order multiplier set Yo, x) is defined in the same way, except
that / is replaced by the singular Lagrangian

"

113

lolv, x, y) =

P

yifilw, x). (1.8)
1

Both Y'(v, x) and Y}(v. x) are polyhedral convex sets, of course, and Y(v, x) is
a cone containing 0. (For technical purposcs, the two sets are defined to be empty
if x is not feasible.)

The condition Yg(z, x) ={0} is a constraint qualification equivalent by duality to
the one of Mangasarian and Fromovitz [9]. For a locally optimal solution x to (P,),
it holds if and only if Y'(wv, x) is nonempty and compact, as is well known [2]. Thus
in particular, a necessary condition for the local optimality of x in (P,), if the
constraint qualification in question is satisfled at x, is the existence of a vector
y& Y'{v, x). Second-order multiplier sets with parallel properties, except for con-
vexity, will be described in Section 2.

The augmented Lagrangian for (P,) involves a penalty parameter r> 0 and is
expressed by

I.(t-'-,x.y,r)=r‘(v,x,y}+§ r [filux)P
i=s+1
12 . — ) 5, .
+o, L (v+rfile 0=yt rfi(e, )T, (1.9)
~F =1
where
[a]l- =max{a, 0} for acR. (1.10)

(This formula is slightly different in appearance from the one introduced in [13, 14],
but amounts to the same thing.) A locally augmentable multiplier vector for (P,)
at x is a vector y € R™ such that. for r sufficiently large, (x, y) is a local saddle point
of L{v,+,+,r) at {x, y). The sct of all these will be denoted by Y*“(v, x); one has
ve Y*(wv, x) if and only if ye Y'(v, x) and, for r sufficiently large, the function

f’(v,-,}-'}Jrgr( Y [flu, )P+ I [ﬁ{t},-]]z) (1.11)

islplvxy) sl vyl

has a local minimum at x, where

Lo, x, y)={iel(v,x)|1=si=ss fi{v,x)=0,y, =0},
: (1.12)
Lo, x, y)=T(v, x)\ (e, x, y).
Thus Y*(v, x) is a convex subset of Y'(o, x), but Y%(u, x) is not necessarily closed.
A sufficient condition for the local optimality of x in (P,) is the existence of a4 vector
ye Y x) [14].
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When (P,) is a convex programming problem, i.e. the function f;(v, -} is convex
onR" fori=0,1,...,sandaffine (linear +constant) fori=s+1,..., m, one simply
has Y“(v, x)= Y'(v, x), and this set is the same for every xe X(v), coinciding
namely with the set Y (o) optimal solutions y to the ordinary dual of (P,) [13].
For the nonconvex case, it will help in clarifving the nature of the results below if
we recall briefly the relationship between Y“(v, x) and the most familiar kind of
second-order optimality conditions. Let us associate with any feasible solution x to

(P,) the polyhedral convex cone
Wiv, x)={weR" |V filv,x)  w=0fori=0and ie (v x)n[1,s],
V. flo,x)-w=0fori=s+1,...,m}h (1.13)
which for any ye Y'(v, x) can also be expressed equivalently as
Wi, x)={WER”|V_\.f,-(v, x)-w=0ftori=0and ic (v x, ¥),
V.filv,x)- w=01forie (v, x, v)} (1.14)
Let

Yo, x)={ye Y' (v, x)}|w- V(v x, y)w=0 forall we W(p, x)},
(1.15)

Yo(v, x)={ye Yi(v, x)|w: Vi (v, x, y)w=0 forall we W(z, x)},
(1.16)

Yi(v, x)={ye Y'(v, x)|w- VLl(v,x, y)w>0 for all nonzero we W(v, x)}.
' {1.17)

Obviously the sets Y?(v, x) and Y3(v, x) are closed, and Yi(v, x)isacone containing
0. The condition Y*(z, x) # () is necessary for the local optimality of x in (P,) under
certain constraint qualifications (cf. [6, 7, 10]), but the assumption that Yi(v, x) ={0}
is not adequate for this conclusion, in contrast to the situation for Y!(v, x) and
Y (v, x). (More will be said on this matter in Section 2.) The condition on Y3 (v, x) #
@ is always sufficient for the local optimality of x in (P,), but it goes beyond the
condition Y*(v, x) # @} by implying also that x is strict, in the sense that there is a
neighborhood of x containing no other feasible solution x' to (P,) with fo(v, x') =
folw, x) (cf. [6,7,10]). One has

Yi(p, x)c Y0, x)= Y2(n, x), withel Yi(s, x)=cl Y(v,2)
=Y?*u,x)if Yi(v,x)=0 (1.18)

(cf. [14, Theorem 6] and [17, Remark following Proposition 5]).
In the result we now state, we denote by ri C the relative interior of a convex set
C [12, Section 6].

Theorem 1. Suppose v is a vector such that (P,) has feasible solutions, and every
optimal solution x € X (v) satisfies the constraint qualification Y (v, x) ={0} and has

i Yo, x)c Y*(u, x). (1.19)
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Then p possesses finite one-sided directional derivatives at v in the Hadamard sense,
and in fact for every k e R®
pe;k)= min max V/J(uxy)k (1.20)

LEX(L) ve v i)

The set ri Y'(v, x) in assumption (1.10} can be given a more direct description.
Let

(o, x)={iel(z, x’)|\“-'_\._}‘}(v, X)) w=0 forall we W(up, x)}. (1.21)
Then

(o, x)={ic[1,5]|Fye Y (v, x) with y,>0}u{s+1,...,m}, (1.22)
and

i Yo, x)={ye Y0, x) |y, >0 forall ie I*(s, x) ~[1, s]} (1.23)

Note that the index sets (1.12) in the definition of Y (%, x) reduce to

Li(e, x, y)=I*v. x) and (v, x, v)=I(v, x)\I*(0, x) forall yeri Y'(v, x).
(1.24)

Assumption (1.19), together with the constraint qualification, implies of course by
(1.18) that Y*(v, x)= Y'(¢, x).

Corollary 1. Let v be a vector such that (P,) has feasible solutions, and every optimal
solution x € X(v) satisfies the constraint qualification Y (v, x) ={0} and has

i Yie x)e Yi(y x). (1.25)

Then the conclusions of Theorem 1 are valid, moreover with X(v) consisting of only
finitely many points.

Corollary 1 is obtained by invoking (1.18) in condition (1.19). The reason X (v)
must be finite in this case is that any xe X(v) having Y, Xx)# ¢ must be an
isolated point of X(v), in accordance with the remarks above. Since X (v) is compact
under our inf-boundedness assumption, there can be only finitely many such points.

Corollary 2. Let v be a vector such that (P,) has feasible solutions and is a convex
programming problem. Suppose the constraint qualification Y (v, x) =40} is satisfied
for some x € X(v). Then the conclusions of Theorem 1 hold, moreover with X(v) a
convex sef (hence consisting of infinitely many points, unless it is a singleton), and
Y'Y, x) the same for every x e X(v).

This follows from the fact, noted earlier, that in the convex case, YI(L‘-, x) and
Y*“(v, x) coincide for each x € X (v) with the set Y(v) of optimal solutions to the
ordinary dual to (P,). Note, incidentally, that the directional derivative formula
(1.19) then reduces to a minimax in (x, y) relative to a product of compact convex
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sets X (o) and Y(v). The expression V. (v, x, v) - k turns out to be affine as a
function of x ¢ X (v) for each y< Y(v) as well as affine as a function of y< Y (v)
for each x = X(v), so that a saddle point even exists.

Corollary 2 is closely related to the marginal value theorem of Gol'shtein [3,
Section 7] (see also Hogan [8]) for convex programming problems. Gol'shtein’s
result is in some respects more general: the functions f; do not have to be differenti-
able in x, and an abstract constraint x€ C can be present. On the other hand,
Corollary 2 brings the conclusion that the derivatives exist not just in the ordinary
sense but the Hadamard sense. Furthermore, it imposes convexity only on (F,) for
the v in question, not necessarily for neighboring parameter values. For an extension
of Gol'shtein’s theorem to nonsmooth convex (or linear) programming problems
with primal and dual optimal solution sets not necessarily bounded, see [17, Theorem
4].

2. Second-order results

The first-order multiplier multifunction Y'i(v, x)> Y (v x) has closed graph:
if ye Yo, x) and (v, ¥, ¥)= (v, x. ¥),ve V, then ye Y'(u, x).

The same holds for Y. Furthermore, at any (v, x) where the constraint qualification
Yo(o, x)={0} is satisfied, Y is not only nonempty-compact-valued, as already
noted, but also locally bounded (cf. [3]). Local boundedness of Y* at (¢, x) means
that there is a bounded subset of R™ which, for every (¢', x') in some neighborhood
of (v, x),includes Y'(¢', x'). No such properties hold, however, for the second-order
multifunctions Y2 and Yé, or for Y*.

We proceed now to describe second-order multiplier multifunctions which do
have such properties. In terms of these we will be able to derive new upper bounds
for Hadamard directional derivatives and eventually prove a tighter result than the
one stated as Theorem 1. The modified second-order conditions are based on
developments in [17].

We shall make use of the concept of a sequence of subspaces M/ of R" converging
to a subspace M. in the sense that

}11'{3 dist(M’, z) =dist(M, z) forall zeR",
where ‘dist’ denotes Euclidean distance. (See [18, 19] for results on this kind of
convergence.} For each feasible solution x to (P,), let .4 (v, x) denote the collection
of all subspaces M expressible in this way as limits of subspaces M’ of the following
form:

M ={weR"|V.fi(¢v,x) - w=0"torall izi(v, x)}, where (¢/, x))> (v, x).
(2.1)

Every M e (¢, x) has dimension at least n—|I (v, x)|, where

I(v, x)| is the number
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of indices in I(z, x). Furthermore, every M € #(¢, x) is included in the subspace
Ziv, x)={weR"|V filv,x) - w=0{forall icI{v x)}, (2.2)
and
Zlv,x)= W(n, x) if Yi(v, x)=0. (2.3)
The multiplier sets we shall be concerned with are
Yo, x)={ye Y'{v.x)|IM e (v, x)
with w- V2, l(v, x, y)w=0 forall we M}, (2.4)
Yiwv.x)={yve Yilv, x)|IM = 4(v, x)
with w- V2 lo(v, x, y)w=0 forall we M}. (2.5)
It is evident from (2.3) that
Y3(r,x)= V¥ u.x) and Yi(v, x)< Y3(v, x) when Y(uv, x)#0. (2.6)
The set Yi(v, x) contains 0 (when x is feasible for (P,)). but neither Y*(¢, x) nor

o2
Yiluy, x) need be convex.

Theorem 2. The second-order multiplier sets Y(v, x) and Yi(v, x) are closed, and
in fact the multifunctions Y? and Y3 are of closed graph. For a locally optimal
solution x to (P,) one has Y*(v, x) nonempty and compact if Y(v, x) ={0}.

In particular, a necessary condition for the local optimality of x in (P,), if the
constraint qualification Yi(e, x)={0} is satisfied, is the existence of a vector ye
Y(w, x).

Proof. We derive this from results in[17] by way of a simple reformulation. Consider
the problem
minimize fi;{x", x) overall (x, x) e V xR" satistying

o =0 fori=1,...,5%
flx', x)+u

=0 fori=s+1u.m, (P,.)
glx',x)+uy;=0 forj=1,....d,
where (4, ..., u)=uecR" (vy,..., ) =veR* and
R E e n BT S o R PERY, P2

Clearly (P,.) can be identified with (P, .). The inf-boundedness condition (1.1)
corresponds to a similar blanket condition in [17], specialized to (_F{)__U}. The theory
in [17] associates with each feasible solution (x', x} to (P, ) {with x' =v) a pair of
multiplier sets K3u, v, x', x) and-Kf,{ u, v, x', x) which for u =0 work out to
K20, 0, x', x) ={(y, V(0. x, ¥)) |y € V(0. 1)},
5 & . (2.8)
K30, o, x', x) ={(y, Volo(v, x, ¥)) |y e Yi(v, x)}.
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We need only apply [17, Proposition 6 and Theorem 7] to draw the desired
conclusions, [

Of course the necessary condition in Theorem 2 has a form tailored to the
parameterization in terms of v, which is the subject of attention here. This para-
meterization could be suppressed, and one would then have a tighter result on local
optimality for a fixed problem. See [17, Section 5], where a much weaker constraint
qualification is developed for that purpose and connections with second-order
conditions involving the set Y*(v, x) in Section 1 are explored. Of course V2(u, X)
coincides with Y7(¢, x) and Y(v, x) when (P,) is a convex programming problem,
and this is also true (by [17, Theorem 9] as applied to the reformulated problem
(P,.,) above) when the following condition is satisfied: x is a locally optimal solution
to (P,) such that for each vector w satisfying |w| =1 and (for the index set I'*(v, x)
in (1.21)-(1.24))

<0 for iel(v, x)\I*(v, x),
=0 forisl*®(v, x),

Vafilox) - W{
there is a sequence x’ - x with £;(», x') = 0forall i € I*(v, x) and ('~ x)/|x’ — x| > w,
A simple example in [17, Section 5] shows, on the other hand, that Y?(2, x) can
be much smaller than Y (v, x) and provide much sharper information about proper-
tics of the optimal value p(v).

The following theorem, which will be proved in Section 3, can be seen as a
sharpened form of Theorem 1.

Theorem 3. Suppose v is a vector such that (P,) has feasible solutions, and every
optimal solution x € X (v) satisfies the constraint qualifications Yi(v, x) =10} and has

Y(uv, x)ccl Yy, x). (2.9)

Then p possesses finite one-sided directional derivatives at v in the Hadamard sense,
and in fact for every k c R¢

Pllv;x)= min  max VJI(uv,xy) -k (2.10)
=X (u) v Y’:Lv.x)

This implies Theorem 1, because Y2(v, x)< Y (v, x) and Yi(v, x)< Yi(w, x).
Assumption (1.19) is more restrictive than (2.9), because it implies

el Y, x)oclri V(v x)]= Y (v, x).
(For a closed convex set C, one always has cl[ri C]=C, cf. [12, Section 6].)

Corresponding to Corollary 1 of Theorem 1, we have the following.

Corollary. Let v be a vector such that (P,) has feasible solutions, and every optimal
solution x € X (v) satisfies the constraint qualification Y3(v, x) ={0} and has

Y3, x)=cl Yi(u, x). (2.11)
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Then the conclusions of Theorem 3 are valid, moreover with X (v) consisting of only
finitely many points.

We shall also prove in Section 3 a complementary result.

Theorem 4. Let v be a vector such that (P,) has feasible solutions. Suppose that for
each xe X(v) the constraint qualification Y2(uv, x)={0} is satisfied, and the set
Y?2(v, x) actually consists of a single vector y(x). Then p has finite one-sided derivatives
at v in the Hadamard sense, and in fact for every k e R?

pl(vik)= min V.I(v,x y(x))- k. (2.12)

Theorem 4 tightens a series of results of Gauvin and Tolle [4], Gauvin [2], and
Gauvin and Dubeau [3]. These deal with the case where y(x) is not just the unique
element of Y*(¢, x), but of Y'(v, x).

Corollary. Let v be a vector such that (P,) has a unigue optimal solution x and a
unique multiplier vector ye Y?*(v, x). If the constraint qualification Yi(v, x)={0} is
satisfied, then p is differentiable ar v with gradient

Vplv) =V (v x ¥y). (2:13)

The corollary is the case of Theorem 2 where X (v) is a singleton. It may be
compared with the classical result that if the ‘strong’ second-order optimality
conditions for (P,) are satisfied at x, then (2.13) holds, provided the optimal value
function is redefined in terms of local optima relative to a certain neighborhood of
x (cf. Robinson [11]). The ‘strong’ optimality conditions require the existence of
some y< Y2 (v, x) which has y, > 0 for every active inequality constraint; in addition
the vectors V,fi(v, x) for ie (v, x) must be linearly independent. Under these
circumstances x is an isolated point of X (¢), and y is the unique element not only
of ?’Z(U,x), but of Y'(u, x). A stronger conclusion can then be drawn: the
(redefined) function p is of class Clina neighborhood of v

3. Upper and lower estimates

The formulas in Theorems 3 and 4 will be derived from more general estimates
for the upper and lower Hadamard derivative.

p(v+ik')—p(v)

pv; k) =1i1£;51;p : (3.1)
"o
; 1+ tk') — p(o) ,
p.(v; k) =timipg 2P, (3.2)

(220
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as well as, in cases where p is Lipschitz continuous, the Clarke derivatives ([1.15])
e i (e'+tk" —plo' L
pole; k) =limsup P f' " ). (3.3)

vt

k= k

el
Lipschitz continuity of p in a neighborhood of v means that for some constant e = ()
one has

Ip(v)—p(o")| = el — ']

for all »" and ¢" in the neighborheod in question. Then the limit (3.3) is bounded
above by alk|, and the limit is unaffected if the condition k' k is dropped and
one simply takes k"= k in the difference quotient.

Theorem 5. Let v be a vector such that (P,) has feasible solutions. and every optimal
solution x & X(v) satisfies the constraint qualification Y (v, x)={0}. Then p is finite
and Lipschitz continuous on a neighborhood of v, and for every k = R*

piles k)= max max V(o x v)-k (3.4)

AEXNiv) ve T

Proof. This is just a matter of applying a corresponding result [17, Corollary to
Theorem 6] to the reformulated problem (P, .} introduced in the proof of Theorem
1. Let the optimal value in (P, ) be p{u, v), and the optimal solution set be X (u, v).
The cited result says that if every optimal solution (x',x) to (P, ,) satisfics
K30, v, x', x)={(0,0)}, then p is Lipschitz continuous on a neighborhood of (0, v)
and

pilu, vy hy k)= max max [¥-h+y k] (3.5)

(2l xle XD 0 (e Ko0,0,x.x")

Here K70, v, x', x) and K3(0, v, x', x) are given by (2.8), and

(x,x)eX(0,v) © x'=x and x<X(v). (3.6)

The condition K3(0, v, x', x) =1{(0,0)} is equivalent, for (x', x) 2 X(0, v), to our
constraint qualification Yiv x)= {0}. so we see that 7 is indeed Lipschitzian around
(0, v}, (3.5) does hold, and

po(0.v; h k)= max max [y h+V. (v, xy) - k] (3.7}

v Xl v F i)
Since p(0, ) =p, we have p Lipschitz continuous around ¢ and

plu'+th', o' +tk"y—plu', v')

p(0, v:0, k)= limsup
(w' e =10, !
Chok=ro ks
Ll

: L0, o' +1k") =50, v")
= limsup =p°(v; k).
(0w = (i) I
(0,67 =10,k
[y

This, combined with (3.7), yields (3.4}, O
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The preceding result generalizes one of Gauvin and Dubeau [3] for first-order
multiplier conditions. An extension to nonsmooth programming problems may be

found in [16].

Theorem 6. Ler v be a vector such that (P,) has feasible solutions, and every optimal
solution x € X{v) satisfies the constraint qualification Yg(v, x) ={0}. Then for every
k e RY the Hadamard semiderivatives p* (v; k) and p_(v; k) are finite, and

preik)y= inl  max V(v xy) -k (3.8)

- 2 |
r=Xiv) ve Y o)

p{vik)= min  min V.J{(ux v) k (3.9

xeXiv) yve ¥Fioa)
Proof. The finiteness of p~(v; k) and p.(v; k) stems from the Lipschitz continuity

of p around v as ensured by Theorem 5. Tackling the proof of (3.9) first, we observe
that a change of notation from k to —k turns the task into one of verifying whether

—po(v;—k)= max max V(v xy)  k

xeX(ey veY {ux)
holds for all k«R“ But this inequality 1s a consequence of the one in Theorem 3,
because
plv)—plv—rk) plv'+itk')—p(v)

=p,{v; —k)=limsup *———————=limsup =~ =p*(uv; k).
k'=k ! vy !
£l k'=k
ARE

Asfor the estimate (3.8), we shall also derive it from Theorem 5, but by a localization
argument. Fix any £ X(v) and replace f; in (P,) by

folw, x) = folv, x) +|x —f|3.
This modification does not change the multiplier sets Y23(v, £). Y3(v, £). or otherwise
upset any of our assumptions, but it makes £ into the only optimal solution and
replaces p by another lower semicontinuous function p=p having plv)=p(v).
Applying Theorem 5 to the modified problem, we obtain for all ke R®

PPl k)= max V(v £y -k

T

Since p=p but p(v)=plv), we also have

. , (o +tk") —plo') le+ k') — ple)
po(w; k) =limsup P S = limsup Bovisd— kv
Bin 4 Kok t
ks o

£ln

: ple+ik')—plv) |
Bllmsup%=p (v: k),
K=k
el

and it follows that

p (v k)= max V.0(yvxy) -k

o il €

This being true for arbitrary £ X (v}, we obtain (3.8).

]
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Proof of Theorem 4. The hypothesis of Theorem 6 is satisfied with YHux)= {v(x)}
(singleton), so that

max V.[(v,x,y) k= m}n Vv, x,y) k=V (v, x, y(x)) - k

¥E ¥ vx) ¥E ¥ oux)
7
for all k €R" Therefore

prlvi k)= inf V.(v,x y(x)) k=p(v; k).

This gives the existence of Hadamard derivatives satisfying (2.12). The infimum
over X(v) is actually attained, because X(v) is compact and V. I(v, x, y(x)) is
continuous relative to x € X(v). Indeed, y(x) is continuous relative to xe X{v) by
the closedness and local boundedness of ¥?2 in Theorem 2. [

Theorem 7. Let v be a vector such that ( P,) has feasible solutions and every x € X (v)
has Y(v, x) # 0. Then for every ke R there is an < X (v) such that

plo;ky=V v, v) -k forallye Yo(u X). (3.10)
Consequently
pi(vy k)= inf sup V(v x, y) k (3.11)

X ye YN e

Proof. Fix any ke R?. We can suppose that p.(v; k) <00, for otherwise (3.10) and
(3.11) hold trivially. By definition of p, (v, k) there exist sequences k! =k and ;40
such that

o= [p(v+1k)) —p(v))/ 1> p.(v; k). (3.12)
Then in particular
v+tk’>v and «=plo+ik’)—plu), (3.13)

s0 by our inf-boundedness assumption (1.1) the set X(v+ rjk"') is nonempty for all
j. For arbitrarily chosen x’ e X(v+ k) we have

folv+ 4, x7) = po+ k) = p(v),

=0 fori=1,...,5

Flo+tk, .xj'){ (3.14)

=0 fori=s+1,.... m,

from which it follows (again by our inf-boundedness assumption) that the sequence
{x’} is bounded. Passing to subsequences if necessary, we can reduce everything to
the case where x’ converges to some % Then £& X (v) by virtue of (3.14) and the
continuity of every f.

In order to prove the theorem, it will suffice to show that (3.10) holds for this
X. In view of (3.12), this amounts to demonstrating for arbitrary §= Y“(v, ) that

lim [p(o+ k) —p(0))/ =V (v, % 7) - k. (3.15)
S



R.T. Rockafellar / Differentiubility of optimal values 225

We know from the definition of Y“(v, ¥) in Section 1 that the condition ¥¢
Y“(u, ¥) entails
§.=0 fori=1,....s and §fi(v.%)=0fori=1,...,m (3.16)
and the existence of some r> 0 and neighborhood U of ¥ such that
Lirv,x.y)=Liru % ¥) forall xeU. (3.17)
Since ¥ X(v) and x/ X(v+tk’), we have
Lir, v.ox, ¥)=folv, X) = plo),
Lir, v+ k!, 3/ y) = folv+ k!, x') = p(v+ k'),
Therefore
[p(v+1k))—p(e))/ = [L(r, v+ 4k, ) §)—L(r. v, x. DV ¢
=[L(r, v+ k', x’, §) = L(r, v, X', §)1/¢; (3.18)

for all j large enough that x’ belongs to the neighborhood U in (3.17). But Lis a
continuously differentiable function of all its variables, according to its formula (1.9)
(because each f; is continuously differentiable}. The mean valuc thcorem can
therefore be used to write the last difference quotient in (3.18) as

V.L(rnv+6k), x, §) - k' for 6;€(0.1).
Therefore

lim [p(e+ k") —p(v))/t=V . Lir, v, % 7) - k, (3.19)
Joon

where from (1.9) and (3.16) one calculates
V. L(rv, %, 7)==V v X ¥).

In view of (3.12), inequality (3.19) is now seen to be the same as the desired

inequality (3.11). O

Proof of Theorem 3. Since Y32(v. x)={0}, we have V3w, x) =0 by Theorem 2.
Assumption (2.9) then implies Y “(z, x) # @. Theorems 6 and ?Iare both applicable.
The desired formula (2.10) is the combination of (3.8) and (3.10). O
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